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Local mode filtering principle

_

N >
Spatial window

Smoothed local histogram

You are going to see that BF has the same effect as local mode filtering



Let’'s prove it!

e Define global histogram

* Define a smoothed histogram
* Define a local smoothed histogram
* What does it mean to look for local modes?

e \WWhat is the link with bilateral filter?




Definition of a global histogram

« Formal definition HEEERE
ERSEm
H(i) = Z 6(1, — i)

peS

Where 5() IS the dirac symbol (1 if t=0, O otherwise)

e A sum of dirac, « a sum of ones »
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Smoothing the histogram
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Smoothing the histogram
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# pixels H(i,0.) = Y Go, (i —I(p))
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This Is it!
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Definition of alocal smoothed
histogram

* We introduce a « smooth spatial window »

H(i,p,0.,05) = Y  Go,(p = 9)Go, (i — I(g))

where <

q€ef)

= Smoothing of intensities

— Spatial window

And that’s the formula to have in mind!



Definition of/ local modes

>

0

A local mode i verifies 5H(i,p, or,05) =0
1




Local modes?

e Glven
H(iapa Or, Us) — Z GO'S (p _ Q)Gar (7’ — Iq)
qel?
0

* We look for i / 5H(i,p, Or,05) =0
(/

e Result: 7 = ZQEQ GO’s (p i Q)Gar (7/ — [q)Iq
> eq Go.(p — 4)Go, (i — 1)




Local modes?

One Iteration of the bilateral filter

amounts to converge to the local mode

Ly

o Result- ; — ZQEQ GO’s (p B Q)Gar (7/ [q)Iq
> eq Go.(p — )Go, (i — 1)




Take home message #1

Bilateral filter is equivalent to
mode filtering in local histograms

[Van de Weljer, Van den Boomgaard, 2001]
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Robust statistics

e Goals: Reduce the influence of outliers,

preserve discontinuities

C ... Robust or not robust?
e Minimizing a cost . -

PES g€N;
\ J
e

Penalizing differences between neighbors
Smoothing term

[Huber 81, Hampel 86]




Robust statistics

e Goals: Reduce the influence of outliers,
preserve discontinuities

® MIﬂImIZII’]g a COSt («local » formulation)

mang, s: S: Go, (g —p)p(Ly — Ip)

PES qEN,

e And to minimize It

|T]p qEND

[Huber 81, Hampel 86]




If we choose p(t) =1- G, (t)

* The minimization of the error norm gives

ol = It+mZG (q—p)G,, (1L — L)1 - IY)
p

Iterated reweighted
least-square

e The bilateral filter is

ot Sy Goula = D)o (I~ I
p Z Gcrs (q p) GC’r ([g _ Ilg) Weighted average of the data

* So similar! They solve the same minimization
problem! [Hampel etal., 1986]: The bilateral filter IS
a robust filter!



Back to robust statistics...

Robust or not robust?

Error norm

Y ¥ o

PES qENp
Influence function

]t+1 = |77p| Z Gas _

qEp

How to choose the error norm? How is the shape related to

the anisotropy of the diffusion? What's the graphical intuition?




Graphical intuition

From the energy E”Olmrm
nin Y Goslp— diolly 1o

PES qENY

NOT ROBUST

The error norm should not be too penalizing for
high differences



Graphical intuition

From its minimization

l
=4 3 e == 1)

qEp

Influence function

NOT ROBUST

The influence function in the robust case reveals
two different behaviors for inliers versus outliers



What is important here?

* The qualitative properties of this influence
function, distinguishing inliers from outliers.

* In robust statistics, many influence functions
have been proposed

./ |Gaussian /' |Hubert ./ |Lorentz W [Tukey

Let’s see their difference on an example!
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Take home message #2

The bilateral filter is a robust filter.
Because of the range weight, pixels with
different intensities have limited or no
Influence. They are outliers.

Several choices for the range function.

[Durand, 2002, Durand, Dorsey, 2002, Black, Marimont, 1998]
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What do | mean by PDES?

 Continuous Interpretation of images

e Two kinds of formulations

— Variational approach inf/ F(p, I,V I)dp
1 p€el

— Evolving a partial gifferential equation

ol
— =G(p,I,VI,...
8t G(p7 7v ) )



Two ways to explain it

* The « simple one » is to show the link
between PDEs and robust statisitcs

Bilateral
filter \

_Partlal_ Local mode
dlffere_ntlal filtering
equations R

Y
“. Robust “
statistics

Black, Marimont, 1998, etc]




continuous discrete

inf / p(VI)dp == inf} 3 p(I, 1))
peEl

I
pEQ geng

ol I
5 =div (¢(VI)VI) - = >4 S (VI )V,

qEns

with.. V1, , = I, — I,




Two ways to explain it

* The « more rigorous one » is to show directly
the link between a differential operator and
an integral form

Bilateral
filter \

_Partlal_ L ocal mode
dlffere_ntlal filtering
equations oY
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Gaussian solves heat equation

9
o7 = O = Lo £ 1y, 13

e Linear diffusion
* When time grows, diffusion grows
e Diffusion Is isotropic



Gaussian solves heat equation

0l
EZAI:IWJFIW L
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" ‘\ N -
‘k‘.' ‘ '\. -::;:‘r \‘ e ‘ 1

O
GBI, = /S G, (q— p)]ydq

GB[I]p Is a solution of the heat equation when O0s = V 21




And W|th the range? [Buades, Coll, Morel, 2005]

* Considering the Yaroslavsky Filter

Vil = 505 | Gl 1)Ly
os \P

Integral representation
Space range is in the domain

(operation similar to M-esfimators)

At a very local scale, the asymptotic behavior of the

Integral operator corresponds to a diffusion operator



More precisely

e \We have
Y[, — I, ~ o[y + B e

* And then we enter a large class of anisotropic
diffusion approaches based on PDEs

ol
i I, + ]

New idea here: It is not only a matter of smoothing or not, but also

to take into account the local structure of the image



Take home message #3

Bilateral filter i1s a discretization
of a particular kind of a PDE-
based anisotropic diffusion.

[Barash 2001, Elad 2002, Durand 2002, Buades, Coll, Morel, 2005]

Welcome to the PDE-world!

[Kornprobst 2006]




The PDE world at a glance

Applied
Mathematical
Sciences

Gilles Aubert
147 Pierre Kornprobst
Mathematical
Problems in
Image Processing
Partial Differential

Equations and the
Calculus of Variations

Second Edition

) Springer

NG

, Whitaker




Bilateral filter is one technique for anisotropic diffusion

Summary and it makes the bridge between several frameworks.
From there, you can explore news worlds!
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Questions?

INSTITUT NATIONAL

DE RECHERCHE 7‘ Pierre.kornprobst@inria.fr
N AUTOMATIQUE ‘ ‘ INRIA' http://pierre.kornprobst.googlepages.com/

ET EN AUTOMATIQUE
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