
Course EvaluationsCourse Evaluations

http://www.siggraph.org/courses_evaluation

4 Random Individuals will win an ATI Radeontm HD2900XT

http://www.siggraph.org/courses_evaluation

A Gentle Introduction
to Bilateral Filtering and its Applications
A Gentle Introduction
to Bilateral Filtering and its Applications

• From Gaussian blur to bilateral filter – S. Paris

• Applications – F. Durand

• Link with other filtering techniques – P. Kornprobst

• Implementation – S. Paris

• Variants – J. Tumblin

• Advanced applications – J. Tumblin

• Limitations and solutions – P. Kornprobst

BREAK

A Gentle Introduction
to Bilateral Filtering
and its Applications

A Gentle Introduction
to Bilateral Filtering
and its Applications

Recap

Sylvain Paris – MIT CSAIL

input smoothed
(structure, large scale)

residual
(texture, small scale)

edge-preserving: Bilateral Filter

Decomposition into
Large-scale and Small-scale Layers
Decomposition into
Large-scale and Small-scale Layers

Weighted Average of PixelsWeighted Average of Pixels

space range
normalization

() ()∑
∈

−−=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs σσ

space

range

p

q

• Depends on spatial distance
and intensity difference
– Pixels across edges have almost influence

A Gentle Introduction
to Bilateral Filtering
and its Applications

A Gentle Introduction
to Bilateral Filtering
and its Applications

Efficient Implementations
of the Bilateral Filter

Sylvain Paris – MIT CSAIL

OutlineOutline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]

Brute-force ImplementationBrute-force Implementation

For each pixel p
For each pixel q

Compute

8 megapixel photo: 64,000,000,000,000 iterations!

V E R Y S L O W !V E R Y S L O W !
More than 10 minutes per imageMore than 10 minutes per image

() ()∑
∈

−−=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs σσ

() () qqpqp IIIGG ||||||
rs

−− σσ

ComplexityComplexity

• Complexity = “how many operations are
needed, how this number varies”

• S = space domain = set of pixel positions

• | S | = cardinality of S = number of pixels
– In the order of 1 to 10 millions

• Brute-force implementation:)|(| 2SΟ

Better Brute-force ImplementationBetter Brute-force Implementation

Idea: Far away pixels are negligible

For each pixel p
a. For each pixel q such that || p – q || < cte × σs

looking at all pixels looking at neighbors only

DiscussionDiscussion

• Complexity:

• Fast for small kernels: σs ~ 1 or 2 pixels

• BUT: slow for larger kernels

)|(| 2
sσ×SΟ

neighborhood area

OutlineOutline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]

Separable KernelSeparable Kernel [Pham and Van Vliet 05]

• Strategy: filter the rows then the columns

• Two “cheap” 1D filters
instead of an “expensive” 2D filter

DiscussionDiscussion

)|(| sσ×SΟ• Complexity:
– Fast for small kernels (<10 pixels)

• Approximation: BF kernel not separable
– Satisfying at strong edges and uniform areas

– Can introduce visible streaks on textured regions

input

brute-force
implementation

separable kernel
mostly OK,

some visible artifacts
(streaks)

OutlineOutline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]

Box KernelBox Kernel [Weiss 06]

• Bilateral filter with a square box window

• The bilateral filter can be computed only from
the list of pixels in a square neighborhood.

() ()∑
∈

−−=
S

IIIGB
W

IY
q

qqp
p

p qp ||||||1][
rs σσ

[Yarovlasky 85]

box window

()∑
∈

−=
s

r
||1][

σ

σ
B

IIIG
W

IY
q

qqp
p

p

restrict the sum

independent of position q

Box KernelBox Kernel
• Idea: fast histograms of square windows

[Weiss 06]

input:
full histogram is known

update:
add one line, remove one line

Tracking one window

Box KernelBox Kernel
• Idea: fast histograms of square windows

[Weiss 06]

input:
full histograms are known

update:
add one line, remove one line,

add two pixels, remove two pixels

Tracking two windows at the same time

DiscussionDiscussion

• Complexity:
– always fast

• Only single-channel images

• Exploit vector instructions of CPU

• Visually satisfying results (no artifacts)
– 3 passes to remove artifacts due to

box windows (Mach bands)

)log|(| sσ×SΟ

1 iteration

3 iterations

input

brute-force
implementation

box kernel
visually different,

yet no artifacts

OutlineOutline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]

3D Kernel3D Kernel [Paris and Durand 06]

• Idea: represent image data such that the weights
depend only on the distance between points

pixel
intensity

pixel position

1D image

Plot
I = f (x)

far in range

close in space

1st Step: Re-arranging Symbols1st Step: Re-arranging Symbols

() ()

() ()∑

∑

∈

∈

−−=

−−=

S

S

IIGGW

IIIGG
W

IBF

q
qpp

q
qqp

p
p

qp

qp

||||||

||||||1][

rs

rs

σσ

σσ

() ()

() () 1||||||

||||||][

rs

rs

∑

∑

∈

∈

−−=

−−=

S

S

IIGGW

IIIGGIBFW

q
qpp

q
qqppp

qp

qp

σσ

σσ

Multiply first equation by Wp

1st Step: Summary1st Step: Summary

• Similar equations

• No normalization factor anymore

• Don’t forget to divide at the end

() ()

() () 1||||||

||||||][

rs

rs

∑

∑

∈

∈

−−=

−−=

S

S

IIGGW

IIIGGIBFW

q
qpp

q
qqppp

qp

qp

σσ

σσ

2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

space

range

• “Product of two Gaussians” = higher dim. Gaussian

2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

space

range

• 0 almost everywhere, I at “plot location”

2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

• 0 almost everywhere, I at “plot location”

• Weighted average at each point = Gaussian blur

2nd Step: Higher-dimensional Space2nd Step: Higher-dimensional Space

pp

• 0 almost everywhere, I at “plot location”

• Weighted average at each point = Gaussian blur

• Result is at “plot location”

higher dimensional functions

Gaussian blur

division

slicing

Higher
dimensional

Homogeneous
intensity

Higher
dimensional

Homogeneous
intensity

New num. scheme:
• simple operations
• complex space

higher dimensional functions

Gaussian convolution

division

slicing

D O W N S A M P L E

U P S A M P L E

Heavily
downsampled

Heavily
downsampled

Strategy:
downsampled
convolution

Conceptual view,
not exactly
the actual algorithm

Actual AlgorithmActual Algorithm

• Never compute full resolution
– On-the-fly downsampling

– On-the-fly upsampling

• 3D sampling rate =),,(rss σσσ

Pseudo-code: StartPseudo-code: Start

• Input
– image I

– Gaussian parameters σs and σr

• Output: BF [I]

• Data structure: 3D arrays wi and w (init. to 0)

Pseudo-code:
On-the-fly Downsampling
Pseudo-code:
On-the-fly Downsampling

• For each pixel

– Downsample:

– Update:

SYX ∈),(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

rss

),(,,),,(
σσσ

YXIYXzyx

1),,(
),(),,(

=+
=+

zyxw
YXIzyxwi

D O W N S A M P L E

U P S A M P L E

[] = closest int.

Pseudo-code:
Convolving
Pseudo-code:
Convolving
• For each axis , , and

– For each 3D point

• Apply a Gaussian mask (1 , 4 , 6 , 4 , 1) to wi and w
e.g., for the x axis:

wi’(x) = wi(x-2) + 4.wi(x-1) + 6.wi(x) + 4.wi(x+1) + wi(x+2)

xρ yρ zρ

),,(zyx

D O W N S A M P L E

U P S A M P L E

Pseudo-code:
On-the-fly Upsampling
Pseudo-code:
On-the-fly Upsampling

SYX• For each pixel

– Linearly interpolate the values in the 3D arrays

∈),(

()
()),(,,,einterpolat

),(,,,einterpolat),(][
YXIYXw
YXIYXwiYXIBF =

D O W N S A M P L E

U P S A M P L E

DiscussionDiscussion

• Complexity:

• Fast for medium and large kernels
– Can be ported on GPU [Chen 07]: always very fast

• Can be extended to color images but slower

• Visually similar to brute-force computation

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

r
2
s

||||||
σσ
RSSΟ

number
of pixels

number
of 3D cells

| R | : number of
gray levels

input

brute-force
implementation

3D kernel
visually similar

Running TimesRunning Times

separable kernel

3D kernel box kernel

br
ut

e
fo

rc
e

How to Choose an Implementation?How to Choose an Implementation?

Depends a lot on the application. A few guidelines:

• Brute-force: tiny kernels or if accuracy is paramount

• Box Kernel: for short running times on CPU with
any kernel size, e.g. editing package

• 3D kernel:
– if GPU available

– if only CPU available: large kernels, color images, cross BF
(e.g., good for computational photography)

Questions?Questions?

	Course Evaluations
	A Gentle Introduction �to Bilateral Filtering and its Applications
	A Gentle Introduction�to Bilateral Filtering�and its Applications
	Decomposition into �Large-scale and Small-scale Layers
	Weighted Average of Pixels
	A Gentle Introduction�to Bilateral Filtering�and its Applications
	Outline
	Brute-force Implementation
	Complexity
	Better Brute-force Implementation
	Discussion
	Outline
	Separable Kernel
	Discussion
	Outline
	Box Kernel
	Box Kernel
	Box Kernel
	Discussion
	Outline
	3D Kernel
	1st Step: Re-arranging Symbols
	1st Step: Summary
	2nd Step: Higher-dimensional Space
	2nd Step: Higher-dimensional Space
	2nd Step: Higher-dimensional Space
	2nd Step: Higher-dimensional Space
	Actual Algorithm
	Pseudo-code: Start
	Pseudo-code: �On-the-fly Downsampling
	Pseudo-code: �Convolving
	Pseudo-code: �On-the-fly Upsampling
	Discussion
	Running Times
	How to Choose an Implementation?
	Questions ?

