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We study the revenue maximization problem of a seller with n heterogeneous items for sale to a single buyer
whose valuation function for sets of items is unknown and drawn from some distribution D. We show that
if D is a distribution over subadditive valuations with independent items, then the better of pricing each
item separately or pricing only the grand bundle achieves a constant-factor approximation to the revenue
of the optimal mechanism. This includes buyers who are k-demand, additive up to a matroid constraint,
or additive up to constraints of any downwards-closed set system (and whose values for the individual
items are sampled independently), as well as buyers who are fractionally subadditive with item multipliers
drawn independently. Our proof makes use of the core-tail decomposition framework developed in prior work
showing similar results for the significantly simpler class of additive buyers [Li and Yao 2013; Babaioff et al.
2014].

In the second part of the paper, we develop a connection between approximately optimal simple mecha-
nisms and approximate revenue monotonicity with respect to buyers’ valuations. Revenue non-monotonicity
is the phenomenon that sometimes strictly increasing buyers’ values for every set can strictly decrease the
revenue of the optimal mechanism [Hart and Reny 2012]. Using our main result, we derive a bound on how
bad this degradation can be (and dub such a bound a proof of approximate revenue monotonicity); we further
show that better bounds on approximate monotonicity imply a better analysis of our simple mechanisms.

Categories and Subject Descriptors: Theory of computation [Algorithmic game theory and mechanism
design]: Computational pricing and auctions

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Revenue optimization, combinatorial valuations, simple auctions, rev-
enue monotonicity

1. INTRODUCTION
Consider a revenue-maximizing seller with n heterogeneous items for sale to a single
buyer whose value for sets of items is unknown, but drawn from a known distribu-
tion D. When n = 1, seminal work of Myerson [Myerson 1981] and Riley and Zeck-
hauser [Riley and Zeckhauser 1983] shows that the optimal selling scheme simply
sets the price p∗ = arg max{p · Pr[v ≥ p|v ← D]}. Thirty years later, understanding the
structure of the optimal mechanism when n > 1 still remains a central open problem.
Unfortunately, it is well-known that the optimal mechanism may require randomiza-
tion, behave non-monotonically, and be computationally hard to find, even in very sim-
ple instances [Thanassoulis 2004; Pavlov 2011; Briest et al. 2010; Daskalakis et al.
2014; Chen et al. 2014; Hart and Nisan 2013; Hart and Reny 2012]. In light of this,
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recent work began studying the performance of especially simple auctions through the
lens of approximation. Remarkably, these works have shown that when the bidder’s
valuation is additive1, and her value for each item is drawn independently, very sim-
ple mechanisms can achieve quite good approximation ratios. Specifically, techniques
developed in this series of works proves that the better of setting Myerson’s reserve
on each item separately or setting Myerson’s reserve on the grand bundle of all items
together achieves a 6-approximation [Hart and Nisan 2012; Li and Yao 2013; Babaioff
et al. 2014].

While this model of buyer values is certainly mathematically interesting and eco-
nomically motivated, it is also perhaps too simplistic to have broad real-world appli-
cations. A central question left open by these works is whether or not simple mech-
anisms can still approximate optimal ones in more general settings. In this work we
resolve this question in the affirmative, showing that the better of selling separately
(we will henceforth use SREV to denote the revenue of the optimal such mechanism)
or together (henceforth BREV) still obtains a constant-factor approximation to the op-
timal revenue (henceforth REV) when buyer values are combinatorial in nature but
complement-free.

INFORMAL THEOREM 1. Let D be any distribution over subadditive valuation
functions with independent items. Then max{SREV,BREV} ≥ Ω(1) ·REV. Furthermore,
prices providing this guarantee can be found computationally efficiently.

We postpone a formal definition of exactly what it means for D to have “independent
items” to Section 2. We note here a few instantiations of our model in commonly studied
settings (from least to most general):

— k-demand: The buyer has value vi for item i, and the vis are drawn independently.
The buyer’s value for a set S is v(S) = maxT⊆S,|T |≤k{

∑
i∈T vi}.

— Additive up to constraints I: I is some downwards-closed set system on [n]. The
buyer has value vi for item i, and the vis are drawn independently. v(S) =
maxT⊆S,T∈I{

∑
i∈T vi}.

— Fractionally-subadditive: buyer has “possible values” {vij}j for item i, and the sets
{vij}j are drawn independently across items (but may be correlated within an item).
v(S) = maxj{

∑
i∈S vij}.

A recent book of Hartline [Hartline 2011] provides a fantastic discussion of the role
of approximation in mechanism design. Before proceeding, it is worth repeating some
aspects of this discussion to view our result in the proper context. One should not
interpret our main result as claiming that sellers should be satisfied with a constant
fraction of the optimal obtainable revenue, but rather as studying the tradeoff between
simplicity and optimality. Sometimes, the optimal mechanism simply isn’t an option:
perhaps it is prohibitively complex to implement, prohibitively frustrating for buyers
to participate, or prohibitively difficult (computationally) to find. And even when the
optimal mechanism is a feasible option, the desire for simplicity and transparency may
outweigh the expected loss in revenue. Similarly, one should not interpret the ratios
obtained in our main result (they are noticeably larger than 6) as ratios that one might
expect to trade off in practice, as these are provable bounds for worst-case instances.

1.1. Challenges of Combinatorial Valuations
The design of simple, approximately optimal mechanisms for any non-trivial multi-
item setting has been a large focus for much of the Algorithmic Game Theory com-

1A valuation function v(·) is additive if v(S ∪ T ) = v(S) + v(T ) for all S ∩ T = ∅.



munity over the past decade. Even “simple” settings with additive or unit-demand
valuations required significant breakthroughs. The key insight enabling these break-
throughs for additive buyers is that the buyer’s valuation is separable across items.
While the optimal mechanism can still be quite bizarre despite this realization [Hart
and Reny 2012], this fact enables certain elementary decomposition theorems that are
surprisingly powerful (e.g. the “Marginal Mechanism” [Cai and Huang 2013; Hart and
Nisan 2012]). However, these theorems are extremely sensitive to being able to sepa-
rate the marginal contribution of different items exactly (and not just via upper/lower
bounds). This is due to the phenomenon that a slight miscalculation in estimating a
buyer’s value may cause her to change preferences entirely, resulting in a potentially
unbounded loss of revenue. One of our main technical contributions is overcoming this
obstacle by providing an approximate version of these decomposition theorems.

A further complication in applying these previous techniques is that they all make
use of the fact that SREV(D1 × . . . × Dn) =

∑
i SREV(Di). This claim is not even ap-

proximately true for subadditive buyers, and the ratio between the two values could
be as large as n (the right-hand side is always larger). To have any hope of applying
these tools, we therefore need a proxy for SREV that at least approximately has this
separability property.

For unit-demand buyers, the key insight behind the mechanisms designed
in [Chawla et al. 2007, 2010a,b; Kleinberg and Weinberg 2012] is that every multi-
dimensional problem instance has a related single-dimensional problem instance, and
there is a correspondence between truthful mechanisms in the two instances. This re-
alization means that one can instead design mechanisms for the single-dimensional
setting, where optimal mechanisms are well understood due to Myerson’s virtual val-
ues, and translate them in a black-box manner to mechanisms for the original instance.
While these techniques have proven extremely fruitful in the design of mechanisms for
multiple unit-demand buyers and sophisticated feasibility constraints, they have also
proven to be limited in use to unit-demand settings. A special case of our results can be
seen as providing an alternative proof of the single-buyer result of Chawla, Hartline,
and Kleinberg [Chawla et al. 2007] (albeit with a significantly worse constant) that
doesn’t require virtual valuation machinery.

Aside from the difficulties in applying existing machinery to design optimal mech-
anisms for combinatorial valuations, formal barriers exist as well. For instance, it is
a trivial procedure for an additive buyer to select his utility-maximizing set of items
when facing an item-pricing, and finding the revenue-optimal item-pricing is also triv-
ial (just find the optimal price for each item separately). Yet for a subadditive buyer,
both tasks are quite non-trivial. Just computing the expected revenue obtained by a
fixed item-pricing is NP-hard. Worse, the buyer’s problem of just selecting her utility-
maximizing set from a given item-pricing is also NP-hard! Therefore, buyers may be-
have quite unpredictably in the face of an item-pricing depending on how well they can
optimize. Moreover, even if we are willing to assume that the buyer has the computa-
tional power to select her utility-maximizing set, it is known still that (without our in-
dependence assumption) finding an nc-approximately optimal mechanism is NP-hard
for all c = O(1) [Cai et al. 2013]. We sidestep all these difficulties by not attempting to
compute or approximate SREV at all, nor trying to predict bizarre buyer behavior. We
instead perform our analysis on revenue contributions only of items purchased when
the buyer is not willing to purchase any others. Buyer behavior in such instances is pre-
dictable and easily computable: simply purchase the unique item for which v({i}) > pi.
It is surprising that such an analysis suffices, as it completely ignores any revenue con-
tribution coming from the entirely plausible event that the buyer is willing to purchase
multiple items.



1.2. Techniques
We prove our main theorem by making use of the core-tail decomposition framework
introduced by Li and Yao [Li and Yao 2013]. There are three high-level steps to apply-
ing the framework. The first is proving a “core decomposition” lemma that separates
the optimal revenue into contributions from items which the buyer values very highly
(the “tail”), and items which the buyer values not so high (the “core”). The second
is showing that the contribution from the tail can be approximated well by SREV.
The third is showing that the contribution from the core can be approximated well by
max{SREV,BREV}.

The Core Decomposition Lemma. The proof of the original Core Decomposition
Lemma in [Li and Yao 2013] was obtained by cleverly stringing together simple claims
proved in [Hart and Nisan 2012]. As discussed above, these seemingly “obvious” claims
may not extend beyond additive valuations over independent items, due to the fact
that the buyer’s value cannot be separated across items. Nevertheless, we are able to
prove an approximate version of the core decomposition lemma for subadditive buyers
(Lemma 3.6) by making use of ideas from reductions from ε-truthful mechanisms to
fully truthful ones. Like in [Babaioff et al. 2014], our core decomposition lemma holds
for many buyers. The proof for a single buyer, which is the focus of this paper can be
found in Section 3.1. In the full version we also provide a more technically involved
proof for many buyers which builds on heavier tools from [Bei and Huang 2011; Hart-
line et al. 2011; Daskalakis and Weinberg 2012].

Bounding the Tail’s Contribution. Arguments for bounding the contribution from the
tail in prior work (and ours) use the following reasoning. If the cutoff between core and
tail is sufficiently high, then the probability that k items are simultaneously in the
tail for a sampled valuation decays exponentially in k. If one can also show that the
approximation guarantee of SREV decays subexponentially in k, then we can bound
the gap between SREV and the tail’s contribution by a constant factor. We show that
indeed the approximation guarantee of SREV decays only polynomially in k.

Bounding the Core’s Contribution. Arguments for bounding the contribution from
the core in prior work (and ours) use the following reasoning. The total expected
value for items in the core is a subadditive function of independent random variables
(bounded above by the core-tail cutoff). If the cutoff between core and tail is suffi-
ciently low, then one of two things must happen. Either the expected contribution from
the core is also small, in which case SREV itself provides a good approximation, or
the expected contribution is large, and therefore also large with respect to the cutoffs.
In the latter case, a concentration bound implies that BREV must provide a good ap-
proximation. In the additive case, the appropriate concentration bound is Chebyshev’s
inequality. In the subadditive case, we need heavier tools, and apply a concentration
bound due to Schechtman [Schechtman 1999].

1.3. Connection to Approximate Revenue-Monotonicity
Consider designing revenue-optimal mechanisms for two different markets, and sup-
pose that the valuations of the consumers in the first market first-order stochastically
dominate2 the valuations of the consumers in the second market. It then seems rea-
sonable to expect that the optimal revenue achieved from the first market, REV(D+),
should be at least as large as the revenue achieved from the dominated market,

2We say that a distribution D+ over valuation functions v+ first-order stochastically dominates distribution
D over valuation functions v if the probability spaces can be coupled so that for every subset S, v+ (S) ≥
v (S).



REV(D). When there is just a single item for sale, this is an easy corollary of the
format for Myerson’s optimal auction. Yet Hart and Reny provided an example where
this intuition breaks even in a setting as simple as an additive buyer with i.i.d. values
for two items [Hart and Reny 2012]. Surprisingly, their example shows that it is pos-
sible to make strictly more revenue in a market when buyers have strictly less value
for your goods, and the market need not even be very complex for this phenomenon to
occur.

A natural question to ask then, is how large this anomaly can be. For example, Hart
and Reny’s constructions exhibit a (multiplicative) gap of 33/32 between REV(D+) and
REV(D) for an additive buyer with correlated values for two items, and (1+ 1

7000000 ) for
an additive buyer with i.i.d. values for two items. Interestingly, the simple mechanisms
of [Hart and Nisan 2012; Li and Yao 2013; Babaioff et al. 2014] upper bound the possi-
ble gap of any instance where their results apply, since SREV and BREV are monotone
for additive buyers (i.e. SREV(D+) ≥ SREV(D) and BREV(D+) ≥ BREV(D)). Specif-
ically, for an additive buyer the gap is at most (1 + 1/e) for two i.i.d. items, 2 for two
asymmetric independent items, and 6 for any number of independent items. In Section
4 we show that as a corollary of our results, the gap is also constant for a subadditive
buyer with independent items. Interestingly, this connection between approximately
optimal simple mechanisms and approximate revenue-monotonicity is also fruitful in
the other direction: it turns out that improving the bound on approximate monotonicity
for a subadditive buyer would also improve the constant in our main theorem. Finally,
we show in Section 4.3 that for an additive buyer with correlated values for two items,
the gap is potentially infinite. (This is the case for which Hart and Reny provide a gap
of 33/32.) The proof is by a black-box reduction from an example due to Hart and Nisan
[Hart and Nisan 2013] that exhibits a similar gap between simple and optimal mech-
anisms, further demonstrating the connection between these two important research
directions.

1.4. Discussion and Open Problems
Our work contributes to the recent growing literature on simple, approximately opti-
mal mechanisms. We extend greatly beyond prior work, providing the first simple and
approximately optimal mechanisms for buyers with combinatorial valuations. Prior to
our work, virtually nothing was known about this setting (modulo the impossibility
result of [Cai et al. 2013]). Our results also demonstrate the strength of the core-tail
decomposition framework developed by Li and Yao to go beyond additive buyers. We
suspect that this framework will continue to prove useful in other Bayesian mecha-
nism design problems.

In our opinion, the most exciting open question in this area is extending these re-
sults to multiple buyers. A beautiful lookahead reduction was recently developed by
Yao [Yao 2015] for additive buyers. Still, generalizing his tools beyond additive buyers
seems quite challenging and is a very intriguing direction. Another important direc-
tion is extending our understanding of simple mechanisms to models of limited cor-
relation over values for disjoint sets of items3. Recent independent work of Bateni
et. al. [Bateni et al. 2015] addresses this direction, providing approximation guaran-
tees on max{SREV,BREV} vs. REV for an additive buyer whose values for items are
drawn from a common-base-value distribution and various extensions. Their results
also make use of a core-tail decomposition, but the tools they develop beyond the de-
composition are disjoint from ours. A natural question in this direction is whether our
results extend to settings where buyer values are both combinatorial and exhibit lim-

3Note that as we mention in the previous section, for arbitrary correlated items the gap can be infinite [Hart
and Nisan 2013; Briest et al. 2010].



ited correlation between disjoint sets of items, as the end goal is to have a model that
encompasses as many real-world instances as possible.

2. PRELIMINARIES
We focus the body of the exposition on the single-buyer problem, and defer all details
regarding auctions for multiple buyers to the full version. There is a single revenue-
maximizing seller with n items for sale to a single buyer. The buyer has combinatorial
valuations for the items (i.e. value v(S) for receiving set S), and is quasi-linear and
risk-neutral. That is, the buyer’s utility for a randomized outcome that awards him set
S with probability A (S) while paying (expected) price p is

∑
S A (S) v(S) − p. The val-

uation v(·) is unknown to the seller, who has a prior D over possible buyer valuations
that is subadditive over independent items, a term we describe below. By the taxation
principle, the seller may restrict attention to only lottery systems. In other words, the
seller provides a list of potential lotteries (distributions over sets) each with a price,
and the buyer chooses the utility-maximizing option.

2.1. Subadditive valuations over independent items
We now carefully define what we mean by subadditive valuations over independent
items. Intuitively, our model is such that the buyer has some private information xi
pertaining to item i,4 and D~x is a product distribution over Rn representing the seller’s
prior over the private information possessed by the buyer. The buyer’s valuation for set
S is parametrized by the private information she has about items in that set, and can
be written as V (〈xi〉i∈S , S). In economic terms, this models that the items not received
by the buyer impose no externalities. We capture this formally in the definition below:

Definition 2.1. We say that a distributionD over valuation functions v(·) : {0, 1}n →
R is subadditive over independent items if:

(1) All v(·) in the support of D exhibit no externalities.
Formally, let ΩS =×i∈S Ωi, where each Ωi is a compact subset of a normed space.
There exists a distribution D~x over Ω[n] and functions VS : ΩS → R such that D is
the distribution that first samples ~x← D~x and outputs the valuation function v(·)
with v(S) = VS(〈xi〉i∈S) for all S.

(2) All v(·) in the support of D are monotone. That is, v(S) ≤ v(S ∪ T ) for all S, T .
(3) All v(·) in the support of D are subadditive. That is, v(S ∪ T ) ≤ v(S) + v(T ).
(4) The private information is independent across items. That is, the D~x guaranteed in

property 1 is a product distribution.

We describe now how to encode commonly studied valuation distributions in this
model.

Example 2.2. The following types of distributions can be modeled as subadditive
over independent items. (Recall that ~x is the vector of independently sampled at-
tributes in the definition above.)

(1) Additive: Let Ωi = [0, 1] and interpret xi as the buyer’s value for item i.
VS(〈xi〉i∈S) =

∑
i∈S xi.

(2) k-demand: Let Ωi = [0, 1] and interpret xi as the buyer’s value for item i.
VS(〈xi〉i∈S) = maxT⊆S,|T |≤k{

∑
i∈T xi}.

(3) Additive up to I: Let Ωi = [0, 1] and interpret xi as the buyer’s value for item i.
VS(〈xi〉i∈S) = maxT⊆S,T∈I{

∑
i∈T xi}.

4Think of this information as “information about the buyer’s preferences related to item.”



(4) Fractionally subadditive: Let Ωi = [0, 1]k for any finite k and interpret xi as encod-
ing the values {vij}j∈[k]. VS(〈xi〉i∈S) = maxj{

∑
i∈S vij}.

2.2. Notation
Definition 2.3. For any distribution D of buyer’s valuation, we use the following

notation, most of which is due to [Hart and Nisan 2012; Babaioff et al. 2014]:

—Di: The distribution of v({i}) when v(·)← D.
— t: the cutoff between core and tail. If v({i}) > t, we say that item i is in the tail.

Otherwise it is in the core.
—DA: the distribution D, conditioned on A being exactly the set of items in the tail.
—DT

A: the distribution DA restricted just to items in the tail (i.e. A).
—DC

A : the distribution DA restricted just to items in the core (i.e. Ā).
— pi: the probability that element i is in the tail.
— pA: the probability that A is exactly the set of items in the tail (note that p{i} 6= pi).
— REV (D): The maximum revenue obtainable via a truthful mechanism from a buyer

with valuation profile drawn from D.
— BREV (D): The revenue obtainable from a buyer with valuation profile drawn from
D by auctioning the grand bundle via Myerson’s optimal auction.

— SREV (D): The maximum revenue obtainable from a buyer with valuation profile
drawn from D by pricing each item separately. Note that when the buyer is not
additive, SREV(D) behaves erratically and is NP-hard to find [Chen et al. 2014].

— REVq(D): For a one-dimensional distribution D, the optimal revenue obtained by a
reserve price that sells with probability at most q.

— SREV∗~q(D) :
∏
i(1 − qi) ·

∑
i REVqi(Di): a proxy for SREV(D) that behaves nicer and

is easy to compute.
— VAL (D): the buyer’s expected valuation for the grand bundle, Ev←D [v ([n])].

When the distribution is clear from the context, we simply use REV, VAL, etc. Most
of this notation is standard following [Hart and Nisan 2012], with the exception of
REVq and SREV∗~q . We introduce SREV∗~q because it will serve as a proxy to SREV that
behaves nicely and is easy to compute. Note that SREV∗~q is essentially computing the
revenue of the best item pricing that sells item i with probability at most qi, but only
counting revenue from cases where the other values are too low to have possibly sold
(and actually it undercounts this quantity).

Remark 2.4. In our definitions of REVq(D) and SREV∗~q(D) we assume without loss
of generality that for every single-dimensional D and q ∈ [0, 1] it is possible to set a
price that sells with probability exactly q. When D is a continuous distribution, this is
true by the intermediate value theorem. When D has a point mass, this is no longer
true per se. Fortunately, there are standard methods for reducing the study of arbitrary
distributions to continuous ones with arbitrarily small loss. We briefly sketch one, a
rounding scheme commonly attributed to Nisan (that appears also in [Chawla et al.
2007; Cai and Huang 2013]):

For any ε > 0, D can be “smoothed” into a continuous distribution Dε by multiplying
samples from D by a random factor drawn uniformly from [1, 1 + ε]. For any smoothed
Dε, the desired prices exist by the intermediate value theorem. Using techniques sim-
ilar in spirit to those of Section 3.1, it is easy (both computationally and conceptually)
to convert mechanisms for Dε to mechanisms for D, and vice versa, with negligible
(dependent on ε) loss in revenue. Therefore, one may formally study Dε for sufficiently
small ε, and all results hold with respect to D as well with negligible loss (and taking



ε→ 0 results in no loss at all). So for the remainder of the paper, we will assume w.l.o.g.
that all distributions are continuous, and therefore the desired prices exist.

We conclude the preliminaries by stating a lemma of Hart and Nisan that we will
use. We include the proof below for completeness, as well as to verify that it continues
to hold when the valuations are not additive.

LEMMA 2.5 (SUB-DOMAIN STITCHING SPECIAL CASE [HART AND NISAN 2012]).
REV(D) ≤

∑
A pAREV(DA).

PROOF. Let M be an optimal mechanism for selling items with valuations sam-
pled from D, and let REVM (D) = REV (D) denote its revenue. Then, REVM (D) =∑
pAREVM (DA). Also, for each A ⊆ [n], REVM (DA) ≤ REV (DA).

3. MAIN RESULT: CONSTANT-FACTOR APPROXIMATION FOR SUBADDITIVE BUYER
THEOREM 3.1. When D is subadditive over independent items, there exists a proba-

bility vector ~q such that:

REV(D) ≤ 314SREV∗~q(D) + 24BREV(D)

Furthermore, ~q can be computed efficiently, as well as an induced item pricing that
yields expected revenue at least SREV∗~q(D).

Proof outline. We follow the core-tail decomposition framework. First, we provide an
approximate core decomposition lemma in Section 3.1. Then, we provide a bound on
the contribution of the core with respect to max

{
BREV, SREV∗

}
in Section 3.2, and a

bound on the contribution of the tail with respect to SREV∗ as a function of the cutoffs
chosen in Section 3.3.

For ease of exposition, we simply set t so that the probability of having an empty tail
is exactly half; i.e. p∅ =

∏
(1− pi) = 1/2. We also set ~q = ~p.

3.1. Approximate Core Decomposition
In this section, we prove our approximate core decomposition lemma. The key ingredi-
ent will be an approximate version of the “Marginal Mechanism” lemma from [Cai and
Huang 2013; Hart and Nisan 2012] for subadditive buyers, stated below:

LEMMA 3.2. (“Approximate Marginal Mechanism”)
Let S,X be a partition of [n], and let D =

(
DS , DX

)
be the joint distribution for the

valuations of items in S,X, respectively, for buyers with subadditive valuations. Then
for any 0 < ε < 1,

REV (D) ≤
(

1

ε
+

1

1− ε

)
VAL

(
DS
)

+
1

1− ε
EvS←DS

[
REV

(
DX | vS

)]
(1)

When DS and DX are independent, this simplifies to

REV(D) ≤ (
1

ε
+

1

1− ε
)VAL(DS) +

1

1− ε
REV(DX).

We outline the proof of Lemma 3.2 below. We first recall the original “Marginal Mech-
anism” lemma (that holds for an additive buyer without any multipliers). We provide
a complete proof so that the reader can see where the argument fails for subadditive
buyers.

LEMMA 3.3. (“Marginal Mechanism” [Cai and Huang 2013; Hart and Nisan 2012])
Let StX be any partition of [n], and let D+ be any distribution over valuation functions
such that v+(U) = v+(U ∩ S) + v+(U ∩X) for all U ⊆ n, and v+ in the support of D+.



Let also DS denote D+ restricted to items in S and DX denote D+ restricted to items in
X. Then REV(D+) ≤ VAL(DS) + EvS←DS [REV(DX |vS)].

PROOF. We design a mechanism MX (the “Marginal Mechanism”) to sell items in
X to consumers sampled from DX |vS based on the optimal mechanism M for selling
items in StX to consumers sampled from D+. Define A(v) to be the (possibly random)
allocation of items awarded to type v in M , and p(v) to be the price paid. Let MX first
sample a value vS ← DS . The buyer is then invited to report any type vX , and MX will
award him the items inA(vS , vX)∩X and charge him price p(vS , vX)−vS(A(vS , vX)∩S).
In other words, the buyer will receive value from exactly the same items in MX as he
would have received in M , except he receives the actual items in X, whereas for items
in S he is given a monetary rebate instead of his actual value.

We first claim that if M is truthful, then so is MX . The utility of a buyer with type
vX for reporting wX to MX can be written as: vX(A(vS , wX)∩X) +vS(A(vS , wX)∩S)−
p(vS , wX) = (vS , vX)(A(vS , wX))−p(vS , wX), which is exactly the utility of a buyer with
type (vS , vX) for reporting (vS , wX) to M . As M was truthful, we know that a buyer
with type (vS , vX) maximizes utility when reporting (vS , vX) over all possible (vS , wX).
Therefore, a buyer with type vX prefers to tell the truth as well.

Finally, we just have to compute the revenue ofMX . For each vS , the marginal mech-
anism provides a concrete mechanism for the distribution DX |vS that attains revenue
at least REV(D+|vS)−vS(S). So REV(DX |vS) ≥ REV(D+|vS)−vS(S). Taking an expec-
tation over all vS (and an application of sub-domain stitching) yields the lemma.

Notice that it is crucial in the proof above that the buyer’s value could be written as
vS(·) + vX(·). Otherwise the auctioneer does not know how much to “reimburse” the
buyer, since the correct amount depends on the buyer’s private information. The buyer
can then manipulate his own report vX to influence how much he gets reimbursed for
the items in S.

A natural approach then, given any distribution D over subadditive valuations, is to
define a new value distribution D+ by redefining all v(·) to satisfy v(U) = v(U ∩ S) +
v(U ∩X) (it is easy to see that all valuations in the support of D+ are still subadditive).
Unfortunately, even though D+ (first-order stochastically) dominates D, due to non-
monotonicity we could very well have REV(D+) < REV(D). Still, we bound the revenue
lost as we move fromD toD+ by making use of tools for turning ε-truthful mechanisms
into truly truthful ones. Lemma 3.4 and Corollary 3.5 below capture this formally.

LEMMA 3.4.
Consider two coupled distributions D and D+, with v(·) and v+(·) denoting a random

sample from each. Define the random function δ(·) so that δ(S) = v+(S) − v(S) for all
S. Suppose that δ(S) ≥ 0 for all S and that δ(·) also satisfies ED

[
maxS⊆[n]{δ (S)}

]
≤ δ.

Then for any 0 < ε < 1,

REV(D+) ≥ (1− ε)
(
REV(D)− δ̄/ε

)
.

PROOF. Consider a mechanism M which achieves the optimal revenue REV(D). Let
(φv, pv) denote the lottery purchased by a buyer with type v in M , where φv is a (pos-
sibly randomized) allocation, and p is a price. Consider now the mechanism M+ that
offers the same menu as M , but with all prices discounted by a factor of (1− ε). Let
(φ+v , p

+
v ) denote the lottery that a buyer with type v+ (coupled with v) chooses to pur-

chase in M+ (knowing that she would only pay (1− ε)p+v because of the discount). The



following inequalities must hold (we will abuse notation and let v(ψ) = ES←ψ[v(S)]):

v(φv)− pv ≥ v(φ+v )− p+v . (2)
v+(φ+v )− (1− ε) p+v ≥ v+(φv)− (1− ε) pv (3)

Now, summing equations (2) and (3) (then making use of the definition of δ(·) and the
fact that it is non-negative), we have:

εp+v + δ(φ+v ) ≥ εpv

⇒ p+v ≥ pv − δ(φ+v )/ε

We can now bound the expected revenue by taking an expectation over all valuations:

REV
(
D+
)
≥ Ev←D

[
(1− ε)p+v

]
≥ (1− ε)Ev←D

[
pv − δ(φ+v )/ε

]
≥ (1− ε) REV(D)− (1− ε)δ̄/ε

COROLLARY 3.5.
For a given partition of [n], S t X, and distribution D over subadditive valuations,

define DS to be D restricted to items in S, and D+ to first sample v ← D, and output
v+(·) with v+(U) = v(U ∩ S) + v(U ∩ X). Then for all ε ∈ (0, 1), REV(D) ≤ REV(D+)

1−ε +
VAL(DS)

ε .

PROOF. By monotonicity, v(U) ≥ v(U ∩ X) for all U,X. Therefore, v+(U) − v(U) ≤
v(U ∩ S) ≤ v(S) for all U . Furthermore, by subadditivity, we have v+(U) ≥ v(U) for
all U . Together, this means that D and D+ are coupled so that we can set δ(U) ≤ v(S)
for all U . Therefore, we may set δ̄ = VAL(DS) in the hypothesis of Lemma 3.4. The
corollary follows by rearranging the inequality.

The proof of Lemma 3.2 is now a combination of Corollary 3.5 and Lemma 3.3. We
can now provide our approximate core decomposition by combining sub domain stitch-
ing (Lemma 2.5) and approximate marginal mechanism (Lemma 3.2).

LEMMA 3.6.
(“Approximate Core Decomposition”)
For any distribution D that is subadditive over independent items, and any 0 < ε < 1,

REV (D) ≤
(

1

ε
+

1

1− ε

)
VAL

(
DC
∅
)

+
1

1− ε
∑
A⊆[n]

pAREV
(
DT
A

)
.

In particular, for ε = 1/2, we have

REV (D) ≤ 4VAL
(
DC
∅
)

+ 2
∑
A⊆[n]

pAREV
(
DT
A

)
PROOF. By the Approximate Marginal Mechanism Lemma (Lemma 3.2),

REV (DA) ≤
(

1

ε
+

1

1− ε

)
VAL

(
DC
A

)
+

1

1− ε
REV

(
DT
A

)
Also, for any A ⊆ [n],

VAL
(
DC
A

)
≤ VAL

(
DC
∅
)



Finally, by sub-domain stitching (Lemma 2.5):

REV (D) ≤
∑
A⊆[n]

pAREV (DA)

≤
∑
A⊆[n]

pA

((
1

ε
+

1

1− ε

)
VAL

(
DC
A

)
+

1

1− ε
REV

(
DT
A

))

≤
(

1

ε
+

1

1− ε

)
VAL

(
DC
∅
)

+
1

1− ε
∑
A⊆[n]

pAREV
(
DT
A

)

3.2. Core
Here, we show how to bound VAL(DC

∅ ) using max{SREV∗~q(D),BREV(D)}. We use a
concentration result due to Schechtman [Schechtman 1999] that first requires a defi-
nition.

Definition 3.7. LetD~x denote a distribution of private information, V denote a valu-
ation function V (~x, ·), and D denote the distribution that samples ~x← D~x and outputs
the function v(·) = V (~x, ·). Then D is c−Lipschitz if for all ~x, ~y, and sets S and T we
have:

|V (~x, S)− V (~y, T )| ≤ c · (|S ∪ T | − |S ∩ T |+ |{i ∈ S ∩ T : xi 6= yi}|) .
Before applying Schechtman’s theorem, we show that DC

∅ is t-Lipschitz (recall that t is
the cutoff between core and tail).

LEMMA 3.8.
Let D be any distribution that is subadditive over independent items where each

v({i}) ∈ [0, c] with probability 1. Then D is c-Lipschitz.

PROOF. For any ~x, ~y, S, T , let U = {i ∈ S ∩ T |xi = yi}. Because of no externalities,
we must have V (~x, U) = V (~y, U), which we will denote by B. By monotonicity, we
must have V (~x, S), V (~y, T ) ≥ B. By subadditivity and the fact that each V (~x, {i}) ≤ c,
we have V (~x, S) ≤ c(|S| − |U |) + B. Similarly, we have V (~y, T ) ≤ c(|T | − |U |) + B.
It’s also clear that |S| − |U | ≤ |S ∪ T | − |S ∩ T | + |{i ∈ S ∩ T : xi 6= yi}|, and that
|T |−|U | ≤ |S∪T |−|S∩T |+|{i ∈ S∩T : xi 6= yi}|. So we also must have V (~x, S), V (~y, T ) ≤
B + c(|S ∪ T | − |S ∩ T | + |{i ∈ S ∩ T : xi 6= yi}|). Therefore V (~x, S), V (~y, S) ∈ [B,B +
c(|S ∪ T | − |S ∩ T |+ |{i ∈ S ∩ T : xi 6= yi}|)], completing the proof.

COROLLARY 3.9. DC
∅ is t-Lipschitz.

Now we state Schechtman’s theorem and apply it to bound VAL(DC
∅ ).

THEOREM 3.10. ([Schechtman 1999]) Suppose that D is a distribution that is sub-
additive over independent items and c-Lipschitz. Then for any parameters q, a, k > 0,

Pr
v←D

[v ([n]) ≥ (q + 1) a+ k · c] ≤ Pr [v ([n]) ≤ a]
−q
q−k

In particular, if a is the median of v ([n]) |v←D and q = 2, we have

Pr
v←D

[v ([n]) ≥ 3a+ k · c] ≤ 4 · 2−k

COROLLARY 3.11. Suppose that D is a distribution that is subadditive over inde-
pendent items and c-Lipschitz. If a is the median of v ([n]) |v←D, then Ev←D [v ([n])] ≤
3a+ 4c/ ln 2.



PROOF. E [v ([n])] =
∫∞
0

Pr [v ([n]) > y] dy. We can upper bound this using the mini-
mum of 1 and the bound provided in Theorem 3.10 to yield:

E [v ([n])] ≤ 3a+

∫ ∞
0

4 · 2−y/cdy = 3a+ 4c/ ln 2

PROPOSITION 3.12. VAL(DC
∅ ) ≤ 6BREV + 4t/ ln 2.

PROOF. Since a is the median of v ([n]), we can set price a on the grand bundle and
extract revenue at least a/2. Therefore, BREV ≥ a/2. The proposition then follows by
combining Corollaries 3.9 and 3.11.

Finally, if the cutoff t is not too large, we can recover a constant fraction of it by selling
each item separately.

LEMMA 3.13. SREV∗~p ≥ t · p∅ (1− p∅). In particular, if we choose t so that p∅ = 1/2,
then SREV∗~p ≥ t/4.

PROOF. Clearly REVpi(Di) ≥ pit, as we could set a price of t for item i. So SREV∗~p =
p∅
∑
i REVpi(Di) ≥ p∅t

∑
i pi Finally, we observe that

∑
i pi is exactly the expected num-

ber of items in the tail, and p∅ is the probability that zero items are in the tail. So we
clearly have

∑
i pi ≥ 1− p∅.

Combining Proposition 3.12 and Lemma 3.13 then yields:

PROPOSITION 3.14.

VAL(DC
∅ ) ≤ 6BREV + 24SREV∗~p.

3.3. Tail
We now show that the revenue from the tail can be approximated by SREV∗~q . We be-
gin by proving a much weaker bound on the optimum revenue for any distribution of
subadditive valuations over independent items:

LEMMA 3.15.

REV (D) ≤ 6nlog2 6
∑
i

REV (Di) .

PROOF. Babaioff et al. [Babaioff et al. 2014] prove that REV ≤ n
∑
i REV (Di) for an

additive buyer by recursively reducing the number of items by one at each step. Un-
fortunately, each step of the induction uses the Marginal Mechanism Lemma; when
applying the approximate variant for subadditive valuations, we would incur an expo-
nential factor.

Instead, we use a slightly more complicated argument along the lines of Hart and
Nisan [Hart and Nisan 2012] that halves the number of items in each step. Let S and
X be a partition of [n] into subsets of size at most dn/2e. Let DS≥X be the distribution
over valuations which is the same as D whenever v (S) ≥ v (T ), and has valuation zero
otherwise. Similarly, let DS<X be the distribution which is equal to D on v (S) < (T ).
Then by sub-domain stitching (Lemma 2.5) we have,

REV (D) ≤ REV (DS≥X) + REV (DS<X) . (4)



Now, by the Approximate Marginal Mechanism Lemma,

REV (DS≥X) ≤
(

1

ε
+

1

1− ε

)
VAL

(
DX
S≥X

)
+

1

1− ε
EvX←DX

S≥X

[
REV

(
DS
S≥X | vX

)]
(5)

One mechanism for selling items in S is to sample vX ← DX
S≥X , and then use a mech-

anism that achieves REV
(
DS
S≥X | vX

)
. Thus we have,

REV
(
DS
)
≥ EvX←DX

S≥X

[
REV

(
DS
S≥X | vX

)]
. (6)

Another way to sell items in S is to again sample vX ← DX
S≥X , and offer the entire

bundle for price vX (X). Therefore we also have,

REV
(
DS
)
≥ Ev←D

[
v (X) |

(
v (S) ≥ v (X)

)]
= Ev←DS≥X [v (X)] = VAL

(
DX
S≥X

)
. (7)

Combining equations (5)-(7), we have

REV (DS≥X) ≤
(

1

ε
+

2

1− ε

)
REV

(
DS
)

By symmetry, the same holds for REV (DS<X) and REV
(
DX

)
. Therefore using (4),

REV (D) ≤
(

1

ε
+

2

1− ε

)(
REV

(
DS
)

+ REV
(
DX

))
Applying the recursion dlog ne times, we have

REV (D) ≤
(

1

ε
+

2

1− ε

)log2 n+1∑
i

REV (Di) =

(
1

ε
+

2

1− ε

)
nlog2( 1

ε+
2

1−ε )
∑
i

REV (Di)

Choosing ε = 1/2 yields
(

1
ε + 2

1−ε

)
= 6.

Note that in Lemma 3.15,
∑
i REV(Di) is not the same as SREV(D) as the buyer

is not necessarily additive. In fact, they can be off by a factor of n (in the case of a
unit-demand buyer). Nonetheless, this weak bound suffices for our analysis of the tail,
which is summarized in Proposition 3.16 below. Essentially, the proposition amplifies
the bound in Lemma 3.15 greatly by making use of the fact that it is unlikely to see
multiple items in the tail.

PROPOSITION 3.16. Recall that pi = Pr[v({i}) > t], and p∅ =
∏
i(1− pi). Then∑

A

pAREV(DT
A) ≤ 6

p∅

(
1 + 7 ln(1/p∅) + 6 ln(1/p∅)

2 + ln(1/p∅)
3
)
· SREV∗~p

In particular, if we choose t so that p∅ = 1/2, then
∑
A pAREV(DT

A) ≤ 109 · SREV∗~p

PROOF. Our proof builds on the intuition that the number of items in the tail is
typically very small. By Lemma 3.15, we have that∑

A⊆[n]

pAREV
(
DT
A

)
≤

∑
A⊆[n]

pA6 |A|log2 6
∑
i∈A

REV
(
DT
i

)
= 6

∑
i∈[n]

piREV
(
DT
i

)∑
A3i
|A|log2 6

pA/pi (8)



For any i, the expression
∑
A3i |A| pA/pi is also the expected number of items in the

tail, conditioning on i being in the tail. Similarly,
∑
A3i |A|

log2 6
pA/pi is the expected

value of (# items)log2 6. Let bj be the indicator random variable that is 1 whenever item
j is in the tail. Noting that log2 6 < 3 and each bj is 1 with probability exactly pj and
the bj ’s are independent, we have:

∑
A3i
|A|log2 6

pA/pi ≤ Ebj


1 +

∑
j 6=i

bj

3


= Ebj

1 + 3

∑
j 6=i

bj

+ 3

∑
j 6=i

bj

2

+

∑
j 6=i

bj

3


= 1 + 3E

∑
j 6=i

bj

+ 3E

∑
j 6=i

b2j +
∑
k 6=j 6=i

bjbk


+E

∑
j 6=i

b3j + 3
∑
k 6=j 6=i

b2jbk +
∑

l 6=k 6=j 6=i

bjbkbl


= 1 + 7E

∑
j 6=i

bj

+ 6E

 ∑
k 6=j 6=i

bjbk

+ E

 ∑
l 6=k 6=j 6=i

bjbkbl

 (9)

≤ 1 + 7
∑
j 6=i

pj + 6

∑
j 6=i

pj

2

+

∑
j 6=i

pj

3

(10)

(9) follows because bj ∈ {0, 1}. We continue to bound the last line as a function of
just p∅. Note that e−

∑
i pi ≥

∏
i(1 − pi) = p∅, and therefore we have

∑
i pi ≤ ln(1/p∅).

Combining with (8) and (10), we have:∑
A⊆[n]

pAREV
(
DT
A

)
≤ 6

(
1 + 7 ln(1/p∅) + 6 ln(1/p∅)

2 + ln(1/p∅)
3
)
·
∑
i∈[n]

piREV
(
DT
i

)
Now, we have to interpret piREV(DT

i ). We claim that in fact this is exactly REVpi(Di).
Why? It’s clear that the optimal reserve for DT

i is at least t, as DT
i is not supported

below t. It’s also easy to see that for any reserve ri ≥ t, that the revenue obtained by
selling to DT

i is exactly ri · Pr[v({i}) > ri]/pi, and therefore the same ri ≥ t that is
optimal for Di is also optimal for DT

i , and piREV(DT
i ) = REVpi(Di). Therefore,∑

A⊆[n]

pAREV
(
DT
A

)
≤ 6

(
1 + 7 ln(1/p∅) + 6 ln(1/p∅)

2 + ln(1/p∅)
3
)
·
∑
i∈[n]

REVpi (Di)

Plug in SREV∗~p = p∅
∑
i∈[n] REVpi (Di) to complete the proof.

Note that Theorem 3.1 is now a corollary of Proposition 3.16, Proposition 3.14, and
Lemma 3.6 (setting ε = 1/2). That the desired ~q can be computed efficiently is easy to
see: simply do a binary search over cutoffs t until we find one that induces p∅ = 1/2. It
is also easy to find an item pricing that guarantees revenue at least SREV∗~q : for each
item i, simply find the optimal reserve for Di, subject to that reserve being at least t.



Finally, notice that the only bundle price we ever need to set to obtain our guarantee
is the median of v([n]), when v(·)← DC

∅ . It is also easy to see that our bounds degrade
smoothly if we set a price that only approximates the median instead. For a discussion
of exactly what access to D suffices in order for these prices/cutoffs to be truly easy to
find, we refer the reader to [Babaioff et al. 2014]. We note here just that it should be
clear that any reasonable, even minimal, access to D does indeed suffice.

4. SIMPLE AUCTIONS AND APPROXIMATE REVENUE MONOTONICITY
In this section we explore the rich connection between approximately optimal simple
auctions, and approximate revenue monotonicity. By approximate revenue monotonic-
ity, we formally mean the following:

Definition 4.1. We say that a class of distributions is α-approximately revenue
monotone if for any two distributions D and D+ in that class such that D+ first-order
stochastically dominates D,5 α · REV (D+) ≥ REV (D).

In the rest of the section we observe that subadditive valuations over independent
items are α-approximately monotone for some constant factor (Subsection 4.1). We also
note that a (significantly) tighter approximate monotonicity would yield a better factor
of approximation in Theorem 3.1 (Subsection 4.2). Finally, for the class of (possibly
correlated) additive valuations over n items, we prove a reduction from approximate
revenue monotonicity to approximately optimal simple auctions (that loses a factor of
n). Then we use an infinite gap between max {BREV, SREV} and REV for two correlated
items due to Hart and Nisan [Hart and Nisan 2013] to prove an infinite lower bound
on approximate revenue monotonicity (Subsection 4.3).

4.1. Approximately optimal simple auctions imply approximate monotonicity
As a corollary of our main theorem (Theorem 3.1) we deduce constant-factor approxi-
mate monotonicity for subadditive valuations over independent items:

COROLLARY 4.2. The class of subadditive valuations over independent items is 338-
approximately monotone.

Similarly, from the 6-approximation of Babaioff et al. for additive yields.

COROLLARY 4.3. The class of additive valuations over independent items is 6-
approximately monotone.

PROOF. For additive functions, BREV and SREV constitute of separate Myerson’s
auctions, and are therefore revenue monotone. Thus,

6REV
(
D+
)
≥ 6 max

{
BREV

(
D+
)
, SREV

(
D+
)}

≥ 6 max {BREV (D) , SREV (D)} ≥ REV (D)

For subadditive functions, SREV(D) is no longer monotone, but SREV∗~q(D) is. This
is because SREVq(Di) is clearly monotone, and SREV∗~q is just a (scaled) sum of
SREVqi(Di). So we get that there exists a ~q such that:

338REV
(
D+
)
≥ 338 max

{
BREV

(
D+
)
, SREV∗~q

(
D+
)}

≥ 338 max
{

BREV (D) , SREV∗~q (D)
}
≥ REV (D)

5Recall that we say D+ first-order stochastically dominates D if they can be coupled so that when we sample
v+ from D+ and v from D we have v+(S) ≥ v(S) for all S.



4.2. Approximate monotonicity implies approximately optimal simple auctions
A closer look at the proof of our main theorem also yields the converse of the above
corollaries, namely: a tighter approximate monotonicity for subadditive valuations
would yield an improved factor of approximation by simple auctions, as well as a sim-
pler proof.

COROLLARY 4.4. If the class of subadditive valuations over independent items is
α-approximately monotone, then

REV ≤ α
(

(37α+ 24) SREV + 6BREV
)

PROOF. (Sketch)
Recall that in the proof of the Approximate Marginal Mechanism Lemma (Lemma

3.2), we made use of Lemma 3.4 to bound the gap between REV(D+) and REV(D),
where D+ first-order stochastically dominated D. Instead of the ε-truthful to truth-
ful reduction, we could derive αREV(D+) ≥ REV (D) from approximate monotonicity.
Then, we can directly apply Lemma 3.3 to get:

REV (D) ≤ α
(
VAL

(
DS
)

+ EvS∼DS
[
REV

(
DX | vS

)])
Instead of

REV (D) ≤ 4VAL
(
DS
)

+ 2EvS∼DS
[
REV

(
DX | vS

)]
If α ≤ 2, this indeed yields a tighter approximation.

4.3. Correlated Distributions are not Approximately Monotone
So far we’ve shown that (for some valuation classes) approximately optimal simple
mechanisms imply approximate revenue-monotonicity. Are all classes approximately
revenue-monotone? In this subsection we provide a reduction from an instance where
max {SREV,BREV} does not approximate REV to show an infinite non-monotonicity
for correlated items. We first prove a reduction from gaps between BREV and REV to
non-monotonicity.

PROPOSITION 4.5. Let D be a distribution over subadditive valuations for n items
for which REV(D) > c · BREV(D). Then any class of distributions containing D and all
single-dimensional distributions6 is not (c/n)-approximately revenue monotone.

PROOF. We define D+ as follows. First, sample v ← D. Then let i∗ =
arg maxi{v({i})}.Now, set v+(S) = v({i∗})·|S| for all |S|. By subadditivity, it’s clear that
D+ first order stochastically dominates D. Now, however, D+ is a single-dimensional
distribution, meaning that BREV(D+) = REV(D+) [Myerson 1981; Riley and Zeck-
hauser 1983]. Finally, we just need to compare BREV(D) to BREV(D+).

Note that by monotonicity, we have v+([n]) ≤ n · v([n]) for all v, v+. Therefore, for
any price p, if v+([n]) > p, v([n]) > p/n. This immediately implies that BREV(D) ≥
BREV(D+)/n: let p be the optimal reserve for the grand bundle under D+, then set-
ting price p/n sells with at least the same probability under D. Putting both observa-
tions together, we see that: REV(D) > cBREV(D) ≥ (c/n)BREV(D+) = (c/n)REV(D+),
meaning that any class containing D and D+ is not (c/n)-approximately monotone.

We apply Proposition 4.5 to a theorem of Hart and Nisan.

THEOREM 4.6. (Hart and Nisan [Hart and Nisan 2013]) There exists a distribution
D over correlated additive valuations for two items such that BREV (D) ≤ 1/2, and
REV (D) =∞.

6A distribution is single-dimensional if for all v in its support, v(S) = c|S| for some value c.



COROLLARY 4.7. There exist distributions D and D+ over over correlated addi-
tive valuations for two items such that D+ first-order stochastically dominates D,
REV (D+) = 1, and yet REV (D) = ∞. Therefore, the class of correlated additive val-
uations for two items is not c-approximately revenue monotone for any finite c.
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