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(a) input (b) defocus map (c) our result with magnified defocus

Figure 1: Our technique magnifies defocus given a single image. Our defocus map characterizes blurriness at edges. This enables shallow
depth of field effects by magnifying existing defocus. The input photo was taken by a Canon PowerShot A80, a point-and-shoot camera with a
sensor size o7.18x 5.32mm, and a7.8 mm lens at f/2.8.

Abstract

A blurry background due to shallow depth of field is often desired for photographs such as portraits, but, unfortu-
nately, small point-and-shoot cameras do not permit enough defocus because of the small diameter of their lenses.
We present an image-processing technique that increases the defocus in an image to simulate the shallow depth of
field of a lens with a larger aperture.

Our technique estimates the spatially-varying amount of blur over the image, and then uses a simple image-based
technique to increase defocus. We first estimate the size of the blur kernel at edges and then propagate this defocus
measure over the image. Using our defocus map, we magnify the existing blurriness, which means that we blur
blurry regions and keep sharp regions sharp. In contrast to more difficult problems such as depth from defocus,
we do not require precise depth estimation and do not need to disambiguate textureless regions.

Categories and Subject Descript¢ascording to ACM CCS) 1.3.8 [Computer Graphics]: Applications

1. Introduction aperture. This means that compact cameras that rely on
smaller sensors — and therefore on smaller lenses — yield
less defocus and cannot blur the background the way a large-
aperture single-lens reflex (SLR) lens can (Fp.While a
smaller amount of defocus (larger depth of field) can be de-
sirable, for example in landscape or macro photography, it is
often a serious limitation for portraits and creative photog-
raphy. Users of compact cameras often complain that their
portraits do not look “artistic” and lack the clarity afforded

For a given field of view and subject distance, depth of by defocused backgrounds. In fact, the quality of a blurry
field is directly related to the physical diameter of the lens

Sharp foreground with blurred background is preferred in
many types of photography such as portraits. But point-and-
shoot cameras have small lenses and sensors, which fun-
damentally limits their ability to defocus the background
and generate shallow depth of field. We present an image-
processing technique that magnifies existing defocus given a
single photo.
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background, calletbokeh has a real cult following among  know the focus distance and focal length to computer the
some photographers. depth map. In contrast, we do not estimate the depth but the
blur kernel. We want to treat this problem without the help
of any special camera settings, but only with image post-
processing techniques.

Image processing methods have been introduced to mod-
ify defocus effects without reconstructing depth. Eltoukhy
and Kavusi EK03] use multiple photos with different focus
= , settings and fuse them to produce an image with extended

(a) large sensor (22.2 x 14.8 mm)  (b) small sensor (7.18 x 5.32 mm) depth of field. Ozkan et aldrs94 and Trussell and Fo-

) ) ) ) gel [TF9Z have developed a system to restore space-varying
Figure 2: Given the same field of view and the same f- ) rred images and Reeves and MerserdaMd?] find a
number (f/2.8), a large sensor (a) yields more defocus than 1, model to restore blurred images. This is the opposite of
a small sensor (b) does. what we want to do. They want to restore blurred images,
while we want to increase existing blurriness.

Our technique takes a single input image where the depth  Kypota and AizawaKA05] use linear filters to recon-
of field is too large and increases the amount of defocus gtryct arbitrarily focused images from two differently fo-
present in out-of-focus regions. That is, our goal is 0ppo- cysed images. On the contrary, we want to modify defocus
site to that of work that seeks to create images that are sharpeffects only with a single image. Lai et aLFC97] use a sin-
everywhere. gle image to estimate the defocus kernel and corresponding

Our approach first estimates the spatially-varying amount depth. But their method only works on an image composed
of blur over the image, and then uses an off-the-shelf image- Of Straight lines at a spatially fixed depth.
based technique to increase defocus. We first estimate the  Gjyen an image with a corresponding depth map, depth
size of the blur kernel at edges, building on the method by f field can be approximated using a spatially-varying blur,
Elder and ZuckerEZ9¢, and then propagate this defocus e.g. PC81BHK*03], but note that special attention must be
measure over the image with a non-homogeneous optimiza- paid to occlusion boundarieBTCHOS. Similar techniques
tion. Using our defocus map, we can magnify the existing are now available in commercial software such as Adobe
blurriness, which means that we further blur blurry regions - ppotoshom (lens blur) and Depth of Field Generator Pro
and keep sharp regions sharp. (dofpro.con. In our work we simply use these features and

Note that in contrast to more difficult problems such as instéad of providing a depth map, we provide a blurriness
depth from defocus, we do not require precise depth estima- Map estimated from the photo. While the amount of blurri-
tion and do not need to accurately disambiguate smooth re- N€SS is only related to depth and is not strictly the same as
gions of the image, since such regions are not much affected depth, we have found that the r.esults qualitatively achieve
by extra blur due to defocus. The fundamental ambiguity be- the desired effect and correctly increase defocus where ap-
tween out-of-focus edges and originally smooth edges is out Propriate. Note that a simple remapping of blurriness would
of the scope of our work. We also do not need to disam- Yi€ld a map that resembles more closely a depth map.
biguate between objects in front and behind the plane of fo-
cus. We simply compute the amount of blur and increase it.
While our method does not produce outputs that perfectly
matches images captured with a larger-aperture lens, it qual- For each pixel, we estimate the spatially-varying amount of
itatively reproduces the amount of defocus. We refer inter- blur. We call our blur estimation thdefocus mapWe es-
ested readers to Appendixwhere we review thin-lens op-  timate the defocus map in two steps. First, we estimate the
tics and defocus. amount of blur at edges. Then, we propagate this blur mea-

sure to the rest of the image.

2. Overview of Our Approach

1.1. Related work We model an edge as a step function and the blur of this
edge as a Gaussian blurring kernel. We adapt the method
by Elder and ZuckerfZ98, which uses multiscale filter re-
sponses to determine the size of this kernel. We add a cross-
tbilateral filtering stepfEDO04, PAH*04] to remove outlier es-
timates.

Defocus effects have been an interest of the Computer Vi-
sion community in the context of recovering 3D from 2D.
Camera focus and defocus have been used to reconstruc
depth or 3D scenes from multiple images: depth from fo-
cus [Hor68 DW88, EL93, NN94, HK06] and depth of defo-

cus Pen87EL93, WN98 FS02JF02FS05. These methods We propagate the blur measure using non-homogeneous
use multiple images with different focus settings and esti- optimization LLWO04]. Our assumption is that blurriness
mate the corresponding depth for each pixel. They have to varies smoothly over the image except where the color is dis-

(© The Eurographics Association and Blackwell Publishing 2007.
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continuous. We propagate blurriness measure to the neigh-
bors with similar intensity and color.

We can use our defocus map to magnify defocus effects.
We blur each pixel according to its estimated blurriness.
If we double our defocus map, it doubles defocus effects
as if the image is taken with an aperture that is twice as
large. In this paper, our results are generated using Agobe
Photoshom® lens blur with our defocus map as a depth map.

3. Blur Estimation

The amount of blur can be estimated reliably only in areas of
an image that has significant frequency content. This is why
we focus on edges. However, we need to extract and ana-
lyze edges with various levels of blurriness, which makes the
technigue by Elder and ZuckeEX9§ particularly appro-
priate. We refine their technique by introducing the explicit
fitting of a blurred edge model that is more robust than the
original technique. Also, our refinement step reduce outliers
due to blurry features such as soft shadows.

3.1. Detect blurred edges

Following Elder and Zucker, we model an edge as a step
function in intensity, and the blur of this edge as a Gaussian
blurring kernel:

1

2
2mog

9(x.y,0p) = exp(—(¢+Y?)/205) (1)
whereagy, denotes the scale of the blur, and is what we want

to estimate.

For each pixel, Elder and Zucker determine the right
scale for edge detection using the noise thresholds. More
details can be found in the Append& We usedo; €
{6432168421®} pixelsando, € {3216 84 2 1 (b} pix-
els. We apply a strict thresholgh = 2.5 anda; = 0.0001%
to achieve very reliable blur estimation.

3.2. Estimate blur

In their technique, Elder and Zucker estimate the amount
of blur by measuring the distandebetween second deriva-
tive extrema of opposite sign in the gradient direction. This
directly follows from the analytical derivation of a perfect
step edge convolved with a Gaussian, as shown in their pa-
per [EZ9§.

However, we have found that, for real images, the local-
ization of the second-derivative extrema of the edge using
the zero-crossing of the third derivative is not robust, which
is acknowledged in their article. This leads to errors in the
estimation of the blur amount. Therefore, instead of measur-
ing the distance between actual extrema, we fit the multiscale
models of the second derivative Gaussian filter response to

=== blurred edge

=== 2nd derivative
response model

Figure 3: The model for the distance between second-
derivative extrema. We numerically fit this response model
with variousd around the edge pixel and along the gradi-
ent direction to find the distanakwith a least square fitting
error.

fitting error. Given the estimated distance, we compute the
size of blur kerneby, using Equatior? (d). This provides us
with a sparse set of blur measu@s! at edge pixels in the
image.

We fit the response model using a brute-force strategy. We
fit the response model with a number of values for distance
d (Fig. 3) to a window around the edge pixel and along the
gradient direction. Elder and Zucker use an edge pixel at the
dark side of the edge. But we found that using both bright
and dark sides of the edge generates more reliable defocus
maps. We use window sizes fraBx 3to 71 x 71. Given a
blurred step edge along the y axis of amplitdand blur
parameteny, the expected response to the second derivative
filter is modeled by:

B(xY.02) = AuX)*g5(x,y,0f + 03) (2a)
- Wem—mw&w&»

(2b)

- ﬁexp(—xz/zw/zﬁ 20)

with: (d/2)2 = of + 03 (2d)

whereu(x) is a step function. We deriva from the local
extrema within each window.

Figure 4 shows that our approach can successfully es-
timate blur measures while the zero-crossing of the third
derivative cannot localize the second derivative extrema.

3.3. Refine blur estimation

Depth of field effects are not the only cause of edge blur-
riness in images and phenomena such as soft shadows and
glossy highlights can result in erroneous estimates of defo-

We suppress the influence of these outliers by smoothing
the blur measure with an edge-preserving filter. We apply
cross bilateral filteringED04, PAH*04] to our sparse set of
blur measuresBM. The cross-bilateral filtering output is a

the pixel responses and find the distance with a least squareweighted mean of its neighbors where the weights decrease

(© The Eurographics Association and Blackwell Publishing 2007.
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| L
(a) input (b) actual blur sigma  (c) the zero-crossing of (d) blur measure
the third derivative using our approach

Figure 4: The zero-crossing of the third derivative (c) is greatly affected by neighboring edges and cannot localize the second
derivative extrema. In contrast, our approach (d) can estimate the blur sigma that is close to the actual blur sigma (b). The
input (a) is generated using the blur sigma (b).

with the distance in space and with the range difference of a intensities and colors. We minimize the difference between
reference image. the blurrines$B(p) and a weighted average of blurriness of

In addition to the original cross bilateral filtering weights, neighboring pixels:

we use a sharpness biagBM) = exp(—BM/2). The sharp-
ness bias corrects blur measures in soft shadows and glossy _ _ 2
highlights that are higher than they are supposed to be. E®) = 2 (BF) WpqB(0)) (4a)

aeN(p)
With g () = exp(—x2/20?), a Gaussian function, we de- + z ap (B(p) — BM(p))? (4b)
fine the biased cross bilateral filtering of a sparse set of blur _ c 2
measuresBM at an edge pixgb as the following: with:  wpq O z exqw) (4c)
ic{RG,B} 207
1 whereay, is the standard deviation of the intensities and col-
bCBRBM)p = Wpg b(BMg) BMq (3a) ors of neiboring pixels in a window aroun The window
qeBM size used ig x 7. We have experimented both with setting
with:  wpg O z 9o, (IP—al) 9¢, (ICi(p) —Ci(a)|) the second term as hard constraints vs. as a quadratic data
i€{RG,B} term, and have found that the latter is more robust to poten-
(3b) tial remaining errors in the blur measure.
and k = Wpq b(BMg) (3c) We solve this optimization problem by solving the cor-
qeBM responding sparse linear system. Figbishows the defocus

. . map for various values af. We usea = 0.5 for edge pixels.
where gs controls the spatial neighborhood, agd the P gep

influence of the intensity difference, afdnormalizes the

weights. We use the RGB color channels of the original input 5. Results

image as the reference and spt= 10%of the image range  \ye have implemented our blur estimation using Matlab. Our

and 05 = 10% of the image size. This refinement process efocus map enables defocus magnification. We rely on Pho-

does not generate much change but refines a few outliers 8Soshop’s lens blur to compute the defocused output. We crop

shown in Figures. The cross bilateral filtering refines out- o upper and loweB% of the defocus map and clamp its

liers such as yellow and green measures (b) in the focused minimum value to 0. In addition, we apply Gaussian blur to

regions to be blue (c). the defocus map to use it as a depth map. The Gaussian blur
radius is set t®.5% of the image size.

4. Blur Propagation Using our defocus map, we can simulate the effect of dou-
bling the aperture size. Figufecompares two input defocus
maps of two images with the f-number 8 (a) and 4 (b). As
we double the defocus map (c) of the /8 image, we obtain a
result similar to the defocus map (d) of the f/4 image. While
the simulated defocused map (e) is not exactly the same as
the real map (d), the output image with magnified defocus
(f) is visually close to the f/4 photograph (b).

Our blur estimation provides blur kernels only at edges
and we need to propagate this blur measure. We use non-
homogeneous optimization.[W04] and assume that the
amount of defocus is smooth when intensity and color are
smooth.

4.1. Propagate using optimization In Figure 11, we show the results of using our defocus

Our propagation is inspired by theplorization paper by map to magnify the existing defocus effects in the original
Levin et al. LLWO04]. We impose the constraint that neigh- images. The results preserve the sharpness of the focused re-
boring pixelsp, g have similar blurriness if they have similar  gions but increase the blurriness of the out-of-focus regions.

(© The Eurographics Association and Blackwell Publishing 2007.
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(a) input (b) blur measure before (c) blur measure after
the cross bilateral filtering the cross bilateral filtering

Figure 5: Blur measure before and after the cross bilateral filtering. The cross bilateral filtering refines outliers such as yellow
and green measures (b), which mean blurry, in the focused regions to be blue measures (c), which means sharp. The blur
measures are downsampled using nearest neighbor for better illustration.

a=0.2 o=0.5 oa=1

Figure 6: Defocus map with various. a controls the balance between the smoothness penalty term and data term in Equation
4. We usex = 0.5 for edge pixels and' = 0 for non-edge pixels, which do not have values. In this plot, red means blurry region
and blue means sharp regions. The input image is Figure

In addition, while our defocus map is not really a depth affected by extra blur due to defocus. For example, the gra-
map, it is sometimes possible to use it to refocus a photo- dients in human skin are interpreted as blurry regions. How-
graph resembling the effect of Ng et aNL[B*05] and Isak- ever, such artifacts do not cause visual defects in the results
sen et al. [MGO0Q]. Figure8 shows a result where our defo-  with magnified defocus. You can notice some of these issues
cus magnification is applied with a virtual focusing distance. in Figurell.

Before we apply lens blur, we performed deconvolution us-
ing our defocus map. The result looks as if the foreground is
focused.

A limitation of our technique is that occlusion boundaries
that separate sharp foreground and blurry background are
sometimes erroneously blurred (e.g. the top of the Teddy

Figure 1 andB and the two rows in the middle of Figure  bear in Fig. 1)
11were taken by a Canon PowerShot A80, a point-and-shoot
camera with a sensor size @f18x 5.32mm, and a7.8 mm 6. Conclusions
lens at f/2.8. Figur® and7 were taken by a Canon 1D Mark
Il with a sensor size 0f28.7 x 19.1 mm and a Canon EF
85mm f/1.2L lens. The first input of Figurkl was taken
by a Nikon D50 with a sensor size &3.7 x 15.6 mm and a
1800 mm lens at f/4.8. The two rows at the bottom of Figure
11 are frombigfoto.com

We have presented an image-processing technique to mag-
nify the amount of defocus due to lens aperture. Given a sin-
gle image, we estimate the size of the blur kernel at edges
and propagate the blur measure to the overall image. We use
a multiscale edge detector and model fitting to estimate the
size of blur kernel. We propagate the blur measure assum-

ing that blurriness is smooth where intensity and color are
5.1. Discussion similar.

Our defocus maps are different from their actual depth maps  Unlike more difficult problems such as depth from defo-
mostly in smooth regions of the image that are not much cus, we do not need to generate an accurate depth map and

(© The Eurographics Association and Blackwell Publishing 2007.
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(a) /8 input (b) f/4 input (c) f/8 defocus map  (d) f/4 defocus map (e) doubling (¢) (f) our synthesized result
using (a) and (e)

Figure 7: Doubled defocus. Doubling the defocus map generates a effect of doubling the aperture size. As we double the defocus
map (c) of the f/8 image, we obtain a result similar to the defocus map (d) of the f/4 image. While the simulated defocused map
(e) is not exactly the same as the real map (d), the output image with magnified defocus (f) is visually close to the f/4 photograph

(b).

(a) input (b) defocus map (c) refocusing result using (a) and (b)

Figure 8: Using our defocus map, we can synthesize refocusing effects. We perform deconvolution using our defocus map (b)
and apply lens blur. The result (c) looks as if the foreground is focused. The input photo was taken by a Canon PowerShot A80,
a point-and-shoot camera with a sensor size/df8 x 5.32 mm, and a7.8 mm lens at /2.8.

do not need to disambiguate textureless regions. Our defocusReferences
map focuses on edges and texture regions that are visually

affected by defocusing and approximates textureless regions[BHK 03] BARSKY B., HORN D., KLEIN S., FANG J.,
without causing visual defects. YU M.: Camera models and optical systems used in com-

puter graphics: Part ii, image based technique$CIBSA
In future work, we want to extend this work to video (2003).

inputs where the effect of motion blur needs to be distin-

guished from depth of field. Finally, we also want to further

study occlusion boundaries, a traditional issue for depth of

field effects.
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Appendix A: Defocus and circle of confusion size

Although most camera lenses use more intricate designs
with multiple lens elements, we review the simplified thin
lens model, which suffices in our context.

The main role of a lens is to make all the rays coming
from a point at the focus distance converge to a point in the
image plane. In contrast, the rays originating at a scene point
away from the focus distance converge in front of or behind
the lens, and that point appears as a blurred spot in the im-
age. The blurred spot is called the circle of confusion. It is
not strictly speaking a circle and depends on the aperture
shape and diffraction, but it is often modeled as a circle or a
Gaussian.

We express the circle of confusion diametesf a point
at distances (Figure9). A detailed derivation can be found
in optics textbooks such as Hechttdgc03. Given the focal
length f of the lens, the thin-lens formula gives us the lens-
sensor distancé to focus at distanc®: § = i + 5.

Figure 9: A thin-lens system. The lens’ diameterAisand
its focal length isf. The image plane is at distandg from
the lens and the focus distancels Rays from a point at
distanceS generates a circle of confusion diameterAnd
the rays generates a virtual blur circle diamet€rat the
focus distanc®.

The f-numbeN gives the aperture diamet&ias a fraction
of the focal length A = N f). Note thatN has no unitN is
the number, such as 2.8, that photographers set to control
the diaphragm. The aperture is then denoted by, e.g., /2.8 to
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express that the diameter is the focal length divided by the based on the noise thresholds . They locate edges by test-
f-number. The diameter of the circle of confusion is then ing nonzero gradient and zero-crossing of second derivative
at the minimum reliable scale.

For each pixel, Elder and Zucker compute its multiscale

c=— —— (5) responses to the steerable Gaussian first derivative filters and
steerable second derivative of Gaussian filters and compute
the gradient using the steerable Gaussian first derivative ba-

sis filters:
021
—number (N) = —X 2 2
Lnumger ETI:]I; = 421 g)](_(X7 Y, 01) = 2n—0—4 eX[X— (X + yz)/zal ) (73.)
015 f-number (N) = 8 1
-y
0 GL(xY.01) = 5 oa X 0¢+Y))/208) - (7D)

whereg; is the scale of the first derivative Gaussian estima-
tor. A weighted sum of these two filter responses is used to
compute the gradient directicth that maximizes the gradi-
ent magnitude.

o
o
vy

Circle of confusion (¢) (cm)

0
100 150 200 250 300
Object distance (S) (cm)

They compute the second derivative in the directiams-
ing a steerable second derivative of Gaussian operator:

(/02?1 —(C+y)

Figure 10: This plot shows how the circle of confusion diam-
eter,c, changes according to the change of object diste®ice
and f-numbeNN. c increases as a point is away from the fo-

cus distanc®. The focus distand@ is 200cm, and the focal G(x.¥.02) = 2na? N 202 ) (82)
length f is 8.5cm 5 5
y _ WoP-1 (@Y
| | o % (%Y, 02) = 2nod exp( 207 ) (8b)
Figure 10 shows that the circle of confusion diameter X 0@ +y?)
increases as a point is away from the focus distdhcéhe 0y (XY, 02) = y6 exp( ) (8c)
relationship is not linear (hyperbolic) and is not symmetrical 21107 203
for points in front of and behind the plane in focus. 929 (X,Y,02) = co§(9)g§(x, Y, 02) +sin2(9)g32’(x, Y, 05)
(8d)

We now study the effect of the sensor siXe,To express
the amount of defocus in terms of image-space blur, we use —2c0g6)sin(8)gy (XY, 02) (8e)
the relatlye Size Of, the circle of con.fusmhzlc/xl. For sgn- . whereoy is the scale of the second derivative of Gaussian
sors of different sizes, the same field of view is obtained if filter.
the relative focal lengtt’ = f /X is the same. Replacing
andf by their relative version in Eds we obtain They test the reliability of filter responses by setting a
threshold for each scale. The thresholds are derived from the

sensor noise leve,. In the following equations;; denotes

, |S—-D| £12X the threshold for Gaussian first derivative filter in a function
¢ = s N(D — f’X) ©) of g, andc, denotes the threshold for the second derivative
of Gaussian filter in a function af>.
To a first-order approximation, the amount of defocus is sn/—2Inap
. - . ' p
Cc1(01) = —F——— 9a
proportional to the sensor si2é This confirms that for a 1(01) 22, 012 (92)

given f-numbem, a smaller sensor does not yield as much

defocus as a larger sensor. More defocus could be achieved $V2- erf*l(ap)

by using a smaller f-number (larger lens aperture), but this Ca(02) = 4,/m/3- 023 (9b)
would require bending rays that reach the periphery of the . 1/n
lens aperture by angles that are physically challenging to with:ap = 1—(1-a) (9c)

achieve. Scaling down the sensor and lens inherently scaleswheren is the number of pixels. The thresholds are com-

down the amount of defocus. puted statistically based on the standard deviation of the sen-
sor noises, and a false positive toleranag. At the mini-
mum reliable scale, pixel filter responses are larger than the

Appendix B: Elder and Zucker’s edge detector threshold of the scale.

Elder and ZuckerEZ98 detect edges with various levels of
blurriness. To determine the right scale for edge detection,
they compute the minimum reliable scale for each pixel,
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Figure 11: Results. The original images, their defocus maps, and results blurred using our approach. The inputs were taken
by (a) a Nikon D50 with a sensor size 88.7 x 15.6 mm and a1800 mm lens at f/4.8, (b) a Canon 1D Mark Il with a sensor

size 0f 287 x 19.1 mm and a Canon EF 85mm f/1.2L lens, and (c, d) a Canon PowerShot A80, a point-and-shoot camera with
a sensor size 07.18 x 5.32mm, and a7.8 mm lens at f/2.8. The two at the bottom are from bigfoto.com.
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