A Gentle Introduction to Bilateral Filtering and its Applications

Naïve Image Smoothing: Gaussian Blur

Sylvain Paris – Adobe

Notation and Definitions

Image = 2D array of pixels

Pixel = intensity (scalar) or color (3D vector)

• $I_{\mathbf{p}}$ = value of image *I* at position: $\mathbf{p} = (p_x, p_y)$

• *F* [*I*] = output of filter *F* applied to image *I*

Strategy for Smoothing Images

- Images are not smooth because adjacent pixels are different.
- Smoothing = making adjacent pixels look more similar.
- Smoothing strategy pixel → average of its neighbors

Box Average

square neighborhood

Equation of Box Average

Square Box Generates Defects

- Axis-aligned streaks
- Blocky results

input

output

Box Profile

Strategy to Solve these Problems

- Use an isotropic (*i.e.* circular) window.
- Use a window with a smooth falloff.

box window

Gaussian window

Gaussian Blur

per-pixel multiplication

Equation of Gaussian Blur

Same idea: weighted average of pixels.

Spatial Parameter

input

limited smoothing

large σ

strong smoothing

How to set σ

Depends on the application.

Common strategy: proportional to image size

 e.g. 2% of the image diagonal
 property: independent of image resolution

Properties of Gaussian Blur

Weights independent of spatial location

– linear convolution

- well-known operation

- efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

input

- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} \frac{G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|)}{Space} I_{\mathbf{q}}$$

