
A Duality Based Unified Approach to Bayesian
Mechanism Design

Yang Cai∗
McGill University, Canada

cai@cs.mcgill.ca

Nikhil R. Devanur†
Microsoft Resarch, USA
nikdev@microsoft.com

S. Matthew Weinberg‡
Princeton University, USA

sethmw@cs.princeton.edu.

ABSTRACT
We provide a unified view of many recent developments in
Bayesian mechanism design, including the black-box reduc-
tions of Cai et. al. [6, 7, 8, 9, 19], simple auctions for additive
buyers [25, 32, 1, 38], and posted-price mechanisms for unit-
demand buyers [11, 12, 13]. Additionally, we show that view-
ing these three previously disjoint lines of work through the
same lens leads to new developments as well. First, we provide
a duality framework for Bayesian mechanism design, which
naturally accommodates multiple agents and arbitrary objec-
tives/feasibility constraints. Using this, we prove that either a
posted-price mechanism or the VCG auction with per-bidder
entry fees achieves a constant-factor of the optimal Bayesian
IC revenue whenever buyers are unit-demand or additive, uni-
fying previous breakthroughs of Chawla et. al. and Yao, and
improving both approximation ratios (from 33.75 to 24 and 69
to 8). Finally, we show that this view also leads to improved
structural characterizations in the Cai et. al. framework.
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1. INTRODUCTION
The past several years have seen a tremendous advance in

the field of Bayesian Mechanism Design, based on ideas and
concepts rooted in Theoretical Computer Science. For instance,
due to a line of work initiated by Chawla et. al., we now know
that posted-price mechanisms are approximately optimal with
respect to the optimal Bayesian Incentive Compatible1 (BIC)
mechanism whenever buyers are unit-demand,2 and values are
independent [11, 12, 13, 30]. Due to a line of work initi-
ated by Hart and Nisan [25], we now know that either run-
ning Myerson’s auction separately for each item or running
the VCG mechanism with a per-bidder entry fee3 is approx-
imately optimal with respect to the optimal BIC mechanism
whenever buyers are additive, and values are independent [32,
1, 38]. Due to a line of work initiated by Cai et. al., we now
know that optimal mechanisms are distributions over virtual
welfare maximizers, and have computationally efficient algo-
rithms to find them in quite general settings [6, 7, 8, 9, 4, 19,
17]. The main contribution of this work is a unified approach
to all three of these previously disjoint research directions. At
a high level, we show how a new interpretation of the Cai-
Daskalakis-Weinberg (CDW) framework provides us a duality
theory, which then allows us to strengthen the characterization
results of Cai et. al., as well as interpret the benchmarks used
in [11, 12, 13, 30, 25, 10, 32, 1] as dual solutions. Surprisingly,
we learn that essentially the same dual solution yields all the
key benchmarks in these works. This inspires us to use it to
design the first non-trivial benchmark with respect to the opti-
mal BIC revenue in settings considered in [12, 38], which we
then analyze to achieve better approximation factors in both
cases.

1.1 Simple vs. Optimal Auction Design
1A mechanism is Bayesian Incentive Compatible (BIC) if it
is in every bidder’s interest to tell the truth, assuming that all
other bidders’ reported their values. A mechanism is Dom-
inant Strategy Incentive Compatible (DSIC) if it is in every
bidder’s interest to tell the truth no matter what reports the
other bidders make.
2A valuation is unit-demand if v(S) = maxi∈S{v({i})}. A
valuation is additive if v(S) =

∑
i∈S v({i}).

3By this, we mean that the mechanism offers each bidder the
option to participate for bi, which might depend on the other
bidders’ bids but not bidder i’s. If they choose to participate,
then they play in the VCG auction (and pay any additional
prices that VCG charges them).



It is well-known by now that the optimal auction suffers
many properties that are undesirable in practice, including ran-
domization, non-monotonicity, and others [26, 27, 5, 14, 15].
To cope with this, much recent work in multi-dimensional
mechanism design has turned to designing simple mechanisms
that are approximately optimal. Some of the most exciting
contributions from TCS to Bayesian mechanism design have
come from this direction, and include a line of work initiated
by Chawla et. al. for unit-demand buyers, and Hart and Nisan
for additive buyers.

In a setting withm heterogeneous items for sale and n unit-
demand buyers whose values for the items are drawn inde-
pendently, the state-of-the-art shows that a simple posted-price
mechanism (i.e. a mechanism that visits each buyer one at a
time and posts a price for each item) obtains a constant factor
of the optimal BIC revenue [11, 12, 13, 30]. The main idea be-
hind these works is a multi- to single-dimensional reduction.
They consider a related setting where each bidder is split into
m separate copies, one for each item, with bidder i’s copy j
interested only in item j. The value distributions are the same
as the original multi-dimensional setting. One key ingredient
driving these works is that the optimal revenue in the original
setting is upper bounded by a small constant times the optimal
revenue in the copies setting.

In a setting with m heterogeneous items for sale and n ad-
ditive buyers whose values for the items are drawn indepen-
dently, the state-of-the-art result shows that the better of run-
ning Myerson’s optimal auction for each item separately or
running the VCG auction with a per-bidder entry fee obtains a
constant factor of the optimal BIC revenue [25, 32, 1, 38]. One
main idea behind these works is a “core-tail decomposition”,
that breaks the revenue down into cases where the buyers have
either low (the core) or high (the tail) values.

Although these two approaches appear different at first, we
are able to show that they in fact arise from basically the same
dual in our duality theory. Essentially, we show that a spe-
cific dual solution within our framework gives rise to an upper
bound that decomposes into the sum of two terms, one that
looks like the the copies benchmark, and one that looks like
the core-tail benchmark. In terms of concrete results, this new
understanding yields improved approximation ratios on both
fronts. For additive buyers, we improve the ratio provided by
Yao [38] from 69 to 8. For unit-demand buyers, we improve
the approximation ratio provided by Chawla et. al. [12] from
33.75 to 24.

In addition to these concrete results, we believe our work
makes the following conceptual contributions as well. First,
while the single-buyer core-tail decomposition techniques (first
introduced by Li and Yao [32]) are now becoming standard [32,
1, 36, 2], they do not generalize naturally to multiple buyers.
Yao [38] introduced new techniques in his extension to multi-
buyers termed “β-adjusted revenue” and “β-exclusive mech-
anisms,” which are technically quite involved. Our duality-
based proof can be viewed as a natural generalization of the
core-tail decomposition to multi-buyer settings. Indeed, the
core-tail decomposition which required substantial work pre-
viously is obtained for free: it is as simple as breaking a sum-
mation into two parts. Second, we use basically the same
analysis for both additive and unit-demand valuations, mean-
ing that our framework provides a unified approach to tackle

both settings. Finally, we wish to point out that the key dif-
ference between our proofs and those of [12, 1, 38] are our
duality-based benchmarks: we are able to immediately get
more mileage out of these benchmarks while barely needing
to develop new approximation techniques. Indeed, the bulk
of the work is in properly decomposing our benchmarks into
terms that can be approximated using ideas similar to prior
work. All these suggest that our techniques are likely be use-
ful in more general settings.

We view our major contribution as providing a duality based
unified framework for designing simple and approximately op-
timal auctions. As an application, we provide a simpler and
tighter analysis for both additive and unit-demand bidders. In
particular, the fact that we achieve both results from the same
dual solution provides strong evidence that even this particular
dual solution (or at least the intuition behind it) is worthy of
deeper study.

1.2 General Bayesian Mechanism Design
Another recent contribution of the TCS community is the

CDW framework for generic Bayesian mechanism design prob-
lems. Here, it is shown that Bayesian mechanism design prob-
lems for essentially any objective can be solved with black-box
access just to an algorithm that optimizes a perturbed version
of that same objective. One aspect of this line of work is com-
putational: we now have computationally efficient algorithms
to find the optimal (or approximately optimal) mechanism in
numerous settings of interest. Another aspect is structural: we
now know that in all settings that fit into this framework, the
optimal mechanism is a distribution over virtual objective op-
timizers. A mechanism is a virtual objective optimizer if it
pointwise maximizes the sum of the original objective and the
virtual welfare. The virtual welfare is given by a virtual val-
uation/transformation, which is a mapping from valuations to
linear combinations of valuations.

Our contribution to this line of work is to improve the exist-
ing structural characterization. Previously, these virtual trans-
formations were thought to be randomized and arbitrary, hav-
ing no clear connection to the objective at hand. Our duality
theory can say much more about what these virtual transfor-
mations might look like: every instance has a strong dual in
the form of n disjoint flows, one for each agent. The nodes in
agent i’s flow correspond to possible valuations of this agent,4

and non-zero flow from type ti(·) to t′i(·) captures that the
incentive constraint between ti(·) and t′i(·) binds. We show
how a flow induces a virtual transformation, and that the op-
timal dual gives a single, deterministic virtual valuation func-
tion such that:

1. This virtual valuation function can be found computa-
tionally efficiently.

2. In the special case of revenue, the optimal mechanism
has expected revenue = its expected virtual welfare, and
every BIC mechanism has expected revenue ≤ its ex-
pected virtual welfare.

3. The optimal mechanism optimizes the original objective
+ virtual welfare pointwise.5

4Both the CDW framework and our duality theory only apply
directly if there are finitely many possible types for each agent.
5This could be randomized; there is always a deterministic



1.3 Other Related Work
Recently, strong duality frameworks for a single additive

buyer were developed in [14, 16, 21, 20, 22]. These frame-
works show that the dual problem to revenue optimization for
a single additive buyer can be interpreted as an optimal trans-
port/bipartite matching problem. More recent work of Hartline
and Haghpanah [24] can also be interpreted as providing an
alternative “path-finding” duality framework. When they ex-
ist, these paths provide a witness that a certain Myerson-type
mechanism is optimal, but the paths are not guaranteed to exist
in all instances. In addition to their mathematical beauty, these
duality frameworks also serve as tools to prove that mecha-
nisms are optimal. These tools have been successfully applied
to provide conditions when pricing only the grand bundle [14],
posting a uniform item pricing [24], or even employing a ran-
domized mechanism is optimal [22] when selling to a single
additive or unit-demand buyer. However, none of these frame-
works currently apply in multi-bidder settings, and to date
have been unable to yield any approximate optimality results
in the single bidder settings where they do apply.

We also wish to argue that our duality is perhaps more trans-
parent than existing theories. For instance, it is easy to inter-
pret dual solutions in our framework as virtual valuation func-
tions, and dual solutions for multiple buyer instances are just
tuples of duals for single buyers. In addition, we are able to
re-derive and extend the breakthrough results of [11, 12, 13,
25, 32, 1, 38] using essentially the same dual solution. Still, it
is not our goal to subsume previous duality theories, and our
new theory certainly doesn’t. For instance, previous frame-
works are capable of proving that a mechanism is exactly op-
timal when the input distributions are continuous. Our theory
as-is can only handle distributions with finite support exactly.6

However, we have demonstrated that there is at least one im-
portant domain (simple, approximately optimal mechanisms)
where our theory seems to be more applicable.

Organization. We provide preliminaries and notation below.
In Section 3, we present our duality theory for revenue maxi-
mization, and in Section 4 we present a canonical dual solution
that proves useful in different settings. As a warm-up, we show
in Section 5 how to analyze this dual solution when there is just
a single buyer. In Section 6, we provide the multi-bidder anal-
ysis, which is more technical. Due to space limitations, our
extension of the CDW framework in settings beyond revenue
can be found in the full version.

2. PRELIMINARIES
Optimal Auction Design. For this version of the paper, we
restrict our attention to revenue maximization in the following
setting (the full version contains our extension of the CDW
framework in more general settings): there is one copy of each
of m heterogenous goods for sale to n buyers. The buyers
are either all additive or all unit-demand, with buyer i hav-
ing value tij for item j. We use ti = (ti1, . . . , tim) to de-

maximizer but in cases where the optimal mechanism is ran-
domized, the objective plus virtual welfare are such that there
are numerous maximizers, and the optimal mechanism ran-
domly selects one.
6Our theory can still handle continuous distributions arbitrar-
ily well. See Section 2.

note buyer i’s values for all the goods and t−i to denote ev-
ery buyer except i’s values for all the goods. Tij is the set
of all possible values of buyer i for item j, Ti = ×jTij ,
T−i = ×i∗ 6=iTi∗ and T = ×iTi. All values for all items
are drawn independently. We denote by Dij the distribution
of tij , Di = ×jDij , Di,−j = ×j∗ 6=jDij∗ , D = ×iDi, and
D−i = ×i∗ 6=iDi∗ , and fij (fi, fi,−j , f−i, etc.) the densities
of these finite-support distributions. The optimal auction opti-
mizes expected revenue over all BIC mechanisms. For a given
value distribution D, we denote by REV(D) the expected rev-
enue achieved by this auction, and it will be clear from context
whether buyers are additive or unit-demand. We define F to
be a set system over [n]× [m] that describes all feasible allo-
cations.7

Reduced Forms. The reduced form of an auction stores for
all bidders i, items j, and types ti, what is the probability
that agent i will receive item j when reporting ti to the mech-
anism (over the randomness in the mechanism and random-
ness in other agents’ reported types, assuming they come from
D−i) as πij(ti). It is easy to see that if a buyer is additive,
or unit-demand and receives only one item at a time, that their
expected value for reporting type t′i to the mechanism is just
ti · πi(t′i). We say that a reduced form is feasible if there ex-
ists some feasible mechanism (that selects an outcome in F
with probability 1) that matches the probabilities promised by
the reduced form. If P (F , D) is defined to be the set of all
feasible reduced forms, it is easy to see (and shown in [6], for
instance) that P (F , D) is closed and convex.

Simple Mechanisms. Even though the benchmark we target
is the optimal randomized BIC mechanism, the simple mech-
anisms we design will all be deterministic and satisfy DSIC.
For a single buyer, the two mechanisms we consider are sell-
ing separately and selling together. Selling separately posts
a price pj on each item j and lets the buyer purchase what-
ever subset of items she pleases. We denote by SREV(D) the
revenue of the optimal such pricing. Selling together posts a
single price p on the grand bundle, and lets the buyer purchase
the entire bundle for p or nothing. We denote by BREV(D)
the revenue of the optimal such pricing. For multiple buyers
the generalization of selling together is the VCG mechanism
with an entry fee, which offers to each bidder i the opportu-
nity to pay an entry fee ei(t−i) and participate in the VCG
mechanism (paying any additional fees charged by the VCG
mechanism). If they choose not to pay the entry fee, they pay
nothing and receive no items. We denote the revenue of the
mechanism that charges the optimal entry fees to the buyers
as BVCG(D), and VCG(D) the revenue of the VCG mech-
anism with no entry fees. The generalization of selling sepa-
rately is a little different, and described below.

Single-Dimensional Copies. A benchmark that shows up in
our decompositions relates the multi-dimensional instances we
care about to a single-dimensional setting, and originated in
work of Chawla et. al. [11]. For any multi-dimensional in-
stance D we can imagine splitting bidder i into m different

7When bidders are additive, F only allows allocating each
item at most once. When bidders are unit-demand, F contains
all matchings between the bidders and the items.



copies, with bidder i’s copy j interested only in receiving item
j and nothing else. So in this new instance there are nm
single-dimensional bidders, and copy (i, j)’s value for win-
ning is tij (which is still drawn from Dij). The set system F
from the original setting now specifies which copies can simul-
taneously win. We denote by OPTCOPIES(D) the revenue of
Myerson’s optimal auction [34] in the copies setting induced
by D.8

Continuous versus Finite-Support Distributions. Our ap-
proach explicitly assumes that the input distributions have fi-
nite support. This is a standard assumption when computa-
tion is involved. However, most existing works in the simple
vs. optimal paradigm hold even for continuous distributions
(including [11, 12, 13, 25, 32, 1, 38, 36, 2]). Fortunately, it
is known that every D can be discretized into D+ such that
REV(D) ∈ [(1 − ε)REV(D+), (1 + ε)REV(D+)], and D+

has finite support. So all of our results can be made arbitrar-
ily close to exact for continuous distributions. We conclude
this section by proving this formally. The following theorem
is shown in [36], drawing from prior works [29, 28, 3, 18].

THEOREM 1. [36, 18] For all i, letDi andD+
i be any two

distributions, with coupled samples ti(·) and t+i (·) such that
t+i (x) ≥ ti(x) for all x ∈ F . If δi(·) = t+i (·)− ti(·), then for
any ε > 0, REV(D+) ≥ (1− ε)(REV(D)− VAL(δ)), where
VAL(δ) denotes the welfare of the VCG allocation when buyer
i’s type is drawn according to the random variable δi(·).

To see how this implies that our duality is arbitrarily close
to exact for continuous distributions, letDε

i be the distribution
that first samples ti(·) from Di, then outputs tεi(·) such that
tεi(x) = min{tεi(x), 1/ε}. It is easy to see that as ε → 0,
REV(Dε) → REV(D). So we can get arbitrarily close while
only considering distributions that are bounded.

Now for any bounded distribution Di, define D+,ε
i to first

sample ti(·) from Di, then output t+,εi (·) such that t+,εi (x) =
ε · dti(x)/εe. Similarly define D−,εi with the ceiling -1 in-
stead of the ceiling. Then it’s clear that D+,ε

i , Di, and D−,εi

can be coupled so that t+,εi (x) ≥ ti(x) ≥ t−,εi (x) for all
x, and that taking either of the two consecutive differences
results in a δ(·) such that δ(x) ≤ ε for all x. So applying
Theorem 1, we see that for any desired ε, we have REV(D) ∈
[(1 − ε)(REV(D−,ε − nε)), (1 + ε)(REV(D+,ε + nε))]. Fi-
nally, we just observe that REV(D+,ε) = REV(D−,ε) + nε,
as every buyer values every outcome at exactly εmore inD+,ε

versusD−,ε. So as ε→ 0, the revenues are the same, and both
approach REV(D). Note that both D+,ε and D−,ε have finite
support.

3. OUR DUALITY THEORY
We begin by writing the LP for revenue maximization (Fig-

ure 1). For ease of notation, assume that there is a special type
∅ to represent the option of not participating in the auction.
That means πi(∅) = 0 and pi(∅) = 0. Now a Bayesian
IR (BIR) constraint is simply another BIC constraint: for any
type ti, bidder i will not want to lie to type ∅. We let T+

i =

8Note that when buyers are additive that OPTCOPIES is exactly
the revenue of selling items separately using Myerson’s opti-
mal auction in the original setting.

Variables:
• pi(ti), for all bidders i and types ti ∈ Ti, denoting the

expected price paid by bidder i when reporting type ti
over the randomness of the mechanism and the other
bidders’ types.
• πij(ti), for all bidders i, items j, and types ti ∈ Ti, de-

noting the probability that bidder i receives item j when
reporting type ti over the randomness of the mechanism
and the other bidders’ types.

Constraints:
• πi(ti) · ti− pi(ti) ≥ πi(t′i) · ti− pi(t′i), for all bidders
i, and types ti ∈ Ti, t

′
i ∈ T+

i , guaranteeing that the
reduced form mechanism (π, p) is BIC and BIR.
• π ∈ P (F , D), guaranteeing π is feasible.

Objective:
• max

∑n
i=1

∑
ti∈Ti

fi(ti) · pi(ti), the expected rev-
enue.

Figure 1: A Linear Program (LP) for Revenue Optimiza-
tion.

Ti ∪ {∅}. To proceed, we’ll introduce a variable λi(t, t′) for
each of the BIC constraints, and take the partial Lagrangian of
LP 1 by Lagrangifying all BIC constraints. The theory of La-
grangian multipliers tells us that the solution to LP 1 is equiv-
alent to the primal variables solving the partially Lagrangified
dual (Figure 2). Lagrangian multipliers have been used for
mechanism design before [33, 31, 37, 4], however, our results
are the first to obtain useful approximation benchmarks from
this approach.

DEFINITION 1. LetL(λ, π, p) be a the partial Lagrangian
defined as follows:

L(λ, π, p)

=

n∑
i=1

( ∑
ti∈Ti

fi(ti) · pi(ti) +
∑
ti∈Ti

∑
t′i∈T

+
i

λi(ti, t
′
i)

·
(
ti ·
(
π(ti)− π(t′i)

)
−
(
pi(ti)− pi(t′i)

)))
(1)

=

n∑
i=1

∑
ti∈Ti

pi(ti)
(
fi(ti) +

∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i

λi(ti, t
′
i)
)

+

n∑
i=1

∑
ti∈Ti

πi(ti)
( ∑
t′i∈T

+
i

ti · λi(ti, t′i)−
∑
t′i∈Ti

t′i · λi(t′i, ti)
)

(πi(∅) = 0, pi(∅) = 0) (2)

3.1 Useful Properties of the Dual Problem
DEFINITION 2 (USEFUL DUAL VARIABLES). A feasible

dual solution λ is useful if maxπ∈P (F,D),p L(λ, π, p) <∞.

LEMMA 1 (USEFUL DUAL VARIABLES). A dual solution
λ is useful iff for each bidder i, λi forms a valid flow, i.e., iff
the following satisfies flow conservation at all nodes except the
source and the sink:



Variables:
• λi(ti, t′i) for all i, ti ∈ Ti, t

′
i ∈ T+

i , the Lagrangian
multipliers for Bayesian IC constraints.

Constraints:
• λi(ti, t′i) ≥ 0 for all i, ti ∈ Ti, t′i ∈ T+

i , guaranteeing
that the Lagrangian multipliers are non-negative.

Objective:
• minλ maxπ∈P (F,D),p L(λ, π, p).

Figure 2: Partial Lagrangian of the Revenue Maximization
LP.

• Nodes: A super source s and a super sink ∅, along with
a node ti for every type ti ∈ Ti.
• Flow from s to ti of weight fi(ti), for all ti ∈ Ti.
• Flow from t to t′ of weight λi(t, t′) for all t ∈ T , and
t′ ∈ T+

i (including the sink).

PROOF. Let us think of L(λ, π, p) using expression (2).
Clearly, if there exists any i and ti ∈ Ti such that

fi(ti) +
∑
t′i∈Ti

λ(t′i, ti)−
∑
t′i∈T

+
i

λ(ti, t
′
i) 6= 0,

then since pi(ti) is unconstrained and has a non-zero mul-
tiplier in the objective, maxπ∈P (F,D),p L(λ, π, p) = +∞.
Therefore, in order for λ to be useful, we must have

fi(ti) +
∑
t′i∈Ti

λ(t′i, ti)−
∑
t′i∈T

+
i

λ(ti, t
′
i) = 0

for all i and ti ∈ Ti. This is exactly saying what we de-
scribed in the Lemma statement is a flow. The other direction
is simple, whenever λ forms a flow, L(λ, π, p) only depends
on π. Since π is bounded, the maximization problem has a
finite value.

DEFINITION 3 (VIRTUAL VALUE FUNCTION). For each
λ, we define a corresponding virtual value function Φ(·), such
that for every bidder i, every type ti ∈ Ti, Φi(ti) = ti −

1
fi(ti)

∑
t′i∈Ti

λi(t
′
i, ti)(t

′
i − ti).

THEOREM 2 (VIRTUAL WELFARE ≥ REVENUE). For any
set of useful duals λ and any BIC mechanism M = (π, p), the
revenue of M is ≤ the virtual welfare of π w.r.t. the virtual
value function Φ(·) corresponding to λ. That is:

n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti) ≤
n∑
i=1

∑
ti∈Ti

fi(ti) · πi(ti) · Φi(ti).

Furthermore, let λ∗ be the optimal dual variables and M∗ =
(π∗, p∗) be the revenue optimal BIC mechanism, then the ex-
pected virtual welfare with respect to Φ∗ (induced by λ∗) un-
der π∗ equals the expected revenue of M∗, and

π∗ ∈ argmaxπ∈P (F,D)


n∑
i=1

∑
ti∈Ti

fi(ti)πi(ti)Φ
∗
i (ti)

 .

PROOF. When λ is useful, we can simplify L(λ, π, p) by
removing all terms associated with p (because all such terms
have a multiplier of zero, by Lemma 1), and replace the terms∑
t′i∈T

+
i
λ(ti, t

′
i) with fi(ti) +

∑
t′i∈Ti

λ(t′i, ti). After the
simplification, we have L(λ, π, p) =

∑n
i=1

∑
ti∈Ti

fi(ti) ·
πi(ti) ·

(
ti − 1

fi(ti)
·
∑
t′i∈Ti

λi(t
′
i, ti)(t

′
i − ti)

)
, which is

equal to
∑n
i=1

∑
ti∈Ti

fi(ti) · πi(ti) ·Φi(ti), exactly the vir-
tual welfare of π. Now, we only need to prove that L(λ, π, p)
is greater than the revenue of M . Let us think of L(λ, π, p)
using Expression (1). Since M is a BIC mechanism,

(
π(ti)−

π(t′i)
)
−
(
pi(ti)−pi(t′i)

)
≥ 0 for any i and ti ∈ Ti, t′i ∈ T+

i .
Also, all the dual variables λ are nonnegative. Therefore, it is
clear that L(λ, π, p) is at least as large as the revenue of M .

When λ∗ is the optimal dual soluation, by strong duality
we know maxπ∈P (F,D),p L(λ∗, π, p) equals the revenue of
M∗. But we also know that L(λ∗, π∗, p∗) is at least as large
as the revenue of M∗, so π∗ necessarily maximizes the vir-
tual welfare over all π ∈ P (F , D), with respect to the virtual
transformation Φ∗ corresponding to λ∗.

4. CANONICAL FLOW AND VIRTUAL
VALUATION FUNCTION

In this section, we present a canonical way to set the La-
grangian multipliers/flow that induces our benchmarks. We
use Pij(t−i) to denote the price that bidder i could pay to
receive exactly item j in the VCG mechanism against bid-
ders with types t−i.9 We will partition the type space Ti into
m+ 1 regions: (i) R(t−i)

0 contains all types ti such that tij <
Pij(t−i), ∀j; (ii) R(t−i)

j contains all types ti such that tij −
Pij(t−i) ≥ 0 and j is the smallest index in argmaxk{tik −
Pik(t−i)}. This partitions the types into subsets based on
which item has the largest surplus (value minus price), and
we break ties lexicographically.

For any bidder i and any type profile t−i of everyone else,
we define λ(t−i)

i to be the following flow.

1. For every type ti in regionR(t−i)
0 , the flow goes directly

to ∅ (the super sink).

2. ∀j > 0, any flow entering R(t−i)

j is from s (the super

source) and any flow leaving R(t−i)

j is to ∅.

3. ∀ti and t′i in R(t−i)

j (j > 0), λi(ti, t′i) > 0 only if ti
and t′i only differs on the j-th coordinate.

We will now spend the majority of this section building our
canonical flow and proving that it achieves certain desirable
properties. We begin by establishing some nice properties
of Φ

(t−i)

i (·) of any flow λ
(t−i)

i constructed according to the
above partial description.

CLAIM 1. For any type ti ∈ R
(t−i)

j , its corresponding vir-

tual value Φ
(t−i)

ik (ti) for item k is exactly its value tik for all
k 6= j.

9Note that when buyers are additive, this is exactly the highest
bid for item j from buyers besides i. When buyers are unit-
demand, buyer i only ever buys one item, and this is the price
she would pay for receiving j.



PROOF. By the definition of Φ
(t−i)

i (·) , Φ
(t−i)

ik (ti) = ti −
1

fi(ti)

∑
t′i
λ
(t−i)

i (t′i, ti)(t
′
ik−tik). Since ti ∈ Rj , by the def-

inition of the flow λ
(t−i)

i , for any t′i such that λ(t−i)

i (t′i, ti) >

0, t′ik − tik = 0 for all k 6= j, therefore Φ
(t−i)

ik (ti) = ti.

Next, we study Φ
(t−i)

ij (ti) for coordinate j when ti is in

R
(t−i)

j . This turns out the to be closely related to the (“ironed”)
virtual value function defined by Myerson [34] for a single
dimensional distributions. For each i, j, we use ϕij(·) and
ϕ̃ij(·) to denote the Myerson virtual value and ironed virtual
value function for distribution Dij respectively.

CLAIM 2. For any type ti ∈ R
(t−i)

j , if we only allow flow
from type t′i to ti, where tik = t′ik for all k 6= j and tij
is the successor of t′ij (the largest value smaller than t′ij in

the support of Dij), then Φ
(t−i)

ij (ti) = ϕij(tij) = tij −
(t′ij−tij)·Prt∼Dij

[t>tij ]

fij(tij)
.

PROOF. Let us fix ti,−j , and prove this is true for all choices
of ti,−j . If tij is the largest value in Tij , then there is no flow
coming into it except the one from the source, so Φ

(t−i)

ij (ti) =
tij . For every other value of tij , the flow coming from its pre-
decessor (t′ij , ti,−j) is exactly∏

k 6=j

fik(tik) ·
∑

v∈Tij :v>tij

fij(v)

= Πk 6=jfik(tik) · Pr
t∼Dij

[t > tij ].

This is because each type of the form (v, ti,−j) with v > tij

is also in R(t−i)

j . So all flow that enters these types will be
passed down to ti (and possibly further, before going to the
sink), and the total amount of flow entering all of these types
from the source is exactly Πk 6=jfik(tik)·

∑
v∈Tij :v>tij

fij(v).

Therefore, Φ
(t−i)

ij (ti) = ϕij(tij).

When Dij is regular, this is the canonical flow we use.
When the distribution is not regular, we also need to “iron”
the virtual values like in Myerson’s work. Indeed, we use the
same procedure: first convexify the revenue curve, then take
the derivates of the convexified revenue curve as the “ironed”
virtual values. To convexify the revenue curve, we only need
to add loops to the flow we described in Claim 2. The next
Lemma states that there exists a flow that performs this pro-
cedure and the resulting virtual value function Φ

(t−i)

ij (ti) is
upper bounded by the Myerson’s ironed virtual value function
ϕ̃ij(tij) if ti ∈ R

(t−i)

j .

LEMMA 2 (IRONING). For any i, t−i, there exists a flow
λ
(t−i)

i such that the corresponding Φ
(t−i)

ij (ti) satisfies: for

any j > 0 any ti ∈ R
(t−i)

j , Φ
(t−i)

ij (ti) ≤ ϕ̃ij(tij).

PROOF. First, we show how to modify a flow to fix non-
monotonicities in Φ

(t−i)

ij (·). Then we show how to use this
procedure to iron.

If we have two types, ti and t′i such that Φ
(t−i)

ij (ti) >

Φ
(t−i)

ij (t′i), but tij < t′ij (and ti,−j = t′i,−j), let’s consider

Figure 3: An example of λ(t−i)

i for two items.

adding a cycle between ti and t′i with weight w. Specifically,
increase both λ(t−i)

i (t′i, ti) and λ(t−i)

i (ti, t
′
i) by w. What af-

fect does this have on Φ
(t−i)

i (·)? First, it’s clear that this is still
a valid flow, as we’ve only added a cycle. Second, it’s clear
that we don’t change Φ

(t−i)

i (t∗i ) at all, for any t∗i /∈ {ti, t′i}.
Next, we see that we don’t change Φ

(t−i)

ik (ti) or Φ
(t−i)

ik (t′i) for
any k 6= j. Finally, we see that Φ

(t−i)

ij (ti) decreases by ex-

actly w(t′ij − tij)/fi(ti) and Φ
(t−i)

ij (t′i) increases by exactly
w(t′ij− tij)/fi(t′i). So by setting w appropriately, we see that
we can update λ(t−i)

i so that Φ
(t−i)

ij (ti) = Φ
(t−i)

ij (t′i), but
without changing the average virtual value for item j among
these two types, nor their virtual value for any other item, nor
any other type’s virtual values for any item.

Now, observe that Myerson ironing can always be imple-
mented in the following way: pick a disjoint set of intervals
I1, . . . , Ik that we wish to iron. This is decided by the con-
vex hull of the revenue curve for the corresponding distribu-
tion. In particular, inside each interval I`, the average vir-
tual values of the highest N (for any N ) types is no larger
than the average virtual values in the whole interval. Itera-
tively, find two adjacent types ti, t′i ∈ I` (for any `) such that
Φ

(t−i)

ij (ti) > Φ
(t−i)

ij (t′i), but tij < t′ij (and ti,−j = t′i,−j).
Then update each type’s ironed virtual value to the average
of their previous (ironed) virtual values. The end result will
be that all types in Ij will have the same ironed virtual value,
which is equal to the average virtual value on that interval. We
have shown that we can certainly implement this procedure via
the adjustments above.

The only catch between exact Myerson ironing and what we
wish to do in our flow is that we are not ironing the entire sup-
port of Dij , but only the portion above some cutoff, C. The
only effect this has is that it possibly truncates some interval I`
at C instead of its true (lower) lower bound. By the nature of
ironing, we know that this necessarily implies that the average
virtual value on Ik ∩ [0, C) is larger than the average virtual
value on Ik ∩ [C,∞) (recall: the ironing procedure is only



Figure 4: An example of λ (with ironing) for a single bid-
der.

to fix non-monotonicities. If the average virtual value on the
lower interval were to be less than the average virtual value on
the higher interval, we wouldn’t iron them to the same ironed
interval). So the virtual values we are left with after our pro-
cedure are certainly smaller than the true ironed virtual values,
completing the proof.

LEMMA 3. There exists a flow λ
(t−i)

i such that Φ
(t−i)

ij (ti)
satisfies the following properties:

• For any j > 0, ti ∈ R
(t−i)

j , Φ
(t−i)

ij (ti) ≤ ϕ̃ij(tij),
where ϕ̃ij(·) is Myerson’s ironed virtual value for Dij .

• For any j, ti ∈ R
(t−i)

j , Φ
(t−i)

ik (ti) = tik for all k 6= j.

In particular, Φ
(t−i)

i (ti) = ti, ∀ti ∈ R
(t−i)
0 .

PROOF. Combine Lemma 2 and Claim 1.

Lemma 3 isn’t exactly the flow we want to use: note that
we’ve defined several flows that depend on t−i, but we only
get to select one flow for bidder i, and it doesn’t get to change
depending on t−i. Below we define a single flow essentially
by averaging across all t−i according to the distributions.

DEFINITION 4 (FLOW). The flow for bidder i is λi =∑
t−i∈T−i

f−i(t−i)λ
(t−i)

i . Accordingly, the virtual value func-

tion Φi of λi is Φi(·) =
∑
t−i∈T−i

f−i(t−i)Φ
(t−i)

i (·).

Intuition behind Our Flow: The social welfare is a trivial
upper bound for revenue, which can be arbitrarily bad in the
worst case. To design a good benchmark, we want to replace
some of the terms that contribute the most to the social welfare
with more manageable ones. The flow λ

(t−i)

i aims to achieve
exactly this. For each bidder i, we find the item j that con-
tributes the most to the social welfare when awarded to i. Then
we turn the virtual value of item j into its Myerson’s single-
dimensional virtual value, and keep the virtual value of all the

other items their values. This transformation is feasible only
if we know exactly t−i and could use a different dual solution
for each t−i. Since we can’t, a natural idea is to define a flow
by taking an expectation over t−i. This is indeed our flow.

We conclude this section with one final lemma and our main
theorem regarding the canonical flow. Both proofs are imme-
diate corollaries of the flow definition and Theorem 2.

LEMMA 4. For all i, j, ti, Φij(ti) ≤ tij ·Prv−i∼D−i [ti /∈
R

(v−i)

j ] + ϕ̃ij(tij) · Prv−i∼D−i [ti ∈ R
(v−i)

j ].

THEOREM 3. Let M be any BIC mechanism with
(
π, p
)

as its reduced form. The expected revenue of M is upper
bounded by the expected virtual welfare of the same alloca-
tion rule with respect to the canonical virtual value function
Φi(·). In particular,∑

i

∑
ti∈Ti

fi(ti) · pi(ti)

≤
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) · Φij(ti)

≤
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti)·(
tij · Pr

v−i∼D−i

[ti /∈ R
(v−i)

j ]

+ ϕ̃ij(tij) · Pr
v−i∼D−i

[ti ∈ R
(v−i)

j ]
)

(3)

5. WARM UP: SINGLE BIDDER
As a warm up, we start with the single bidder case. Through-

out this section, we keep the same notations but drop the sub-
script i and superscript (t−i) whenever is appropriate.

Canonical Flow for a Single Bidder.
Since the canonical flow and the corresponding virtual val-

uation functions are defined based on other bidders types t−i,
let us see how it is simplified when there is only a single bid-
der. First, the VCG prices are all 0, therefore λ is simply one
flow instead of a distribution of different flows. Second, for
the same reason, the region R0 is empty and region Rj con-
tains all types t with tj ≥ tk for all k (see Figure 4 for an
example). This simplifies Expression (3) to∑
t∈T

∑
j

f(t) · πj(t) ·
(
tj · I[t /∈ Rj ] + ϕ̃j(tj) · I[t ∈ Rj ]

)
=
∑
t∈T

∑
j

f(t) · πj(t) · tj · I[t /∈ Rj ] (NON-FAVORITE)

+
∑
t∈T

∑
j

f(t) · πj(t) · ϕ̃j(tj) · I[t ∈ Rj ] (SINGLE)

We bound SINGLE below, and NON-FAVORITE differently
for unit-demand and additive valuations.

LEMMA 5. For any feasible π(·), SINGLE ≤ OPTCOPIES.

PROOF. Assume M is the mechanism that induces π(·).
Consider another mechanism M ′ for the Copies setting, such
that for every type profile t, M ′ serves agent j iff M allocates



item j in the original setting and t ∈ Rj . As M is feasible
in the original setting, M ′ is clearly feasible in the Copies set-
ting. When agent j’s type is tj , its probability of being served
in M ′ is

∑
t−j

f−j(t−j) · πj(tj , t−j) · I[t ∈ Rj ] for all j and
tj . Therefore, SINGLE is the ironed virtual welfare achieved
byM ′ with respect to ϕ̃(·). Since the copies setting is a single
dimensional setting, the optimal revenue OPTCOPIES equals the
maximum ironed virtual welfare, thus no smaller than SIN-
GLE.

Upper Bound for a Unit-demand Bidder.
As mentioned previously, the bulk of our work is in obtain-

ing a benchmark and properly decomposing it. Now that we
have a decomposition, we can use techniques similar to those
of Chawla et. al. [11, 12, 13] to approximate each term.

LEMMA 6. When the types are unit-demand, for any fea-
sible π(·), NON-FAVORITE ≤ OPTCOPIES.

PROOF. Indeed, we will prove that NON-FAVORITE is up-
per bounded by the revenue of the VCG mechanism in the
Copies setting. Define S(t) to be the second largest number
in {t1, · · · , tm}. When the types are unit-demand, the Copies
setting is a single item auction with m bidders. Therefore, if
we run the Vickrey auction in the Copies setting, the revenue
is
∑
t∈T f(t) · S(t). If t ∈ Rj , then there exists some k 6= j

such that tk ≥ tj , so tj ·I[t ∈ Rj ] ≤ S(t) for all j. Therefore,∑
t∈T

∑
j f(t)·πj(t)·tj ·I[t /∈ Rj ] ≤

∑
t∈T

∑
j f(t)·πj(t)·

S(t) ≤
∑
t∈T f(t) · S(t). The last inequality is because the

bidder is unit demand, so
∑
j πj(t) ≤ 1.

Combining Lemma 5 and Lemma 6, we recover the result
of Chawla et al. [13]:

THEOREM 4. For a single unit-demand bidder, the opti-
mal revenue is upper bounded by 2OPTCOPIES.

Upper Bound for an Additive Bidder.
When the bidder is additive, we need to further decompose

NON-FAVORITE into two terms we call CORE and TAIL. Let
r = SREV. Again, we remind the reader that most of our work
is already done in obtaining our decomposition. The remain-
ing portion of the proof is indeed inspired by prior work of
Babaioff et. al. [1]. However, it is worth noting that the “core-
tail decomposition” presented here is perhaps more transpar-
ent: we are simply splitting a sum into two parts depending
on whether the buyer’s value for item j is larger than some
threshold.

∑
t∈T

∑
j

f(t) · πj(t) · tj · I[t /∈ Rj ]

≤
∑
t∈T

∑
j

f(t) · tj · I[t /∈ Rj ]

=
∑
j

∑
tj>r

fj(tj) · tj ·
∑
t−j

f−j(t−j) · I[t /∈ Rj ]

+
∑
j

∑
tj≤r

fj(tj) · tj ·
∑
t−j

f−j(t−j) · I[t /∈ Rj ]

≤
∑
j

∑
tj>r

fj(tj) · tj · Pr
t−j∼D−j

[t /∈ Rj ] (TAIL)

+
∑
j

∑
tj≤r

fj(tj) · tj (CORE)

LEMMA 7. TAIL ≤ r.

PROOF. By the definition of Rj , for any given tj ,

Pr
t−j∼D−j

[t /∈ Rj ] = Pr
t−j∼D−j

[∃k 6= j, tk ≥ tj ].

It is clear that by setting price tj on each item separately,
we can make revenue at least tj · Prt−j∼D−j [∃k 6= j, tk ≥
tj ]. The buyer will certainly choose to purchase something at
price tj whenever there is an item she values above tj . So
we see that this term is upper bounded by r. Thus, TAIL
≤ r ·

∑
j

∑
tj>r

fj(tj) =
∑
j r · Prtj∼Dj [tj > r] = the

revenue of selling each item separately at price r, which is
also ≤ r.

LEMMA 8. If we sell the grand bundle at price CORE −
2r, the bidder will purchase it with probability at least 1/2.
In other words, BREV ≥ CORE

2
− r, or CORE ≤ 2BREV +

2SREV.

PROOF. We will first need a technical lemma (also used
in [1], but proved here for completeness).

LEMMA 9. Let x be a positive single dimensional random
variable drawn from F of finite support,10 such that for any
number a, a · Prx∼F [x ≥ a] ≤ B where B is an absolute
constant. Then for any positive number s, the second moment
of the random variable xs = x · I[x ≤ s] is upper bounded by
2B · s.

PROOF. Let {a1, . . . , a`} be the intersection of the support
of F and [0, s], and a0 = 0.

E[x2s] =
∑̀
k=0

Pr
x∼F

(x = ak) · a2k

=
∑̀
k=1

(a2k − a2k−1) ·
∑̀
d=k

Pr
x∼F

(x = ad)

≤
∑̀
k=1

(a2k − a2k−1) · Pr
x∼F

[x ≥ ak]

≤
∑̀
k=1

2(ak − ak−1) · ak · Pr
x∼F

[x ≥ ak]

≤2B ·
∑̀
k=1

(ak − ak−1)

≤2B · s

The penultimate inequality is because ak · Prx∼F [x ≥ ak] ≤
B.

Now with Lemma 9, for each j define a new random vari-
able cj based on the following procedure: draw a sample rj

10The same statement holds for continuous distribution as well,
and can be proved using integration by parts.



from Dj , if rj lies in [0, r], then cj = rj , otherwise cj = 0.
Let c =

∑
j cj . It is not hard to see that we have E[c] =∑

j

∑
tj≤r fj(tj) · tj . Now we are going to show that c con-

centrates because it has small variance. Since the cj’s are in-
dependent, Var[c] =

∑
j Var[cj ] ≤

∑
j E[c2j ]. We will bound

each E[c2j ] separately. Let rj = maxx{x ·Prtj∼Dj [tj ≥ x]}.
By Lemma 9, we can upper bound E[c2j ] by 2rj · r. On the
other hand, it is easy to see that r =

∑
j rj , so Var[c] ≤ 2r2.

By the Chebyshev inequality,

Pr[c < E[c]− 2r] ≤ Var[c]
4r2

≤ 1

2
.

Therefore,

Pr
t∼D

[
∑
j

tj ≥ E[c]− 2r] ≥ Pr[c ≥ E[c]− 2r] ≥ 1

2
.

So BREV ≥ E[c]−2r
2

, as we can sell the grand bundle at price
E[c] − 2r, and it will be purchased with probability at least
1/2.

THEOREM 5. For a single additive bidder, the optimal rev-
enue is ≤ 2BREV + 4SREV.

PROOF. Combining Lemma 5, 7 and 8, the optimal revenue
is upper bounded by OPTCOPIES+SREV + 2BREV + 2SREV.
It is not hard to see that OPTCOPIES= SREV, because the op-
timal auction in the copies setting just sells everything sepa-
rately. So the optimal revenue is upper bounded by 2BREV +
4SREV.

6. MULTIPLE BIDDERS
In this section, we show how to use the upper bound in

Theorem 3 to show that deterministic DSIC mechanisms can
achieve a constant fraction of the (randomized) optimal BIC
revenue in multi-bidder settings when the bidders valuations
are all unit-demand or additive. Similar to the single bidder
case, we first decompose the upper bound (Expression 3) into
three components and bound them separately. In the last ex-
pression in what follows, we call the first term NON-FAVORITE,
the second term UNDER and the third term SINGLE. We fur-
ther break NON-FAVORITE into two parts, OVER and SUR-
PLUS and bound them separately. The following are the ap-
proximation factors we achieve:

THEOREM 6. For multiple unit-demand bidders, the opti-
mal revenue is upper bounded by 4OPTCOPIES.

THEOREM 7. For multiple additive bidders, the optimal
revenue is upper bounded by 6OPTCOPIES+2BVCG.

Note that a simple posted-price mechanism achieves rev-
enue OPTCOPIES/6 when buyers are unit-demand [12, 30], and
selling each item separately using Myerson’s auction achieves
revenue OPTCOPIES when buyers are additive. Therefore, the
CHMS/KW [12, 30] posted-price mechanism achieves a 24-
approximation to the optimal BIC mechanism (previously, it
was known to be a 33.75-approximation), and Yao’s approx-
imation ratios [38] are improved from 69 to 8. Some parts
of the following analysis draw inspiration from prior works
of Chawla et. al. [12] and Yao [38], however, much of the

analysis also represents new techniques. In particular, it is
worth pointing out that our proof of Theorem 7 looks similar to
our single-bidder case, whereas Yao’s original proof required
the entirely new machinery of “β-adjusted revenue” and “β-
exclusive mechanisms.” Below is our decomposition, first into
NON-FAVORITE, UNDER, and SINGLE, then further decom-
posing NON-FAVORITE into OVER and SURPLUS.

∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) ·
(
tij · Pr

v−i∼D−i

[ti /∈ R
(v−i)

j ]

+ ϕ̃ij(tij) · Pr
v−i∼D−i

[ti ∈ R
(v−i)

j ]
)

≤
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) ·
∑

v−i∈T−i

tijf−i(v−i)

· I
[(
∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i)

)
∨
(
tij < Pij(v−i)

)]
+
∑
i

∑
ti∈Ti

∑
j

fi(ti)πij(ti)ϕ̃ij(tij) Pr
v−i∼D−i

[ti ∈ R
(v−i)

j ]

=
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) ·
∑

v−i∈T−i

tijf−i(v−i)

· I
[(
∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i)

)
∧
(
tij ≥ Pij(v−i)

)]
(NON-FAVORITE)

+
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) ·
∑

v−i∈T−i

tij

· f−i(v−i) · I[tij < Pij(v−i)] (UNDER)

+
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) · ϕ̃ij(tij)

· Pr
v−i∼D−i

[ti ∈ R
(v−i)

j ] (SINGLE)

NON-FAVORITE

≤
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti)

·
∑

v−i∈T−i

Pij(v−i)f−i(v−i)I[tij ≥ Pij(v−i)] (OVER)

+
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) ·
∑

v−i∈T−i

(tij − Pij(v−i)) ·

f−i(v−i) · I
[(
∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i)

)
∧
(
tij ≥ Pij(v−i)

)]
(SURPLUS)

Analyzing SURPLUS for Unit-demand Bidders: The proof
of this lemma is similar in spirit to Lemma 6.

LEMMA 10. When the types are unit-demand, for any fea-
sible π(·), SURPLUS ≤ OPTCOPIES.

PROOF. Indeed, we will prove that SURPLUS is bounded
above by the revenue of the VCG mechanism in the Copies
setting. For any i define Si(ti, v−i) to be the second largest



number in {ti1−Pi1(v−i), · · · , tim−Pim(v−i)}. Now con-
sider running the VCG mechanism on type profile (ti, v−i).
An agent (i, j) is served in the VCG mechanism in the Copies
setting, iff item j is allocated to i in the VCG mechanism
in the original setting, which is equivalent to saying tij −
Pij(v−i) ≥ 0 and tij − Pij(v−i) ≥ tik − Pik(v−i) for all k.
The Copies setting is single-dimensional, therefore any agent’s
payment is her threshold bid. For agent (i, j), her threshold
bid is Pij(v−i) + max{0,maxk 6=j tik − Pik(v−i)} which
is at least Si(ti, v−i). On the other hand, for any i, when-
ever ∃j′, tij′ − Pij′(v−i) ≥ 0, there exists some ji such
that (i, ji) is served in the VCG mechanism. Combining the
two conclusions above, we show that on any profile (ti, v−i),
the payment in the VCG mechanism collected from agents in
{(i, j)}j∈[m] is at least Si(ti, v−i) · I[∃j′, tij′ −Pij′(v−i) ≥
0]. So the total revenue of the VCG Copies mechanism is at
least:

∑
i

∑
(ti,v−i)∈Ti

f(ti, v−i) · Si(ti, v−i)·

I[∃j′, tij′ − Pij′(v−i) ≥ 0].

Next we argue for any j and (ti, v−i), the following in-
equality holds.

(tij − Pij(v−i))

· I
[(
∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i) ≥ 0

]
≤ Si(ti, v−i) · I[∃j′, tij′ − Pij′(v−i) ≥ 0] (4)

We only need to consider the case when the LHS is non-zero.
In that case, the RHS has value Si(ti, v−i), and also there
exists some k such that tik − Pik(v−i) ≥ tij − Pij(v−i), so
tij − Pij(v−i) ≤ Si(ti, v−i).

So now we can rewrite SURPLUS and upper bound it with
the revenue of the VCG mechanism in the Copies setting.∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti)
∑

v−i∈T−i

(tij − Pij(v−i))·

f−i(v−i) · I
[
∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i) ≥ 0

]
=
∑
i

∑
(ti,v−i)∈Ti

f(ti, v−i)
∑
j

πij(ti) · (tij − Pij(v−i))

· I
[
∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i) ≥ 0

]
≤
∑
i

∑
(ti,v−i)∈Ti

f(ti, v−i)
∑
j

πij(ti) · Si(ti, v−i)

· I[∃j′, tij′ − Pij′(v−i) ≥ 0] (Inequality (4))

≤
∑
i

∑
(ti,v−i)∈Ti

f(ti, v−i) · Si(ti, v−i)

· I[∃j′, tij′ − Pij′(v−i) ≥ 0] (
∑
j

πij(ti) ≤ 1 ∀i, ti)

The last line is upper bounded by the revenue of the VCG
mechanism in the Copies setting by our work above, which
is clearly upper bounded by OPTCOPIES.

Analyzing SURPLUS for Additive Bidders:.
Similar to the single bidder case, we will again break the

term SURPLUS into the CORE and the TAIL, and analyze them
separately. Before we proceed, we first define the cutoffs. Let
rij(v−i) = maxx≥Pij(v−i){x · Prtij∼Dij

[tij ≥ x]}. The
observant reader will notice that this is bidder i’s ex-ante pay-
ment for item j in Ronen’s single-item mechanism [35] condi-
tioned on other bidders types being v−i, but this connection is
not necessary to understand the proof. Further let ri(v−i) =∑
j rij(v−i), ri = Ev−i∼D−i [ri(v−i)] and r =

∑
i ri, the

expected revenue of running Ronen’s mechanism separately
for each item (again, the connection to Ronen’s mechanism is
not necessary to understand the proof). We first bound TAIL
and CORE, using arguments similar to the single item case
(Lemmas 7 and 8),

SURPLUS

≤
∑
i

∑
v−i∈T−i

f−i(v−i)
∑
j

∑
tij≥Pij(v−i)

fij(tij)·

(tij − Pij(v−i)) ·
∑

ti,−j∈Ti,−j

fi,−j(ti,−j)·

I[∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i)]

=
∑
i

∑
v−i∈T−i

f−i(v−i)
∑
j

∑
tij≥Pij(v−i)

fij(tij)·

(tij − Pij(v−i)) · Pr
ti,−j∼Di,−j

[∃k 6= j,

tik − Pik(v−i) ≥ tij − Pij(v−i)]

≤
∑
i

∑
v−i∈T−i

f−i(v−i)
∑
j

∑
tij>Pij(v−i)+ri(v−i)

fij(tij)·

(tij − Pij(v−i)) · Pr
ti,−j∼Di,−j

[∃k 6= j,

tik − Pik(v−i) ≥ tij − Pij(v−i)] (TAIL)

+
∑
i

∑
v−i∈T−i

f−i(v−i)
∑
j

∑
tij∈[Pij(v−i),Pij(v−i)+ri(v−i)]

fij(tij) · (tij − Pij(v−i)) (CORE)

LEMMA 11. TAIL ≤ r.

PROOF. First, by union bound

Pr
ti,−j∼Di,−j

[∃k 6= j, tik − Pik(v−i) ≥ tij − Pij(v−i)]

≤
∑
k 6=j

Pr
tik∼Dik

[ tik − Pik(v−i) ≥ tij − Pij(v−i)].

By the definition of rik(v−i), we certainly have rik(v−i) ≥
(Pik(v−i) + tij − Pij(v−i)) · Prtik∼Dik [ tik − Pik(v−i) ≥
tij − Pij(v−i)], so we can also derive:

Pr
tik∼Dik

[ tik − Pik(v−i) ≥ tij − Pij(v−i)]

≤ rik(v−i)

Pik(v−i) + tij − Pij(v−i)
≤ rik(v−i)

tij − Pij(v−i)
.

Using these two inequalities, we can upper bound TAIL:



∑
i

∑
v−i∈T−i

f−i(v−i)
∑
j

∑
tij>Pij(v−i)+ri(v−i)

fij(tij)

·
∑
k 6=j

rik(v−i)

≤
∑
i

∑
v−i

f−i(v−i) ·
∑
j

ri(v−i)

·
∑

tij>Pij(v−i)+ri(v−i)

fij(tij)

≤
∑
i

∑
v−i

f−i(v−i)
∑
j

rij(v−i) (Definition of rij(v−i))

=r

LEMMA 12. BVCG ≥ CORE
2
− r. In other words, 2r +

2BVCG ≥ CORE.

PROOF. Fix any vi ∈ T−i, let tij ∼ Dij , define two new
random variables

bij(v−i) = (tij − Pij(v−i))I[tij ≥ Pij(v−i)]

and

cij(v−i) = bij(v−i)I[bij(v−i) ≤ ri(vi)].

Clearly, cij(v−i) is supported on [0, ri(v−i)]. Also, we have

E[cij(v−i)]

=
∑

tij∈[Pij(v−i),Pij(v−i)+ri(v−i)]

fij(tij) · (tij − Pij(v−i)).

So we can rewrite CORE as∑
i

∑
v−i∈T−i

f−i(v−i)
∑
j

E[cij(v−i)].

Now we will describe a VCG mechanism with per bidder
entry fee. Define an entry fee function for bidder i depending
on v−i as ei(v−i) =

∑
j E[cij(v−i)] − 2ri(v−i). We will

show that for any i and other bidders types v−i ∈ T−i, bidder
i accepts the entry fee ei(v−i) with probability at least 1/2.
Since bidders are additive, the VCG mechanism is exactly m
separate Vickrey auctions, one for each item. So Pij(v−i) =
max 6̀=i{v`j}, and for any set of S, its Clarke Pivot price for i
to receive set S is

∑
j∈S Pij(v−i).

That also means
∑
j bij(v−i) is the random variable that

represents bidder i’s utility in the VCG mechanism when other
bidders bids are v−i. If we can prove Pr[

∑
j bij(v−i) ≥

ei(v−i)] ≥ 1/2 for all v−i, then we know bidder i accepts
the entry fee with probability at least 1/2.

It is not hard to see for any nonnegative number a,

a · Pr[bij(v−i) ≥ a]

≤(a+ Pij(v−i)) · Pr[tij ≥ a+ Pij(v−i)] ≤ rij(v−i).

Therefore, because each cij(v−i) ∈ [0, ri(v−i)], by Lemma 9
we can again bound the second moment as: E[cij(v−i)

2] ≤

2ri(v−i)rij(v−i). Since cij’s are independent,

Var[
∑
j

cij(v−i)] =
∑
j

Var[cij(v−i)]

≤
∑
j

E[cij(v−i)
2] ≤ ri(v−i)2.

By Chebyshev inequality, we know

Pr[
∑
j

cij(v−i) ≤
∑
j

E[cij(v−i)]− 2ri(v−i)]

≤
Var[

∑
j cij(v−i)]

4ri(v−i)2
≤ 1/2.

Therefore, as bij(v−i) ≥ cij(v−i), we can conclude:

Pr[
∑
j

bij(v−i) ≥ ei(v−i)] ≥ 1/2

So the entry fee is accepted with probability at least 1/2 for
all i and v−i. So:

BVCG ≥ 1

2

∑
i

∑
v−i∈T−i

f−i(v−i)
(
E[cij(v−i)]− 2ri(v−i)

)
=

CORE

2
− r.

Analyzing SINGLE, OVER and UNDER: First we consider
SINGLE, which is similar to Lemma 5.

LEMMA 13. For any feasible π(·), SINGLE ≤ OPTCOPIES.

PROOF. Assume M is the ex-post allocation rule that in-
duces π(·). Consider another ex-post allocation rule M ′ for
the copies setting, such that for every type profile t, if M allo-
cates item j to bidder i in the original setting then M ′ serves
agent (i, j) with probability Prv−i∼D−i [ti ∈ R

(v−i)

j ]. As M
is feasible in the original setting, M ′ is clearly feasible in the
Copies setting. When agent (i, j) has type tij , her probability
of being served in M ′ is∑

ti,−j

fi,−j(ti,−j) · πij(tij , ti,−j)·

Pr
v−i∼D−i

[(tij , ti,−j) ∈ R
(v−i)

j ]

for all j and tij . Therefore, SINGLE is the ironed virtual wel-
fare achieved by M ′ with respect to ϕ̃(·). Since the copies
setting is a single dimensional setting, the optimal revenue
OPTCOPIES equals the maximum ironed virtual welfare, thus
no smaller than SINGLE.

Next, we move onto OVER. We begin with the following
technical propositions:

PROPOSITION 1. Let π(·) be any reduced form of a BIC
mechanism in the original setting. Define

Πij(tij) = Eti,−j∼Di,−j [πij(ti)].

Then Πij(tij) is monotone in tij .



PROOF. In fact, for all ti,−j , we must have πij(·, ti,−j)
monotone increasing in tij . Assume for contradiction that this
were not the case, and let tij < t′ij with πij(tij , ti,−j) >
πij(t

′
ij , ti,−j). Then (tij , ti,−j), (t

′
ij , ti,−j) form a 2-cycle

that violates cyclic monotonicity. This is because both types
value all items except for j exactly the same.

PROPOSITION 2. For any v ∈ T , any π(·) that is a re-
duced form of some BIC mechanism,

OPTCOPIES ≥∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) · Pij(v−i) · I[tij ≥ Pij(v−i)].

PROOF. Recall from Proposition 1 that every BIC interim
form π(·) in the original setting corresponds to a monotone
interim form in the copies setting, Π(·). Let M be any (pos-
sibly randomized) allocation rule that induces Π(·), and p(·)
a corresponding price rule (wlog we can let (M,p) be ex-
post IR). Consider the following mechanism instead: on in-
put t, first run (M,p) to (possibly randomly) determine a set
of potential winners. Then, if (i, j) is a potential winner, of-
fer (i, j) service at price max{pij(t), Pij(v−i)). Whenever
(i, j) is a potential winner, tij ≥ pij(t). It is clear that in
the event that (i, j) is a potential winner, and tij ≥ Pij(t−i),
(i, j) will accept the price and pay at least Pij(v−i). There-
fore, for any t as long as (i, j) is served in M , then the pay-
ment from (i, j) in the new proposed mechanism is at least
Pij(v−i)I[tij ≥ Pij(v−i)]. That means the total revenue of
the new mechanism is at least

∑
i

∑
ti∈Ti

∑
j fi(ti) ·πij(ti) ·

Pij(v−i) · I[tij ≥ Pij(v−i)], which is upper bounded by
OPTCOPIES.

LEMMA 14. OVER ≤ OPTCOPIES.

PROOF. This can be proved by rewriting OVER and then
applying Proposition 2.

OVER

=
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti)

·
∑
v∈T

Pij(v−i)f(v)I[tij ≥ Pij(v−i)]

=
∑
v∈T

f(v)
∑
i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti) · Pij(v−i)

· I[tij ≥ Pij(v−i)]

≤
∑
v∈T

f(v) · OPTCOPIES = OPTCOPIES

When there is only one bidder, UNDER is always 0. Here,
UNDER ≤ OPTCOPIES. We apply Proposition 3 (below) once
for each type profile t, using the allocation of this mechanism
on type profile t to specify (ij , j) and let xj = tijj . Then
taking the convex combination of the RHS of Proposition 3 for
all profiles t with multipliers f(t) gives UNDER≤ OPTCOPIES.

PROPOSITION 3. Let {(ij , j)}j∈S⊆[m] be a feasible allo-
cation in the copies setting. For all choices x1, . . . , xm ≥ 0,
OPTCOPIES≥

∑
v∈T f(v) ·

∑
j∈S xj · I[Pijj(v−ij ) > xj ].

PROOF. Before beginning the proof of Proposition 3, we
will need the following definition and theorem due to Gul and
Stacchetti [23].

DEFINITION 5. LetWT (S) be the maximum attainable wel-
fare using only bidders in T and items in S.

THEOREM 8. ([23]) If all bidders in T have gross substi-
tute valuations, then WT (S) is submodular.

Now with Theorem 8, consider in the Copies setting the
VCG mechanism with lazy reserve xj for each copy (i, j).
Specifically, we will first solicit bids, then find the max-welfare
allocation and call all (i, j) who get allocated temporary win-
ners. Then, if (i, j) is a temporary winner, (i, j) is given the
option to receive service for the maximum of their Clarke pivot
price and xj . It is clear that in this mechanism, whenever any
agent (i, j) receives service, the price she pays is at least xj .
Also, it is not hard to see the allocation rule is monotone, thus
this is a truthful mechanism. Next, we argue for any v ∈ T
and j ∈ S, whenever Pijj(v−ij ) > xj , there exists some i
such that (i, j) is served in the mechanism above.

By the definition of Clarke pivot price, we know

Pijj(v−ij ) = W[n]−{ij}([m])−W[n]−{ij}([m]− {j}).

First, we show that if item j is allocated to some bidder i in
the max-welfare allocation in the original setting then vij ≥
Pij(v−i). Assume S′ to be the set of items allocated to bidder
i. Since the VCG mechanism is truthful, the utility for winning
set S′ is better than winning set S′ − {j}:∑

k∈S′
vik − (W[n]−{i}([m])−W[n]−{i}([m]− S′))

≥
∑

k∈S′−{j}

vik − (W[n]−{i}([m])

−W[n]−{i}([m]− S′ + {j})).

Rearranging the terms, we get

vij

≥W[n]−{i}([m]− S′ + {j})−W[n]−{i}([m]− S′)
≥W[n]−{i}([m])−W[n]−{i}([m]− {j})) (Theorem 8)

=Pij(v−i).

Now we still need to argue that whenever Pijj(v−i) ≥ xj ,
item j is always allocated in the max-welfare allocation to
some bidder i with vij ≥ xj .

1. If agent (ij , j) is a temporary winner,

vijj ≥ Pijj(v−ij ) > xj .

Therefore, agent (ij , j) will accept the price.
2. If agent (ij , j) is not a temporary winner, let S′ be the

set of items that are allocated to bidder ij in the wel-
fare maximizing allocation in the original setting. Since
W[n]−{ij}([m]− S′)−W[n]−{ij}([m]− S′ −{j}) ≥
W[n]−{ij}([m])−W[n]−{ij}([m]−{j}) = Pijj(v−ij ),
and Pijj(v−ij ) > xj , that means (i) item j is awarded
to some bidder i 6= ij in the welfare maximizing alloca-
tion, (ii) vij > xj because otherwise

W[n]−{ij}([m]−S′) ≤W[n]−{ij}([m]−S′−{j})+xj ,



contradiction.
So now we see that for any j ∈ S there is certainly some i

such that (i, j) is served whenever Pijj > xj , and therefore
the revenue of this mechanism in the Copies setting is at least∑
v∈T f(v) ·

∑
j∈S xj · I[Pijj(v−ij ) > xj ], which is exactly

the same as the sum in the proposition statement.

LEMMA 15. UNDER ≤ OPTCOPIES.

PROOF. The idea is to interpret UNDER as the revenue of
the following mechanism: let M be the mechanism that in-
duces π(·). Sample t from D, let S be the set of agents that
will be served in M for type profile t in the copies setting.
Use tij to be the reserve price for j if (i, j) ∈ S, and use the
mechanism in Proposition 3.

First, the inner sum∑
v−i∈T−i

tij · f−i(v−i) · I[tij < Pij(v−i)]

only depends on ti, so the maximum of UNDER is achieved by
a π(·) induced by some deterministic mechanism. Wlog, we
consider π(·) is induced by a deterministic mechanism whose
ex-post allocation rule is x(·). Let us rewrite UNDER using
x(·):∑

i

∑
ti∈Ti

∑
j

fi(ti) · πij(ti)·∑
v−i∈T−i

tij · f−i(v−i) · I[tij < Pij(v−i)]

=
∑
t∈T

f(t)
∑
i

∑
j

xij(t) · tij ·
∑
v∈T

f(v) · I[tij < Pij(v−i)]

=
∑
t∈T

f(t) ·
∑
v∈T

f(v)
∑
i

∑
j

xij(t) · tij · I[tij < Pij(v−i)]

≤
∑
t∈T

f(t) · OPTCOPIES = OPTCOPIES

The second last inequality is because if we let {(ij , j)}j∈S
be the set of agents such that by xijj(t) = 1, then∑

v∈T

f(v)
∑
i

∑
j

xij(t) · tij · I[tij < Pij(v−i)]

=
∑
v∈T

f(v) ·
∑
j∈S

xj · I[Pijj(v−ij ) > xj ],

and by Proposition 3, this is upper bounded by OPTCOPIES.

Combining the above lemmas now yields our theorems:
Proof of Theorem 6: Combine Lemmas 10, 13, 14 and 15. 2

Proof of Theorem 7: Combining Lemmas 11, 12, 13, 14 and 15,
we get the optimal revenue is upper bounded by

3OPTCOPIES + 3r + 2BVCG.

Since OPTCOPIES= SMYERSON and SMYERSON ≥ r when
bidders are additive; we proved our statement. 2
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