Course Evaluations

http://www.siggraph.org/courses evaluation

4 Random Individuals will win an ATI Radeon ${ }^{\text {tm }}$ HD2900XT

A Gentle Introduction to Bilateral Filtering and its Applications

- From Gaussian blur to bilateral filter - S. Paris
- Applications - F. Durand
- Link with other filtering techniques - P. Kornprobst

BREAK

- Implementation - S. Paris
- Variants - J. Tumblin
- Advanced applications - J. Tumblin
- Limitations and solutions - P. Kornprobst

A Gentle Introduction to Bilateral Filtering and its Applications

SIGGRAPH2007

Recap

Sylvain Paris - MIT CSAIL

Decomposition into Large-scale and Small-scale Layers

edge-preserving: Bilateral Filter

Weighted Average of Pixels

- Depends on spatial distance and intensity difference
- Pixels across edges have almost influence

$$
\begin{gathered}
B F[I]_{\mathbf{p}}=\frac{1}{W_{\mathrm{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathrm{s}}}(\|\mathrm{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}} \\
\text { nopace } \\
\text { normalization }
\end{gathered}
$$

A Gentle Introduction to Bilateral Filtering and its Applications

SIGGRAPH2007

Efficient Implementations of the Bilateral Filter

Sylvain Paris - MIT CSAIL

Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]

Brute-force Implementation

$$
B F[I]_{\mathrm{p}}=\frac{1}{W_{\mathbf{p}}} \sum_{\mathrm{q} \in S} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathrm{q}}\right|\right) I_{\mathrm{q}}
$$

For each pixel p
For each pixel q

$$
\text { Compute } G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathrm{q}}\right|\right) I_{\mathrm{q}}
$$

8 megapixel photo: 64,000,000,000,000 iterations!

Complexity

- Complexity = "how many operations are needed, how this number varies"
- $S=$ space domain = set of pixel positions
- $|S|=$ cardinality of $S=$ number of pixels
- In the order of 1 to 10 millions
- Brute-force implementation: $O\left(|S|^{2}\right)$

Better Brute-force Implementation

Idea: Far away pixels are negligible

For each pixel p
a. For each pixel \mathbf{q} such that $\|\mathbf{p}-\mathbf{q}\|<$ cte $\times \sigma_{\mathrm{s}}$
looking at all pixels

looking at neighbors only

Discussion

- Complexity: $O\left(|S| \times \sigma_{\mathrm{s}}^{2}\right)$

neighborhood area
- Fast for small kernels: $\sigma_{\mathrm{s}} \sim 1$ or 2 pixels
- BUT: slow for larger kernels

Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]

Separable Kernel [Pham and Van Vliet 05]

- Strategy: filter the rows then the columns

- Two "cheap" 1D filters instead of an "expensive" 2D filter

Discussion

- Complexity: $O\left(|S| \times \sigma_{\mathrm{s}}\right)$

- Fast for small kernels (<10 pixels)
- Approximation: BF kernel not separable
- Satisfying at strong edges and uniform areas
- Can introduce visible streaks on textured regions

brute-force implementation

separable kernel mostly OK, some visible artifacts (streaks)

Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]

Box Kernel [Weiss 06]

- Bilateral filter with a square box window [Yarovlasky 85]

$$
\begin{aligned}
& Y[I]_{\mathrm{p}}=\frac{1}{W_{\mathbf{p}}} \sum_{\mathrm{q} \in \mathcal{S}} B_{\sigma_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|)} G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}} \\
& Y[I]_{\mathrm{p}}=\frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in B_{\sigma_{\mathrm{s}}}}^{G_{\sigma_{\mathrm{t}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}}} \text { independent of position } \mathbf{q}
\end{aligned}
$$

- The bilateral filter can be computed only from the list of pixels in a square neighborhood.

Box Kernel [Weiss 06]

- Idea: fast histograms of square windows

Box Kernel [Weiss 06]

- Idea: fast histograms of square windows

full histograms are known

Discussion

- Complexity: $O\left(|S| \times \log \sigma_{\mathrm{s}}\right)$
- always fast
- Only single-channel images
- Exploit vector instructions of CPU
- Visually satisfying results (no artifacts)
- 3 passes to remove artifacts due to box windows (Mach bands)

3 iterations

brute-force implementation

Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]

3D Kernel [Paris and Durand 06]

- Idea: represent image data such that the weights depend only on the distance between points

close in space

1D image

Plot
$I=f(x)$
pixel intensity

$1^{\text {st }}$ Step: Re-arranging Symbols

$$
\begin{aligned}
B F[I]_{\mathrm{p}} & =\frac{1}{W_{\mathrm{p}}} \sum_{\mathrm{q} \in S} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathrm{q}}\right|\right) I_{\mathrm{q}} \\
W_{\mathrm{p}} & =\sum_{\mathrm{q} \in S} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathrm{q}}\right|\right)
\end{aligned}
$$

Multiply first equation by $W_{\mathbf{p}}$

$$
\begin{aligned}
W_{\mathbf{p}} B F[I]_{\mathbf{p}} & =\sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}} \\
W_{\mathbf{p}} & =\sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right) 1
\end{aligned}
$$

$1^{\text {st }}$ Step：Summary

$$
\begin{aligned}
W_{\mathrm{p}} B F[I]_{\mathrm{p}} & =\sum_{\mathrm{q} \in S} G_{\sigma_{⿱}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{⿱}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}} \\
W_{\mathbf{p}} & =\sum_{\mathrm{q} \in S} G_{\sigma_{⿱}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{⿱}}\left(\left|I_{\mathrm{p}}-I_{\mathrm{q}}\right|\right) 1
\end{aligned}
$$

－Similar equations
－No normalization factor anymore
－Don＇t forget to divide at the end

$2^{\text {nd }}$ Step: Higher-dimensional Space

- "Product of two Gaussians" = higher dim. Gaussian

$2^{\text {nd }}$ Step: Higher-dimensional Space

- 0 almost everywhere, I at "plot location"

$2^{\text {nd }}$ Step: Higher-dimensional Space

- 0 almost everywhere, I at "plot location"
- Weighted average at each point = Gaussian blur

$2^{\text {nd }}$ Step: Higher-dimensional Space

- 0 almost everywhere, I at "plot location"
- Weighted average at each point = Gaussian blur
- Result is at "plot location"

New num. scheme: - simple operations

- complex space

Higher dimensional
\qquad
Homogeneous intensity

Strategy: downsampled convolution

DOWNSAMPLE

Conceptual view, not exactly the actual algorithm

Actual Algorithm

- Never compute full resolution
- On-the-fly downsampling
- On-the-fly upsampling
- 3D sampling rate $=\left(\sigma_{\mathrm{s}}, \sigma_{\mathrm{s}}, \sigma_{\mathrm{r}}\right)$

Pseudo-code: Start

- Input
- image I
- Gaussian parameters σ_{s} and σ_{r}
- Output: BF [I]
- Data structure: 3D arrays wi and w (init. to 0)

Pseudo-code: On-the-fly Downsampling

- For each pixel $(X, Y) \in S$

- Downsample:

$$
(x, y, z)=\left(\left[\frac{X}{\sigma_{\mathrm{s}}}\right],\left[\frac{Y}{\sigma_{\mathrm{s}}}\right],\left[\frac{I(X, Y)}{\sigma_{\mathrm{r}}}\right]\right)
$$

[] = closest int.

- Update: \quad wi $(x, y, z) \quad+=\quad I(X, Y)$

$$
w(x, y, z) \quad+=1
$$

Pseudo-code: Convolving

- For each axis \breve{x}, \dot{y}, and $\underset{z}{\xi}$

- For each 3D point (x, y, z)

- Apply a Gaussian mask ($1,4,6,4,1$) to wi and w e.g., for the x axis:

$$
w i^{\prime}(x)=w i(x-2)+4 . w i(x-1)+6 \cdot w i(x)+4 . w i(x+1)+w i(x+2)
$$

Pseudo-code: On-the-fly Upsampling

- For each pixel $(X, Y) \in S$

- Linearly interpolate the values in the 3D arrays

$$
B F[I](X, Y)=\frac{\text { interpolate }(w i, X, Y, I(X, Y))}{\text { interpolate }(w, X, Y, I(X, Y))}
$$

Discussion
 - Complexity: $o\left(\frac{\widetilde{\Gamma}}{|S|+\frac{\widetilde{|S||R|}}{\sigma_{\mathrm{s}}^{2}} \sigma_{\mathrm{r}}}\right)$

$|R|$: number of gray levels

- Fast for medium and large kernels
- Can be ported on GPU [Chen 07]: always very fast
- Can be extended to color images but slower
- Visually similar to brute-force computation

brute-force implementation

3D kernel
 visually similar

Running Times

How to Choose an Implementation?

Depends a lot on the application. A few guidelines:

- Brute-force: tiny kernels or if accuracy is paramount
- Box Kernel: for short running times on CPU with any kernel size, e.g. editing package
- 3D kernel:
- if GPU available
- if only CPU available: large kernels, color images, cross BF (e.g., good for computational photography)

Questions?

