Pomona
e College

SENIOR THESIS IN MATHEMATICS

SimpleX:

Software tools for visualizing functions on
simplicial complexes

Author: Advisor:
Dmitriy Smirnov Dr. Vin de Silva

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

April 13, 2017

Abstract

I introduce a web-based tool, which allows the user to dynamical input a
simplicial complex with a function defined on it and to visualize associated
topological operations and structures. I go over the theory behind these ideas
and demonstrate my implementation and visualization contributions.

Contents

2 Simplicial Complexes|

2.1 Definitionl

2.3 SimpleX implementation|
[2.3.1 Visualizing complexes
[2.3.2 Visualizing functions|

[3.2 Operations|.
[3.2.1 Convolution and duality|
[3.3 Application to sensor networks|.
[3.4 SimpleX implementation|o
[3.4.1 Visualizing duality]
[3.4.2 Visualizing Euler integration|

[4 Reeb graphs|
41 Definitionl oo
4.2 Computation|
(4.3 SimpleX implementation|

B Tochnical details

6 Conclusion and further workl

13
13
17
17
19
23
23
24

26
26
28
30

33

34

{7 Bibliography|

APP e

(A JavaScript code|

i

35

37

37

Chapter 1

Introduction

Shape is a very human concept. We can easily say that something is “round”
or “straight” or “wavy” even if it is not a perfect circle or line or sine curve.
And when we recognize the shape of a data point cloud, we can make infer-
ences about the underlying dataset. For example, we might conclude that it
is the result of a periodic process or that there are certain clusters of inter-
est. However, as the number of points and their dimensionality grow, human
intuition begins to fail. Fortunately, there is an area of mathematics, topol-
ogy, which precisely generalizes the notion of shape. Over the past couple
decades, computer scientists have begun to realize that computational topol-
ogy is fundamentally compatible with many of the goals of data analysis. Its
techniques find structure in messy data in order to quantify ambiguous form,
and, ultimately, to visualize and understand it.

In my thesis, the central object of study is a fundamental construction
from computational topology—a simplicial complex together with a function.
A simplicial complex is used to approximate a topological space, and it turns
out that, when a function is defined on it, a lot of interesting structure arises.
In Chapter 2, I examine simplicial complexes and the functions we can de-
fine on them. In Chapter 3, I consider Reeb graphs, which reveal information
about certain types of such functions. And in Chapter 4, I look at integra-
tion using a topological calculus. Most importantly, I introduce SimpleX, a
web-based software tool for interactively exploring the aforementioned struc-
tures and ideas. In each chapter, after reviewing the necessary theoretical
background, I demonstrate how the theory materializes in a “hands-on” way
through SimpleX.

Chapter 2

Simplicial Complexes

In topology, we are interested in computing properties of smooth topological
spaces. These spaces, however, can be difficult to work with algorithmically.
Therefore, we would like to develop a discrete combinatorial structure, which
will serve as a “good-enough” approximation of a topological space.

2.1 Definition

The structure that we will study is the simplicial complex. We can define
an abstract simplicial complex purely combinatorially. This will prove to be
useful when dealing with these objects computationally.

Definition 2.1 (abstract simplicial complex). An abstract simplicial complex
K is a pair (V, S), where V is a finite set, whose elements we call vertices, and
S is a set of nonempty finite subsets of V', whose elements we call abstract
simplices, such that {v} € S for all v, and if 0 € S and 7 C o, then 7 € S.

It is often more intuitive and useful to think of a geometric realization of
a simplicial complex, as a subset of R”. We start by introducing the notion
of a k-simplex, the generalization of a triangle in k& dimensions. This will
serve as the building block for constructing the complex.

Definition 2.2 (convex combination). Let vg, ..., vx be k4 1 points in R™.
A point x =), \ju; is a convex combination of the v; if
[) Zz A,L =1 and

e)\, >0 for all 3.

0-simplex 1-simplex 2-simplex 3-simplex
Figure 2.1: A vertex, edge, triangle, and tetrahedron.

Definition 2.3 (affine independence). The points vy, ..., v are affinely in-
dependent if any two linear combinations z = >, \jv; and y = >, p;v; are
equivalent if and only if \; = p; for all 7.

Definition 2.4 (k-simplex). A k-simplex is the set of all convex combi-
nations of k + 1 affinely independent points vg,...,v,. We say that the
dimension of a k-simplex o, dimo = k, and {wo, ..., v} is the vertex set of
o.

We give special names to the 0-, 1-, 2-, and 3-dimensional simplices—
vertices, edges, triangles, and tetrahedra, respectively. Figure shows ex-
amples of each.

Definition 2.5 (face). Let o be a k-simplex with vertex set {vg,...,vx}. A
face T of ¢ is the set of all convex combinations of any (nonzero) number of
the v;. We write 7 < 0.

Since a set of cardinality k + 1 has 2¥! subsets, including the empty set,
a k-simplex has 28! — 1 faces. The only face of a vertex is the vertex itself,
the faces of an edge are the edge and its two incident vertices, and so on.

Now, we are ready to define a geometric simplicial complex, a well-
behaved collection of “glued-together” simplices.

Definition 2.6 (geometric simplicial complex). A geometric simplicial com-
plex K is a finite collection of simplices such that

e cvery face of a simplex in K is also in K, and

e for any two simplices 01,00 € K, if 01 N0y # &, then oy N0y is a
common face of oy and o».

We say that the dimension of a simplicial complex is the maximum dimension
among all of its simplices.

Figure 2.2: A simplicial complex

In other words, a simplicial complex is a collection of simplices that is
closed under taking faces of simplices, and in which two simplices can only
intersect at a face.

We can see how this corresponds to our previous combinatorial definition
of an abstract simplicial complex. Given a geometric simplicial complex,
we can consider a corresponding abstract simplicial complex with the same
vertex set. Note that for a given abstract simplicial complex, there is an
infinite number of possible geometric realizations.

Figure shows a three-dimensional simplicial complex consisting of one
tetrahedron, two triangles, twenty edges, and fourteen vertices.

Simplicial complexes allow us to create discrete, combinatorial approx-
imations of smooth topological spaces, which facilitate concrete computa-
tions. We say that a geometric simplicial complex C is a triangulation of a
topological space X if K and X are homeomorphic, i.e., topologically equiva-
lent. Note that a triangulation is not unique—a topological space can admit
infinitely many different triangulations.

More information about the theory behind complexes and triangulations
can be found in [Munkres, 1984].

Figure |2.3| shows three topological spaces along a triangulation for each.

We define two more structures closely related to simplicial complexes,
which will be useful later on.

Definition 2.7 (open k-simplex). An open k-simplez is the set of all convex

12

14

12

Figure 2.3: Three topological spaces (right) and their triangulations (left).

combinations of k£ + 1 affinely independent points vy, ..., v with strictly
positive coefficients. In other words, an open k-simplex is a k-simplex without
its boundary. Note that an open k-simplex ¢ is not an open set in R", except
when dim o = n.

We will sometimes refer to k-simplices as closed k-simplices to avoid am-
biguity.

Definition 2.8 (subcomplex). A subcomplez of a geometric simplicial com-
plex K is the union of a subset of closed simplices of K.

Definition 2.9 (definable subset of complexes). Given a geometric simplicial
complex IC, a definable subset of complexes of K is a union of open simplices

of K.

A subcomplex is itself a proper simplicial complex, but a definable subset
is not necessarily a simplicial complex.

2.2 Maps

Like we define maps on arbitrary topological spaces, we would like to define
maps in which the domain is a simplicial complex. In particular, we look

(a) A constructible function (b) A piecewise-linear functions.

Figure 2.4: Two different functions defined on the same simplicial complex.
Function value is represented by shade of simplex color.

at two types of such maps—constructible and piecewise linear functions, as
shown in Figure [2.4]

2.2.1 Constructible functions

When defining our functions, we want to work with constructions that are
“well-behaved.” In particular, we wish to avoid pathological and counter-
intuitive situations that may arise, especially when dealing with infinite ob-
jects. To do so, we restrict ourselves to what is known as “tame” topology
by only considering an o-minimal structure, a sequence of subsets of R" sat-
isfying certain axioms. Each element in this sequence is a definable set. See
[Van den Dries, 1998] for more on tame topology and o-minimality.

One common o-minimal structure is the real semialgebraic sets.

Definition 2.10 (real semialgebraic sets). The real semialgebraic sets SA,
are the smallest class of subsets of R" such that

e if p € Rlxy,...,2,] is a polynomial with real coefficients, then {z €
R" | p(xz) =0} € SA, and {z € R" | p(z) > 0} € SA,, and

o if Ac SA, and B € SA,, then AUB,ANB,R"\ A € SA,.
Note that the second condition makes SA,, a Boolean algebra.

We will be looking at simplicial complexes, which are unions of closed
simplices. A closed simplex is semialgebraic, and, therefore, so is a simplicial
complex.

Definition 2.11 (constructible function). Given a topological space X, a

function ¢ : X — Z is said to be constructible if, for each n € Z, the set
¢ Y(n) is definable.

For IC a geometric simplicial complex, one useful way of defining a con-
structible function ¢ : K — Z is by

p=> Ci1,,

where C; € Z for all 7, 0; are the open simplices of K, and 1,, is the indicator
function on ;. Thus, we can define a constructible function on a simplicial
complex by assigning an integer value to each of its simplices.

Note that a constructible function is generally not continuous—discontinuities
can occur at simplex boundaries.

2.2.2 Piecewise linear functions

While constructible functions are useful in certain situations, they are not
continuous. A piecewise linear function is a way to define a continuous map
on a geometric simplicial complex. In general, a piecewise linear function is
not constructible.

Definition 2.12 (barycentric coordinates). Let K be a geometric simplicial
complex with vertex set {vg,...v,}, and let x € K. Let o0 € K be the
simplex of smallest dimension such that x € . By definition, x is the convex
combination of vertices v;, i.e., z =Y. b; - v;.

We call the number b; the barycentric coordinates of x € K.

Definition 2.13 (piece-wise linear function). Let IC be a geometric simplicial

complex with vertex set V' = {wp,...v,}. Let f: V — R be a real-valued
function on the vertices of K. We extend f to all of IC linearly, i.e., by

where b; are the barycentric coordinates of x. Then, f is piece-wise linear.

2.3 SimpleX implementation

We would like the SimpleX interface to visualize a user-inputted simplicial
complex together with a function—constructible or piecewise-linear—defined
on it. For visualization purposes, we only support complexes of dimension no
greater than two. Our user interface design choices follow from the definitions
established above.

2.3.1 Visualizing complexes

Our input process must ensure that the resulting simplicial complex satisfies
the two defining conditions.

e The simplicial complex must be closed under taking faces of
simplices, i.e., for any simplex in the complex, all of that
simplex’s faces must be contained in the complex as well.

We enforce this via a three-stage input process. In the first stage, the
user is able to click anywhere on the canvas in order to place a vertex.
In the second stage, edges are placed. Hovering the mouse between two
existing vertices highlights a potential edge, which can be added to the
complex. Only a potential edge may be added, and no new vertices
may be placed at this stage. Finally, in the third stage, the user places
triangles. Similar to stage two, hovering over a region bound by three
edges highlights a potential triangle, which may be added.

e Any two simplices in a simplicial complex may intersect only
at a face.

This is also ensured by the incremental nature of the input process.
After an edge is placed, all potential edges that intersect its interior
are removed. Similarly, potential triangles are generated only in regions
that do not contain any vertices in their interior.

Figures 2.5 and [2.6] show stages two and three, respectively.

2.3.2 Visualizing functions

We would like a visual way of representing constructible and piecewise-linear
functions on a user-inputted simplicial complex. Since our primary interest
is in the interplay between functions are complexes, we combine the input
of the simplicial complex with that of a function and determine the color in
which we render a simplex based on its function value.

We require the user to specify the function value of each simplex prior to
placing it. A positive-valued simplex is rendered in orange, and a negative-
valued simplex is blue. The shade of the color is proportional on the magni-
tude of the function value—the more negative the value, the darker the blue;
the more positive, the darker the orange. The darkest shade always corre-
sponds to the extrema (positive or negative) of the function so far. So, if a

8

>/.
T

Click to add an edge. Press enter to start adding faces.

Interpolate function

SimpleX
floy =

Computedual | Integrate | Reset

Figure 2.5: Stage two of simplicial complex input. Eleven placed edges and

one potential edge are shown.
X]

Click to add a face. Press enter to finish.

Interpolate function

SimpleX
flo)y=3

Computedual | Integrate | Reset

Figure 2.6: Stage three of inputting a simplicial complex.

new simplex is placed with a value more negative than the current minimum
or more positive than the maximum, the shades of the existing simplices get
rescaled accordingly. Figure demonstrates this reshading during stage
one, and the process occurs analogously in stages two and three.

After the three stages, the structure of the simplicial complex is fixed, and
the shadings of the simplices represent a constructible function defined on
the complex. Hovering over each simplex displays its corresponding function
value.

We can now choose to convert our constructible function to a piecewise-
linear function by linearly interpolating the function based on vertex values.
This redefines the function on the edges and triangles by computing the
linear combination of the function values of their corresponding vertices.
Accordingly, the edges and triangles get recolored in a gradient pattern.
Hovering continues to display the precise function value.

Figure |2.8| shows an piecewise-linear function.

Note that that, although initial function values on the edges and triangles
are forgotten when the function is linearly interpolated, we still require a
value to be assigned to each simplex during the input process.

10

Click to add a vertex. Press enter to start adding edges.

Interpolate function

SimpleX
flo)=14

Gompute dual | Integrate | Reset

(a) Four vertices have been added to the simplicial complex. The bottom two
(shaded blue) have function value -1, and the top two (orange) have function

value 1.

Click to add a vertex. Press enter to start adding edges.

Interpolate function

SimpleX
f)=13

Computedual | Integrate | Reset

(b) A new vertex with function value 3 has been added, causing the shades of the

existing vertices to rescale.

Figure 2.7: The rescaling of simplex colors during vertex input.

11

SimpleX

floy= 3

/. Interpolate function ~ Compute dual Integrate Reset
T Show Reeb graph

Figure 2.8: A piecewise-linear function on a simplicial complex.

12

Chapter 3

Euler calculus

We explore the integration theory of Euler calculus, a topological calculus
with interesting application, introduced in [Schapira, 1991].

3.1 Definition

Before defining the Euler integral, we first introduce the Euler characteristic.

Given a simplicial complex, one question that we may ask is: how many
connected components are there? We start by simply counting the num-
ber of vertices—if the complex contains no simplices of degree greater than
zero, then, indeed, the number of vertices equals the number of components.
However, as soon as we add an edge, the number of components decreases.
Adding another edge again decreases the component count. But if we intro-
duce a third edge and form a “hole,” the number of components remains the
same. Only when we add a triangle does that that hole get filled in. Thus,
we arrive at the following formula:

components + # holes = #V — #FE + #T,

where #V is the number of vertices, #F is the number of edges, and #7T
the number of triangles. Generalizing this count to simplicial complexes of
arbitrary dimension motivates the Fuler characteristic.

Definition 3.1 (Euler characteristic). Let K, and let ' = {0} be a defin-
able subset. Then, the Fuler characteristic of K' is

X(K') =) (=1)tme.

%

13

x =1
x=1
x=-1

x=0
x=0

Figure 3.1: Examples of Fuler characteristics.

Note that when K has dimension two or lower, x(K) = #V — #E + #T.

The Euler characteristic is a topological invariant, i.e., given a topological
space, taking the Euler characteristic of any triangulation of the space will
result in the same value (see [Hatcher, 2002] for more details and proof). So
we can talk about the Euler characteristic of a topological space X, implicitly
referring to the Euler characteristic of some triangulation of X, without it
being ill-defined.

Fig illustrates the values of the Euler characteristic for several defin-
able subsets of simplices.

Proposition 3.2. The Fuler characteristic satisfies the property of finite
additivity, i.e., for two simplicial complexes A and B,

X(AU B) = x(A) + x(B) — x(AN B).

One may recall that finite additivity is a fundamental property of a mea-
sure.

Definition 3.3 (measure). Let X be a set, and B a collection of subsets of
X. Then, a measure on X is a function p : B — R that assigns to each
subset a value, corresponding to its size.

Given a measure p on X, we can integrate over subsets of X with respect
to p. Indeed, the common Lebesgue integral is computed with respect to
the Lebesgue measure A\. On Euclidian space, A corresponds to the standard
notion of volume. So, for f : R — R with f(z) > 0 for all x,

[swrae= [dn= [o)) an
—o0 0 0

14

h &

Figure 3.2: Integrating a function with respect to the Lebesgue measure.

where f~1(h,c0) is the preimage of the open interval (h,c0) under f. Here,
¢(h) is the length of the interval on which f is defined at height h, as shown
in Figure [3.2]

We can consider the Euler characteristic as a measure and use it for
integration. Given X C R? and a constructible function h : X — Z, we
define the Euler integral in the natural way,

oo

/Xh dx=3 x(h\(s).

n=—oo

In practice, it is convenient to use a variant of the Fundamental Theorem
of Calculus to compute Euler integrals.

Proposition 3.4. Let f: X — Z be a constructible function. Then,
[£ =3 (00~ (=0m)).
X n=0

where f~Y(n,00) is the preimage of the open interval (n,o0) under f, and
f~Y(—o0,n) is analogous.

15

Figure 3.3: A constructible function f: R — Z.

h = Z n- 1h*1(n) (31)

= Z n: (1h*1[n,oo) - 1h*1(n,oo)) + Zn : (1h*1(—oo,n] - 1h*1(—oo,n)) (32>

=" (x(h}(n,00)) = (™ (~o0,m))) . (3.3)

where equality holds by telescoping. O

Example 3.5. Consider the constructible function f : R — Z, as shown in
Figure where the function value corresponds to the height. Then,

Afdx—ﬂf%QwD+Mf%LwD+Mf%Zwﬁ

=14+2+0
=3

Example 3.6. Consider the constructible function f : R — Z, as shown in

16

Figure 3.4: A constructible function f:R? — Z.

Figure Then,

L = 270,000 4 X (150 1 2o

=(7T—-64+1)+(6-6)+(2—-1)
= 3.

3.2 Operations

Defining integration with respect to the Euler characteristic provides a rich
calculus, allowing us to compute various integral transforms with useful ap-
plications. Here, we look at two such transforms—convolution and duality.
Consult |[Curry et al., 2012] for more context and details.

3.2.1 Convolution and duality

The first operation that we look at, convolution, is closely related to the
Minkowski sum from geometry.

Definition 3.7 (Minkowski sum). Let A, B C R™. Then, the Minkowski
sum of A+ B is the set formed by adding each vector in A to each vector in
B, i.e.,

AeB={a+blac Abe B}.

Figure[3.5]shows an example of a Minkowski sum in the plane—the entire
orange region on the right is the Minkowski sum of the red and blue regions
on the left.

17

Figure 3.5: The Minkowski sum of two subsets of R?.

We now define the convolution operation with respect to the Euler char-
acteristic on two constructible functions.

Definition 3.8 (convolution). Given two constructible functions f,g: V —
Z defined on a real vector space, we define the convolution operator * by

(f % g)(x) = /V F(Hg(x —) dx ().

It turns out that the convolution of two indicator functions is equal to
the indicator function on the Minkowski sum of their respective regions, i.e.,
for A, B C R" such that A and B are convex,

1A* 1B = 1A@B-

Proof. Since the regions over which f and g are nonzero are convex, their
Euler characteristic is equal to one. Therefore, for any z, the above integral
is equal to one if x = a + b, where a € A and b € B, and zero otherwise. []

The other integral transform we consider is duality.

Definition 3.9 (dual). Let f : X — Z be a constructible function and
x9 € X. Let € > 0 be small enough such that the value fX [1pae dx,
where B(xz,¢) denotes the ball of radius € around X, depends only on the
function f. Define the dual of f by

18

When the domain of a constructible f is a simplicial complex, computing
the dual becomes combinatorial and procedural. Indeed, the value of Df
on a simplex ¢ depends only on the cofaces of o, i.e., the higher-dimension
simplices that have o as a face as well as o itself. Specifically, Algorithm
describes the procedure ComputeDual(/C, f) for computing the dual of a con-
structible function f : I — Z on a simplicial complex

Algorithm 1: ComputeDual (I, f)

1 foreach simplex o € K do

2 val + 0

3 foreach 7 such that o < 7 do
4 val « val + (—=1)4m7 . f(7)
5 f(o) « val

6 return f

The dual can be used to define a deconvolution operator, so we can use
the dual to “undo” a Minkowski sum of two subsets.

Proposition 3.10. For a non-empty conver closed subset of a vector space
AcCV,
1A * Dl,A = 50,

where —A is the reflection of A about the origin, and oy is the indicator
function on the origin. In other words, D1_4 s the convolution inverse of

1a.

The proof follows from sheaf theory (see [Schapira, 1991]) and is outside
of the scope of this thesis.

3.3 Application to sensor networks

Another use of Euler integration is in computing information about sensor
networks, introduced in [Baryshnikov and Ghrist, 2009].

Suppose we have a sensor network, i.e., a finite set of targets in Euclidian
space {O,...,0,} C R? where each target O; is a point in the plane.
Furthermore, suppose there is a sensor at every point # € R?, which counts
how many of the n targets it can detect. The count function f : R? — Z=°

19

[N

Figure 3.6: Target supports of a sensor network where each sensor can detect
targets a fixed radius away.

returns the target count f(x) for the sensor at x. Our goal is to determine
n, the total number of targets.

Suppose, furthermore, that each sensor can sense exactly the targets that
are a fixed radius r away from it, as in Figure [3.6] Then, we have that:

Proposition 3.11.

n= ! f(x) dx

7T7"2 R2

Proof. This follows from Lebesgue integration.

. fx(zr) de = /R2 Z 1y, dox = ;/R? 1y, do = #{O;} - mr*.

]

Definition 3.12 (target support). For each target O; (1 < i < n), we define
the the target support to be

U; = {z € X | the sensor at x detects O, }.

What if each sensor doesn’t detect a perfect circle around itself? As
long every target support is a region of some fixed area, the argument above
holds—even if the target supports are of different shapes (see Figure [3.7)).

But what if we the only information we have about the target supports
is the Euler characteristic? We want some way to assign the same value to
each region, regardless of its actual area. This can be accomplished using
Euler calculus.

20

&

Figure 3.7: Target supports of a sensor network where each target is detected
by a fixed area of sensors.

Proposition 3.13. If x(U;) = N # 0 for all i, where N is some constant,
then)
== dy.
n Ahéf X

The proof is analogous to that of Proposition |3.11]

Example 3.14. Consider the f function represented in Figure [3.8] and sup-
pose we know that each target support has Euler characteristic one. Then,
by Proposition [3.13] the number of targets is

1
i [7

=3 (X (m.00)) = x(f (=00, m)))

= x(f7H(n,00)
n=0
=0+3+1+1
= 5.
Indeed, as shown in Figure[3.9] there are five targets in the sensor network.

We note that the value n in Proposition is not well defined when
N = 0. This is not a shortcoming of the method but rather a feature.
Indeed, when target supports have Euler characteristic zero, it is impossible
to unambiguously compute the number of targets given the count function.

21

Figure 3.8: The count function values of a sensor network.

Figure 3.9: The five target supports in the sensor network.

22

1

(a) Two target supports. (b) Four target supports.

Figure 3.10: An ambiguous case for N = 0.

As an example, consider Figure Both the left and right image show
the same count function, but, on the left, two target supports are displayed,
whereas, on the right, there are four target supports.

3.4 SimpleX implementation

Once a simplicial complex KC with a constructible function f defined on it has
been input into the SimpleX interface, we want to visualize the computation
of the dual Df as well as of the the Euler integral of f over any constructible
subset of IC.

3.4.1 Visualizing duality

We allow the user to toggle between the initial constructible function f and
its dual Df. Note that both f and Df are defined on the same domain,
K, and so only the shading of the simplicial complex may change, not its
structure. Since the extrema of f and those of its dual may not be the same,
a simplex with a certain shade in the visualization of f may have a different
function value thanfc a simplex with the same shade in the Df visualization.
In order to clarify the actual function values, the user can hover over each
simplex. Figure [3.11] shows the initial constructible function and its dual.

23

Ty

\]
-

) Initial function (b) Dual

Figure 3.11: A constructible function defined on a simplicial complex and its
dual, as displayed in SimpleX.

By experimenting we can notice empirically that duality is an involution—
computing the dual twice yields the initial function. This is actually a true
property of duality.

3.4.2 Visualizing Euler integration

We allow the user to build up the domain of integration by adding simplices
of K incrementally. Upon entering integration mode, the entire simplicial
complex is rendered in grayscale, to signify that the domain is initially empty.
Accordingly, the integral is shown to equal zero. The user can now choose
to augment the domain, one simplex at a time. Clicking on a simplex re-
renders it in its original blue or orange shade, and the value of the Euler
integral immediately updates over the new domain. Similarly, to remove
a simplex from the integration domain, the user can click on it again. In
Figure [3.12] we see the Euler integral over three vertices, two edges, and one
triangle.

24

SimpleX
flo)= 3

Interpolate function | Compute dual ‘Integmte‘ Reset

/fd),=2
X

Click on a simplex to add it to X.

Figure 3.12: Computing the Euler integral over a constructible subset of a
simplicial complex.

25

Chapter 4

Reeb graphs

Suppose we have a continuous function f : X — R, where X is a topological
space. We are interested in its behavior as its value gradually changes. In
particular, we would like to see how the connected components of f~*(c)
change as ¢ varies. This information is contained in a structure known as the
Reeb graph.

4.1 Definition

We first formally define the Reeb graph.

Definition 4.1 (R-space). If X is a compact topological space and f : X — R
a continuous function, then the pair (X, f) is an R-space.

Definition 4.2 (Reeb graph). Let X be the quotient space of X under the
equivalence relation z ~ y if and only if f(x) = f(y) = ¢ for some ¢ € R, and
there is a path from x to y in f~'(c). Let f be the quotient map. Then, the
Reeb graph of an R-space (X, f) is the R-space (X, f).

In other words, in the Reeb graph, for every ¢ € R, we contract each
connected component of f~1(c) into a single point, i.e., we consider two
points in X equivalent if they have the same function value and are in the
same component.

Figure provides an example of a Reeb graph.

We have noted that a piecewise-linear function defined on a geometric
simplicial complex K is continuous. Therefore, we restrict ourselves to geo-
metric simplicial complexes with piecewise-linear functions.

26

f R f

Figure 4.1: A function and its Reeb graph.

As we sweep across the Reeb graph, we notice that Reeb nodes occur
where connected components of the simplicial complex are created, merge
with others, split, or get destroyed.

Definition 4.3 (Reeb-critical value). A value n € R is Reeb-critical it corre-
sponds to the function value of a node in the Reeb graph, i.e., if the number
of connected components of f(n + ¢) is different from that of f(n —¢) for a
small € > 0.

The following observation, which follows from the definition of a simplicial
complex, is very useful for computational purposes.

Proposition 4.4. A Reeb-critical value can only occur at a vertex of the
simplicial complex.

In the next section, we discuss an algorithm for computing Reeb graphs.
Due to the nature of SimpleX, we only concern ourselves with Reeb graphs
of simplicial complexes of dimension no greater than two. But it actually
turns out that this restriction does not limit the algorithm.

Proposition 4.5. The Reeb graph of a piecewise-linear function f : I — R
depends only on the restriction of f to the simplices of IC of dimension two
and lower.

See [Parsa, 2014] for a proof.

27

4.2 Computation

By tracking the connectivity of level sets, the Reeb graph is often used to
quantify the perturbation necessary to eliminate a connected component of a
space in a variety of applications. In [Kanongchaiyos and Shinagawa, 2000],
the authors used Reeb graphs to model multimedia information and create
animations. In [Biasotti et al., 2000], surface compression and reconstruction
was performed using Reeb graphs for graphics rendering. In [Xiao et al., 2003,
Reeb graphs were used to segment a human body into functional parts.

There have been many contributions of algorithms for computing the
Reeb graph of a topological space. A runtime of O(nlogn(loglogn)?) was
achieved in [Doraiswamy and Natarajan, 2009]. Other variations, such as
parallel and online computation, have also been considered.

Here, we are interested in computing the Reeb graph of a simplicial com-
plex (with a piecewise-linear function defined on it). In particular, we look
at the algorithm developed by Doraiswamy and Natarajan. We notice that
in a simplicial complex, critical values may only occur at vertices. Thus, we
sweep f from —oo to 0o, maintaining a graph of the preimage f~!(f(v;)) at
each value. Notice that the preimage is indeed a graph—its nodes correspond
to edges of the simplicial complex, and its edges correspond to triangles. The
preimage graph changes if and only if we pass a Reeb-critical value. Thus,
if we determine that a function value is critical, we add a new node to the
Reeb graph.

Algorithm [2| describes this sweep procedure. This algorithm is a slight
extension of Doraiswamy and Natarajan so as to handle Reeb graphs of func-
tions where two vertices might map to the same value—the original algorithm
assumes a general position in which all vertex values are distinct.

GetLowerComps(u, P, K') returns a list of nodes of the the preimage graph
P, each representing an edge ending at w in K. GetUpperComps(u, P, K)
functions analogously.

UpdatePreimage(P, u, K) updates the preimage graph P to reflect the
change of passing over vertex u. In other words, it takes the preimage graph
from that right before f(u) to that right after.

In Algorithm [2| when we pass over a vertex u, we notice that all of the
lower components merge at u, and u then splits into the upper components.
If there is just a single lower and a single upper component, then f(u) is not
Reeb-critical. Otherwise, we add a new node v to the Reeb graph, associate
it with each of the upper components, and link it to the Reeb graph nodes

28

U3
(vg., v3) (’01‘114)
oo 00
V3 /'
(U27 U3)

(v, v4)

(’Ul, ’Ug) (/Ul’ U3)

<«

U1

e

U3

<@
o
~
&
S e
<
b
S
=®
E
<
w
.
L]

U1

e

U3

(U2., US) (1)17 U4)

(’01,1)2) ('0177)3)

<

U1

Figure 4.2: A simplicial complex (left), the preimage graph (middle), and
the Reeb graph (right) over four steps of Algorithm [2| from top to bottom.

29

corresponding to the lower components.
Figure shows the evolution of the preimage graph and the Reeb graph
over four steps of the algorithm.

Algorithm 2: ComputeReeb(K)

1 Sort vertices V' by f value
2 Initialize graph P with one node for each edge (u,v) € E where
fu) # f(v)
foreach vertexr v € V do
Iv <« A{v| (u,v) € Eand f(v) = f(u)}
Le + U, ;, GetLowerComps(v, P, K)

3
4

5 velv

6 P <+ UpdatePreimage(P, u, K)

7 Uc < Uy, GetUpperComps(v, P, K)

8 if =(#Lc=#Lc=1) then

9 Add node v to R
10 Denote v by v, for each ¢ € Uc
11 Add edge (v, v.) to R for each ¢ € Le

12 return R

Algorithm 3: GetLowerComps(u, P, K)

1 Le<+— @

2 foreach v € V' such that (u,v) € E with f(v) < f(u) do
3 Let ¢ be the component of (u,v) in P

4 Le + LeUd{c}

5

return Lc

When using appropriate date structures, this algorithm runs in O(m log m)
time, where m is the size of the simplicial complex.

4.3 SimpleX implementation

Having input a simplicial complex and linearly interpolated a function based
on the vertex values, we can compute the corresponding Reeb graph. The

30

Algorithm 4: GetUpperComps(u, P, K)

1 Uc+ o

2 foreach v € V' such that (u,v) € E with f(u) < f(v) do
3 Let ¢ be the component of (u,v) in P
4
5

Uc <+ UcU{c}
return Uc

Algorithm 5: UpdatePreimage (P, u, K)

1 foreach a,b,c € V' such that (a,b,c) € T with f(a) < f(b) < f(c) and
u € {a,b,c} do
if u = a then

2
3 Add edge ((a,b), (a,c)) to P

4 else if a =b or b = c then

5 if u = ¢ and triangle (a,b,c) is marked then
6 Remove edge ((a,b), (a,c)) from P

7 else

8 Mark triangle (a, b, ¢)

9 else

10 if v =0 then
11 Add edge ((a,c), (b,c)) to P
12 Remove edge ((a,b), (a,c)) from P

13 else

14 Remove edge ((a,c), (b,c)) from P

15 return P

31

SimpleX

flo)= 079

? /. Interpolate function =~ Compute dual | Integrate | Reset

Reeb graph:

\I

Figure 4.3: A simplicial complex and its Reeb graph

vertices of the Reeb graph are shaded according to the corresponding func-
tion value, like in the simplicial complex. The vertices’ vertical positions
are fixed—smaller functional values are displayed lower—but the horizontal
position of a vertex can be adjusted by clicking and dragging. This can be
useful in understanding the graph topology, especially when the Reeb graph
is dense. As with the simplicial complex, hovering over a vertex of the Reeb
graph displays its function value. Figure [4.3|shows a simplicial complex and
its Reeb graph.

32

Chapter 5

Technical details

SimpleX is written in JavaScript with the help of the jQuery library. Vi-
sualization of simplicial complexes is implemented using the Two.js library,
and D3.js is used to display Reeb graphs. Graphlib is used to maintain the
underlying data structure during Reeb graph computation. User interface
elements are styled and scaffolded with Twitter Bootstrap.
The interactive application is hosted at https://dmsm.github.io/simplex,

and all code can be found on the author’s Github page at https://github.
com/dmsm/simplex. The application can be run locally offline in the browser.

33

https://dmsm.github.io/simplex
https://github.com/dmsm/simplex
https://github.com/dmsm/simplex

Chapter 6

Conclusion and further work

The simplicial complex is a simple yet powerful object, which it serves as a
basis for various useful tools, frameworks, and structures in computational
topology.

The SimpleX tool provides a novel way of exploring abstract topological
structures and ideas. By empowering the user to interact with and visual-
ize simplicial complexes and functions, SimpleX serves a purpose, which is
twofold. While on one hand, it can be used a teaching and learning aid,
offering a tangible way of internalizing abstract concepts, on the other, it
also adds a new dimension to mathematical exploration, perhaps serving an
inspiration for new theoretical intuitions or discoveries.

Because the simplicial complex is so fundamental and well-studied, there
are many directions for extensions of SimpleX. For instance, other structures
characterizing the topology of a piecewise-linear function (such as merge
trees) could be computed. Support for simplicial maps between complexes
could be added. More complex Euler integral transforms could be imple-
mented. In addition, interactive visualizations for persistent homology would
fit will into the SimpleX framework.

34

Chapter 7
Bibliography

[Baryshnikov and Ghrist, 2009] Baryshnikov, Y. and Ghrist, R. (2009). Tar-
get enumeration via euler characteristic integrals. SIAM Journal on Ap-
plied Mathematics, 70(3):825-844.

[Biasotti et al., 2000] Biasotti, S., Mortara, M., and Spagnuolo, M. (2000).
Surface compression and reconstruction using reeb graphs and shape anal-
ysis. In Spring Conference on Computer Graphics, pages 174-185.

[Curry et al., 2012] Curry, J., Ghrist, R., and Robinson, M. (2012). Euler
calculus with applications to signals and sensing. In Proceedings of Sym-
posia in Applied Mathematics, volume 70, pages 75-146.

[Doraiswamy and Natarajan, 2009] Doraiswamy, H. and Natarajan, V.
(2009). Efficient algorithms for computing reeb graphs. Computational
Geometry, 42(6-7):606-616.

[Hatcher, 2002] Hatcher, A. (2002). Algebraic topology. 2002. Cambridge
UP, Cambridge, 606(9).

[Kanongchaiyos and Shinagawa, 2000] Kanongchaiyos, P. and Shinagawa,
Y. (2000). Articulated reeb graphs for interactive skeleton animation.
In Multimedia Modeling: Modeling Multimedia Information and Systems,
pages 451-467. World Scientific.

[Munkres, 1984] Munkres, J. R. (1984). Elements of algebraic topology, vol-
ume 2. Addison-Wesley Menlo Park.

35

[Parsa, 2014] Parsa, S. (2014). Algorithms for the Reeb Graph and Related
Concepts. PhD thesis, Duke University.

[Schapira, 1991] Schapira, P. (1991). Operations on constructible functions.
Journal of pure and applied algebra, 72(1):83-93.

[Van den Dries, 1998] Van den Dries, L. (1998). Tame topology and o-
manimal structures, volume 248. Cambridge university press.

[Xiao et al., 2003] Xiao, Y., Siebert, P., and Werghi, N. (2003). A discrete
reeb graph approach for the segmentation of human body scans. In 3-
D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth
International Conference on, pages 378-385. IEEE.

36

CO J O UL W N+

I e i e e e e e e T
O © 00 IO UL W H—O©

21
22
23
24
25
26
27
28
29

Appendix A

JavaScript code

const RADIUS = 10;
const LINEWIDTH = RADIUS/4;
const GRAY = "#D3D3D3";
const RESOLUTION = 4;
const INT_TEX = "\\int_X £\\ \\operatorname{d}\\chi = "
const POS_COLOR = {

r : 210,

g : 120,

b : 5
¥
const NEG_COLOR = {

r : 20,

g : 54,

b : 109
i

$CO => A
var QUEUE = MathJax.Hub.queue;
var math = null;
QUEUE.Push (() => { math = MathJax.Hub.getAllJax("integral
") [ol; 3

var canvas = document.getElementById("canvas");
var two = new Two ({

width: $(canvas).width (),

height: $(window) .height (),
}) . appendTo (canvas) ;

var $canvas = $("svg"),
$fVval = $("#f-val");
var offset = $canvas.offset ();

37

30
31

32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58
59

60
61
62
63
64
65
66
67
68
69
70
71

var stage, maxF, lastF, intVal, label, vertMarker,
auxTris, tris, edges, rects, verts, mouse;

$(document) . keypress(e => { if (e.which
i

= 13) endStage ();

reset () ;

function reset () {
two.clear () ;
$("*x").unbind () ;

$canvas.contextmenu(e => { e.preventDefault () 1});
$("#reset").click(reset);
$("#compute-reeb") .hide () ;

createGrid () ;
stage = 1;

maxF = -Infinity;
intVal = 0;

auxTris = two.makeGroup (),
tris = two.makeGroup(),
edges = two.makeGroup (),
rects = two.makeGroup (),
verts = two.makeGroup () ;

$("#dual") .prop("disabled", true);

$("#extend") .prop("disabled", true) ;

$("#integrate") .prop("checked", false).parent().
addClass("disabled") .removeClass ("active") ;

$("#integral") .hide () . parent () ;

$("#reeb") .hide () ;

$("#reeb svg").remove () ;

$fVal.prop("disabled", false);
$fVal.val (1) .select ();

mouse = new Two.Anchor () ;

vertMarker = two.makeCircle (0, O, RADIUS);
vertMarker.opacity = 0.2;

vertMarker .fill = "black";

vertMarker .noStroke () ;

38

72
73

74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104
105
106
107
108

109
110

label = new Two.Text("Click to add a vertex.

Press

enter to start adding edges.", two.width/2, two.
height - 50, {family: "’Helvetica Neue’, Helvetica
, Arial, sans-serif"});

label.fill = "black";

label.size = 20;
two.add (label) ;

$canvas .mousedown (e

addVertex (e) ;

=> {
e.preventDefault () ;

5D e

$canvas .mousemove (e => {
mouse.xXx = e.clientX - offset.left;
mouse.y = e.clientY - offset.top;

vertMarker .translation.set (mouse.x,

two .update () ;
¥ g

two.update () ;
}

function addVertex(e) {

mouse .y) ;

var fVal = parselnt ($fVal.val());

if (!isNaN(fVal)) {

var vert = two.makeCircle (mouse.x, mouse .y,
RADIUS) ;

lastF = fVal;

vert.fVal = fVal;

vert.dim = 0;

vert.adj = [];

vert.lowerEdges = [];

vert .upperEdges = [];

vert.equiEdges [1;

vert.cotris = [];

vert.placed = true;

vert.processed false;

verts.children.forEach(vert2 => {
var [a, b] [vert, vert2].sort((a, b) => {

return a.fVal - b.fVal; });

var edge =

two.makelLine(a.translation.x, a.
translation.y,

b.translation.x, b.

39

111
112

113

114
115
116
117
118
119
120

121
122

123
124

125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

translation.y);

var v =
edge.
var u =
edge.
var pt =
var rect

new Two.Vector (-edge.vertices[0].y,
vertices [0] .x) ;

new Two.Vector (edge.vertices [0].x,
vertices [0].y);

new Two.Vector () ;

= two.makePath () ;

v.setLength (RADIUS) ;
pt.add(v, u);
v.multiplyScalar (2) ;
u.multiplyScalar (2);
rect.vertices.push(new Two.
)
pt.subSelf (v);
rect.vertices.push(new Two.
);
pt.subSelf (u);
rect.vertices.push(new Two.
)
pt.addSelf (v);
rect.vertices.push(new Two
);
rect.translation.copy(edge.
rect.noStroke () .noFill () ;
rects.add(rect) ;

edge.stroke = GRAY;

edge .opacity = O;
edge.faces = [a, Db];
edge.linewidth = LINEWIDTH;
edge.dim = 1;

edge.placed = false;
edges .add (edge) ;

two .update () ;
edge.rect = rect;

P
verts.add (vert) ;
recolor (fVal) ;

}

$fVal.val(lastF) .select () ;
two .update () ;

40

Anchor (pt.x,

Anchor (pt.x,

Anchor (pt.x,

.Anchor (pt.x,

translation) ;

pt

pt

pt

pt.

.y)

.y)

.y)

y)

149
150
151
152
153
154

155
156
157

158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178

179
180
181
182
183
184

185
186
187

}

function endStage () {
switch (stage) {

case 1:
verts.children.sort ((u, v) => { return u.fVal
- v.fVal; });
vertMarker .opacity = O0;
edges.children.forEach(edge => { bindEdge (
edge); 1);
label.value = "Click to add an edge. Press

enter to start adding faces.";
$canvas.unbind () ;

stage = 2;
break;
case 2:
var rectsToRemove = [];
var edgesToRemove = [];

edges.children.forEach(edge => {
if (!edge.placed) {
rectsToRemove .push (edge.rect) ;
edgesToRemove . push (edge) ;
}
3
edges .remove (edgesToRemove) ;
rects.remove (rectsToRemove) ;

tris.children.forEach(tri => { bindTri(tri);

1)
label.value = "Click to add a face. Press
enter to finish.";
stage = 3;
break;
case 3:
trisToRemove = [];

tris.children.forEach(tri => { if (!'tri.
placed) trisToRemove.push(tri); 1});
tris.remove (trisToRemove) ;

41

188
189

190

191

192

193

194
195

196
197
198
199
200
201

202

203
204
205

206

207
208
209
210
211
212
213

214

215
216

$("#integrate") .on("change", () => {
if (!'$("#integrate") .parent () .hasClass ("

3

disabled")) {
if ($("#integrate") .prop("checked"))
{
label.value = "Click on a simplex
to add it to X.";
$("#extend") .prop("disabled",
true) ;
$("#dual") .prop("disabled", true)

$("#integral") .show () ;
$.merge($.merge($.merge ([], verts
.children), edges.children),
tris.children) .forEach(simp =>
{
bindInt (simp) ;
3}
}
else {
label .value = "";
$("#extend") .prop("disabled",
false) ;
$("#dual") .prop("disabled", false
)
$("#integral") .hide () ;
intVal = 0;
QUEUE.Push (["Text", math, INT_TEX
+intVall) ;
$.merge($.merge($.merge ([], verts
.children), edges.children),
tris.children).forEach(simp =>
{
unbindInt (simp) ;
b
$("#eul") .html (0) ;
}

}) .parent () .removeClass ("disabled") ;
$("#extend") .prop("disabled", false).click(()
=> {
$("#integrate") .parent () .addClass ("

disabled") ;

$("#dual") .prop("disabled", true);
edges.children.forEach(edge => {

42

217

218
219
220
221
222
223
224
225

226
227
228
229
230
231

232
233
234

235
236
237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

}

extendEdge (edge); 1});
tris.children.forEach(tri => { extendTri (
trid); });
$("#compute-reeb") .show () ;
$("#extend") .prop("disabled", true) ;
5 g
$("#compute-reeb").click (() => {
$("#compute-reeb") .hide () ;
computeReeb () ;

3

$("#dual") .prop("disabled", false).on("click"
, O => A
computeDual ()

3

$fVal.prop("disabled", true);

verts.children.forEach(vert => {
$(vert._renderer.elem) .mouseover (() => {
$fVal.val(vert.fVal); 1});
¥ g
tris.children.forEach(tri => {
$(tri._renderer.elem) .mouseover (() => {
$£fVal.val(tri.fVal); });
1)
edges.children.forEach(edge => {
$(edge.rect._renderer.elem) .mouseover (()
=> { $fVal.val(edge.fVal); 1});
5D g

label .value = "";
stage = 4;

break;

two.update () ;
function bindEdge (edge) {

$(edge.rect. _renderer.elem) .mouseover (() => {

edge .opacity = 1;
two.update () ;

}) .mouseout (() => {

edge.opacity = 0;
two .update () ;

}) .mousedown (e => {

43

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286
287
288
289

290

291

292

e.preventDefault () ;
var fVal = parselnt($fVal.val());
if (!isNaN(fVal)) {
edge .placed = true;
lastF = fVal;
edge.fVal = fVal;
edge.cofaces = [];
edge .isEquiedge = false;
recolor (fVal) ;

var i = edge.faces[0],
edge.faces [1];

(S
Il

if (i.fval > j.fval) {
i.lowerEdges.push(edge) ;
j.upperEdges . push (edge) ;

else if (i.fVal < j.fVal) {
j.lowerEdges.push(edge);
i.upperEdges.push(edge);

}

else {
i.equiEdges.push (edge) ;
j.equiEdges .push(edge) ;
edge.isEquiedge = true;

}

i.adj.forEach(k => {
if (j.adj.includes(k)) {

var [a, b, c] = [i, j, k].sort((a
, b) => { return a.fVal - b.
fval; 1) ;

var containsVert = false;

verts.children.forEach(v => {
if (!'[a, b, cl.includes(v))
containsVert =
containsVert ||
pInTri(v.translation.
X, v.translation.y
a.translation.x,
a.translation.
Yy,
b.translation.x,
b.translation.

44

293

294
295
296

297
298
299
300
301
302
303
304
305

306

307
308
309
310

311

312
313
314
315
316
317
318
319
320

)

B
if

Yo
c.translation.x,
c.translation.

y);

('containsVert) A{

var tri = two.makePath(a.

translation.x, a.
translation.y, b.
translation.x,
translation.y,
translation.x,
translation.y) ;
tri.noStroke () ;
tri.fill = GRAY;
tri.opacity = 0;
tri.dim = 2;
tri.placed = false;
tri.processed = false;

o o o

45

var

faces = [];

edges.children.forEach (edge

DN

if ([a, b, c].includes(

edge.faces [0]) && [a,
b, c].includes (edge.
faces[1]))
faces.push(edge) ;

faces.sort((a, b) => {

if (a.faces[0] == b.faces

[0]) return a.faces
[1].fVal - b.faces[1].
fval;

return a.faces[0].fVal -

b.faces [0].fVal;

1)
tri.oneFaces = faces;
tri.zeroFaces = [a, b, c];

tris.add(tri) ;

321
322
323
324
325
326
327
328
329

330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

358

359

DN

i.adj.push(j);
j.adj.push(i);

$(edge.rect._renderer.elem) .unbind() ;

var rectsToRemove = [];
var edgesToRemove = [];
edges.children.forEach(tempEdge => {
if (doIntersect(i.translation, j.
translation, tempEdge.faces[0].
translation, tempEdge.faces([1].
translation)) {
rectsToRemove .push(tempEdge.rect)
edgesToRemove .push (tempEdge) ;
}
)5
edges .remove (edgesToRemove) ;
rects.remove (rectsToRemove) ;

$fVal.val(lastF) .select () ;
two .update () ;

function bindTri(tri) {

$(tri._renderer.elem) .mouseover (() => {

b

.

tri.opacity = 1;
two.update () ;
mouseout (() =
tri.opacity

two .update () ;
mousedown (e => {
e.preventDefault () ;
var fVal = parseInt ($fVal.val());
if (!'isNaN(fVal)) {
lastF = fVal;
tri.placed = true;
tri.fVal = fVal;
tri.oneFaces.forEach(edge => { edge.
cofaces.push(tri); 1});
tri.zeroFaces.forEach(vert => { vert.
cotris.push(tri); });
recolor (fVal);

Vv -

{
0;

46

360 $fVal.val (lastF).select ();
361

362 $(tri._renderer.elem) .unbind () ;

363 }

364 g

365 }

366 }

367

368 function computeReeb () {

369 var reeb = new graphlib.Graph({ multigraph: true 1});

370 var compMap = new Map();

371

372 var preimage = new graphlib.Graph();

373 edges.children.forEach(edge => {

374 if (!ledge.isEquiedge) preimage.setNode (edge.id);

375 1) g

376

377 var components = graphlib.alg.components (preimage) ;

378

379 verts.children.forEach(vert => {

380 if (!vert.processed) {

381 vert.processed = true;

382

383 var equiVerts = [vert];

384 var stack = [vert]

385 while (stack.length > 0) {

386 var currentV = stack.pop();

387 currentV.equiEdges . forEach(equiEdge => {

388 equiEdge . faces.forEach(equiV => {

389 if (lequiV.processed) {

390 equiV.processed = true;

391 equiVerts.push(equiV) ;

392 stack.push(equiV) ;

393 }

394 b

395 ¥ g

396 }

397

398 var lowerComps = new Set();

399 equiVerts.forEach(equiV => {

400 lowerComps = new Set([...lowerComps,
getLowerComps (equiV, components)]);

401 1

402

403 // update preimage

47

404
405

406

407

408
409
410
411
412

413

414
415

416
417
418
419

420
421
422
423

424
425
426
427

428

429
430

431
432
433

vert.cotris.forEach(tri => {
if (vert == tri.zeroFaces[0]) preimage.
setEdge (tri.oneFaces [0].id, tri.
oneFaces [1].id) ;

else if (tri.zeroFaces[0] == tri.
zeroFaces [1] || tri.zeroFaces[1] ==
tri.zeroFaces [2]) {
if (vert == tri.zeroFaces[2] && tri.

processed) preimage.removeEdge (tri
.oneFaces [0] .id, tri.oneFaces[1].

id);
else tri.processed = true;
}
else {
if (vert == tri.zeroFaces[1]) {
preimage.removeEdge (tri.oneFaces
[0].id, tri.oneFaces[1].id);
preimage.setEdge (tri.oneFaces [1].
id, tri.oneFaces[2].id);
}
else preimage.removeEdge (tri.oneFaces
[1].4id, tri.oneFaces[2].id);
}
1)
components = graphlib.alg.components (preimage
)
var upperComps = new Set();

equiVerts.forEach(equiV => {
upperComps = new Set ([...upperComps,
getUpperComps (equiV, components)]);

3

//update reeb

if (upperComps.size != lowerComps.size ||
upperComps.size != 1) {

reeb.setNode (reeb.nodeCount (), vert.fVal)
upperComps . forEach (upperComp => {
compMap.set (upperComp, reeb.nodeCount
O-1);
IOl
lowerComps.forEach(lowerComp => {
reeb.setEdge (reeb.nodeCount () -1,

48

nn
>

compMap.get (lowerComp) ,
lowerComp) ;

434)¢

435 }

436 else if (upperComps.size == 1) {

437 compMap.set (upperComps .values () .next ().
value, compMap.get(lowerComps.values ()
.next () .value)) ;

438 }

439 +

440 B

441

442 var graph_serialized = graphlib.json.write(reeb);

443 var nodes = graph_serialized["nodes"];

444 var links = graph_serialized["edges"];

445

446 var width = $("#reeb").show().innerWidth (),

447 height = 400;

448

449 var y_max = d3.max(nodes, d => { return d.value; 1}),

450 y_min = d3.min(nodes, d => { return d.value; });

451

452 var y = d3.scale.linear ()

453 .domain ([y_max, y_min])

454 .range ([20, height-20]);

455

456 var nodesMap = d3.map();

457 nodes.forEach(n => { nodesMap.set(n.v, n); });

458

459 var linkcount = new Map () ;

460

461 links.forEach (1l => {

462 var [from, to] = [1l.v, 1.w].sort();

463 var id = ‘${from}-${to}*;

464 if (linkcount.has(id)) linkcount.set (id,

linkcount.get (id) + 1);

465 else linkcount.set(id, 1);

466

467 1l.source = nodesMap.get(l.v);

468 l.target = nodesMap.get(l.w);

469 B

470

471 links.sort ((a, b) => {

472 if (a.source > b.source) return 1;

473 else if (a.source < b.source) return -1;

49

474 else {

475 if (a.target > b.target) return 1;

476 if (a.target < b.target) return -1;

477 else return O;

478 +

479)

480

481 for (var i=0; i<links.length; i++) {

482 if (14 '= 0 &&

483 links[i].source == links[i-1].source &&

484 links[i].target == links[i-1].target)

485 links[i].linknum = links[i-1].linknum + 1;

486 else links[i].linknum = 1;

487 i

488

489 var force = d3.layout.force ()

490 .size ([width, height]);

491

492 var svg = d3.select("#reeb").append("svg")

493 .attr ("width", width)

494 .attr("height", height) ;

495

496 var g = svg.append("g");

497

498 force.nodes (nodes)

499 .links (links)

500 .start () ;

501

502 var link = g.selectAll("path")

503 .data(links)

504 .enter () .append ("path")

505 .attr("class", "link");

506

507 var node = g.selectAll("circle")

508 .data(nodes)

509 .enter () .append("circle")

510 .attr("r", 6)

511 .style("fill", d => { return compColor(d.value);
)

512 .on("mouseover", d => { $fVal.val(d.value) 1})

513 .call(force.drag);

514

515 function linkArc(d) {

516 var [from, to] = [d.source.v, d.target.v].sort();

517 var count = linkcount.get(‘${from}-${tol}‘);

50

518 var dx = d.target.x - d.source.x,

519 dy = y(d.target.value) - y(d.source.value);

520 var dr;

521 if (count Y% == 1 && d.linknum == count) dr = 0;

522 else dr = Math.sqrt(dx * dx + dy * dy) / (
parselnt ((d.linknum-1) /2)+1) * 2;

523 var dir = (d.linknum Y% == 0) * 1;

524 return ‘M ${d.source.x} ${y(d.source.value)} A ${

dr} ${dr}, 0, 0, ${dir}, ${d.target.x} ${y(4d.
target.value) } ¢;

525 }

526

527 force.on("tick", () => {

528 link.attr("d", linkArc);

529

530 node.attr("cx", d => { return d.x; })

531 .attr("cy", d => { return y(d.value); });
532 B

533

534

535 function getLowerComps (vert, components) {

536 var lowerComps = new Set();

537 vert.lowerEdges.forEach(lowerEdge => {

538 var representative;

539 components.forEach(component => {

540 if (component.includes(lowerEdge.id))
541 representative = component [0];
542 b

543 lowerComps .add (representative) ;

544 1)

545 return lowerComps;

546 }

547

548 function getUpperComps (vert, components) {

549 var upperComps = new Set();

550 vert .upperEdges.forEach (upperEdge => {

551 var representative;

552 components.forEach(component => {

553 if (component.includes (upperEdge.id))
554 representative = component [0];
555 b

556 upperComps .add (representative) ;

557 1

558 return upperComps;

559 }

51

560 }

561

562 function bindInt (simp) {

563 setBW (simp) ;

564 if (simp.dim == 1) elem = $(simp.rect._renderer.elem)
565 else elem = $(simp._renderer.elem) ;

566 elem.on("mouseover.int", () => {

567 if (simp.inInt) setBW(simp) ;

568 else setColor(simp) ;

569 }) .on("mouseout.int", () => {

570 if (simp.inInt) setColor (simp) ;

571 else setBW(simp) ;

572 }) .on("mousedown.int", () => {

573 var simpVal;

574 if (simp.inInt) {

575 simpVal = -simp.fVal;

576 if (simp.dim == 1) simpVal *= -1;
577 simp.inInt = false;

578 setBW (simp) ;

579 }

580 else {

581 simpVal = simp.fVal;

582 if (simp.dim == 1) simpVal *= -1;
583 simp.inInt = true;

584 setColor (simp) ;

585 }

586 intVal += simpVal;

587

588 QUEUE .Push (["Text", math, INT_TEX+intVall]) ;
589 two.update () ;

590 1) 4

591 }

592

593 function unbindInt (simp) {

594 setColor (simp) ;

595 simp.inInt = false;

596 if (simp.dim == 1) elem = $(simp.rect._renderer.elem)
597 else elem = $(simp._renderer.elem) ;

598 elem.unbind (".int") ;

599 }

600

601 function recolor (fVal) {

602 maxF = Math.max (Math.abs(fVal), maxF);

52

603
604

605
606
607
608
609
610

611

612
613
614
615
616
617
618
619
620
621
622
623
624

625

626

627
628
629
630

631

632

633
634
635
636
637
638

$.merge($.merge($.merge ([], verts.children), edges.
children), tris.children).forEach(simp => {
if (simp.placed) setColor (simp) ;
1) 4
}

function setBW(simp) {
if (simp.fVal > 0) var c = 255 - Math.round (255 =*
simp.fVal / maxF);
else var ¢ = 255 - Math.round (255 * simp.fVal / (-
maxF)) ;
simp.stroke = simp.fill
two .update () ;

‘rgb (${c}, ${c}, ${c}) ;
}

function setColor (simp) {
simp.stroke = simp.fill = compColor (simp.fVal);
two.update () ;

}

function compColor (fVal) {
if (fVal > 0) {

var ratio = fVal / maxF;

var r = Math.round (POS_COLOR.r + (1-ratio) *
(255-P0S_COLOR.r)) ;

var g = Math.round (POS_COLOR.g + (l-ratio) =*
(255-P0S_COLOR.g)) ;

var b = Math.round (POS_COLOR.b + (1-ratio) *
(255-P0S_COLOR.Db)) ;

+
else {
var ratio = -fVal / maxF;
var r = Math.round (NEG_COLOR.r + (1-ratio) =*
(255-NEG_COLOR.r));
var g = Math.round (NEG_COLOR.g + (l1-ratio)
(255-NEG_COLOR.g));
var b = Math.round (NEG_COLOR.b + (1-ratio) *
(255-NEG_COLOR.b)) ;
+

return ‘rgb(${r}, ${gr, ${b}) ‘;
+

function extendEdge (edge) {
var fVall = edge.faces[0].fVal,

53

639 fVal2 = edge.faces[1].fVal;

640

641 var stops = [new Two.Stop (0, compColor (fVall), 1)];

642 if (fVall * fVal2 < 0)

643 stops.push(new Two.Stop(Math.abs(fVall)/(Math.abs

(fVall)+Math.abs (fVal2)), "white", 1));

644 stops.push(new Two.Stop(l, compColor (edge.faces[1].
fVal), 1));

645

646 edge.stroke = new Two.LinearGradient (edge.vertices
[0] .x, edge.vertices[0].y, edge.vertices([1l].x,
edge .vertices [1] .y, stops);

647

648 two.update () ;

649

650 $(edge.rect._renderer.elem) .unbind ("mouseover"
mousemove (e => {

651 mouse.x = e.clientX - offset.left;

652 mouse.y = e.clientY - offset.top;

653 $fVal.val(calcEdgeFVal (edge, mouse.x, mouse.y));

654 IOl

655 }

656

657 function calcEdgeFVal(edge, x, y) {

658 var trans = edge.translation;

659 var a = edge.rect.vertices [0];

660 var b = edge.rect.vertices[1];

661 var ¢ = edge.rect.vertices[2];

662 var d = edge.rect.vertices [3];

663

664 var d1 = pToSeg(x, y, a.x + trans.x, a.y + trans.y, b
.X + trans.x, b.y + trans.y);

665 var d2 = pToSeg(x, y, c.x + trans.x, c.y + trans.y, d
.Xx + trans.x, d.y + trans.y);

666

667 var 11 = d1 / (d1+d2);

668 var 12 = 42 / (d1+d2);

669

670 return (1l2*edge.faces[0].fVal + 1llxedge.faces[1].fVal
) . toFixed (2) ;

671 }

672

673 function extendTri(tri) {

674 tri.opacity = 0;

675 subdivTri(tri, 1, tri);

o4

676
677
678
679

680
681
682
683
684
685
686
687

688

689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

711
712

3

two .update () ;

$(tri._renderer.elem) .unbind ("mouseover") . .mousemove (e

=> {
mouse.X = e.clientX - offset.left;
mouse.y = e.clientY - offset.top;

$fVal.val(calcTriFVal (tri, mouse.x, mouse.y));

DN

function subdivTri(tri, i, realTri) {

var a = new Two.Anchor (tri.vertices[0].x + tri.
translation.x, tri.vertices[0].y + tri.translation
.Y

var b = new Two.Anchor (tri.vertices[1].x + tri.
translation.x, tri.vertices[1].y + tri.translation
.Y

var ¢ = new Two.Anchor (tri.vertices[2].x + tri.
translation.x, tri.vertices[2].y + tri.translation
.y

var d = new Two.Anchor((a.x+b.x)/2, (a.y+b.y)/2);

var e = new Two.Anchor ((b.x+c.x)/2, (b.y+c.y)/2);

var f = new Two.Anchor ((a.x+c.x)/2, (a.y+c.y)/2);

var tl = two.makePath(a.x, a.y, d.x, d.y, f.x, f.y);

var t2 = two.makePath(d.x, d.y, e.x, e.y, f.x, f.y);

var t3 = two.makePath(f.x, f.y, e.x, e.y, c.X, C.y);

var t4 = two.makePath(d.x, d.y, b.x, b.y, e.x, e.y);

auxTris.add(t1, t2, t3, t4);
auxTris.remove (tri)

if (i < RESOLUTION) {
subdivTri(tl, i+1, realTri);
subdivTri (t2, i+1, realTri);
subdivTri(t3, i+1, realTri);
subdivTri(t4, i+1, realTri);
+
else {
tl1.fVal = calcTriFVal(realTri, tl.translation.x,
tl.translation.y);
setColor (t1);
t2.fVal = calcTriFVal(realTri, t2.translation.x,

95

t2.translation.y);

713 setColor (t2) ;
714 t3.fVal = calcTriFVal(realTri, t3.translation.x,
t3.translation.y) ;
715 setColor (t3) ;
716 t4.fVal = calcTriFVal(realTri, t4.translation.x,
t4.translation.y) ;
v setColor (t4) ;
718 two.update () ;
719 +
720 +
721
722 function calcTriFVal(tri, x, y) {
723 var a = tri.zeroFaces [0];
724 var b = tri.zeroFaces[1];
725 var ¢ = tri.zeroFaces[2];
726
727 var x1 = a.translation.Xx;
728 var yl = a.translation.y;
729 var x2 = b.translation.x;
730 var y2 = b.translation.y;
731 var x3 = c.translation.x;
732 var y3 = c.translation.y;
733
734 var 11 = ((y2-y3)*(x-x3) + (x3-x2)*(y-y3)) / ((y2-y3)
(x1-%x3) + (x3-x2)(yl1-y3));
735 var 12 = ((y3-y1)*(x-x3) + (x1-x3)*(y-y3)) / ((y2-y3)
(x1-x3) + (x3-x2)(yl1-y3));
736 var 13 = 1 - 11 - 12;
737
738 return (11 * a.fVal + 12 * b.fVal + 13 * c.fVal).
toFixed (2) ;
739 }
740
741 function computeDual () {
742 maxF = -Infinity;
743 verts.children.forEach(vert => {
744 var fVal = vert.fVal;
745 $.merge ($.merge([], vert.lowerEdges), vert.
upperEdges) . forEach (edge => {
746 fVal -= edge.fVal;
747 var triVal = O0;
748 edge.cofaces.forEach(tri => { triVal += tri.
fVal; });
749 fVal += trivVal/2;

56

750 1)

751 vert.fVal = fVal;

752 recolor (fVal) ;

753 b

754 edges.children.forEach(edge => {

755 var fVal = -edge.fVal;

756 edge.cofaces.forEach(tri => { fVal += tri.fVal;

1)

757 edge.fVal = fVal;

758 recolor (fVal) ;

759 1) g

760 }

761

762

763 function createGrid () {

764

765 var size = 30;

766 var bg = new Two ({

767 type: Two.Types.canvas,

768 width: size,

769 height: size

770 B

771

772 var a = bg.makelLine (bg.width / 2, 0, bg.width / 2, bg
.height) ;

773 var b = bg.makeLine (0, bg.height / 2, bg.width, bg.
height / 2);

774 a.stroke = b.stroke = "#ebefff";

775

776 bg.update () ;

77

778 $canvas.css ({

779 background: ‘url(${bg.renderer.domElement.

toDataURL ("image/png")}) 0 O repeat ‘,

780 backgroundSize: ‘${size}tpx ${sizelpx"

781)

782 }

783 1) ;

784

785 function distance(p, q) {

786 return Math.sqrt(Math.pow(p.x-q.x, 2) + Math.pow(p.y-q.y,

2));
787 %}
788

789 function pToSeg(x, y, x1, yl, x2, y2) {

o7

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

var
var
var
var

var
var
var

A = x - x1;
B =1y - yi;
C = x2 - x1;
D = y2 - yi1;

dot = A x C + B x D;

len_sq =
param =

C x C

_1;

+ D * D;

if (len_sq > 0) param = dot

var

XX, Yy,

if (param < 0) A{

/ len_sq;

* dx + dy * dy);

xx = x1;

yy = yi;
}
else if (param > 1) {

XX = X2;

yy = y2;
¥
else {

xx = x1 + param C;

yy = yl + param D;
+
var dx = X - XX,

dy =y - vyy;
return Math.sqrt (dx

}
function pInTri(px, py, ax, ay,

var vO0 = [cx-ax, cy-ayl;
var vl = [bx-ax, by-ayl;
var v2 = [px-ax, py-ayl;
var dot00 = (vO[0] * vO[0])
var dot01 = (vO[0] * vi[0])
var dot02 = (v0[0] * v2[0])
var dotll = (v1[0] * v1[0])
var dotl12 = (vi1[0] * v2[0])
var invDenom = 1 / (dot00 *
var u = (dotll * dot02
var v = (dot00 * dotl2

58

bx, by, cx, cy) {

+ (vOo[1] * vO[1]);
+ (vO[1] * v1[1]);
+ (vOo[1] =* v2[1]);
+ (v1[1] * v1[1]);
+ (v1[1] * v2[1]);

dotll - dot01 * dotO01);

- dot0O1 * dotl2) * invDenom;
- dot0O1 * dot02) * invDenom;

835

836 return (u >= 0) && (v >= 0) && (u + v < 1);
837 }
838
839 function doIntersect(pl, ql, p2, q2) {
840 var ol = orientation(pl, ql, p2);
841 var o2 = orientation(pl, ql, q2);
842 var o3 = orientation(p2, q2, pl);
843 var o4 = orientation(p2, q2, ql);
844
845 if (p1 == p2 || p1 == g2 || g1 == p2 || g1 == g2) return
false;
846
847 if (ol != 02 && 03 != o04)
848 return true;
849
850 return (ol == 0 && onSegment(pl, p2, q1)) ||
851 (02 == 0 && onSegment(pl, g2, q1)) ||
852 (03 == 0 && onSegment(p2, pl, q2)) ||
853 (o4 == 0 && onSegment (p2, ql, g2));
854
855 function onSegment(p, q, r) {
856 return q.x < Math.max(p.x, r.x) && q.x > Math.min(p.x
, r.x) &&
857 q.y < Math.max(p.y, r.y) && q.y > Math.min(p.y, r
.Y
858 }
859
860 function orientation(p, q, r) {
861 var val = (q.y - p.y) * (r.x - 9.x) - (q.x - p.x) * (
r.y - q.y);
862 if (val == 0) return O;
863 return (val > 0) ? 1 : 2;
864 }
865

59

	Introduction
	Simplicial Complexes
	Definition
	Maps
	Constructible functions
	Piecewise linear functions

	SimpleX implementation
	Visualizing complexes
	Visualizing functions

	Euler calculus
	Definition
	Operations
	Convolution and duality

	Application to sensor networks
	SimpleX implementation
	Visualizing duality
	Visualizing Euler integration

	Reeb graphs
	Definition
	Computation
	SimpleX implementation

	Technical details
	Conclusion and further work
	Bibliography
	Appendices
	JavaScript code

