

SIGGRAPH2007

A Gentle Introduction to Bilateral Filtering and its Applications

How does bilateral filter relates with other methods?

Pierre Kornprobst (INRIA)

Many people worked on... edge-preserving restoration

> Bilateral filter

Partial differential equations

Anisotropic diffusion

Local mode filtering

Robust statistics

Goal: Understand how does bilateral filter relates with other methods

Goal: Understand how does bilateral filter relates with other methods

Bilateral filter

Partial differential equations

Local mode filtering

Robust statistics

Local mode filtering principle

You are going to see that BF has the same effect as local mode filtering

Let's prove it!

- Define global histogram
- Define a smoothed histogram
- Define a *local* smoothed histogram
- What does it mean to look for *local modes*?
- What is the *link* with bilateral filter?

Definition of a global histogram

Formal definition

Where $\delta(.)$ is the dirac symbol (1 if t=0, 0 otherwise)

A sum of dirac, « a sum of ones »

Smoothing the histogram

$$H \star G_{\sigma_r}(i) = \sum_{j \in \mathcal{I}} H(j)G_{\sigma_r}(i-j)$$

=
$$\sum_{j \in \mathcal{I}} \sum_{p \in S} \delta(I(p)-j)G_{\sigma_r}(i-j)$$

=
$$\sum_{p \in S} \sum_{j \in \mathcal{I}} \delta(I(p)-j)G_{\sigma_r}(i-j)$$

=
$$\sum_{p \in S} \sum_{j \in \mathcal{I}} \delta(I(p)-j)G_{\sigma_r}(i-j)$$

=
$$\sum_{p \in S} \sum_{j \in \mathcal{I}} \delta(I(p)-j)G_{\sigma_r}(j-j)$$

Definition of a *local* smoothed histogram

We introduce a « smooth spatial window »

$$H(i, \mathbf{p}, \sigma_r, \sigma_s) = \sum_{q \in \Omega} G_{\sigma_s}(\mathbf{p} - \mathbf{q}) G_{\sigma_r}(i - I(q))$$

where $\left\{egin{array}{l} \sigma_r = ext{Smoothing of intensities} \ \sigma_s = ext{Spatial window} \end{array}
ight.$

And that's the formula to have in mind!

A local mode *i* verifies $\frac{\partial}{\partial i} H(i, p, \sigma_r, \sigma_s) = 0$

Local modes?

• Given

$$H(i, \boldsymbol{p}, \sigma_r, \sigma_s) = \sum_{q \in \Omega} G_{\sigma_s}(\boldsymbol{p} - \boldsymbol{q}) G_{\sigma_r}(i - I_q)$$

• We look for
$$i \; / \; rac{\partial}{\partial i} H(i,p,\sigma_r,\sigma_s) = 0$$

• Result:
$$\mathbf{i} = \frac{\sum_{q \in \Omega} G_{\sigma_s}(p-q)G_{\sigma_r}(\mathbf{i} - I_q)I_q}{\sum_{q \in \Omega} G_{\sigma_s}(p-q)G_{\sigma_r}(\mathbf{i} - I_q)}$$

Local modes?

One iteration of the bilateral filter amounts to converge to the local mode

Take home message #1

Bilateral filter is equivalent to mode filtering in local histograms

[Van de Weijer, Van den Boomgaard, 2001]

Goal: Understand how does bilateral filter relates with other methods

Partial differential equations Bilateral filter Local mode filtering Robust statistics

Robust statistics

- Goals: Reduce the influence of outliers, preserve discontinuities
- Minimizing a cost e.g., $min_{I_*} \sum_{p \in S} \sum_{q \in \eta_p^4} \rho(I_q - I_p) + \text{etc}$

Penalizing differences between neighbors Smoothing term

[Huber 81, Hampel 86]

Robust statistics

- Goals: Reduce the influence of outliers, preserve discontinuities
- Minimizing a cost (« local » formulation)

$$\min_{I_*} \sum_{p \in S} \sum_{q \in \eta_p} G_{\sigma_s}(q-p) \rho(I_q - I_p)$$

• And to minimize it

$$I_p^{t+1} = I_p^t + \frac{\lambda}{|\eta_p|} \sum_{q \in \eta_p} G_{\sigma_s}(q-p)\rho'(I_q^t - I_p^t)$$

[Huber 81, Hampel 86]

If we choose $\rho(t) = 1 - G_{\sigma_r}(t)$

The minimization of the error norm gives

$$I_p^{t+1} = I_p^t + rac{\lambda}{|\eta_p|} \sum_q G_{\sigma_s}(q-p) G_{\sigma_r}(I_q^t - I_p^t) (I_q^t - I_p^t)$$

Iterated reweighted least-square

The bilateral filter is

 $I_p^{t+1} = \frac{\sum_q G_{\sigma_s}(q-p)G_{\sigma_r}(I_q^t - I_p^t)I_q^t}{\sum_q G_{\sigma_s}(q-p)G_{\sigma_r}(I_q^t - I_p^t)}$

Weighted average of the data

 So similar! They solve the same minimization problem! [Hampel etal., 1986]: The bilateral filter IS a robust filter!

Back to robust statistics...

Robust or not robust?

$$\begin{split} \min \sum_{p \in S} \sum_{q \in \eta_p} G_{\sigma_s}(p - q) \rho(I_p - I_q) \\ I_p^{t+1} = I_p^t + \frac{\lambda}{|\eta_p|} \sum_{q \in \eta_p} G_{\sigma_s}(q - p) \rho'(I_q^t - I_p^t) \end{split}$$

How to choose the error norm? How is the shape related to the anisotropy of the diffusion? *What's the graphical intuition?*

The error norm should not be too penalizing for high differences

Graphical intuition From its minimization

$$I_p^{t+1} = I_p^t + \frac{\lambda}{|\eta_p|} \sum_{q \in \eta_p} G_{\sigma_s}(q - p)\rho'(I_q^t - I_p^t)$$

Influence function

The influence function in the robust case reveals two different behaviors for inliers versus outliers

What is important here?

- The qualitative properties of this influence function, distinguishing inliers from outliers.
- In robust statistics, many influence functions have been proposed

Let's see their difference on an example!

Gauss (very sharp, similar to Tukey)

fast decreasing tail

Lorentz (smoother)

slowly decreasing tail

Hubert (slightly blurry)

Take home message #2

The bilateral filter is a robust filter.

Because of the range weight, pixels with different intensities have limited or no influence. They are *outliers*.

Several choices for the range function.

[Durand, 2002, Durand, Dorsey, 2002, Black, Marimont, 1998]

Goal: Understand how does bilateral filter relates with other methods

What do I mean by PDEs?

- Continuous interpretation of images
- Two kinds of formulations – Variational approach $\inf_{I} \int_{p \in \Omega} F(p, I, \nabla I) dp$ – Evolving a partial differential equation $\frac{\partial I}{\partial t} = G(p, I, \nabla I, ...)$

Two ways to explain it

 The « simple one » is to show the link between PDEs and robust statisitcs

Black, Marimont, 1998, etc]

Two ways to explain it

 The « more rigorous one » is to show directly the link between a differential operator and an integral form

Gaussian solves heat equation $\frac{\partial I}{\partial t} = \triangle I = I_{xx} + I_{yy}$

T.

Linear diffusion
When time grows, diffusion grows
Diffusion is isotropic

Gaussian solves heat equation $\frac{\partial I}{\partial t} = \triangle I = I_{xx} + I_{yy}$

T.

 σ_s

$$GB[I]_p = \int_S G_{\sigma_s}(q-p)I_q dq$$

 $GB[I]_p$ is a solution of the heat equation when $\sigma_s=\sqrt{2t}$

And with the range? [Buades, Coll, Morel, 2005] Considering the Yaroslavsky Filter $Y[I]_p = \frac{1}{C(p)} \int_{B_{\tau}(p)} G_{\sigma_r}(I_q - I_p) I_q dq$ Integral representation Space range is in the domain • When $\sigma_s, \sigma_r ightarrow 0$ $Y[I]_p - I_p \approx \text{nonlinear diffusion operators}$ (operation similar to M-es imators)

At a very local scale, the asymptotic behavior of the integral operator corresponds to a diffusion operator

More precisely

• We have

$$Y[I]_p - I_q \approx \sigma_s^2 [\Box I_{\eta\eta} + \Box I_{\xi\xi}]$$

- And then we enter a large class of anisotropic diffusion approaches based on PDEs $\frac{\partial I}{\partial t} = \begin{bmatrix} I_{\eta\eta} + I_{\xi\xi} \end{bmatrix}$
- New idea here: It is not only a matter of smoothing or not, but also to take into account the local structure of the image

Take home message #3

Bilateral filter is a discretization of a particular kind of a PDEbased anisotropic diffusion.

[Barash 2001, Elad 2002, Durand 2002, Buades, Coll, Morel, 2005]

Welcome to the PDE-world!

[Kornprobst 2006]

The PDE world at a glance

Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variations Second Edition

sources/destinations

seamless cloning

Dense Oreners D

D Springer

Summary

Bilateral filter is one technique for anisotropic diffusion and it makes the bridge between several frameworks. From there, you can explore news worlds!

Questions?

INSTITUT NATIONAL DE RECHERCHE En Informatique Et en automatique

Pierre.kornprobst@inria.fr http://pierre.kornprobst.googlepages.com/

centre de recherche SOBHIA ANTIBOLIS - MÉDITERRANÉE