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Abstract. We initiate a study of property testing as applied to visual
properties of images. Property testing is a rapidly developing area inves-
tigating algorithms that, with a small number of local checks, distinguish
objects satisfying a given property from objects which need to be mod-
ified significantly to satisfy the property. We study visual properties of
discretized images represented by n× n matrices of binary pixel values.
We obtain algorithms with query complexity independent of n for several
basic properties: being a half-plane, connectedness and convexity.

1 Introduction

We chose to investigate connectedness
because of a belief that this predicate is
nonlocal in some very deep sense; therefore
it should present a serious challenge to any
basically local, parallel type of computation.

Perceptrons

Marvin Minsky and Seymour Papert

Images are typically so large that it might be expensive to read every single
bit of them. It is natural to ask what properties of an image can be detected
by sublinear algorithms that read only a small portion of the image. In general,
most problems are not solvable exactly with that restriction. Property testing
[16, 11] (see [15, 9] for surveys) is a notion of approximation tailored for decision
problems and widely used for studying sublinear algorithms. Property tests dis-
tinguish inputs with a given property from those that are far from satisfying the
property. Far means that many characters of the input must be changed before
the property arises in it. The query complexity of a property test is the number
of characters it reads. The goal is to design tests with sublinear complexity.

Image analysis is one area potentially well suited to the property testing
paradigm. Some salient features of an image may be tested by examining only a
small part thereof. Indeed, one motivation for this study is the observation that
the eye focuses on relatively few places within an image during its analysis. The
analogy is not perfect due to the eye’s peripheral vision, but it suggests that
property testing may give some insight into the visual system.



In this paper, we present tests for a few properties of images. All our tests
have complexity independent of the image size, and therefore work well even for
huge images. We use image representation popular in learning theory (see, e.g.,
[14, 13]). Each image is represented by an n × n matrix M of pixel values. We
focus on black and white images given by binary matrices with black denoted
by 1 and white denoted by 0. To keep the correspondence with the plane, we
index the matrix by {0, 1, . . . , n−1}2, with the lower left corner being (0, 0) and
the upper left corner being (0, n− 1). The object is a subset of {0, 1, . . . , n− 1}2
corresponding to black pixels; namely, {(i, j)|Mi,j = 1}.

1.1 Property Testing in the Pixel Model

The distance between two images of the same size is defined as the number
of pixels (matrix entries) on which they differ. (Two matrices of different size
are considered to have infinite distance.) The relative distance is the ratio of
the distance and the number of pixels in the image. A property is defined as a
collection of pixel matrices. The distance of an image (matrix) M to a property
P is minM ′∈P dist(M,M ′). Its relative distance to P is its distance to P divided
by the size of the image matrix. An image is ε-far from P if its relative distance
to P is at least ε. If the image is not ε-far from P, it is ε-close to it.

A property is (ε, q)-testable if there is a randomized algorithm that for every
input matrix M queries at most q entries of M and with probability at least 2

3
distinguishes between matrices with the property and matrices which are ε-far
from having it. The algorithm is referred to as an (ε, q)-test. This definition
allows tests to have 2-sided error. An algorithm has 1-sided error if it always
accepts an input that has the property.

1.2 Our Results

We present tests for three visual properties: being a half-plane, convexity and
connectedness. The number of queries in all tests is independent of the size of
the input. The algorithm for testing if the input is a half-plane is a 1-sided error
test with 2 ln 3

ε + o( 1
ε ) queries. The convexity test has 2-sided error and makes

O(1/ε2) queries. Finally, the connectedness test has 1-sided error and makes
O
(

1
ε2 log2 1

ε

)
queries.

1.3 Related Results in Property Testing

Previous papers on property testing in computational geometry [7, 6] consider a
model different from ours, where the input is the set of object points and a query i
produces coordinates of the ith point. Their results, in general, are incomparable
to ours. In their model, the problems we consider would have query complexity
dependent on the number of points in the object. But they are able to study
properties which are trivially testable in our model because all instances are
either close to having the property or close to not having it. An example is the



property that a given graph is a Euclidean minimum spanning tree of a given
point set in the plane [7].

Another related work is [10] which studies properties of d-dimensional ma-
trices. It gives a class of properties which are testable with a number of queries
polynomial in 1/ε. It does not seem applicable to our geometric properties.

Goldreich and Ron [12] study property testing in bounded degree graphs
represented by adjacency lists. Note that an image in the pixel model can be
viewed as a graph of degree 4 where vertices correspond to black pixels and they
are connected by an edge if the corresponding entries in the image matrix are
adjacent. (See the definition of the image graph in the beginning of section 4.)
Goldreich and Ron measure distance between graphs as the ratio of the number
of edges that need to be changed to transform one graph into the other over
the maximum possible number of edges in the graphs with the given number
of vertices and degree. In our case, the distance between two image graphs cor-
responds to the fraction of points (vertices) on which they differ, i.e. the edge
structure of the graphs is fixed, and only vertices can be added or removed to
transform one graph into another. Our connectedness test is exactly the same as
the connectivity test in [12], with one minor variation due to different input rep-
resentation and the fact that the pixel model allows graphs with a small number
of vertices. (In the bounded degree graph model, the number of vertices is a part
of the input.) However, since our distance measures are different, their proof of
correctness of the algorithm does not apply to the pixel model.

One more paper that studies fast algorithms for connectedness in graphs
is [5]. It shows how to approximate the number of connected components in an
arbitrary graph in a sublinear time.

1.4 Related Results in Learning

In property testing terminology, a PAC (probably approximately correct) learn-
ing algorithm [17] is given oracle access (or access via random samples) to an
unknown target object with the property P and has to output a hypothesis which
is within relative distance ε to the target with high probability. If the hypothesis
is required to have the property P, the learning algorithm is proper. As proved
in [11], a proper PAC learning algorithm for P with sampling complexity q(ε)
implies a (2-sided error) (ε, q(ε/2) +O(1/ε))-test for P.

Learning half-planes exactly is considered in [14]. This work gives matching
upper and lower bound of Θ(log n) for the problem. In the PAC model, a proper
learning algorithm with O(1/ε log(1/ε)) sampling complexity follows from [3].
Together with the [11] result above, it implies a (2-sided error) (ε,O(1/ε log(1/ε)))-
test for the half-plane property. Our result for testing half-planes is a modest
improvement of shaving off the log factor and making the error 1-sided.

The generic approach of [11] for transforming PAC proper learners into prop-
erty tests does not seem to work well for convexity and connectedness. The
complexity of PAC learning algorithms is at least proportional to Vapnik Cher-



vonenkis (VC) dimension1[8]. Since VC dimension of convexity is Θ(n) and VC
dimension of connectedness is Θ(n2), the corresponding tests obtained by the
generic approach have query complexity guarantee O(n) and O(n2), respectively.
Our tests for these properties have query complexity independent of n.

2 Testing if an Image Is a Half-Plane

First we present an algorithm for testing whether the image is a half-plane. An
image is a half-plane if there is a vector w ∈ R2 and a number a ∈ R such that a
pixel x is black if and only if wTx ≥ a. The algorithm first finds a small region
within which the dividing line falls. Then it checks if pixels on one side of the
region are white and on the other side are black.

Call pixels (0, 0), (0, n−1), (n−1, 0), (n−1, n−1) corners. Call the first and
the last row and the first and the last column of the matrix sides. For a pair
of pixels p1, p2, let `(p1, p2) denote the line2 through p1, p2. Let R1(p1, p2) and
R2(p1, p2) denote the regions into which `(p1, p2) partitions the image pixels not
on the line.

Half-plane test T1(ε)

Given access to an n× n pixel matrix,

1. Query the four corners. Let s be the number of sides with differently
colored corners.
(a) If s = 0 (all corners are of the same color c), query ln 3

ε pixels
independently at random. Accept if all of them have color c.
Reject otherwise.

(b) If s = 2,
i. For both sides with differently colored corners, do binary

search of pixels on the side to find two differently colored
pixels within distance less than εn/2. For one side, call the
white pixel w1 and the black pixel b1. Similarly, define w2

and b2 for the second side.
ii. Let Wi = Ri(w1, w2) and Bi = Ri(b1, b2) for i = 1, 2.

W.l.o.g., suppose W2 and B1 intersect while W1 and B2 do
not. Query 2 ln 3

ε pixels from W1 ∪B2 independently at ran-
dom. Accept if all pixels from W1 are white, all pixels from
B2 are black. Otherwise, reject.

(c) If s is not 0 or 2, reject.

1 The VC dimension is the cardinality of the largest set X ⊆ {0, . . . , n−1}2 shattered
by P. A set X ⊆ {0, . . . , n− 1}2 is shattered by P if for every partition (X0, X1) of
X, P contains a matrix M with Mx = 1 for all x ∈ X1 and Mx = 0 for all x ∈ X0.

2 Whenever a geometric notion (e.g., line, angle, convex hull) is used without a defini-
tion, it refers to the standard continuous notion. All discretized notions are defined.



Theorem 1. Algorithm T1 is a 1-sided error (ε, 2 ln 3
ε + o( 1

ε ))-test for the half-
plane property.

Proof. The algorithm queries at most 2 ln 3
ε + O(log(1/ε)) pixels. To prove cor-

rectness, we need to show that all half-planes are always accepted, and all images
that are ε-far from being half-planes are rejected with probability at least 2/3.

Case (a) [0 differently colored sides]: The image is a half-plane if and only if it
is unicolored. If it is unicolored, the test always accepts since it never finds pixels
of different colors. If the image is ε-far from being a half-plane, it has at least
εn2 pixels of a wrong color. Otherwise, it can be made unicolored, and hence a
half-plane, by changing less than an ε-fraction of pixels. The test fails to find an
incorrectly colored pixel and accepts with probability at most (1−ε)ln 3/ε < 1/3.

Case (b) [2 differently colored sides]: The test always accepts all half-planes
because it rejects only if it finds two white pixels and two black pixels such that
the line through the white pixels intersects the line through the black pixels.
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Fig. 1. Half-plane test

It remains to show that if an image is ε-
far from being a half-plane, it is rejected with
probability ≥ 2/3. We prove the contraposi-
tive, namely, that if an image is rejected with
probability < 2/3, modifying an ε fraction of
pixels can change it into a half-plane.

Suppose that an image is accepted with
probability ≥ 1/3 = e− ln 3 > (1− ε/2)2 ln 3/ε.
That means that < ε/2 fraction of pixels from
which we sample in step 1(b)ii differ from the
color of their region (white for W1 and black
for B2). Note also that there are at most εn/2
pixels outside of W1 ∪B2. Changing the color
of all black pixels in W1 and all white pixels in
B2 and making all pixels outside of those re-
gions white, creates a half-plane by changing
< ε fraction of the pixels, as required.

Case (c) [everything else]: The number of image sides with differently colored
corners is even (0, 2, or 4). That holds because the cycle ((0, 0), (n − 1, 0), (n −
1, n− 1), (0, n− 1), (0, 0)) visits a vertex of a different color every time it moves
along such a side. So, the only remaining case is 4 differently colored sides. In
this case, the image cannot be a half-plane. The test always rejects. ut

3 Convexity Testing

The image is convex if the convex hull of black pixels contains only black pixels.
The test for convexity first roughly determines the object by querying pixels on
the n/u × n/u grid with a side of size u = Θ(εn). Then it checks if the object
corresponds to the rough picture it obtained.



For all indices i, j divisible by u, call the set {(i′, j′)| i′ ∈ [i, i+u], j′ ∈ [j, j+u]}
a u-square. We refer to pixels (i, j), (i + u, j)(i + u, j + u), and (i, j + u) as its
corners.

Convexity test T2(ε)

Given access to an n× n pixel matrix,

1. Query all pixels with both coordinates divisible by u = bεn/120c.
2. Let B be the convex hull of discovered black pixels. Query 5

ε pixels
from B independently at random. Reject if a white pixel in B is
found in steps 1 or 2.

3. Let W be the union of all u-squares which contain no pixels from B.
Query 5

ε pixels from W independently at random. Reject if a black
pixel is found. Otherwise accept.
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Fig. 2. Convexity test

Lemma 1, used in the analysis of the
convexity test, asserts that the number
of pixels outside B ∪W is small.

Lemma 1. In an n × n image, let B
be the convex hull of black pixels with
coordinates divisible by u. Let W be the
union of u-squares which contain no
pixels from B. Let the “fence” F be the
set of pixels not contained in B or W .
Then F contains at most 4un pixels.

Proof. Intuitively, F is the largest when
it contains all u-squares along the sides
of the image. We call u-squares that are
not fully contained in B or W fence
u-squares. Note that F is covered by
fence u-squares. Therefore, to prove the
lemma it is enough to show that there
are at most 4n/u fence u-squares.
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Fig. 3. Walk over fence u-squares

To count the fence u-squares, we
define a cyclic ordering on them. To
do that, we describe a walk that con-
nects centers of all fence u-squares. The
walk goes from one center to the next
by traveling left, right, up or down.
It visits the centers of fence u-squares
by traveling clockwise and keeping the
boundary between F and W on the
left-hand side. Each fence u-square is
visited because it intersects with some
u-square in W in at least one pixel.



There are n/u rows of u-squares. We claim that from each of these rows the
walk can travel up at most once. Suppose for contradiction that it goes up twice,
from `1 to `2 and from r1 to r2, where `1 and r1 are fence u-squares with centers
in row (k+0.5)u, and `2 and r2 are fence u-squares with centers in row (k+1.5)u
for some integer k.
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W.l.o.g. suppose that the centers of l1, l2 are

in a column with a lower index than the centers of
r1, r2. Since the walk keeps the boundary between
W and F on the left-hand side, the left corners
of `1, `2, r1, r2 are in W . By definition of fence
u-squares, `1, `2, r1, r2 each contain a pixel from
B. The common left corner of r1 and r2 is also in
B, since B is convex. But this is a contradiction because W and B are disjoint.

Thus, the walk can travel up only once per row. Similarly, it can travel down
only once per row, and travel left (right) only once per column. Since there are
n/u rows (columns) of u-squares, the walk can have at most 4n/u steps. As it
visits all fence u-squares, there are at most 4n/u of them. Since each u-square
contributes u2 pixels, the number of pixels in F is at most 4nu. ut

The analysis of the convexity test uses the fact that if an image is convex,
W contains only a small number of black pixels. Proposition 1 proves this fact
for a special case of an image which is “invisible” on the big grid. Later, we use
the proposition to handle the general case in lemma 2.

Proposition 1. In an n × n convex image, if all pixels with both coordinates
divisible by u are white, then the image contains less than 2un black pixels.

Proof. Let black(r) denote the number of black pixels in a row r. If each row
contains fewer than u− 1 pixels, the total number of black pixels is at most un.
Otherwise, consider a row r with black(r) ≥ u. Let integers k and t be such
that r = ku + t and 0 ≤ t < u. Since the image is convex, black pixels of every
fixed row must have consecutive column indices. Since every pixel with both
coordinates divisible by u is white, black(ku) < u and black((k + 1)u) < u.

Because of the convexity of the object, if black(r1) < black(r) for a row r1 > r
then black(r2) ≤ black(r1) for all rows r2 > r1. Similarly, if black(r1) < black(r)
for a row r1 < r then black(r2) ≤ black(r1) for all rows r2 < r1. Thus, all rows
r2 excluding ku+ 1, ku+ 2, . . . , (k + 1)u− 1 have black(r2) < u. Together, they
contain < (n−u)u black pixels. Cumulatively, the remaining u− 1 rows contain
< (u− 1)n pixels. Therefore, the image contains less than 2un black pixels. ut

Lemma 2. In an n×n convex image, let W be the union of all u-squares which
contain no pixels from B. Then W contains less than 8un black pixels.

Proof. As before, let F be the set of all pixels not contained in B or W . We call
pixels on the boundary between F and W with both coordinates divisible by u
fence posts. Since all fence posts are white, any portion of the object protruding
into W has to squeeze between the fence posts. We show that there are at most
three large protruding pieces, each of which, by proposition 1, contains less than



2un pixels. All other sticking out portions fall close to the fence and are covered
by the area containing less than 2un pixels.
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Let O be the boundary of our convex object. O can
be viewed as a piecewise linear trajectory on the plane
that turns 360◦. Whenever O leaves region F to go into
W , it has to travel between two fence posts. Whenever
O comes back into F , it has to return between the same
fence posts because the object is convex and fence posts
do not belong to it. The figure depicts an excursion of
O into W with accumulated turn α.

Notice that since O turns 360◦ total, at most 3 excursion into W have accu-
mulated turn > 90◦. Each of them can be viewed as delineating a part of our
convex object, cut off by the line between the fence posts. This part of the object
is convex, and therefore, by proposition 1, has < 2un pixels. This gives us a total
of < 6un pixels for the protruding parts where O turns more than 90◦.

Consider any excursion into W where O leaves F between fence posts p1 and
p2 and turns ≤ 90◦ before coming back. Any such trajectory part lies inside the
circle of diameter u containing p1 and p2. The half of the circle protruding into
W is covered by a half of a u-square. By an argument identical to counting fence
squares in lemma 1, there are at most 4n/u segments of the F/W boundary
between adjacent fence posts. Therefore, the total number of pixels that might
be touched by the parts of the object, described by O’s excursions into W that
turn ≤ 90◦ is at most 4n/u · u2/2 = 2un.

Thus, the total number of black pixels in W is at less than 8un. ut

Theorem 2. Algorithm T2 is a (ε,O(1/ε2))-test for convexity.

Proof. The test makes (n/u)2 + O(1/ε) = O(1/ε2) queries. We bound failure
probability, considering convex and far from convex images separately.

If the input image is convex, B contains only black pixels. The test never
rejects in step 2. By lemma 2, the fraction of black pixels in W is < 8u/n = ε/15.
By the union bound, the probability that the test rejects in step 3 is < ε

15
5
ε = 1

3 .
If the input image is ε-far from convex, it has ≥ 2εn2/5 white pixels in B

or ≥ 2εn2/5 black pixels in W . Otherwise, we could make the image convex by
making all pixels in W white and all remaining pixels black. It would require
< 2εn2/5 changes in B, < 2εn2/5 changes in W , and by lemma 1, ≤ 4un < εn2/5
changes in F . Thus, the distance of the image to convex would be less than εn2.

Suppose w.l.o.g. that there are ≥ 2ε/5 black pixels in W . Step 3 will fail to
find a black pixel with probability ≤ (1− 2ε

5 )5/ε ≤ e−2 < 1
3 . ut

4 Connectedness Testing

Define the image graph GM = (V,E) of image matrix M by V = {(i, j)|Mi,j = 1}
and E = {((i1, j), (i2, j))| |i1− i2| = 1}∪{((i, j1), (i, j2))| |j1− j2| = 1}. In other
words, the image graph consists of black pixels connected by the grid lines. The



image is connected if its image graph is connected. When we say that the image
has k connected components, we are also referring to its image graph.

The test for connectedness looks for isolated components of size less than
d = 4/ε2. We prove that a significant fraction of pixels are in such components if
the image is far from connected. When a small isolated component is discovered,
the test rejects if it finds a black pixel outside of the component. Lemma 3
implies that if an image is far from connected, it has a large number of connected
components. An averaging argument in lemma 4 demonstrates that many of
them have to be small. This gives rise to a simple test T3, which is later improved
to test T4 with more careful accounting in proposition 2.

Both tests for connectedness and proposition 2 are adopted from [12]. The
only change in the tests, besides parameters, is that after finding a small com-
ponent, we make sure there is some point outside of it before concluding that
the image is far from connected.

Connectedness test T3(ε)

Let δ = ε2

4 − o(1) and d = 4/ε2. Given access to an n× n pixel matrix,

1. Query 2/δ pixels independently at random.
2. For every pixel (i, j) queried in step 1, perform a breadth first search

(BFS) of the image graph starting from (i, j) until d black pixels are
discovered or no more new black pixels can be reached; i.e., for each
discovered black pixel query all its neighbors if they haven’t been
queried yet. If no more new black pixels can be reached, a small
connected component has been found.

3. If a small connected component is discovered for some (i, j) in step 2,
query 2/ε pixels outside of the square [i − d, i + d] × [j − d, j +
d] independently at random. If a black pixel is discovered, reject.
Otherwise (if no small connected component is found or if no black
pixel is discovered outside of the small component), accept.

Lemma 3. If an n × n image contains at most p connected components, they
can be linked into one connected component by changing at most n(

√
2p+O(1))

pixel values from white to black.

Proof. Let s = n
√

2/p. To turn the image into one connected component, we first
add the comb-like set S = {(i, j)| j = n−1 or i = n−1 or s divides i}. Now every
connected component is linked to S by adding at most s/2 pixels leading to the
nearest “tooth of the comb”. That is, if a component contains a pixel (ks+`, j) for
an integer k and 0 ≤ ` ≤ s/2, add pixels (ks+1, j), (ks+2, j), . . . , (ks+`−1, j).
Otherwise (a component contains a pixel (ks+`, j) for integer k and s/2 < ` < s),
add pixels (ks + ` + 1, j), (ks + ` + 2, j), . . . , (ks + s − 1, j). The first stage
adds |S| = n(n/s + O(1)) pixels and the second, less than s/2 per connected
component, adding the total of n(n/s+O(1)) + ps/2 = n

√
2p+O(1) pixels. ut



Lemma 4. If an image is ε-far from connected, at least an ε2

4 − o(1) fraction
of its pixels are in connected components of size less than d = 4/ε2 + o(1).

Proof. Consider an n× n ε-far from connected image with p connected compo-
nents. By lemma 3, changing ≤ n(

√
2p+O(1)) pixels makes it connected. Then

n(
√

2p + O(1)) ≥ εn2, and p ≥ ε2n2/2 − O(n). Let b be the number of black
pixels. The average component size is b/p ≤ n2/(ε2n2/2−O(n)) = 2/ε2 + o(1).
Thus, the fraction of components of size up to d = 4

ε2 + o(1) is ≥ 1/2. That
is, there are ≥ p/2 = ε2n2/4 − O(n) such components. Since each connected
component contains a pixel, ≥ ε2/4 − o(1) fraction of pixels are in connected
components of size d. ut
Theorem 3. Algorithm T3 is a 1-sided (ε,O(ε−4))-test for connectedness.

Proof. The algorithm accepts all connected images because it rejects only if an
isolated component and some pixel outside of it are found.

It remains to show that an ε-far from connected image is rejected with prob-
ability at least 2/3. By lemma 4, such an image has at least a δ fraction of its
pixels in connected components of size less than d. The probability that step 1
fails to find a pixel from a small connected component is (1 − δ)2/δ ≤ e−2. In
step 2, 3d− 1 queries are sufficient to discover that a component of size d− 1 is
isolated because it has at most 2d neighboring white pixels. There are at least
εn2−4d2 black pixels outside of the 2d×2d square containing the small isolated
component. Step 3 will fail to find a black pixel with probability (1−ε)2ε ≤ e−2.
By the union bound, the failure probability is at most 2/e2 < 1/3.

The number of queries is at most 2/δ × (3d− 1) + 2/ε = O(ε−4). ut
The algorithm can be improved by employing the Goldreich-Ron trick [12] of

considering small components of different sizes separately. The following propo-
sition is adopted from [12].

Proposition 2. If an image has at least C connected components of size less
than d, there is ` ≤ log d such that at least C·2`−1

log d points are in connected com-
ponents of size between 2`−1 and 2` − 1.

Proof. For some ` ≤ log d, the image has at least C/ log d connected components
of size between 2`−1 and 2` − 1. Each of them contains at least 2`−1 points. ut

(Improved) Connectedness test T4(ε)

Let δ = ε2

4 − o(1) and d = 4/ε2. Given access to an n× n pixel matrix,

1. For ` = 1 to log d
(a) Query 4 log d

δ2`
pixels independently at random.

(b) For every pixel (i, j) queried in step 1a, perform a BFS of the im-
age graph starting from (i, j) until 2` black pixels are discovered
or no more new black pixels can be reached (a small connected
component has been found).

2. If a small connected component is discovered for some (i, j) in step 1,
proceed as in step 3 of algorithm T3.



Theorem 4. Algorithm T4 is a 1-sided
(
ε,O

(
1
ε2 log2 1

ε

))
-test for connectedness.

Proof. The algorithm accepts all connected images because it rejects only if an
isolated component and some pixel outside of it are found.

If an n × n image is ε-far from connected, by the proof of lemma 4, it has
at least a δn2 connected components of size less than d. Proposition 2 implies
that for some ` < log d, at least an δ·2`−1

log d fraction of its points are in connected
components of size between 2`−1 and 2` − 1. For this `, the probability that
step 1 fails to find a pixel from a component of size between 2`−1 and 2` − 1 is
at most e−2. The rest of the correctness analysis is the same as in theorem 3.

The number of queries is at most log d ·O
(

log d
δ

)
+ 2/ε = O

(
1
ε2 log2 1

ε

)
. ut

5 Conclusion and Open Problems

Employing the Paradigm from the Half-plane test The strategy employed
in the half-plane test of section 2 is very simple. First we approximately learn the
position of the dividing line. Then, using the fact that all half-planes consistent
with our knowledge of the dividing line differ only on a fixed ε/2 fraction of the
pixels, we randomly check if the matrix corresponds to these half-planes on the
remaining pixels.

This suggests a general paradigm for transforming PAC learning algorithms
into property tests with 1-sided error. Namely, consider a property P where all
objects with P which are ε/2-close to a given object are the same on all but
ε/2 fraction of the points. In addition, assume there is a proper PAC learning
algorithm with sampling complexity q(n, ε). Then the following test for P has
1-sided error and query complexity q(n, ε/2)+O(1/ε): learn the property within
relative error of ε/2 and then randomly test the object on points where all objects
ε/2-close to the hypothesis coincide. The proof of this fact is very similar to the
case 2 of the analysis of the half-plane test.

Extensions and Lower Bounds We restricted our attention to images rep-
resentable by binary matrices. However, in real life images have many colors (or
intensity values). Property tests for images represented by integer-valued matri-
ces would be a natural generalization. For example, one can generalize convexity
in the following way. Call an image represented by an n× n matrix with values
in R convex if the corresponding function {0, 1, . . . , n− 1}2 → R is convex.

A straightforward extension of our tests to d dimensions seems to give tests
with dependence on d, and thus dependent on the size of the image. It would be
interesting to investigate if this dependence is necessary.

It is known that testing some properties requires a number of queries linear in
the size of the input [4, 2]. However, known hard properties do not seem to have a
natural geometric interpretation. It would be nice to find natural 2-dimensional
visual properties which are hard to test. One such result follows directly from
[1], which shows that testing whether a string of length n is a shift of another



string requires Ω(n1/2) queries. This implies that testing whether the lower half
of an n× n image is a shift of the upper half requires Ω(n1/2) queries. It would
be interesting to find even harder visual properties.
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