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A Gentle Introduction 
to Bilateral Filtering and its Applications
A Gentle Introduction 
to Bilateral Filtering and its Applications

• From Gaussian blur to bilateral filter – S.  Paris

• Applications – F. Durand

• Link with other filtering techniques – P. Kornprobst

• Implementation – S.  Paris

• Variants – J. Tumblin

• Advanced applications – J. Tumblin

• Limitations and solutions – P. Kornprobst
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Recap

Sylvain Paris – MIT CSAIL



input smoothed
(structure, large scale)

residual
(texture, small scale)

edge-preserving: Bilateral Filter

Decomposition into 
Large-scale and Small-scale Layers
Decomposition into 
Large-scale and Small-scale Layers



Weighted Average of PixelsWeighted Average of Pixels

space range
normalization
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• Depends on spatial distance
and intensity difference
– Pixels across edges have almost influence
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Efficient Implementations
of the Bilateral Filter

Sylvain Paris – MIT CSAIL



OutlineOutline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]



Brute-force ImplementationBrute-force Implementation

For each pixel p
For each pixel q

Compute 

8 megapixel photo: 64,000,000,000,000 iterations!

V E R Y   S L O W !V E R Y   S L O W !
More than 10 minutes per imageMore than 10 minutes per image
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ComplexityComplexity

• Complexity = “how many operations are 
needed, how this number varies”

• S = space domain = set of pixel positions

• | S | = cardinality of S = number of pixels
– In the order of 1 to 10 millions

• Brute-force implementation: )|(| 2SΟ



Better Brute-force ImplementationBetter Brute-force Implementation

Idea: Far away pixels are negligible 

For each pixel p
a. For each pixel q such that || p – q || < cte × σs

looking at all pixels looking at neighbors only



DiscussionDiscussion

• Complexity:

• Fast for small kernels: σs ~ 1 or 2 pixels

• BUT: slow for larger kernels

)|(| 2
sσ×SΟ

neighborhood area



OutlineOutline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]



Separable KernelSeparable Kernel [Pham and Van Vliet 05]

• Strategy: filter the rows then the columns

• Two “cheap” 1D filters 
instead of an “expensive” 2D filter



DiscussionDiscussion

)|(| sσ×SΟ• Complexity: 
– Fast for small kernels (<10 pixels)

• Approximation: BF kernel not separable
– Satisfying at strong edges and uniform areas

– Can introduce visible streaks on textured regions



input



brute-force
implementation



separable kernel
mostly OK,

some visible artifacts
(streaks)
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• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]



Box KernelBox Kernel [Weiss 06]

• Bilateral filter with a square box window

• The bilateral filter can be computed only from 
the list of pixels in a square neighborhood.
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box window
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Box KernelBox Kernel
• Idea: fast histograms of square windows

[Weiss 06]

input:
full histogram is known

update:
add one line, remove one line

Tracking one window



Box KernelBox Kernel
• Idea: fast histograms of square windows

[Weiss 06]

input:
full histograms are known

update:
add one line, remove one line,

add two pixels, remove two pixels

Tracking two windows at the same time



DiscussionDiscussion

• Complexity: 
– always fast

• Only single-channel images

• Exploit vector instructions of CPU

• Visually satisfying results (no artifacts)
– 3 passes to remove artifacts due to 

box windows (Mach bands)

)log|(| sσ×SΟ

1 iteration

3 iterations



input



brute-force
implementation



box kernel
visually different,

yet no artifacts
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• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]



3D Kernel3D Kernel [Paris and Durand 06]

• Idea: represent image data such that the weights 
depend only on the distance between points

pixel
intensity

pixel position

1D image

Plot
I = f ( x )

far in range

close in space



1st Step: Re-arranging Symbols1st Step: Re-arranging Symbols
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1st Step: Summary1st Step: Summary

• Similar equations

• No normalization factor anymore

• Don’t forget to divide at the end
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2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

space

range

• “Product of two Gaussians” = higher dim. Gaussian



2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

space

range

• 0 almost everywhere, I at “plot location”



2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

• 0 almost everywhere, I at “plot location”

• Weighted average at each point = Gaussian blur



2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

• 0 almost everywhere, I at “plot location”

• Weighted average at each point = Gaussian blur

• Result is at “plot location”



higher dimensional functions

Gaussian blur

division

slicing

Higher
dimensional

Homogeneous
intensity

Higher
dimensional

Homogeneous
intensity

New num. scheme:
• simple operations
• complex space



higher dimensional functions

Gaussian convolution

division

slicing

D O W N S A M P L E

U P S A M P L E

Heavily
downsampled

Heavily
downsampled

Strategy:
downsampled
convolution

Conceptual view,
not exactly 
the actual algorithm



Actual AlgorithmActual Algorithm

• Never compute full resolution
– On-the-fly downsampling

– On-the-fly upsampling

• 3D sampling rate = ),,( rss σσσ



Pseudo-code: StartPseudo-code: Start

• Input
– image I

– Gaussian parameters σs and σr

• Output: BF [ I ]

• Data structure: 3D arrays wi and w (init. to 0)



Pseudo-code: 
On-the-fly Downsampling
Pseudo-code: 
On-the-fly Downsampling

• For each pixel

– Downsample:

– Update:
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Pseudo-code: 
Convolving
Pseudo-code: 
Convolving
• For each axis ,    , and

– For each 3D point 

• Apply a Gaussian mask  ( 1 , 4 , 6 , 4 , 1 ) to wi and w
e.g., for the x axis:

wi’(x) = wi(x-2) + 4.wi(x-1) + 6.wi(x) + 4.wi(x+1) + wi(x+2)

xρ yρ zρ

),,( zyx

D O W N S A M P L E

U P S A M P L E



Pseudo-code: 
On-the-fly Upsampling
Pseudo-code: 
On-the-fly Upsampling

SYX• For each pixel

– Linearly interpolate the values in the 3D arrays
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D O W N S A M P L E

U P S A M P L E



DiscussionDiscussion

• Complexity:

• Fast for medium and large kernels
– Can be ported on GPU [Chen 07]: always very fast

• Can be extended to color images but slower

• Visually similar to brute-force computation
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input



brute-force
implementation



3D kernel
visually similar



Running TimesRunning Times

separable kernel

3D kernel box kernel
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How to Choose an Implementation?How to Choose an Implementation?

Depends a lot on the application. A few guidelines:

• Brute-force: tiny kernels or if accuracy is paramount

• Box Kernel: for short running times on CPU with 
any kernel size, e.g. editing package

• 3D kernel: 
– if GPU available

– if only CPU available: large kernels, color images, cross BF
(e.g., good for computational photography)



Questions?Questions?
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