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Abstract

To make a compelling photograph, photographers need to carefully choose the
subject and composition of a picture, to select the right lens and viewpoint, and to
make great efforts with lighting and post-processing to arrange the tones and con-
trast. Unfortunately, such painstaking work and advanced skill is out of reach for
casual photographers. In addition, for professional photographers, it is important
to improve workflow efficiency.

The goal of our work is to allow users to achieve a faithful viewpoint for repho-
tography and a particular appearance with ease and speed. To this end, we analyze
and transfer properties of a model photo to a new photo. In particular, we trans-
fer the viewpoint of a reference photo to enable rephotography. In addition, we
transfer photographic appearance from a model photo to a new input photo.

In this thesis,we present two contributions that transfer photographic view and
look using model photographs and one contribution that magnifies existing defo-
cus given a single photo. First, we address the challenge of viewpoint matching
for rephotography. Our interactive, computer-vision-based technique helps users
match the viewpoint of a reference photograph at capture time. Next, we focus on
the tonal aspects of photographic look using post-processing. Users just need to
provide a pair of photos, an input and a model, and our technique automatically
transfers the look from the model to the input. Finally, we magnify defocus given
a single image. We analyze the existing defocus in the input image and increase
the amount of defocus present in out-of focus regions.

Our computational techniques increase users’ performance and efficiency by
analyzing and transferring the photographic characteristics of model photographs.
We envision that this work will enable cameras and post-processing to embed
more computation with a simple and intuitive interaction.

Thesis Supervisor: Frédo Durand
Title: Associate Professor
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Chapter 1

Introduction

A good snapshot stops a moment from running away.

- Eudora Welty (1909-2001)

Photography is a medium of discovery and documentation. Every photograph

has its own purpose. Landscape photographs are to capture magnificent sceneries.

Artistic landscape photographs evoke emotion and carry the viewer away to the

breathtaking beautiful sceneries. Snapshots are to record memorable moments.

Good snapshots are tangible reminders that bring the past experience and moment

into the present. In addition, photographs can be used to document changes. For

example, a photograph taken at the same location many years later can emphasize

change over time. This is called re-photography. Rephotographs are to visualize

historic continuities and changes. When a photograph and its rephotograph match

well, it becomes very evident what is preserved and what changed across time.

Digital technologies have made photography less expensive and more accessi-

ble. Still, casual photographers are often disappointed with their photos that are

different from what they thought to capture. Landscape photos lack contrast and

strength. Portrait photos are not correctly focused or have distracting background

clutter. The viewpoint of the rephoto could be reproduced better at capture time.

The framing and composition could have been done better.

To make a compelling photograph, photography requires creativity, technical
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knowledge, and persistence. Photographers need to carefully choose the subject

and composition of a picture, to select the right lens and viewpoint, and to make

great efforts with lighting and post-processing to arrange the tones and contrast.

Unfortunately, such painstaking work and advanced skill is out of reach for ca-

sual photographers. In addition, for professional photographers, it is important to

improve workflow efficiency.

Advanced computer vision techniques embedded in recent digital cameras,

such as face detection and viewfinder alignment [5], help focus on the right sub-

ject and change framing but do not address viewpoint and composition. Software

such as Apple’s Aperture and Adobe’s Lightroom focuses on workflow optimiza-

tion but offers little interactive editing capabilities.

The goal of our work is to allow users to achieve a faithful viewpoint for repho-

tography and a particular appearance with ease and speed. To this end, we analyze

and transfer properties of a model photo to a new photo. In particular, we trans-

fer the viewpoint of a reference photo to enable rephotography. In addition, we

transfer photographic appearance from a model photo to a new input photo.

1.1 Overview of Our Approach

In this thesis, we present two contributions that transfer photographic view and

look using model photographs and one contribution that magnifies existing de-

focus given a single photo. In “Computational Re-Photography”, we address the

challenge of viewpoint matching for rephotography. Our interactive, computer-

vision-based technique helps users match the viewpoint of a reference photograph

at capture time. Our technique estimates and visualizes the camera motion re-

quired to reach the desired viewpoint. In “Style Transfer”, we focus on the tonal

aspects of photographic look using post-processing. We decouple the tonal aspects

of photos from their contents. Our method handles global and local contrast sepa-

rately. In “Defocus Magnification”, we magnify defocus given a single image. We

analyze the existing defocus in the input image and increase the amount of defocus
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present in out-of focus regions. Let us describe them more in details below.

1.1.1 Computational Re-Photography

Our real-time interactive technique helps users reach a desired viewpoint and lo-

cation as indicated by a reference image. This work is inspired by rephotography,

the act of repeat photography of the same site. Rephotographers aim to recapture

an existing photograph from the same viewpoint. However, we found that most

rephotography work is imprecise because reproducing the viewpoint of the orig-

inal photograph is challenging. The rephotographer must disambiguate between

the six degrees of freedom of 3D translation and rotation, and the confounding

similarity between the effects of camera zoom and dolly.

The main contribution of our work is the development of the first interactive,

computer-vision-based technique for viewpoint guidance. We envision our tool

running directly on the digital camera. However, since these platforms are cur-

rently closed and do not have enough processing power yet, our prototype consists

of a digital camera connected to and controlled by a laptop. At capture time, users

do not need to examine parallax manually, but only need to follow our real-time

visualization displayed on a computer in order to move to a specific viewpoint

and location. The user simply captures a video stream of the scene depicted in

the reference image, and our technique automatically estimates the viewpoint and

lens difference and guides users to the desired viewpoint. Our technique builds on

several existing computer vision algorithms to detect and match common features

in two photographs [6] and to compute the relative pose between them [7, 8]. We

demonstrate the success of our technique by rephotographing historical images

and conducting user studies. We envision that this work would enable cameras to

become more interactive and embed more computation.
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1.1.2 Style Transfer

Our technique transfers the tonal aspect of photographic look from a model pho-

tograph onto an input one. We handle global and local contrast separately. Our

method is inspired by traditional photography, where the darkroom offers remark-

able global and local control over the brightness, contrast, and sharpness of images

via a combination of chemical and optical processes [4, 9].

Our method is based on a two-scale non-linear decomposition of an image.

We modify different layers according to their histograms. To transfer the spatial

variation of local contrast, we introduce a new edge-preserving textureness that

measures the amount of local contrast. We recombine the two layers using a con-

strained Poisson reconstruction. Finally, additional effects such as soft focus, grain

and toning complete our look transfer.

1.1.3 Defocus Magnification

We take a single input image that lacks defocus and increase the amount of defocus

present in out-of focus regions. A blurry background due to shallow depth of field

is often desired for photographs such as portraits, but, unfortunately, small point-

and-shoot cameras do not permit enough defocus because of the small diameter

of their lenses and their small sensors. We present an image-processing technique

that increases the defocus in an image and simulates the shallow depth of field of

a lens with a larger aperture.

Our technique estimates the spatially-varying amount of blur over the image,

and then uses a simple image-based technique to increase defocus. We first es-

timate the size of the blur kernel at edges and then propagate this defocus mea-

sure over the image. Using our defocus map, we magnify the existing blurriness,

which means that we blur blurry regions and keep sharp regions sharp. In contrast

to more difficult problems such as depth from defocus, we do not require precise

depth estimation and do not need to disambiguate textureless regions.
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1.2 Thesis Overview

This thesis addresses analysis and transfer of photographic viewpoint and ap-

pearance. Given a model photo, we transfer its photographic viewpoint and ap-

pearance to an input photo. Chapter 2 introduces some background information

that inspired this thesis. We provide a brief overview on traditional photogra-

phy. Chapter 3 discusses previous work that addresses computer vision and com-

puter graphics challenges related to our goal. Chapter 4 presents our viewpoint

guidance technique. We describe our method and demonstrate the success of our

technique by presenting rephotography results and user study results. Chapter 5

presents our two-scale tone transfer method. We perform a faithful reproduction

of the tonal aspects of model photographs. Chapter 6 shows our defocus magnifi-

cation technique. Our image-processing technique simulates the shallow depth of

field effects. Chapter 7 summarizes our work and discusses our future work.
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Chapter 2

Background

Our techniques are inspired by and related to traditional photography. This chap-

ter provides a brief overview on camera models including the pinhole camera, lens

camera, and view camera, photographic printing, and rephotography.

2.1 Camera Models and Geometric Image Formation

In this section, we review some of the basic camera models related to our tech-

nique. First, we describe the geometric image formation by a pinhole camera. Sec-

ond, we examine a lens camera and the amount of defocus. Finally, we discuss a

view camera and its rising front adjustment.

2.1.1 Pinhole Camera and Perspective Projection

Most computer vision algorithms assume perspective projection formed by a pin-

hole camera. The pinhole camera is the simplest camera model. It maps 3D onto

2D using perspective projection. Rays of light pass through a pinhole and form an

inverted image of the object on the image plane, as shown in Figure 2-1.

Using homogeneous coordinates allows projection to be a matrix multiplica-

tion, as shown in Equation 2.1. K is a 3 × 3 intrinsic matrix that maps the 3D

camera coordinate to the 2D pixel coordinate in homogeneous coordinates. Equa-
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Figure 2-1: Illustration of the image formation using perspective projection of a
pinhole camera. A 3D world point P is projected onto a 2D image point p.

tion 2.2 shows that K has five degrees of freedom including skew s, focal length

fy, principal point (u0, v0), and aspect ratio fx/fy. In this thesis, we assume that

there is no skew and the aspect ratio is equal to 1. This leaves us three parameters

to estimate: two for the principal point and one for the focal length.
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2.1.2 Lens Camera and Defocus

In the pinhole camera, a smaller pinhole generally results in sharper images. How-

ever, due to the wave properties of light, an extremely small hole can produce

diffraction effects and a less clear image. In addition, with a small pinhole, a long

exposure is required to generate a bright image. A lens replaces the pinhole to fo-

cus the bundle of rays from each scene point onto the corresponding point in the

image plane. This substitution makes the image brighter and sharper. Although

most camera lenses use more intricate designs with multiple lens elements, here

we review the simplified thin lens model, which suffices in our context.

The main role of a lens is to make all the rays coming from a point at the focus

distance converge to a point in the image plane. In contrast, the rays originating at

a scene point distant from the focus distance converge in front of or behind the im-

age plane, and that point appears as a blurred spot in the image. The blurred spot

is called the circle of confusion. It is not strictly speaking a circle and depends on

the aperture shape and diffraction, but it is often modeled as a circle or a Gaussian.

We express the circle of confusion diameter c of a point at distance S (Figure

2-2). A detailed derivation can be found in optics textbooks such as Hecht’s [10].

Given the focal length f of the lens, the thin-lens formula gives us the lens-sensor

distance fD to focus at distance D: 1
f

= 1
fD

+ 1
D

.

D

S

A X
c

f

fD

Figure 2-2: A thin-lens system. The lens’ diameter is A and its focal length is f .
The image plane is at distance fD from the lens and the focus distance is D. Rays
from a point at distance S generates a circle of confusion diameter c. And the rays
generates a virtual blur circle diameter C at the focus distance D.

The f-number N gives the aperture diameter A as a fraction of the focal length

(A = Nf ). Note that N has no unit. N is the number, such as 2.8, that photogra-
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phers set to control the diaphragm. The aperture is then denoted by, e.g., f/2.8 to

express that the diameter is the focal length divided by the f-number. The diameter

of the circle of confusion is then

c =
|S −D|

S
· f 2

N(D − f)
(2.3)
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Figure 2-3: This plot shows how the circle of confusion diameter, c, changes ac-
cording to the change of object distance S and f-number N . c increases as a point
is away from the focus distance D. The focus distance D is 200cm, and the focal
length f is 8.5cm

Figure 2-3 shows that the circle of confusion diameter c increases as a point is

away from the focus distance D. The relationship is not linear (hyperbolic) and is

not symmetrical for points in front of and behind the plane in focus.

We now study the effect of the sensor size, X . To express the amount of defocus

in terms of image-space blur, we use the relative size of the circle of confusion

c′ = c/X . For sensors of different sizes, the same field of view is obtained if the

relative focal length f ′ = f/X is the same. Replacing c and f by their relative

version in Eq. 2.3 we obtain

c′ =
|S −D|

S
· f ′2X
N(D − f ′X)

(2.4)

To a first-order approximation, the amount of defocus is proportional to the

sensor size X . This confirms that for a given f-number N , a smaller sensor does
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not yield as much defocus as a larger sensor. More defocus could be achieved by

using a smaller f-number (larger lens aperture), but this would require bending

rays that reach the periphery of the lens aperture by angles that are physically

challenging to achieve. Scaling down the sensor and lens inherently scales down

the amount of defocus. In this thesis, we synthesize the shallow depth of field

effect by increasing the amount of defocus existing in an input image using image

processing techniques.

2.1.3 View Camera and Principal Point

The view camera is the most versatile of the large-format cameras. Historical pho-

tographs were often taken with view cameras. The view camera comprises a flex-

ible bellows, which allow photographers to control focus and convergence of par-

allel lines by varying the distance between the lens and the film over a large range.

Figure 2-4 illustrates a view camera.

Figure 2-4: View cameras and its movement of the standard front rise. (Images
from wikipedia.)

In particular, the rising front adjustment is a very important movement espe-

cially in architectural photography. The lens is moved vertically up along the lens

plane in order to change the portion of the image that will be captured on the

film. Figure 2-5 demonstrates the effect of rising front. The main effect of rise is to

eliminate converging parallels when photographing tall buildings. If a camera is

pointed at a tall building without rise movement nor tilt, the top will be cut off. If
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the camera is tilted upwards to get it all in, the film plane will not be parallel to the

building, and the top of the building will appear narrower than its bottom. That

is, parallel lines in the object will converge in the image.

Figure 2-5: Effect of rising front. The lens is moved vertically up along the lens
plane in order to change the portion of the image that will be captured on the film.
As a result of rise, the principal point is not located at the image center, but at the
bottom of the image. (Images from The Camera [1] by Adams)

The principal point is the intersection of the optical axis with the image plane.

As a result of rise, the principal point does not locate at the image center, but at

the image bottom. When we estimate the viewpoint of the reference photo, we

estimate the location of the principal point as preprocessing.
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2.2 Rephotography

Rephotography is the act of repeat photography; capturing a photograph of the

same scene from the same viewpoint of an existing photograph typically much

older. Figure 2-6 shows two examples. A photograph and its rephotograph can

provide a compelling “then and now” visualization of the progress of time. When

a photograph and its rephotograph match well, a digital cross-fade between the

two is a remarkable artifact. A hundred years go by in the blink of an eye, and

it becomes immediately evident which scene elements are preserved across time,

and which have changed.

However, precise rephotography requires a careful study of the viewpoint,

lens, season, and framing of the original image. Exactly matching a photograph’s

viewpoint “by eye” is remarkably challenging. The rephotographer must disam-

biguate between the six degrees of freedom of 3D translation and rotation, and

the confounding similarity between the effects of camera zoom and dolly. Our

viewpoint visualization technique automatically estimates the lens and viewpoint

differences. Users only need to follow our real-time visualization in order to move

to a specific viewpoint and location instead of manually examining parallax.

2.3 Traditional Photographic Printing

Photographic printing is the process of producing a final image on paper. Tradi-

tional photographic printing is performed in a photographic darkroom. The dark-

room offers remarkable global and local control over the brightness, contrast, and

sharpness of images via a combination of chemical and optical processes [9, 4]. As

a result, black-and-white photographs vary in their tonal palette and range. Pho-

tographers like Adams (Fig. 2-8a) exhibit strong contrast with rich blacks, while

artists like Stieglitz (Fig. 5-15a) rely more on the mid-tones. This suggests the in-

tensity histogram as a characterization of tonal look.

However, we propose that the spatial distribution of tones must be taken into
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Figure 2-6: Rephotography gives two views of the same place around a century
apart. Pictures are from New York Changing [2] and Boston Then and Now [3].
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Figure 2-7: Ansel Adams using a dodging tool (from The Print [4] by Adams). He
locally controls the amount of light reaching the photographic paper.

account because a histogram does not deal with local contrast. The amount of

texture is crucial in photographs; some artists use vivid texture over the entire

image (Fig. 2-8b), while others contrast large smooth areas with strong textures in

the remaining parts of the image (Fig. 2-8a). Furthermore, the human visual system

is known to be more sensitive to local contrast than to low spatial frequencies.

Finally, a photograph is characterized by low-level aspects of the medium such as

tone (e.g. sepia toning) and grain (controlled by the film and paper characteristics).

These observations drive our approach. We use decompositions of an image that

afford direct control over dynamic range, tonal distribution, texture and sharpness.
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(a) (b) 

Figure 2-8: Typical model photographs that we use. Photo (a) exhibits strong con-
trast with rich blacks, and large textured areas. Photo (b) has mid-tones and vivid
texture over the entire image.
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Chapter 3

Related Work

Computational photography extends the capabilities of digital photography. This

thesis focus on transfer of photographic characteristics including viewpoint, tonal

aspects, and defocus. In this chapter, we review previous work that addresses

related challenges.

3.1 Viewpoint Estimation

To the best of our knowledge, we are the first to build an interactive tool that directs

a person to the viewpoint of a reference photograph. However, estimating camera

positions and scene structures from multiple images has been a core problem in

the computer vision community [11, 12, 8, 13].

We visualize the desired movement at capture time. One alternative to our

approach is to capture a nearby viewpoint and warp it to the desired viewpoint

after capture [14, 15, 16]. However, parallax and complex scene geometry can be

challenging for these algorithms, and the result would be inaccurate.

Our technique is related to visual homing research in robotics, where a robot

is directed to a desired 3D location (e.g., a charging station) specified by a pho-

tograph captured from that location. The visual homing approach of Basri et al.

[17] also exploits feature matches to extract relative pose; the primary difference

is that robots can respond to precise motion parameters, while humans respond

39



better to visualizations in a trial and error process. More recent work exists on

real-time algorithms that recover 3D motion and structure [18, 19], but they do not

aim to guide humans. There exist augmented reality systems [20] that ease navi-

gation. However they assume that the 3D model is given, while the only input to

our technique is an old photograph taken by an unknown camera.

We are not the first to exploit the power of historical photographs. The 4D Cities

project (www.cc.gatech.edu/4d-cities) hopes to build a time-varying 3D model of

cities, and Photo Tourism [21] situated older photographs in the spatial context of

newer ones. However, neither project helps a user capture a new photograph from

the viewpoint of a historical one.

Real-time visualization on a camera allows photographers to achieve a variety

of tasks. It helps photographers focus on the right subject and change framing and

settings. In addition to the traditional simple functions, advanced computer vi-

sion techniques have been embedded in recent digital cameras and mobile phones.

Face detection, the Viewfinder Alignment of Adams et al. [5], feature matching

and tracking on mobile phones [22, 23], and the Panoramic Viewfinder of Baud-

isch et al. [24] are such examples. The Panoramic Viewfinder is related to our

technique, though its focus is the real-time preview of the coverage of a panorama

with no parallax. The implementation of matching and tracking algorithms on

mobile phones is complementary to our technique. We focus on the development

of an interactive visualization method based on those tools.

3.2 Style Transfer

The frequency contents have been used to measure statistical characteristics of nat-

ural images. Field investigated the two-dimensional amplitude spectra and found

regularity among natural images that the average amplitude falls as “ 1
f

” [25].

This property is called scale invariance [26]. We observe that natural images fol-

low such scale invariant property, while artistic photographs do not show such

invariance. In addition to the scale invariance, image statistics have been shown to
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be non-stationary [27]: local statistical features vary with spatial location. In this

thesis, we use the scale variance and the variations in non-stationarity to analyze

and transfer photographic styles.

Tone-mapping seeks the faithful reproduction of high-dynamic-range images

on low-dynamic-range displays, while preserving visually important features [28].

Our work builds on local tone mapping where the mapping varies according to the

neighborhood of a pixel [29, 30, 31, 32, 33, 34]. The precise characteristics of film

have also been reproduced [35, 31]. However, most techniques seek an objective

rendering of the input, while we want to facilitate the exploration and transfer of

particular pictorial looks.

Style transfer has been explored for the textural aspects of non-photorealistic

media, e.g. [36, 37], and DeCarlo et al. stylize photographs based on saliency

[38]. In contrast, we seek to retain photorealism and control large-scale effects

such as tonal balance and the variation of local detail. In addition, our paramet-

ric approach leads to continuous changes supported by interactive feedback and

enables interpolations and extrapolations of image look.

Our work is inspired by the ubiquitous visual equalizer of sound devices. Sim-

ilarly, the modification of frequency bands can alter the “mood” or “style” of mo-

tion data [39]. The equivalent for images is challenging because of the halos that

frequency decomposition can generate around edges. Our work can be seen as

a two-band equalizer for images that uses non-linear signal processing to avoid

halos and provides fine tonal and spatial control over each band.

Recently manual adjustment tools [40, 41] are developed and multiscale edge-

preserving decomposition schemes [42, 43] are introduced. There are complemen-

tary to our technique. We aim to transfer photographic looks from model pho-

tographs.
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3.3 Defocus

Defocus effects have been an interest of the Computer Vision community in the

context of recovering 3D from 2D. Camera focus and defocus have been used to

reconstruct depth or 3D scenes from multiple images: depth from focus [44, 45, 46,

47, 48] and depth of defocus [49, 46, 50, 51, 52, 53]. These methods use multiple

images with different focus settings and estimate the corresponding depth for each

pixel. They have to know the focus distance and focal length to computer the

depth map. In contrast, we do not estimate the depth but the blur kernel. Recently,

specially designed cameras [54, 55, 56] are introduced to infer depth or blur kernel

after the picture has been taken. We want to treat this problem without the help of

any special camera settings, but only with image post-processing techniques.

Image processing methods have been introduced to modify defocus effects

without reconstructing depth. Eltoukhy and Kavusi [57] use multiple photos with

different focus settings and fuse them to produce an image with extended depth

of field. Özkan et al. [58] and Trussell and Fogel [59] have developed a system to

restore space-varying blurred images and Reeves and Mersereau [60] find a blur

model to restore blurred images. This is the opposite of what we want to do. They

want to restore blurred images, while we want to increase existing blurriness.

Kubota and Aizawa [61] use linear filters to reconstruct arbitrarily focused im-

ages from two differently focused images. On the contrary, we want to modify

defocus effects only with a single image. Lai et al. [62] use a single image to esti-

mate the defocus kernel and corresponding depth. But their method only works

on an image composed of straight lines at a spatially fixed depth.

Given an image with a corresponding depth map, depth of field can be approx-

imated using a spatially-varying blur, e.g. [63, 64], but note that special attention

must be paid to occlusion boundaries [65]. Similar techniques are now available in

commercial software such as Adobe R© Photoshop R© (lens blur) and Depth of Field

Generator Pro (dofpro.com). In our work we simply use these features and instead

of providing a depth map, we provide a blurriness map estimated from the photo.
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While the amount of blurriness is only related to depth and is not strictly the same

as depth, we have found that the results qualitatively achieve the desired effect

and correctly increase defocus where appropriate. Note that a simple remapping

of blurriness would yield a map that resembles more closely a depth map.
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Chapter 4

Computational Re-Photography

This work seeks to facilitate rephotography, the act of repeat photography of the

same site. Rephotographers aim to recapture an existing photograph from the

same viewpoint. However, we found that most rephotography work is impre-

cise and tedious because reproducing the viewpoint of the original photograph is

challenging. The rephotographer must disambiguate between the six degrees of

freedom of 3D translation and rotation, and the confounding similarity between

the effects of camera zoom and dolly.

Our real-time interactive technique helps users reach a desired viewpoint and

location as indicated by a reference image. In a pilot user study, we observed

that people could not estimate depth by examining parallax. In our second user

study, we showed the relative viewpoint information in 3D. Users found it hard to

interpret 3D information; most had a hard time separating translation and rotation

of the camera. The main contribution of our work is the development of the first

interactive, computer-vision based visual guidance technique for human motion.

Users only need to follow our real-time visualization displayed on a computer in

order to move to a specific viewpoint and location instead of manually examining

parallax.

45



4.1 Overview

Figure 4-1: In our prototype implementation, a laptop is connected to a camera.
The laptop computes the relative camera pose and visualizes how to translate the
camera with two 2D arrows. Our alignment visualization allows users to confirm
the viewpoint.

Ultimately we wish to embed the whole computation onto the camera, but our

current implementation has a laptop connected to a camera as shown in Figure

4-1 shows. The camera’s viewfinder images are streamed out to the laptop. The

laptop computes the relative camera pose and visualizes the direction to move the

camera. We give an overview of how users interact with our technique and how

we estimate and visualize the direction to move.

4.1.1 User interaction

We have realized an informal pilot user study to understand the challenges of

rephotography. We found that users have much difficulty judging parallax and the

effect of viewpoint change. In addition, they are confused by the number of de-

grees of freedom: camera translation, rotation, and zoom. We have experimented

a number of simple visualizations that combine the reference and current images

to try to facilitate rephotography, including the difference image, a linear-blend

composite, and side-by-side views. In all cases, users had difficulties interpreting

the displays.

This motivates our approach, which seeks to minimize the number of degrees
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of freedom that the user needs to control to translation only, and displays direct

guidance in the form of arrows. We only provide an alignment visualization to

help with the end game when the user is close enough to the desired viewpoint.

Furthermore, this alignment visualization is made easier to interpret by compu-

tationally solving for the extra degrees of freedom (rotation and zoom), automat-

ically applying the appropriate homography warp to the current image to best

match the reference.

Our approach takes as input a reference (old) image. We require the user to take

a first pair of photographs of the scene from viewpoints that are distinct enough for

calibration and that provide wide baseline to avoid degeneracies. In the case of an

old reference photograph, the user clicks on a few correspondence points in those

original images because the difference in appearance between old and new photos

confuses even state-of-the art feature matching. Our interactive technique then

automatically computes the difference between the current viewpoint and that of

the reference photograph. It displays the required translation vector to guide the

user, and refreshes several times per second. An alignment visualization between

the reference and current images is also refreshed continuously. The automatic

compensation for difference in orientation and zoom (within reason) allows the

user to focus on parallax and the viewpoint itself.

4.1.2 Technical overview

To estimate and visualize the required translation, we leverage a number of computer-

vision methods. In particular, we need to match features between images and

deduce relative camera pose in real time. To achieve both real-time performance

and robustness, we use an interleaved strategy where a fast but simpler method

is refreshed periodically by a more involved and more robust method. Our robust

but slower estimation is based on SIFT matching [6] and a robust relative pose

estimation based on RANSAC [66] and Stewénius’s five-point algorithm [7]. Our

lightweight estimation tracks the feature points estimated trustworthy by the ro-
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bust process using simple tracking [67] and updates the relative pose accordingly.

Figure 4-2 shows our full pipeline.

In addition to very different appearance of historical photos, their focal lengths

and principal points are unknown; historical photographs of urban and architec-

tural scenes were often taken with view cameras where the photographer would

move the optical axis off center to keep verticals parallel while taking photographs

from a low viewpoint. In a preprocess, we estimate the principal point and reg-

ister the reference camera to the first frame. To this end, we triangulate feature

points in the first pair of photographs into 3D points. Given a few correspondence

points provided by the user, we compute the pose and focal length of the reference

camera with respect to the known 3D points using the Levenberg-Marquardt (LM)

nonlinear optimization algorithm [68, 69]. The resulting relative camera pose be-

tween the first frame and the reference is used throughout our main estimation. In

our main estimation, we estimate the camera pose relative to the first view instead

of the reference. Since we know the reference camera location relative to the first-

view, we can derive the relative pose between the current and reference photos.
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Figure 4-2: Overview of our full pipeline. In a preprocess, we register the reference
camera to the first frame. In our main process, we use an interleaved strategy
where a lightweight estimation is refreshed periodically by a robust estimation
to achieve both real-time performance and robustness. Yellow rounded rectangles
represent robust estimation and purple ellipses are for lightweight estimation. The
robust estimation passes match inliers to the lightweight estimation at the end.
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4.2 Preprocess

The �rst frame

Reference

The second frame

structure

feature points feature points

feature points

Estimate

focal length and pose

Estimate

structure and pose

reference focal length + scene structure + [ R10 | T10 ]

Figure 4-3: Preprocessing to register the reference camera.

At runtime, our system is given a reference image and a current frame and

visualizes the translational component of the relative pose. However, there are

four main challenges for viewpoint estimation for rephotography:

1. Historical images have very different appearance from current scenes be-

cause of, e.g., architectural modifications, the film response, aging, weather

and time of day changes. These dramatic differences challenge even state-

of-the art feature descriptors. Comparing gradients and pixel values cannot

find matches between old photographs and current scenes.

2. The focal length and principal point of the reference camera are unknown,

and we have only one image.

3. The resulting translational component from camera pose estimation is unit-

length due to scale ambiguities; the length of the translational component is

not meaningful across frames.
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4. Rephotography seeks to minimize the translational component between the

reference and the current. Unfortunately, pose estimation suffers from mo-

tion degeneracy where there is no translation [?]. Even a narrow baseline

results in unstable pose estimation. The baseline refers to the distance be-

tween the camera centers.

To overcome these challenges, we use a wide-baseline 3D reconstruction. In pre-

processing, we extract a 3D structure of the scene from the first two calibrated

images using Structure from Motion (SfM) [13]. We calibrate the current cameras

using the Camera Calibration Toolbox for Matlab [70]. With respect to the known

3D structure, we compute the pose and focal length of the old reference camera us-

ing Levenberg-Marquardt (LM) nonlinear optimization. The input to the nonlinear

optimization includes 2D-3D correspondences and an estimated principal point of

the reference photo. In the case of an old reference photograph, we ask users to se-

lect six to eight correct matches between the reference image and the second frame.

We estimate the principal point of the reference image using its vanishing points.

This preprocessing outputs the relative camera pose between the first frame and

the reference, which will be used throughout our main estimation.

4.2.1 A wide-baseline 3D reconstruction

We reconstruct the 3D structure of the scene from the first and second view us-

ing triangulation [13]. This 3D information is used to estimate the reference focal

length and consistent scale over frames. For a wide-baseline 3D reconstruction,

we require the user to take a first pair of photographs of the scene from viewpoints

that are distinct enough. That is, we ask the user to take the first frame after ro-

tating the camera 20 degrees around the main subject from the initial guess (See

Fig 4-4.) The interactive process then starts from the second photo. Consequently,

the baseline between the first view and the following frames and the baseline be-

tween the first view and the desired viewpoint become wide. Using a first view

guarantees wide enough baseline and improves the accuracy of the camera pose
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algorithm.

Reference

The current frame

The first frame

Figure 4-4: How to take the first photo rotated from where a user guesses to be the
desired viewpoint.

4.2.2 Reference camera registration

We relate the reference image to the reconstructed world from the first two photos

taken by the user. Given matches between the reference and a current photo, we in-

fer the intrinsic and extrinsic parameters of the reference camera using Lourakis’s

LM package [71]. We assume that there is no skew. This leaves us nine degrees

of freedom: one for the focal length, two for the principal point, three for rotation,

and three for translation. We initialize the rotation matrix to be the identity matrix,

the translation matrix to be zero, and the focal length to be the same as the current

camera. We initialize the principal point by analyzing the vanishing points. We

describe the details below.

Although this initialization is not close to the ground truth, we observe that the

Levenberg-Marquardt algorithm converges to the correct answer since we allow

only 9 degrees of freedom and the rotation matrix tends to be close to the identity

matrix for rephotographying. The final input to the nonlinear optimization is a set
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of matches between the reference and the first photo that users enter. Since we have

already triangulated feature points in the first pair of photographs into 3D points,

we know the 3D positions of the matched feature points. We compute the pose

and focal length of the reference camera with respect to the known 3D locations.

In addition, we re-project all 3D points from the first pair to the reference. These

points are used to estimate the appropriate homography warp for our alignment

visualization.

Principal point estimation

The principal point is the intersection of the optical axis with the image plane.

If a shift movement is applied to preserve the verticals parallel or if the image

is cropped, the principal point is not in the center of the image, and it must be

computed. The analysis of vanishing points provides strong cues for inferring

the location of the principal point. Under perspective projection, parallel lines

in space appear to meet at a single point in the image plane. This point is the

vanishing point of the lines, and it depends on the orientation of the lines. Given

the vanishing points of three orthogonal directions, the principal point is located

at the orthocenter of the triangle with vertices the vanishing points [13], as shown

in Figure 4-5.

We ask the users to click on three parallel lines in the same direction; although

two parallel lines are enough for computation, we ask for three to improve robust-

ness. We compute the intersections of the parallel lines. We locate each vanishing

point at the weighted average of three intersections. The weight is proportional to

the angle between two lines [72]. We discard the vanishing point when the sum of

the three angles is less than 5 degrees.

With three finite vanishing points, we initialize and constrain the principal

point as the orthocenter. If we have one finite and two infinite vanishing points,

we initialize and constrain the principal point as the finite vanishing point. With

two finite vanishing points, we constrain the principal point to be on the vanishing

line that connects the finite vanishing points.
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Vanishing point

Principal point

Figure 4-5: Under perspective projection, parallel lines in space appear to meet at
the vanishing point in the image plane. Given the vanishing points of three or-
thogonal directions, the principal point is located at the orthocenter of the triangle
with vertices the vanishing points

4.2.3 Accuracy and robustness analysis

(a) (b)

Principal point

Figure 4-6: The synthetic cube images we used to test the accuracy of our estima-
tion of principal point and camera pose. The left cube image (a) has its principal
point at the image center, while the right cube image (b) moved its principal point
to the image bottom.

We analyze the accuracy of our estimation of principal point and camera pose

using two synthetic images. We evaluate the robustness of our estimation to user

input error. Figure 4-6 shows our synthetic test cases: cube (a) has its principal

point at the image center, and cube (b) has its principal point moved to the image
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bottom. The cube size is 3x3x3, and the distance between the cube and the camera

is around 6. The input image size is 512 × 340.

For the first test, we randomly add or subtract up-to 2 pixels to each user input

for principal point estimation and pose estimation. For principal point estimation,

the inputs to our principal point estimation are 18 points for three parallel lines

in the three orthogonal directions. The inputs to pose estimation are 6 points. We

estimate the principal point and pose 100 times and record the average error. Table

4.1 shows the result. The average viewpoint errors are 0.001 for cube (a) and 0.016

for cube (b). These are 0.02% and 0.25% of the camera distance. The average princi-

pal point errors are 0.2 pixels and 1.8 pixels respectively. These are 0.05% and 0.4%

of the image size. This shows that our principal point estimation is robust against

user input error.

cube (a) cube (b)
Viewpoint error 0.001 0.016

0.02% of the camera distance 0.25% of the camera distance
Principal point error 0.2 pixels 1.8 pixels

0.05% of the image size 0.4% of the image size

Table 4.1: Analysis of the robustness of our estimation against the user input error.
Small errors show that our principal point estimation is robust against the user
input error.

For the second test, we add errors to the 3D coordinates used for the non-

linear optimization in addition to the user input error. We compare two cases:

(1) the principal point is constrained by our estimation method using vanishing

points, and (2) the principal point is estimated relying on Levenberg-Marquardt

non-linear optimization. Table 4.2 shows the result. With our vanishing point esti-

mation, the average errors of the estimated principal points are 17 pixels for cube

(a) and 13 pixels for cube (b), and the average viewpoint errors were 0.26 and 0.24

. These are 4% and 3% of the image size, and 3% of the camera distance. In con-

trast, if we only rely on Levenberg-Marquardt non-linear optimization to estimate

the principal point and the viewpoint, the principal point errors are 153 pixels and

126 pixels on average respectively. These are 36% and 30% of the image size, more
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than 9 times larger than the errors using vanishing points. The average viewpoint

errors are 3.75 and 3.8 respectively. These are almost 50% of the camera distance.

Levenberg-Marquardt nonlinear optimization is a local descent approach and re-

lies on good initialization. When significant measurement noise is present in the

initialization, it might converge to a wrong local minimum. In addition, the pro-

jection errors are not discriminative enough to determine the viewpoint and the

principal point at the same time. There exist ambiguities between changing the

principal point and moving the camera. This is reduced by the vanishing point

method.

Principal point error Viewpoint error
cube (a) cube (b) cube (a) cube (b)

WITH our principal 17 pixels 13 pixels 0.26 0.24
point constraint < 4% of the image size 3% of the camera distance

NO principal point 153 pixels 126 pixels 3.75 3.80
constraint > 30% of the image size > 50% of the camera distance

Table 4.2: Our principal point constraint using vanishing point estimation enables
an accurate estimation of the viewpoint.

Finally we analyze the effect of varying the focal length while changing the

camera distance. As a result, the size of the projected cube stays the same, but

camera rotation and principal point modification become harder to disambiguate.

The focal lengths used are 400, 600, 800, and 1000. 400 is equivalent to 20mm,

and 1000 is equivalent to 50mm. The errors increase as the focal length and the

camera distance increase. The principal point errors are 13, 27, 45, and 66 pixels

respectively. These are 3%, 6%, 11%, and 15% of the image size. The viewpoint

errors are 0.4, 0.6, 1.15, and 1.86. These are 5%, 5%, 7%, and 9% of the camera

distance. The more we zoom, the more ambiguous the estimation becomes. This is

related to the fact that the projection error is less discriminative for a photo taken

by a telephoto lens, because the effect of a 3D rotation and that of a 2D translation

become similar.

In our preprocessing, we reconstruct the scene structure using the first and sec-

ond views. With respect to the known 3D structure, we compute the pose and
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focal length of the reference camera using Levenberg-Marquardt (LM) nonlinear

optimization. The input to the nonlinear optimization includes 2D-3D correspon-

dences. In the case of an old reference photograph, we ask the user to clicks on

6-8 matches. This preprocessing outputs the relative camera pose between the first

frame and the reference, which will be used throughout our main estimation.

4.3 Robust Camera Pose Estimation

In our robust estimation process, we estimate the camera pose relative to the first

frame instead of the reference. Due to large appearance differences, it is difficult

even for humans to find matches between the reference and new photos. Since

we know the reference camera location relative to the first view [R10|T10], we can

derive the relative pose between the current and reference photos. For each frame

n, we compute the relative camera pose [R1n|T1n] between the first and the current

frame. The translational component T0n of the relative camera pose between the

reference image and the current scene is

T0n = T1n −R1n ∗R>
10 ∗ T10. (4.1)

In our full pipeline, we interleave this robust estimation with a lightweight

estimation. We present details in Section 4.4.

4.3.1 Correspondence Estimation

To find matches between the first and current frames, we use SIFT [6] feature

points. SIFT is designed to be invariant to scale changes and linear brightness

changes. It is also partially invariant to viewpoint changes. For speed, we use

a GPU implementation [73]. Input images have around one megapixels and we

downsample images by two times for speed-up. For the downsampled images,

SIFT detects around one thousand feature points. We use an approximate search-

ing method, ANN [74] to find correspondences. We set the threshold of the second
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ratio test [6] quite strict at 0.6 to keep only trustworthy correspondences.

4.3.2 Essential Matrix Estimation

We compute relative camera pose between the first view and the current frame.

Since we calibrate the user’s camera using the Camera Calibration Toolbox for

Matlab [70] as preprocessing, we only need to estimate the essential matrix that

relates the calibrated images. We use Stewénius’s five-point algorithm [7], which

estimates the essential matrix between two calibrated cameras in real-time. We run

MSAC (m-estimator sample consensus) to find inliers and the best fitting essential

matrix. MSAC is similar to RANSAC, but it modifies the cost function that outliers

are given a fixed penalty while inliers are scored on how well they fit the data. The

accuracy of MSAC is close to MLESAC (maximum likelihood consensus) without

the loss of speed [75]. We fix the number of iterations at 1000. We determine inliers

and the best fitting essential matrix using the symmetric epipolar distance [13].

Our threshold is 0.01 considering that we use normalized point coordinates.

4.3.3 Scale Estimation

We compute the scale of the translational component of the relative pose by com-

paring the 3D reconstructed in the current frame and the 3D reconstructed in the

pre-processing. We measure the scale of the 3D world based on the median dis-

tance from the camera to the point clouds. The scale of the world is inversely

proportional to the camera distance. We scale the translational vector accordingly.

This scaling makes the length of our arrow visualization meaningful and consis-

tent across frames.

4.3.4 Rotation Stabilization

Users can use our alignment visualization to confirm that they have reached the

desired viewpoint. We automatically resolve the camera’s rotational difference in
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the alignment visualization. We warp the current scene using an infinite homogra-

phy [13]. The infinite homography is more restricted than a general homography.

It assumes square pixels. Our alignment visualization becomes useful when the

user is close to the desired viewpoint. It allows users to focus on translating the

camera in the right direction without striving to hold the camera in the right orien-

tation. We use Brown et al.’s algorithm [76] to compute the infinite homography.

We find the infinite homography that fits all the epipolar geometry inliers with the

least square error.

4.4 Real-time Camera Pose Estimation

We want to provide robust results but interact with users in real-time. Our robust

estimation generates reliable results but its computation is expensive and takes

seconds. To provide real-time feedback, we interleave our robust estimation with a

lightweight estimation, which is not as robust but inexpensive. In our lightweight

estimation, we do not update the correspondences but track the most recent set

of inliers using feature tracking and recompute the relative camera pose in one

iteration.

We use Birchfield’s KLT implementation [77] to track feature points. It con-

tains the affine consistency check [67] and performs a multiscale tracking where it

refines the feature point locations from coarse to fine resolution.

Our robust estimation and lightweight estimation are interleaved as shown in

Figure 4-7. Our robust estimation detects feature points, finds matches, and esti-

mates a new set of inliers and an epipolar geometry using robust statistics. This

takes around two seconds while our lightweight estimation runs at more than 10

frames per second. This interleaved process allows the accuracy of the inliers to be

preserved and provides users with a real-time update.
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Figure 4-7: Our interleaved pipeline. Our robust estimation and lightweight es-
timation are interleaved using three threads: one communicates with the camera,
the other conducts our robust estimation, and another performs our lightweight
estimation. At the end of each robust estimation, a set of inliers is passed to the
lightweight estimation thread. Numbers in this figure indicate the camera frame
numbers. Note that for simplicity, this figure shows fewer frames processed per
robust estimation.

4.4.1 Interleaved Scheme

Our interleaved pipeline is implemented as three threads: one communicates with

the camera, the other conducts our robust estimation, and another performs our

lightweight estimation. At the end of each robust estimation, a set of inliers is

passed to the lightweight estimation thread. We store subsequent fames of the key

frame where the robust estimation computes inliers. When the light estimation

is refreshed with a inlier set from the robust estimation, it starts tracking from

the next frame of the key frame instead of the current camera frame. Since the

lightweight estimation uses optical flow to track points, there should not be a large

gap between the key frame where the inliers are computed and the first frame

where tracking starts. When the inlier set is refreshed with new robust estimation

result; users can observe a one-second delay. However, this is negligible compared

to the whole rephotographying process, and it does not affect the user performance

or resulting rephoto quality. Our interleaved version operates as in Figure 4-8.

4.4.2 Sanity Testing

For each resulting pose, we examine three sanity tests to make sure our visualiza-

tion is reliable.
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  0. Register the reference camera  

  1. Robust estimation starts. Estimate correspondences.

  2. Estimate camera pose.

  3. Estimate the scale of the translation.

  4. Check if the robust estimation result passes sanity testing. 

      If yes, proceed to the next step. Otherwise repeat from Step 1.

  5. Visualize the direction to move. The robust estimation ends.

  6. Multi-threading starts. Thread A repeats robust estimation

      from Step 1, while Thread B performs a lightweight estimation.

  7. Thread B tracks inliers found in Step 2 and estimates camera

      pose using only one iteration.

  8. Estimate the scale of the translation.

  9. Check if the lightweight estimation result passes sanity testing. 

      If yes, proceed to the next step.Otherwise repeat from Step 7.

10. Visualize the direction to move.

11. Repeat from Step 7 until Thread A �nishes Step 5 and updates

      the set of inliers.

Figure 4-8: The flow chart of our interleaved scheme.

We compare the 3D structure reconstructed from each frame with our initial 3D

reconstruction from the first two images. We measure the 3D error of all points and

ignore the pose estimation if the median of the 3D error is more than 10 %. Most

of the time, the median error is less than 5 %.

In addition, we check if the current camera pose result is consistent with pre-

vious ones. We found that a simple filter works, although the Kalman filter [78]

would generate a good result as well. We measure the mean and the standard

deviation of the camera locations at the previous ten frames and confirm that the

current estimated camera location is within 4 standard deviations from the mean.

We assume the camera motion is smooth and the pose variation is small. The above

two tests typically detect a wrong answer once in hundreds frames.

Finally, we test a structure degeneracy where the inliers are all from one plane.

We find the best fitting homography using RANSAC with 1.5 pixel average map-

ping errors within 500 iterations. If the number of homography inliers is more than

70 % of the epipolar geometry inliers, we ignore the pose estimation result. Since

we use a large-enough baseline, this error does not occur in general.
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When our estimation result fails to pass the above tests, we simply do not up-

date the visualization. Since wrong answers do not occur often, this does not affect

the user experience too much.

4.5 Visualization

Figure 4-9: The screen capture of our visualization. It includes two 2D arrows and
an edge visualization. The primary visualization is the two 2D arrows. The top ar-
row is the direction seen from the top view and the bottom arrow is perpendicular
to the optical axis. An edge visualization is next to the arrow window. The user
can confirm that he has reached the desired viewpoint when the edges extracted
from the reference are aligned with the rephoto result in our edge visualization.
We show a linear blend of the edges of the reference image and the current scene
after homography warping.

Comparing the reference and current image side by side does not provide pre-

cise information about viewpoint difference. In our pilot user study, we provided

a linear-blend of the reference and current image, and users could not estimate

the desired viewpoint by examining the pixel difference. In a subsequent test, we

showed the relative pose information in 3D (See Fig. 4-10(a).) Still we found that
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it was hard for users to interpret 3D information. In our final visualization design,

we visualize the relative camera pose in two 2D planes: one is the direction seen

from the top view and the other is perpendicular to the optical axis, as shown in

figure 4-9. In our final user studies, users found our arrow visualization easy to

learn and follow.

In addition, we visualize the alignment between the reference and current pho-

tos to let users to refine and confirm the final viewpoint. Due to the large appear-

ance differences, a linear-blend of the old reference photo and the current scene

does not show whether they are aligned or not. We experimented with three visu-

alizations: an edge visualization, a flipping visualization, and a visualization with

a reference camera projected onto the current frame.

In an edge visualization, we overlay the edges extracted from the reference

image over the current frame. In a flipping visualization, users can flip between the

reference photo and the current frame. In both edge and flipping visualizations,

we warp the current frame using a best-fitting infinite homography [76, 13], which

is not useful for big parallax but good for small translation. As the translational

component becomes zero, the rotational component is resolved by homographies.

Finally, we project the reference camera onto the current frame.

During user studies, we let users to choose among three visualization. All the

users chose the edge visualization to provide them feedback. Users used the flip-

ping visualization only at the final viewpoint to confirm the viewpoint. Users did

not find the projected reference camera useful.

Figure 4-9 shows our final visualization design. Our explicit arrow visualiza-

tion guides users how to move the camera. At the final viewpoint, they can use

our edge visualization to refine and confirm the viewpoint. In addition, we leave

the other two alignment visualization techniques as options.
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4.6 Results

In our prototype, we estimate relative pose using the output we get from the cam-

era viewfinder. We use a Canon 1D Mark III live view, which outputs 5-10 frames

per second. Each robust estimation takes about 2 seconds on a 2.4GHz laptop

with NVIDIA GeForce 8600M GT, while a lightweight estimation tracks inliers, es-

timates the relative pose, and visualizes the arrows at 10-20 frames per second.

With multi-threading, GPU-SIFT takes one second and the approximate nearest

neighbor (ANN) takes one second.

4.6.1 Evaluation

We have performed multiple pilot user studies before finalizing the design of our

user interface.

First pilot user study

In our first pilot user study, we wanted to test whether humans would be able to

estimate the viewpoint differences by simply comparing two photos.

Procedure We asked users to estimate the viewpoint of a reference photo by com-

paring it with the output of the camera viewfinder, while they moved the camera.

We provided two users with three different visualization techniques: the reference

and current image side by side, a linear-blend of the reference and current image,

and a color coded linear blend of the reference in red and current image in blue.

We asked questions to users at the end.

Results and conclusions Comparing the reference and current image side by

side did not seem to provide information about viewpoint differences. Although

users preferred the linear-blend among three visualization, still users could not

estimate the desired viewpoint by examining parallax. This leads to our first visu-

alization design.
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Second pilot user study

In our first visualization design, we showed the relative pose information in 3D

and updated the camera pyramid every 3 seconds (See Fig. 4-10(a).) In a pilot

user study, we wanted to test whether users would be able to take more accurate

rephotos using our 3D pose visualization than using a linear-blend visualization.

Procedure Given the reference photo taken by the same camera, we asked six

users to reach the viewpoint where the reference photo was taken. Note that this

was easier than an actual rephotography: there was not a large appearance dif-

ference, and users did not need to estimate the focal length. We tested 4 indoor

scenes. We measured the accuracy of rephotos by comparing the pixel differences

between the reference and resulting rephotos.

Results and conclusions We observed that neither our visualization nor a linear-

blend visualization helped users to take accurate rephotos. Figure 4-10 shows the

resulting rephotos.

In terms of the pixel differences, users made less errors with our visualization,

70% of the errors with a linear-blend. However, we realized that comparing pixel

differences was not a good metric. We decided to measure the distance from the

users’ final camera location to the ground-truth in the next studies.

In our camera pyramid visualization, users found it hard to interpret 3D in-

formation; most had a hard time separating translation and rotation. In addition,

users asked for a real-time feedback.

Third pilot user study

In the next user study, we tried to guide the user with respect to the distance to the

scene (z). In addition to showing 3D camera pyramids, we told the user how far he

was from the desired viewpoint relative to a scene point, but users did not find it

useful. In general, users preferred a simple visualization; having one visualization
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(b) Rephoto using our technique (c) Rephoto using a linear blend(a) Our camera pyramid visualization

Figure 4-10: User study results with our first visualization. We displayed the rel-
ative camera pose using 3D camera pyramids (a). The red pyramid showed the
reference camera, and the green one was for the current camera. Although the
rephoto using our technique (b) was better than that using a linear-blend (c), nei-
ther helped users to take accurate rephotos.

window helped users focus on the task. Users became tired and lost when they

had to jump between different visualization windows.

First final user study

In our final estimation and visualization, we compute relative camera pose in real-

time and show the direction to move using two 2D arrows (See Fig. 4-9.) We have

conducted two additional user studies to validate our technique.

In the first final user study, we wanted to compare our arrow visualization

technique with a linear-blend visualization. In addition, we included the focal

length estimation: users had to manually estimate the focal length with a linear-

blend estimation, while our visualization automatically resolved the focal length

difference.

Procedure Given the reference photo taken by a different camera, we asked four

users to reach the viewpoint where the reference photo was taken within 3 mins.

We tested two indoor scenes. Each participant experienced both scenes and each
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Our method Linear blend Remark
avg. (m) (a) 0.47 (b) 6.03 (a)/(b) = 7.8%
std. (m) 0.14 2.83
P-value 0.02

Table 4.3: User study errors. With our method, users made less than 8 % of error
than with a linear blend. The P-value is smaller than 0.05. This means that this
result is statistically meaningful and significant.

scene paired with only a single technique for that participant. We marked the

reference camera location on the map and measured the distance from the users’

final camera location to the ground-truth. We did not ask users to choose the first

and second viewpoints. They were fixed among all the users.

Results and conclusions Table 4.3 shows the average distance between the ground-

truth and the final locations where four users took the rephotos for two test cases.

With our method, users made less than 8 % of error than with a linear blend. Users

found that our 2D arrows were easy to learn and follow. Figure 4-11 compared two

rephoto results using both techniques. In every test case, users took more accurate

rephotos with our arrow visualization than with a linear blend visualization.

Second final user study

In our final user study, we wanted to test our user interaction schemes including

providing a wide-baseline, clicking on matches, and comparing two photos with

large appearance differences. We compared the accuracies of the resulting repho-

tos using our technique with those with a naïve visualization. In particular, we

sought to compare the accuracy of the viewpoint localization using our technique

with those using a naïve visualization.

Procedure We compared our technique with a naïve visualization. We added

appearance differences to the reference photos: we transferred the tonal aspects

from old photos to the reference photos [79], as shown in figure 4-12. As a result,

the reference photos had large appearance differences from current photos. Given
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Figure 4-11: User study results in the indoor scenes. Split comparison between the
reference image and users’ rephotos after homography warping. The result at the
top is from a user using our method, and the one at the bottom is from a user using
a linear blend visualization. Notice that the result at the top is aligned better.
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the reference photo taken by a different camera, we asked six users to reach the

viewpoint where the reference photo was taken within 10 mins. We tested three

outdoor scenes. Each participant experienced all the scenes and each scene paired

with only a single technique for that participant.

For both methods, users start from the same initial location. With our tech-

nique, we only fixed the first viewpoint and asked users to choose the second

viewpoint. In addition, users provided correspondences between the reference

and the second frame by clicking six matches. In a naïve visualization method,

we showed both linear blend and side-by-side visualization of the reference and

current frame, since a linear-blend suffered from large appearance differences be-

tween the reference and current photos. Before each user study, we provided users

with a quick tutorial of both methods.

Figure 4-12: In the final user study, the reference photos had old-looking appear-
ances.

Results and conclusions In every test case, users took more accurate rephotos

with our arrow visualization than with a naïve visualization with a linear blend

and a side-by-side. Figure 4-13 and 4-14 compare the rephotos taken with our tech-

nique and those using a naïve visualization. The remaining parallax in the rephoto

results using a naïve visualization is quite large, while users resolved parallax with

our technique.

Table 4.4 shows the average distance between the ground-truth and the final

locations where six users took the rephotos for three test cases. The error with our

method is 40% of the error with a linear blend. The distance difference became

smaller than the indoor cases. In the indoor scenes, the parallax was subtle, but in
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Our method Linear blend Remark
avg. (m) (a) 1.8 (b) 4.4 (b)/(a) = 2.5
std. (m) 0.6 2.9

Table 4.4: User study errors. The error with a linear blend is 2.5 times larger than
the error with our technique.

the outdoor scenes, users could notice some important cues such as that buildings

are occluded or not. Still many people could not figure out how to move the cam-

era to resolve the parallax. With a naïve blend, users had to estimate the location

and focal length of the reference camera by themselves. With our method, users

needed only to follow our arrow visualization while our technique automatically

estimated the location and focal length of the reference camera.

(b) Rephoto using our technique (c) Rephoto using a naïve visualization(a) Reference photo

Figure 4-13: User study results. Left to right: (a) the reference photo and users’
rephotos using our technique (b) and a naïve visualization (c) after homography
warping. The second row show split comparison between the reference image and
users’ rephotos, and the last row has their zoomed-in. With our method, users took
more accurate rephotos.
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(b) Rephoto using our technique (c) Rephoto using a naïve visualization(a) Reference photo

Figure 4-14: User study results. Left to right: (a) the reference photo and users’
rephotos using our technique (b) and a naïve visualization (c) after homography
warping. The last row shows two times zoomed-in blend of rephotos and outline
features from (a) in red. The outline features from (a) match outline features in
(b) but not in (c). This shows that users take more accurate rephotos using our
technique than using a naïve visualization.
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(a) Reference photos (b) Our rephoto results (c) Professional rephotos

without our technique

Figure 4-15: Results. Left to right: the reference images, our rephoto results, and
professional manual rephotos without our method. This shows the accuracy of our
results.

4.6.2 Results on historical photographs

Figure 4-15, 4-16, 4-17, and 4-18 show our rephoto results of historical photographs

taken by unknown cameras. It usually took 15-30 minutes to reach the desired

viewpoint. This took a long time because we had to walk 50-100m with the laptop

and tripod and cross roads. In figure 4-15, a zoomed in linear blend shows the

accuracy of our results. In Figure 4-18, we apply style transfer from the reference

to the rephotos [79]. By matching the tonal aspects, it becomes even more evident

which scene elements are preserved and which have changed across time. Faithful

rephotos reveal the change of roofs, windows, and neighborhood.
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(a) Reference photos (b) Our rephoto results (c) Zoomed-in blend of

(b) and features from (a)

Figure 4-16: Results. Left to right: the reference images, our rephoto results, three
times zoomed-in blend of (b) and outline features from (a) in red. The outline
features from (a) match outline features in (b). This shows the accuracy of our
results.

4.6.3 Discussion

The bulk of the laptop currently limits portability and we hope that open digi-

tal cameras with additional processing power will enable rephotography directly

from the camera.

Our relative pose estimation works best when there is sufficient parallax be-

tween the images. When nearing the viewpoint, the user must rely on the align-

ment blend, which limits final precision. Our technique requires a reasonable num-

ber of feature points (around 20) and suffers from uniform targets. The scene must

present enough 3D structure to make viewpoint estimation well posed. If the scene

is mostly planar, a homography can match any pair of views and the viewpoint
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cannot be inferred.

We share a number of limitations with traditional photography: if the desired

viewpoint is not available or the scene is occluded and cannot be seen at the de-

sired viewpoint, rephotography is impossible. Nevertheless, our technique can

still help users realize that the viewpoint is no longer available.

Audio feedback is a natural extension to our visualization that we can explore

in the future.
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(a) Reference photos (b) Our rephoto results (c) Split comparison: (a) and (b)

Figure 4-17: Results. Left to right: the reference photos, our rephoto result, split
comparison between the reference and our rephoto. This shows that our technique
enables users to take a faithful rephoto.
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Figure 4-18: Results with style transfer. Left to right: the reference photos, our
rephoto results, and our rephotos with styles transferred from the reference photos.
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4.7 Conclusions

We have shown a technique that allows users to reach a target location and take

rephotographs with ease. We make this real-time guidance possible by interleav-

ing a robust pose estimation with a lightweight real-time estimation. We visualize

the direction to move using two 2D arrows, which users found intuitive and easy

to follow. We believe that computational techniques open exciting possibilities for

user assistance through scene analysis directly on the camera, such as our compu-

tational rephotography.

Our robust estimation relies on a wide-baseline 3D reconstruction. Having a

wide baseline between the first-vie and the current frame makes pose estimation

more robust and removes the need to resolve motion degeneracy cases. The re-

constructed 3D from the first- and second-view is used to estimate the focal length

of the reference photo. In addition, the 3D reconstruction allows for consistent

and meaningful scale estimation across frames, which is important for consistent

visualization.
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Chapter 5

Style Transfer

Photographers seek to obtain a certain “look” for their pictures to convey a mood

or an æsthetic. This is particularly significant for black-and-white photography

where strikingly distinctive styles can be achieved. Our technique offers direct

control over the “look” of an image by transferring style from a model photograph

onto an input one. Our method is based on a two-scale non-linear decomposition

of an image and handles global and local contrast separately. This is inspired by

traditional photography, where the darkroom offers remarkable global and local

control over the brightness, contrast, and sharpness of images via a combination

of chemical and optical processes [4, 9].

We decompose both input and model into two layers and modify each layer

according to its histogram. To transfer the spatial variation of local contrast, we

introduce a new edge-preserving textureness that measures the amount of local

contrast. We recombine the two layers using a constrained Poisson reconstruction.

Finally, additional effects such as soft focus, grain and toning complete our look

transfer.

Our main contribution is to transfer photographic look between images. Our

results demonstrate the relevance and robustness of the features we manipulate.

In addition, our method provides direct control through the curve interface, which

is equally powerful, though perhaps more suited to advanced users.
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5.1 Image Statistics

Before we introducing our work, let us discuss the relevance of frequency contents

to photographic look. Statistical characterization has been used to measure regu-

larities and differences among so-called "natural" images. Statistical characteristics

of natural images are often measured in the frequency domain. Among natural im-

ages, Field found scale invariance that the average amplitude falls as “ 1
f

” [25, 26].

We observe that this statistical regularity is mostly shared by casual photographs,

but not by artistic photographs. Figure 5-1 shows the normalized average ampli-

tude across scale. That is, each average amplitude is multiplied by its frequency.

Natural images observe the scale invariant property, while artistic photographs do

not show such invariance.
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Figure 5-1: The normalized average amplitude across scales: on the left is the low
frequency and the right is the high frequency. (a) The average amplitude in casual
photographs is uniformly distributed across frequencies. (b) The average ampli-
tude in the artistic photographs shows a unique distribution with a U shape or a
high slope.)

In addition, image statistics are non-stationary, and local statistical features

vary with spatial location [27]. Frequency content is useful to show the spatial
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distribution of local contrast. Figure 5-2 shows windows of the normalized am-

plitude spectra. The local spectral signatures are obtained by taking normalized

spectrum of each window, where we remove boundary effects by using a smooth

windowing function. We use a hamming window in practice. The degree of the

non-stationarity varies in different images. In this work, we use the scale variance

and the variations in non-stationarity to analyze and transfer photographic styles.

5.2 Overview

Image statistics and traditional photographic printing suggest that aspects such as

the intensity distribution at different scales, spatial variations, and the amount and

distribution of detail are critical to the look of a photograph. This inspires our use

of a two-scale decomposition to control global contrast and the spatial variation

of local contrast. We quantify the look of an image using histograms over this de-

composition, which affords both interactive control using a curve interface, and

the ability to automatically transfer visual properties between images. In the lat-

ter, histograms of the components of a model image are forced upon a new input.

Because we explore strong stylistic variations, we tend to perform larger modifica-

tions to the input than tone mapping. In particular, some looks require an increase

in local contrast, which can produce halos if traditional techniques are used. We in-

troduce a gradient constraint that prevents undesirable modifications. Finally, we

post-process the image to achieve various effects such as soft focus, paper grain,

and toning. Figure 5-3 summarizes our pipeline.
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Figure 5-2: The local spectral signatures show non-stationarity. The local spectral
signatures are obtained by taking normalized spectrum of each window : each
amplitude is multiplied by its frequency. The degree of the non-stationarity varies
in different images. The color close to red means a high value and that close to
blue means a low value.
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large-scale

transfer

bilateral

filter

constrained

combination
postprocess

high pass and local averaging

input

base

detail

textureness

textureness

transfer

modified detail

modified base

black-and-white output final output

model

Figure 5-3: Overview of our pipeline. The input image is first split into base and
detail layers using bilateral filtering. We use these layers to enforce statistics on low
and high frequencies. To evaluate the texture degree of the image, we introduce
the notion of textureness. The layers are then recombined and post-processed to
produce the final output. The model is Kenro Izu’s masterpiece shown in Figure 2-
8b.
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Low frequency High frequency

Base Detail

Halo

Blur

Figure 5-4: The output of the Gaussian blur contains low frequency contents, and
the residual has high frequency components. However, this linear filtering results
in haloes and artifacts around edges. In contrast, the output of the bilateral filter
(base) and its residual (detail) preserve the edge information.

5.3 Edge-preserving Decomposition

To manipulate global and local contrast separately, we decompose both input and

model photographs into two layers. We want one layer to contain global contrast

and the other layer to characterize local contrast. A naïve solution is to use a Gaus-

sian blur. The filtered output contains global contrast, and the residual has local

contrast. However, a linear filter such as a Gaussian blur does not preserve edges,

as shown in Figure 5-4. This results in haloes and artifacts in the result as we mod-

ify each layer independently.

Therefore, we use an edge-preserving filter, the bilateral filter, which Durand

and Dorsey [32] use for the tone mapping. The bilateral filter smoothes the image
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everywhere except at strong edges. This prevents haloes and artifacts. We use the

output and the residual of the bilateral filter to control global and local contrast

respectively. The output is called the base layer, and the residual is called the

detail layer [32].

With gσ(x) = exp(−x2/σ2), a Gaussian function, the bilateral filter of image I at

pixel p is defined by:

bf (I)p =
1

k

∑
q∈I

gσs(||p− q||) gσr (|Ip − Iq|) Iq (5.1a)

with: k =
∑
q∈I

gσs(||p− q||) gσr (|Ip − Iq|) (5.1b)

The choice of σs and σr is crucial. σs controls the spatial neighborhood. We find

that σs = min(width, height)/16 consistently produces good results. σr determines

the influence of the range difference, and it should differentiate important edges

from textures. We rely on the gradient norm to estimate the edge amplitude in the

input. σr = p 90(||∇I||) achieves consistently good results, where p 90 denotes the

90th percentile. These settings are robust to spatial and intensity scales.

Since contrast is a multiplicative effect, we perform our decomposition in the

logarithmic domain. In practice, we use Paris’s fast bilateral filter [80]. We define

the base layer B and detail layer D from the input image I (where I , B and D have

log values):

B = bf (I) and D = I − B (5.2)

5.3.1 Gradient Reversal Removal

Durand and Dorsey [32] note that artifacts can occur when edges are not sharp.

They introduce a “fix” that detects uncertain pixels and uses a smoothed base layer,

but they highlight that this solution is not entirely satisfying. The problem is more

acute in our case because we may increase the amount of detail (by a factor as high
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as 6 in some examples), which requires a reliable halo-free detail layer.

We address this by directly constraining the gradient of the decomposition to

prevent reversal. We force the detail derivatives ∂D/∂x and ∂D/∂y to have the

same sign as the input derivatives and an amplitude no greater than them. For

this, we build a gradient field v = (xv, yv):

xv =





0 if sign (∂D/∂x) 6= sign (∂I/∂x)

∂I/∂x if |∂D/∂x| > |∂I/∂x|

∂D/∂x otherwise

(5.3)

The y component yv is defined similarly. The corrected detail layer is obtained

by solving the Poisson equation (Eq. 5.4.) This builds the detail layer D with a

gradient ∇D as close as possible to v, in the least square sense.

∂D/∂t = ∆D − div (v) (5.4)

We update the base layer accordingly: B = I − D. This approach results in a

high-quality detail layer because it directly addresses gradient reversal and pre-

serves other subtle variations (Fig. 5-5).

5.4 Global Contrast Analysis and Transfer

The base layer contains global contrast. We transfer global contrast using his-

togram matching in the base layer. We deduce a remapping curve from the in-

put and model base histograms. We apply the remapping curve to the input base

layer. Each pixel is transformed according to the remapping curve. As a result,

the histogram of the output base is the same as that of the model base. Figure 5-6

illustrates this histogram matching process.
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(a) input image (b) uncorrected detail (c) corrected detail

Figure 5-5: The bilateral filter can cause gradient reversals in the detail layer near
smooth edges. Note the problems in the highlights (b). We force the detail gradient
to have the same orientation as the input (c). Contrast is increased in (b) and (c)
for clarity.

5.5 Local Contrast Analysis and Transfer

Our local contrast transfer is independent of the global contrast transfer. The main

contribution of our work is a technique that manipulates the amount of high-

frequency content and its spatial variation. This contrasts with tone mapping ap-

proaches that usually do not modify the detail layer.

This step involves additional challenges compared to the base transform. First,

we show that the detail layer does not capture all the high frequency content of the

image. Second, we need to modify the spatial variation of detail without creating

artifacts. In particular, we introduce a new technique to measure and modify local

frequency content in an edge-preserving manner.

5.5.1 Detail Transfer using Frequency Analysis

While the bilateral filter provides a decomposition that facilitates halo-free manip-

ulation, the edge-preserving term gσr results in substantial high-frequency content

in the base layer (Fig. 5-7). While the choice of different parameters or more ad-
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Model base

Input base Output base

Input luminance 

Remapped 

luminance 

Figure 5-6: Histogram matching. The remapping curve is deduces from the input
and model base histograms. Each pixel is transformed according to the remapping
curve. For the remapping curve, the horizontal axis is the luminance of the input
base. The vertical axis is the luminance of the output base.

vanced filters [81] can affect this issue, the very nature of such filter calls for high-

frequency content in the base. In particular, the influence of the range Gaussian gσr

results in that patterns that are high-frequency but high-contrast will mostly be in

the base. While this is not an issue for tone mapping where the detail is unaffected,

it is critical for our detail management. On the other hand, the manipulation of the

detail layer is a safe operation that does not lead to the halo artifacts caused by

linear image processing.

Our solution combines linear frequency analysis with the transfer of the detail

layer obtained from our nonlinear filter. We analyze the amount of texture (or

high frequency) using a high pass filter applied to both the detail and the base

layer. This ensures that all the frequency content is taken into account. We use this

information to decide how the detail layer should be modified. In a nutshell, we

get the best of the two approaches: reliable analysis of the high-pass filter, and the
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(a) input

(c) high frequencies of base layer

(b) high frequencies of input

(d) high frequencies of detail layer

0

+

Figure 5-7: Because of the preserved edges, the high frequencies of an image (b)
appear both in the base layer (c) and in the detail layer (d). This phenomenon has
to be taken into account to achieve an appropriate analysis.

safe manipulation of the detail layer.

5.5.2 Textureness

We seek to characterize the spatial variation of local contrast. We build on the

notion of power maps, e.g. [82] and activity map [34] where the local average of

the amplitude of high frequencies is used. Figure 5-8 illustrates our computation

of textureness for a 1D example where the left part has a high level of local contrast

while the right part is smooth.

First, we compute a high-pass version H of the image using the same cutoff

σs. Note that the local average of such a high-pass image is by definition zero: the

low frequencies are removed. This is why we consider the magnitude (or absolute

value) of H (Fig. 5-8c). Power maps or activity maps are then defined as the local

average – obtained via low-pass filtering – of this magnitude (Fig. 5-8d). Such

maps provide good characterization of highly-textured vs. smooth regions and
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(b) high frequencies 

H

(c) absolute values 

|H|

(d) activity/power map:

low pass of |H|

(e) textureness: 

cross bilateral filter of 

|H| and I

(a) input I

Figure 5-8: Textureness of a 1D signal. To estimate the textureness of the input (a),
we compute the high frequencies (b) and their absolute values (c) . Finally, we
locally average these amplitudes: Previous work based on low-pass filter (d) incurs
halos (Fig. 5-9) whereas our cross bilateral filtering yields almost no halos (e) .

the local level of detail can be altered by modifying the detail layer accordingly.

Unfortunately, such spatially-varying manipulation of detail can lead to arti-

facts at the boundary between highly detailed and smooth regions (Fig. 5-9). This

is because the amount of detail on one side of the boundary influences the esti-

mate on the other side, and the manipulation suffers from a halo effect similar to

that observed in linear frequency decomposition of image intensity. This problem

is the same as the one addressed by edge-preserving decomposition, except that

we are dealing with a less spatially localized quantity, the magnitude of high fre-

quency |H|. Strong edges are hard to characterize in |H|, which is why we define

textureness using a cross-bilateral filter [83, 84] where the intensity image defines

the edge-preserving term to filter |H|. More precisely, our textureness is defined as

T (I)p =
1

k

∑

q∈|H|
gσs(||p− q||) gσr (|Ip − Iq|) |H|q (5.5a)

with: k =
∑
q∈I

gσs(||p− q||) gσr (|Ip − Iq|) (5.5b)

We set this cross filter with the same σr as for the base-detail computation, but

with a larger σs (8 times larger in practice) to ensure smooth textureness variations
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Figure 5-9: Using a Gaussian filter to locally average the high frequency ampli-
tudes yields halos around strong edges. To prevent this defect, we use an edge-
preserving filter.

on uniform regions (discontinuities can still happen at edges). Figure 5-10 shows

how our textureness map captures the spatial variation of local contrast over the

image.

(a) input (b) textureness
0

+

Figure 5-10: Our measure of textureness indicates the regions with the most con-
trasted texture.

Textureness Transfer The input I and model M have textureness maps T (I) and

T (M), respectively. Using histogram transfer, we enforce the histogram of T (M)

onto T (I) to build the desired textureness map T ′. To prevent halos, we modify

only the detail layer D to approximate T ′. We scale the values of D by a ratio ρ to
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(a) input (b) unconstrained (c) histogram

matching

(d) gradient

constraint

Figure 5-11: Without constraints, the result may lose valuable details (b) because
the highlight are saturated. Enforcing the model histogram brings back the in-
tensity values within the visible range (c). Finally, constraining the gradients to
preserve some of the original variations (a) produces high quality details (d).

match T ′ values while accounting for the textureness of the base B′ modified by

the tonal balance of the previous section:

ρp = max

(
0,

T ′
p − T (B′)p

T (D)p

)
(5.6)

We do not apply negative ratios, thus preventing gradient reversals. Although this

computation is done pixel-wise, we found that the textureness maps are smooth

enough to ensure a smooth transformation. We linearly recombine the layers to

produce the output: O = B′ + ρD.

5.6 Detail Preservation

As illustrated by Figure 5-11b, the previous result (O = B′ + ρD) may result in

saturated highlights and shadows. These bright and dark regions are nevertheless

of higher importance for photographers who aim for crisp details everywhere. We

preserve these details in two steps.
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First, we enforce the intensity histogram of the model M to the current output

O, which brings back the values within the displayable range. Second, we mod-

ify the gradient field to ensure that no details are removed or overly emphasized.

Similarly to our shock removal, we build a gradient field v that satisfies these con-

straints. We aim at preserving a portion α of the variations of the input image,

and we prevent the gradient being increased by a factor greater than β to avoid

over-emphasizing noise. We define:

xv =





α ∂I/∂x if |∂O/∂x| < α |∂I/∂x|

β ∂I/∂x if |∂O/∂x| > β |∂I/∂x|

∂O/∂x otherwise

(5.7)

The y component yv is defined similarly, and the image is reconstructed with the

Poisson technique. All that remains is to set α and β. We use percentiles to define

φ = [p 95(O)−p 5(O)]/[p 95(I)−p 5(I)], which robustly estimates the contrast change

induced by our processing. We then use a constant α = φ/4, and we make β

depend on intensity in order to avoid increasing noise. We use a smooth-step

function ντ (x) = 0 if x < τ , 1 if x > 2τ , and 1 − [1 − (x − τ)2/τ 2]2 otherwise.

Setting β = 1 + 3ντφ performs consistently well with τ = 0.1. As a result, we

successfully preserve the richness of the input images as shown on Figure 5-11.

5.7 Additional Effects

While our focus is on the management of the tonal palette and the variation of

detail, we have also developed simple filters to control low-level aspects of the

look of a photograph.

Soft Focus and Sharpness The level of sharpness of a picture is a strong aspect

of style as exemplified by soft-focus effects. To characterize sharpness, we use

difference-of-Gaussian filters and analyze three octaves of the current output O.
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We set the parameters so that the highest band captures the wavelengths shorter

than λh = min(width, height)/256. For each band BO
i , we evaluate the sharpness

of the most contrasted edge with the 95th percentile p 95(
∣∣BO

i

∣∣). We divide this

number by p 95(O)− p 5(O) to make this measure invariant to intensity. The use of

percentiles makes this estimation robust. To summarize, our sharpness estimator

is a triplet of numbers (ζ1, ζ2, ζ3) defined as ζO
i = p 95(

∣∣BO
i

∣∣)/(p 95(O)− p 5(O)). We

compute the same measures for the model M and scale the bands BO
i of the output

by a factor ζM
i /ζO

i to transfer sharpness. See Figure 5-12, 5-15 and 5-19. In par-

ticular, in Figure 5-12, the intermediate frequencies are attenuated more than the

highest frequencies, achieving a “soft-yet-sharp” rendition which is a convincing

approximation of the effect produced by a soft-focus lens.

Film Grain and Paper Texture Some photographs exhibit a characteristic appear-

ance due to the paper which they are printed on or because the film grain is visible.

We reproduce this effect in two steps. First, since the grain is not part of the image

content, we remove it from the model image with a bilateral filter on the luminance

values, using σr = p 75(||∇M ||). Then, we crop a sample from the residual (detail)

of this bilateral filter in a uniform region. We generate a grain layer using texture

synthesis [85] (Fig. 5-12, and 5-15).

Color and Toning To handle color images, we can use the original a and b chan-

nels in the CIE-LAB color space. a and b can be used directly, or they can be scaled

by LO/LI where LI and LO are the luminance of the input and current output. The

latter alters color saturation and is useful for HDR images because their chromatic-

ity is often out of the displayable gamut [33, 34]. Figures 5-14 and 5-19 show color

renditions.

We produce toned pictures (e.g. sepia) using a one-dimensional color map. We

use the Lab color space to build the functions a(L) and b(L) from the model by

averaging a and b for the pixels with a given L. These functions are then applied

to the L values of the current result (Fig. 5-12).
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5.8 Results

We demonstrate our technique using models by different artists on a variety of

inputs, including pictures by beginners using point-and-shoot cameras, photos by

more advanced amateurs using SLRs, and high-dynamic-range images (Fig. 5-12).

Computation time varies roughly linearly with the number of pixels, thanks to

the fast bilateral filter and a multigrid implementation of gradient reconstruction.

For example, the full pipeline for a one megapixel image takes about six seconds

on a 2.6GHz Opteron PC, and a four megapixel takes 23 seconds. However, note

that we cache intermediate results such as the base, detail, and textureness map,

which enables interactive feedback when using the user interface.

In addition, results from downsampled images are faithful previews (Fig. 5-13)

because our parameters are scale invariant, which enables fast interaction before a

final computation at full resolution.

Our implementation enables interactive adjustment of the parameters through

controls such as sliders for scalar parameters and, for the remapping function of

the base layer, a spline interface inspired by the “curve” tool of photo-editing soft-

ware. These adjustments can be saved and reused on subsequent inputs. We have

also found that the interactive control is a great way to refine the result of an auto-

matic transfer (Fig. 5-14).

Figure 5-15, 5-16, 5-17, and 5-18 show a comparison of our results with a straight-

forward histogram matching from the model to the input. Histogram matching ig-

nores the notion of texture and therefore overly increases or decreases the picture

detail. In comparison, our technique yields results that are both more faithful to

the model and higher quality, with rich shadows and detailed highlights.

Discussion The main cause of failure of our approach is poor input quality. In

particular JPEG artifacts and noise can be amplified by our detail manipulation

(Fig. 5-20). Apart from this, meaningful input/model couples (two landscapes,

two trees, etc) consistently yield faithful transfers, close to our expectations. On
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(a) model (608x785) (b) HDR input (512x768) 

(c) direct histogram matching (d) our result

Figure 5-12: Our system can seamlessly handle HDR images . We can turn a
sharp picture (b) into a soft grainy and toned photograph (d). We have toned
the histogram-transferred version (c) to prevent biased comparison due to differ-
ent color cast. The model (a) is Accident at the Gare Montparnasse from the Studio
Lévy and Sons, 1895. The input (b) is courtesy of Paul Debevec, USC
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(a) low resolution (b) high resolution, twice of (a)

Figure 5-13: Results from lower resolution (a) provides quick previews and allow
for interactive adjustments before rendering high resolution results (b). Limited
differences are visible on the smallest details (e.g. in the background) because they
are not well sampled in the low-resolution image.

(a) input image (800x424) (c) result after user adjustment(b) result from model

Figure 5-14: This rendition was obtained in two steps. We first used Kenro Izu’s
picture shown in Figure 2-8b as a model (b). Then, we manually increased the
brightness and softened the texture to achieve the final rendition (c) that we felt is
more suitable for the scene.
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(a) model (640x512) (b) input (795x532)

(c) direct histogram matching (d) our result

Figure 5-15: A simple histogram matching from the model (a) to the input (b)
increases the texture level of the image (c) whereas the model has little texture.
In comparison, we successfully reduce the texture and the sharpness to achieve
large uniform gray regions similar to those in the model. The model is Snapshot
by Alfred Stieglitz.
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(a)  input (795x532)

(d) direct histogram transfer

(c) our result

(b) model (640x512)

Figure 5-16: Histogram and frequency comparison. Our result (c) faithfully trans-
fers local contrast from the model photo (b). In contrast, a direct histogram match-
ing (d) increases the high frequency contents by spreading the luminance values.
In the local spectral signatures, the color close to red means a high value and that
close to blue means a low value.
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(b) input with auto-levels (876x584)

(c) direct histogram transfer (d) our result

(a) model (622x512)

Figure 5-17: Our approach is able to reproduce the level of texture observed in
Adams’ masterpiece (a) to achieve a compelling rendition (d). In comparison,
Adobe R© Photoshop R© “auto-level” tool spans the image histogram on the whole
intensity range. This reveals the small features of a picture but offers no control
over the image look (b). And, a direct histogram transfer only adjusts the overall
contrast and ignores the texture, thereby producing a dull rendition (c).
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(a) input with auto-levels (876x584)

(d) direct histogram transfer

(c) our result

(b) model (622x512)

Figure 5-18: Histogram and frequency comparison. A direct histogram matching
(d) increases the high frequency contents by spreading the luminance values, but
not as much as our result (c). In the local spectral signatures, the color close to red
means a high value and that close to blue means a low value.
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(a) input image (1200x900) (b) our result

Figure 5-19: For color images, we process the luminance channel of the image and
keep the original chrominance channels. In this example, the details are enhanced
while the overall contrast and sharpness are increased. We used Adams’ picture
(Fig. 5-17a) as a model.

more surprising pairs (e.g. a flower and a landscape), the process does not gen-

erate artifacts and the achieved mood is often pleasing, although one can always

argue about the æsthetic quality of some results. Portraits are probably the most

challenging type of input, and detail enhancement can lead to unflattering result

because skin defects can be emphasized. It is then best to turn this feature off.

Figure 5-20: Our technique suffers from imperfections such as JPEG artifacts. In
this example, the artifacts in the sky are not visible in the input image (Fig. 5-10a)
but appear clearly after processing.

102



5.9 Conclusions

We have presented an approach to manipulate the tonal look of digital photographs.

Using a combination of non-linear edge-preserving decomposition and linear anal-

ysis, we control both the large-scale tonal palette and the detail over an image. In

particular, we manipulate the spatial variation of high-frequencies using a new tex-

tureness map that performs an edge-preserving analysis and manipulation of the

high-frequency content. We have introduced a gradient constraint that preserves

image content and prevents gradient reversal and halos.

Our method can be used to transfer the look of a model photograph or can

be directly controlled using a simple interface. It allows for the exploration of a

variety of styles and achieves high-quality results that are consistent from low-

resolution previews to high-resolution prints.

This work opens several areas of future research. It should be combined with

approaches to control the color components of pictorial style. While early experi-

ments with videos have shown that our technique itself is stable, we have found

that the biggest challenge is the fluctuation created by auto-exposure, autofocus

and the variation of motion blur when the camera moves.
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Chapter 6

Defocus Magnification

Sharp foreground with blurred background is preferred in many types of pho-

tography such as portraits. But point-and-shoot cameras have small lenses and

sensors, which fundamentally limits their ability to defocus the background and

generate shallow depth of field. We present an image-processing technique that

magnifies existing defocus given a single photo.

For a given field of view and subject distance, depth of field is directly related

to the physical diameter of the lens aperture. This means that compact cameras

that rely on smaller sensors – and therefore on smaller lenses – yield less defocus

and cannot blur the background the way a large-aperture single-lens reflex (SLR)

lens can (Fig. 6-2). While a smaller amount of defocus (larger depth of field) can

be desirable, for example in landscape or macro photography, it is often a serious

limitation for portraits and creative photography. Users of compact cameras often

complain that their portraits do not look “artistic” and lack the clarity afforded by

defocused backgrounds. In fact, the quality of a blurry background, called bokeh,

has a real cult following among some photographers.

Our technique takes a single input image where the depth of field is too large

and increases the amount of defocus present in out-of-focus regions. That is, our

goal is opposite to that of work that seeks to create images that are sharp every-

where.

Our approach first estimates the spatially-varying amount of blur over the im-

105



(b) defocus map(a) input (c) our result with magnified defocus

Figure 6-1: Our technique magnifies defocus given a single image. Our defocus
map characterizes blurriness at edges. This enables shallow depth of field effects
by magnifying existing defocus. The input photo was taken by a Canon PowerShot
A80, a point-and-shoot camera with a sensor size of 7.18 × 5.32 mm, and a 7.8
mm lens at f/2.8.

(b) small sensor (7.18 x 5.32 mm)(a) large sensor (22.2 x 14.8 mm)

Figure 6-2: Given the same field of view and the same f-number (f/2.8), a large
sensor (a) yields more defocus than a small sensor (b) does.

age, and then uses an off-the-shelf image-based technique to increase defocus. We

first estimate the size of the blur kernel at edges, building on the method by Elder

and Zucker [86], and then propagate this defocus measure over the image with a

non-homogeneous optimization. Using our defocus map, we can magnify the ex-

isting blurriness, which means that we further blur blurry regions and keep sharp

regions sharp.

Note that in contrast to more difficult problems such as depth from defocus,

we do not require precise depth estimation and do not need to accurately disam-

biguate smooth regions of the image, since such regions are not much affected by

extra blur due to defocus. The fundamental ambiguity between out-of-focus edges

and originally smooth edges is out of the scope of our work. We also do not need

to disambiguate between objects in front and behind the plane of focus. We sim-
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ply compute the amount of blur and increase it. While our method does not pro-

duce outputs that perfectly matches images captured with a larger-aperture lens,

it qualitatively reproduces the amount of defocus. We refer interested readers to

Appendix 2.1.2 where we review thin-lens optics and defocus.

6.1 Overview

For each pixel, we estimate the spatially-varying amount of blur. We call our blur

estimation the defocus map. We estimate the defocus map in two steps. First, we

estimate the amount of blur at edges. Then, we propagate this blur measure to the

rest of the image.

We model an edge as a step function and the blur of this edge as a Gaussian

blurring kernel. We adapt the method by Elder and Zucker [86], which uses mul-

tiscale filter responses to determine the size of this kernel. We add a cross-bilateral

filtering step [83, 84] to remove outlier estimates.

We propagate the blur measure using non-homogeneous optimization [87].

Our assumption is that blurriness varies smoothly over the image except where

the color is discontinuous. We propagate blurriness measure to the neighbors with

similar intensity and color.

We can use our defocus map to magnify defocus effects. We blur each pixel

according to its estimated blurriness. If we double our defocus map, it doubles

defocus effects as if the image is taken with an aperture that is twice as large. In

this paper, our results are generated using Adobe R© Photoshop R© lens blur with our

defocus map as a depth map.
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6.2 Blur Estimation

The amount of blur can be estimated reliably only in areas of an image that has sig-

nificant frequency content. This is why we focus on edges. However, we need to

extract and analyze edges with various levels of blurriness, which makes the tech-

nique by Elder and Zucker [86] particularly appropriate. We refine their technique

by introducing the explicit fitting of a blurred edge model that is more robust than

the original technique. Also, our refinement step reduce outliers due to blurry

features such as soft shadows.

6.2.1 Detect blurred edges

Following Elder and Zucker, we model an edge as a step function in intensity, and

the blur of this edge as a Gaussian blurring kernel:

g(x, y, σb) =
1

2πσ2
b

exp(−(x2 + y2)/2σ2
b ) (6.1)

where σb denotes the scale of the blur, and is what we want to estimate.

For each pixel, Elder and Zucker determine the right scale for edge detection

using the noise thresholds. More details can be found below. We used σ1 ∈
{64 32 16 8 4 2 1 0.5} pixels and σ2 ∈ {32 16 8 4 2 1 0.5} pixels. We apply a

strict threshold, sn = 2.5 and αI = 0.0001%, to achieve very reliable blur estima-

tion.

Elder and Zucker’s edge detector Elder and Zucker [86] detect edges with vari-

ous levels of blurriness. To determine the right scale for edge detection, they com-

pute the minimum reliable scale for each pixel, based on the noise thresholds .

They locate edges by testing nonzero gradient and zero-crossing of second deriva-

tive at the minimum reliable scale.

For each pixel, Elder and Zucker compute its multiscale responses to the steer-

able Gaussian first derivative filters and steerable second derivative of Gaussian
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filters and compute the gradient using the steerable Gaussian first derivative basis

filters:

gx
1 (x, y, σ1) =

−x

2πσ4
1

exp(−(x2 + y2)/2σ2
1) (6.2a)

gy
1(x, y, σ1) =

−y

2πσ4
1

exp(−(x2 + y2)/2σ2
1) (6.2b)

where σ1 is the scale of the first derivative Gaussian estimator. A weighted sum

of these two filter responses is used to compute the gradient direction θ that maxi-

mizes the gradient magnitude.

They compute the second derivative in the direction θ using a steerable second

derivative of Gaussian operator:

gx
2 (x, y, σ2) =

(x/σ2)
2 − 1

2πσ4
2

exp(
−(x2 + y2)

2σ2
2

) (6.3a)

gy
2(x, y, σ2) =

(y/σ2)
2 − 1

2πσ4
2

exp(
−(x2 + y2)

2σ2
2

) (6.3b)

gxy
2 (x, y, σ2) =

xy

2πσ6
2

exp(
−(x2 + y2)

2σ2
2

) (6.3c)

gθ
2(x, y, σ2) = cos2(θ)gx

2 (x, y, σ2) + sin2(θ)gy
2(x, y, σ2) (6.3d)

− 2 cos(θ) sin(θ)gxy
2 (x, y, σ2) (6.3e)

where σ2 is the scale of the second derivative of Gaussian filter.

They test the reliability of filter responses by setting a threshold for each scale.

The thresholds are derived from the sensor noise level sn. In the following equa-

tions, c1 denotes the threshold for Gaussian first derivative filter in a function of

σ1 and c2 denotes the threshold for the second derivative of Gaussian filter in a
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function of σ2.

c1(σ1) =
sn

√−2 ln σp

2
√

2π · σ2
1

(6.4a)

c2(σ2) =
sn

√
2 · erf−1(αp)

4
√

π/3 · σ3
2

(6.4b)

with: αp = 1− (1− αI)
1/n (6.4c)

where n is the number of pixels. The thresholds are computed statistically based

on the standard deviation of the sensor noise sn and a false positive tolerance αI .

At the minimum reliable scale, pixel filter responses are larger than the threshold

of the scale.

6.2.2 Estimate blur

In their technique, Elder and Zucker estimate the amount of blur by measuring

the distance d between second derivative extrema of opposite sign in the gradient

direction. This directly follows from the analytical derivation of a perfect step edge

convolved with a Gaussian, as shown in their paper [86].

However, we have found that, for real images, the localization of the second-

derivative extrema of the edge using the zero-crossing of the third derivative is

not robust, which is acknowledged in their article. This leads to errors in the esti-

mation of the blur amount. Therefore, instead of measuring the distance between

actual extrema, we fit the multiscale models of the second derivative Gaussian fil-

ter response to the pixel responses and find the distance with a least square fitting

error. Given the estimated distance, we compute the size of blur kernel σb using

Equation 6.5 (d). This provides us with a sparse set of blur measures BM at edge

pixels in the image.

We fit the response model using a brute-force strategy. We fit the response

model with a number of values for distance d (Fig. 6-3) to a window around the

edge pixel and along the gradient direction. Elder and Zucker use an edge pixel at

the dark side of the edge. But we found that using both bright and dark sides of
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blurred edge

2nd derivative 

response model

d
0

Figure 6-3: The model for the distance between second-derivative extrema. We
numerically fit this response model with various d around the edge pixel and along
the gradient direction to find the distance d with a least square fitting error.

the edge generates more reliable defocus maps. We use window sizes from 3 × 3

to 71 × 71. Given a blurred step edge along the y axis of amplitude A and blur

parameter σb, the expected response to the second derivative filter is modeled by:

rx
2(x, y, σ2) = Au(x) ∗ gx

2 (x, y, σ2
b + σ2

2) (6.5a)

=
−Ax√

2π(σ2
b + σ2

2)
3/2

exp(−x2/2(σ2
b + σ2

2)) (6.5b)

=
−Ax√

2π(d/2)3
exp(−x2/2(d/2)2) (6.5c)

with: (d/2)2 = σ2
b + σ2

2 (6.5d)

where u(x) is a step function. We derive A from the local extrema within each

window.

Figure 6-4 shows that our approach can successfully estimate blur measures

while the zero-crossing of the third derivative cannot localize the second derivative

extrema.

6.2.3 Refine blur estimation

Depth of field effects are not the only cause of edge blurriness in images and phe-

nomena such as soft shadows and glossy highlights can result in erroneous esti-

mates of defocus.
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(a) input (c) the zero-crossing of 

the third derivative

(d) blur measure 

using our approach

(b) actual blur sigma

Figure 6-4: The zero-crossing of the third derivative (c) is greatly affected by neigh-
boring edges and cannot localize the second derivative extrema. In contrast, our
approach (d) can estimate the blur sigma that is close to the actual blur sigma (b).
The input (a) is generated using the blur sigma (b). In the blur measure, the color
close to red means blurry and that close to blue means sharp.

We suppress the influence of these outliers by smoothing the blur measure with

an edge-preserving filter. We apply cross bilateral filtering [83, 84] to our sparse set

of blur measures, BM . The cross-bilateral filtering output is a weighted mean of

its neighbors where the weights decrease with the distance in space and with the

range difference of a reference image.

In addition to the original cross bilateral filtering weights, we use a sharpness

bias, b(BM) = exp(−BM/2). The sharpness bias corrects blur measures in soft

shadows and glossy highlights that are higher than they are supposed to be.

With gσ(x) = exp(−x2/2σ2), a Gaussian function, we define the biased cross

bilateral filtering of a sparse set of blur measures, BM at an edge pixel p as the

following:

bCBF(BM)p =
1

k

∑
q∈BM

wpq b(BMq) BMq (6.6a)

with: wpq ∝
∑

i∈{R,G,B}
gσs(||p− q||) gσr (|Ci(p)− Ci(q)|) (6.6b)

and k =
∑

q∈BM

wpq b(BMq) (6.6c)

where σs controls the spatial neighborhood, and σr the influence of the intensity

difference, and k normalizes the weights. We use the RGB color channels of the

original input image as the reference and set σr = 10% of the image range and σs =
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(b) blur measure before 

the cross bilateral filtering

(c) blur measure after  

the cross bilateral filtering

(a) input

2

4

6

8

10

12

Figure 6-5: Blur measure before and after the cross bilateral filtering. The cross
bilateral filtering refines outliers such as yellow and green measures (b), which
mean blurry, in the focused regions to be blue measures (c), which means sharp.
The blur measures are downsampled using nearest neighbor for better illustration.

10% of the image size. This refinement process does not generate much change but

refines a few outliers as shown in Figure 6-5. The cross bilateral filtering refines

outliers such as yellow and green measures (b) in the focused regions to be blue

(c).
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6.3 Blur Propagation

Our blur estimation provides blur kernels only at edges and we need to propagate

this blur measure. We use non-homogeneous optimization [87] and assume that

the amount of defocus is smooth when intensity and color are smooth.

6.3.1 Propagate using optimization

Our propagation is inspired by the colorization paper by Levin et al.[87]. We impose

the constraint that neighboring pixels p, q have similar blurriness if they have sim-

ilar intensities and colors. We minimize the difference between the blurriness B(p)

and a weighted average of blurriness of neighboring pixels:

E(B) =
∑

(B(p)−
∑

q∈N(p)

wpqB(q))2 (6.7a)

+
∑

αp (B(p)−BM(p))2 (6.7b)

with: wpq ∝
∑

i∈{R,G,B}
exp(

−(Ci(p)− Ci(q))2

2σ2
ip

) (6.7c)

where σp is the standard deviation of the intensities and colors of neiboring pixels

in a window around p. The window size used is 7×7. We have experimented both

with setting the second term as hard constraints vs. as a quadratic data term, and

have found that the latter is more robust to potential remaining errors in the blur

measure.

We solve this optimization problem by solving the corresponding sparse linear

system. Figure 6-6 shows the defocus map for various values of α. We use α = 0.5

for edge pixels.
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α = 0.1 α = 0.2 α = 0.5 α = 1

2

4

6

8

10

12

Figure 6-6: Defocus map with various α. α controls the balance between the
smoothness penalty term and data term in Equation 6.7. We use α = 0.5 for edge
pixels and α = 0 for non-edge pixels, which do not have values. In this plot, red
means blurry region and blue means sharp regions. The input image is Figure 6-5.
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6.4 Results

We have implemented our blur estimation using Matlab. Our defocus map enables

defocus magnification. We rely on Photoshop’s lens blur to compute the defocused

output. We crop the upper and lower 5% of the defocus map and clamp its mini-

mum value to 0. In addition, we apply Gaussian blur to the defocus map to use it

as a depth map. The Gaussian blur radius is set to 0.5% of the image size.

Using our defocus map, we can simulate the effect of doubling the aperture

size. Figure 6-8 compares two input defocus maps of two images with the f-

number 8 (a) and 4 (b). As we double the defocus map (c) of the f/8 image, we

obtain a result similar to the defocus map (d) of the f/4 image. While the sim-

ulated defocused map (e) is not exactly the same as the real map (d), the output

image with magnified defocus (f) is visually close to the f/4 photograph (b).

In Figure 6-7, we show the results of using our defocus map to magnify the

existing defocus effects in the original images. The results preserve the sharpness

of the focused regions but increase the blurriness of the out-of-focus regions.

In addition, while our defocus map is not really a depth map, it is sometimes

possible to use it to refocus a photograph resembling the effect of Ng et al. [54] and

Isaksen et al. [88]. Figure 6-9 shows a result where our defocus magnification is

applied with a virtual focusing distance. Before we apply lens blur, we performed

deconvolution using our defocus map. The result looks as if the foreground is

focused.

Figure 1 and 6-9 and the two rows in the middle of Figure 6-7 were taken by a

Canon PowerShot A80, a point-and-shoot camera with a sensor size of 7.18× 5.32

mm, and a 7.8 mm lens at f/2.8. Figure 6-5 and 6-8 were taken by a Canon 1D Mark

II with a sensor size of 28.7×19.1 mm and a Canon EF 85mm f/1.2L lens. The first

input of Figure 6-7 was taken by a Nikon D50 with a sensor size of 23.7× 15.6 mm

and a 180.0 mm lens at f/4.8. The two rows at the bottom of Figure 6-7 are from

bigfoto.com.
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6.4.1 Discussion

Our defocus maps are different from their actual depth maps mostly in smooth

regions of the image that are not much affected by extra blur due to defocus. For

example, the gradients in human skin are interpreted as blurry regions. However,

such artifacts do not cause visual defects in the results with magnified defocus.

You can notice some of these issues in Figure 6-7.

A limitation of our technique is that occlusion boundaries that separate sharp

foreground and blurry background are sometimes erroneously blurred (e.g. the

top of the Teddy bear in Fig. 6-1)
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Our defocus mapInput Our result with magnified defocus

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6-7: Results. The original images, their defocus maps, and results blurred
using our approach. The inputs were taken by (a) a Nikon D50 with a sensor size
of 23.7 × 15.6 mm and a 180.0 mm lens at f/4.8, (b) a Canon 1D Mark II with
a sensor size of 28.7 × 19.1 mm and a Canon EF 85mm f/1.2L lens, and (c, d) a
Canon PowerShot A80, a point-and-shoot camera with a sensor size of 7.18× 5.32
mm, and a 7.8 mm lens at f/2.8. The two at the bottom are from bigfoto.com.118



(c) f/8 defocus map(a) f/8 input (b) f/4 input (d) f/4 defocus map (e) doubling (c) (f) our synthesized result

using (a) and (e)

Figure 6-8: Doubled defocus. Doubling the defocus map generates a effect of dou-
bling the aperture size. As we double the defocus map (c) of the f/8 image, we
obtain a result similar to the defocus map (d) of the f/4 image. While the sim-
ulated defocused map (e) is not exactly the same as the real map (d), the output
image with magnified defocus (f) is visually close to the f/4 photograph (b).

(b) defocus map (c) refocusing result using (a) and (b)(a) input

Figure 6-9: Using our defocus map, we can synthesize refocusing effects. We per-
form deconvolution using our defocus map (b) and apply lens blur. The result (c)
looks as if the foreground is focused. The input photo was taken by a Canon Pow-
erShot A80, a point-and-shoot camera with a sensor size of 7.18× 5.32 mm, and a
7.8 mm lens at f/2.8.
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6.5 Conclusions

We have presented an image-processing technique to magnify the amount of de-

focus due to lens aperture. Given a single image, we estimate the size of the blur

kernel at edges and propagate the blur measure to the overall image. We use a

multiscale edge detector and model fitting to estimate the size of blur kernel. We

propagate the blur measure assuming that blurriness is smooth where intensity

and color are similar.

Unlike more difficult problems such as depth from defocus, we do not need

to generate an accurate depth map and do not need to disambiguate textureless

regions. Our defocus map focuses on edges and texture regions that are visually

affected by defocusing and approximates textureless regions without causing vi-

sual defects.

In future work, we want to extend this work to video inputs where the effect of

motion blur needs to be distinguished from depth of field. Finally, we also want to

further study occlusion boundaries, a traditional issue for depth of field effects.
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Chapter 7

Conclusions

In this dissertation, we have presented three contributions that analyze and trans-

fer photographic viewpoint and appearance including computational rephotogra-

phy, style transfer, and defocus magnification. In computation re-photography, we

propose an assistive camera that analyzes the scene and guides users. We develop

a real-time pose estimation and visualization to guide users to a desired viewpoint.

In style transfer, we transfer global and local contrast from a model to an input. To

this end, we introduce an edge-preserving textureness. In defocus magnification,

we generate synthetic shallow depth of field effects by analyzing and magnifying

existing defocus given a single image.

7.1 Future work

In future work, we want to extent our image enhancement technologies to ad-

vanced processing technologies for videos. Although digital image capture, pro-

cessing, and sharing have become pervasive, creating a video has not been com-

mon yet. It is difficult to capture good footage that is well composed, beautifully

lit, and endearing. In addition, video editing requires painstaking work and ad-

vanced skill. As a result, videos often become long, boring, and hard to explore.

The development of post-processing and searching technologies will make it easy

to edit, share, and browse videos. In particular, we want to extend our defocus
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magnification to video inputs. To process videos, we need to separate motion blur

from defocus.

In addition, we want to study occlusion boundaries. Occlusion boundaries

such as corners are very important cues for scene understanding and matching.

Current feature descriptors rely on local appearances, and they cannot find matches

between actual corners. Occlusion boundary detector and descriptor will improve

the performance of feature matching.

Moreover, we would like to explore various composite of old and new photos.

We want to use the estimated structure to modify viewpoints, structures, colors,

and illumination. This is related to image-based modeling, rendering, and lighting.

Finally, we envision that cameras will become more interactive and embed

more computation. We want to embed real-time scene analysis and user inter-

action onto cameras. The camera will guide users to take better pictures with the

subject in focus, and with better lighting and framing. These techniques need to

understand users’ preferences, goals, and skills.
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