A Gentle Introduction to Bilateral Filtering and its Applications

How does bilateral filter relates with other methods?

Fredo Durand (MIT CSAIL) Slides by Pierre Kornprobst (INRIA) Many people worked on... edge-preserving restoration

> Bilateral filter

Partial differential equations

Anisotropic diffusion

Local mode filtering

Robust statistics

Goal: Understand how does bilateral filter relates with other methods

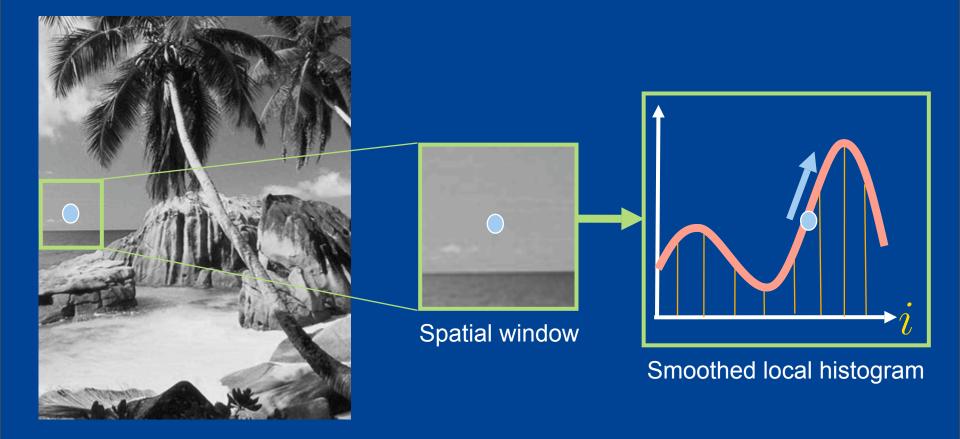
Bilateral

filter

Partial differential equations Local mode filtering

Robust statistics

Local mode filtering principle



You are going to see that BF has the same effect as local mode filtering

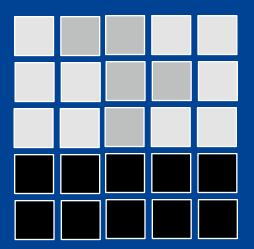
Let's prove it!

- Define global histogram
- Define a smoothed histogram
- Define a local smoothed histogram
- What does it mean to look for *local modes*?
- What is the *link* with bilateral filter?

Definition of a global histogram

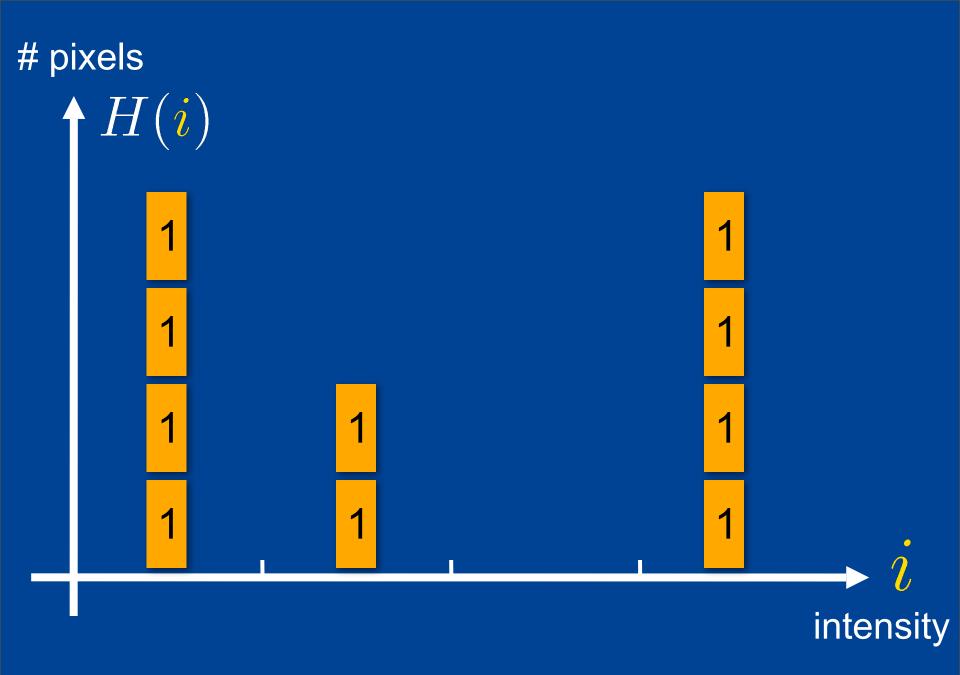
• Formal definition of histogram *H* at intensity *i*:

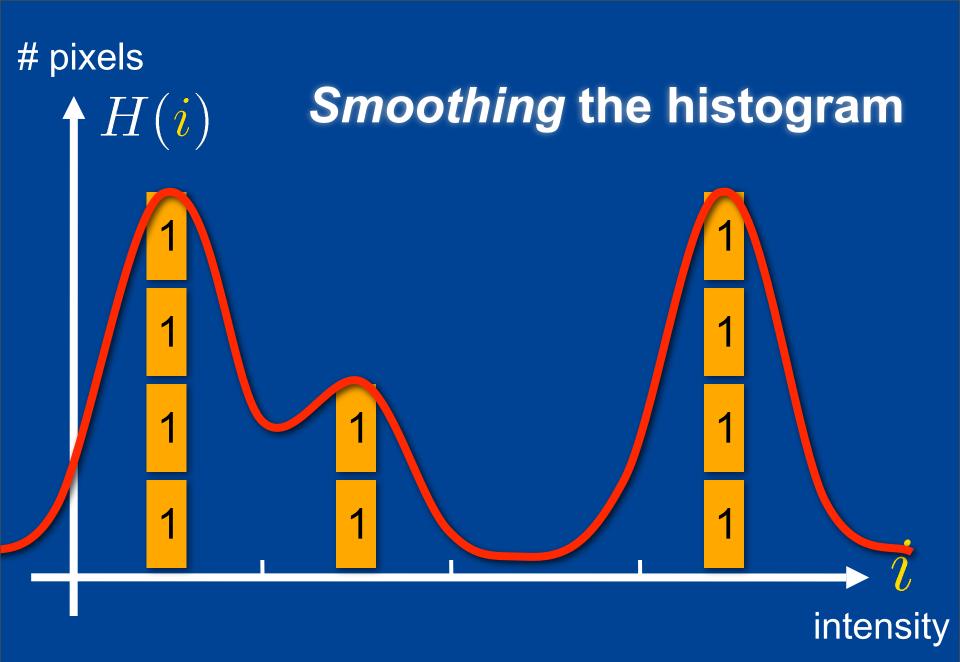
$$H(\mathbf{i}) = \sum_{p \in S} \delta(I_p - \mathbf{i})$$



Where $\delta(.)$ is the Dirac symbol (zero everywhere except at 0)

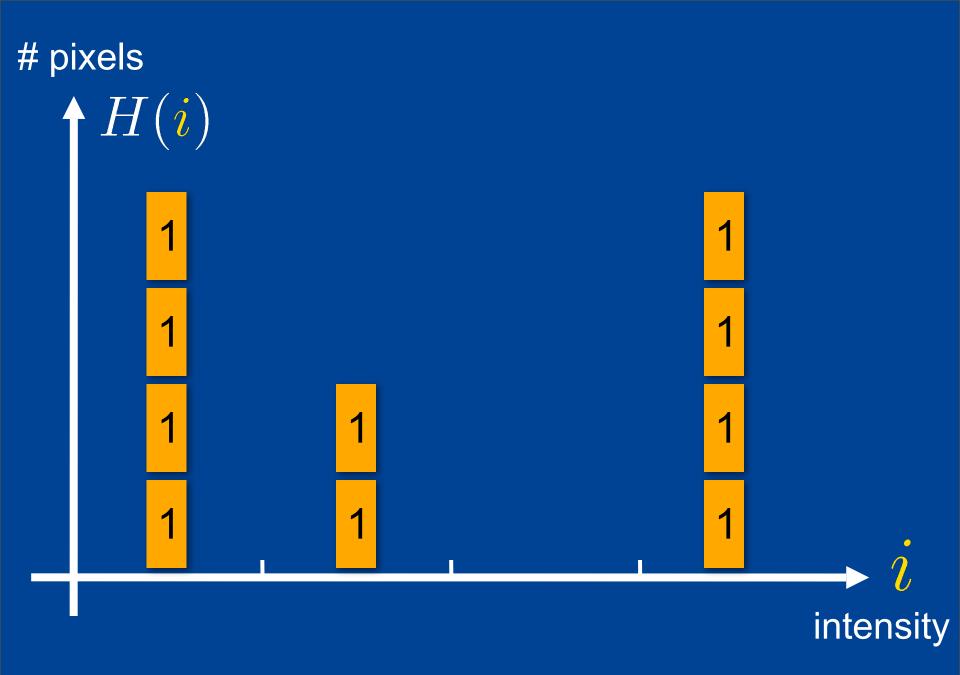
A sum of Dirac, « a sum of ones »

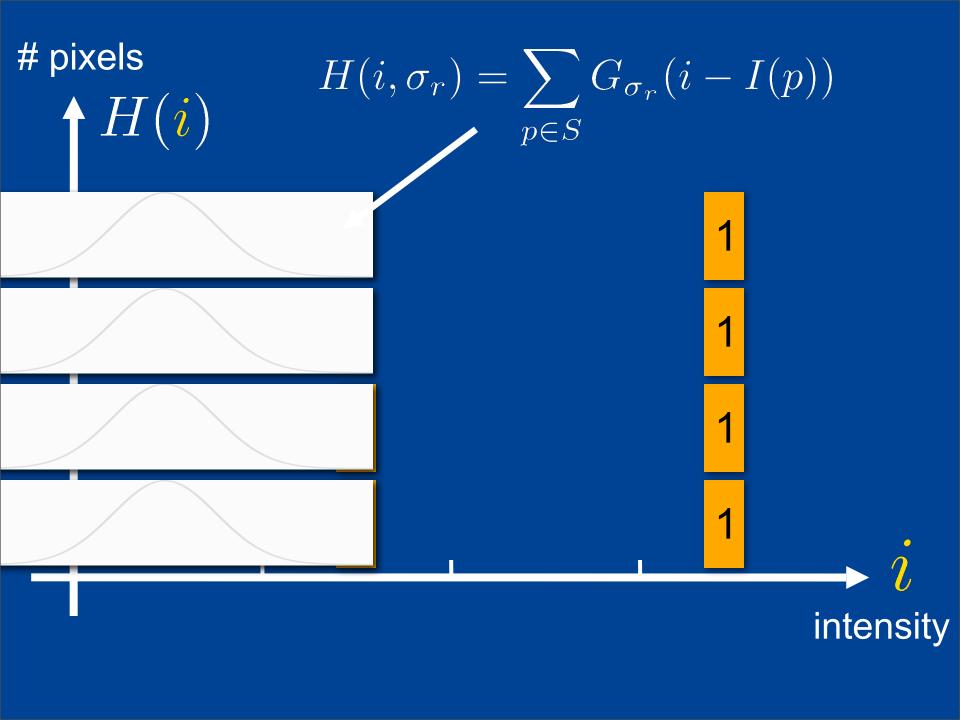


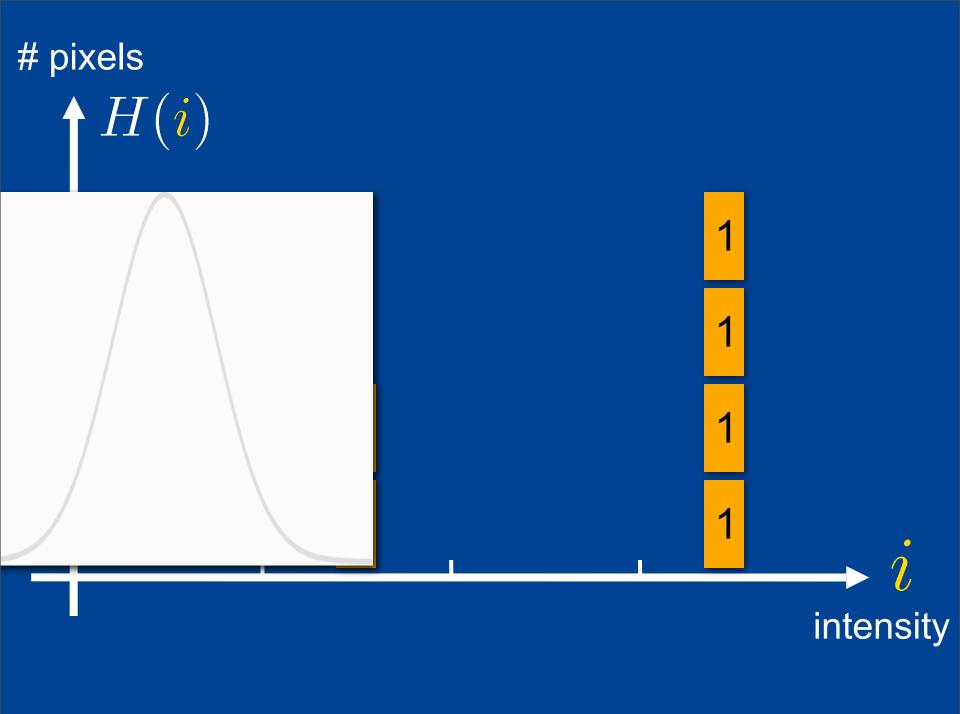


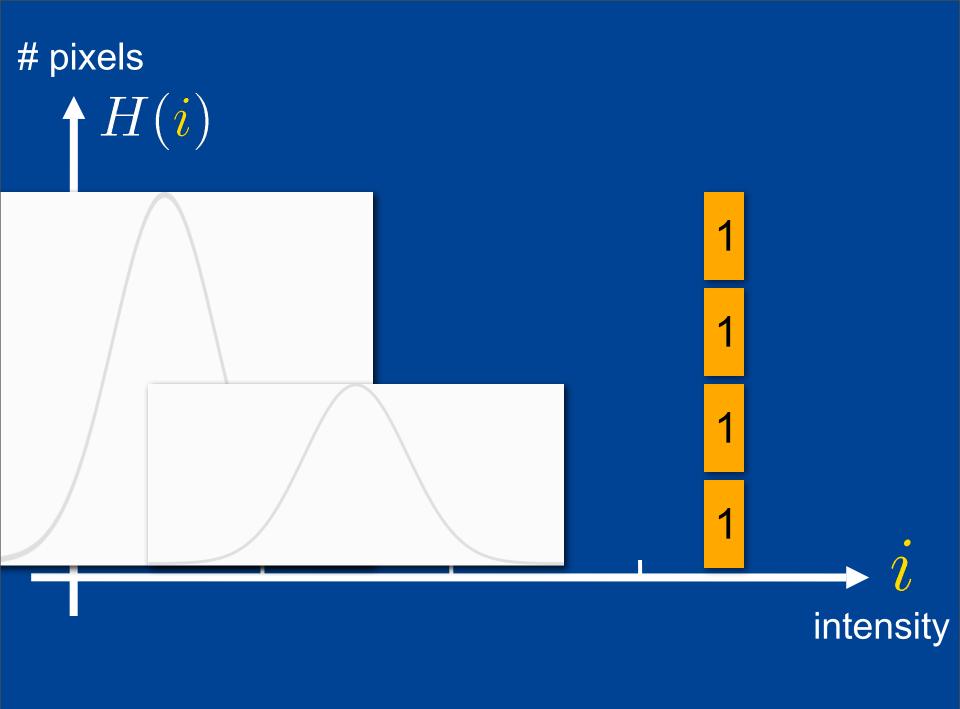
Smoothing the histogram

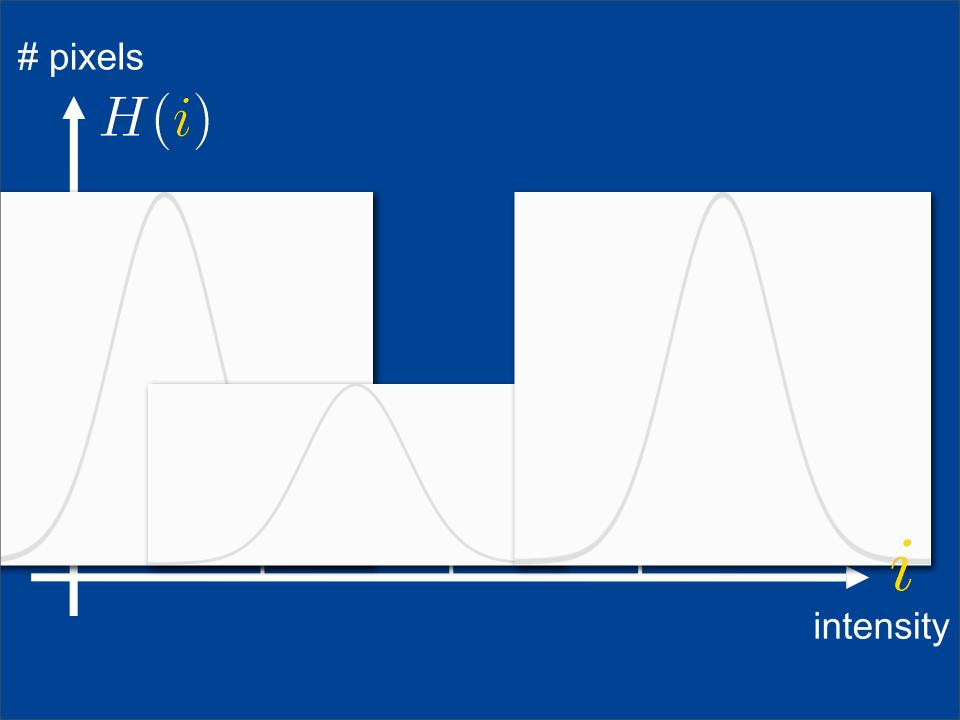
 $H \star G_{\sigma_r}(i) = \sum_{j \in \mathcal{I}} H(j) G_{\sigma_r}(i-j)$ $= \sum_{j \in \mathcal{I}} \sum_{p \in S} \delta(I(p)-j) G_{\sigma_r}(i-j)$

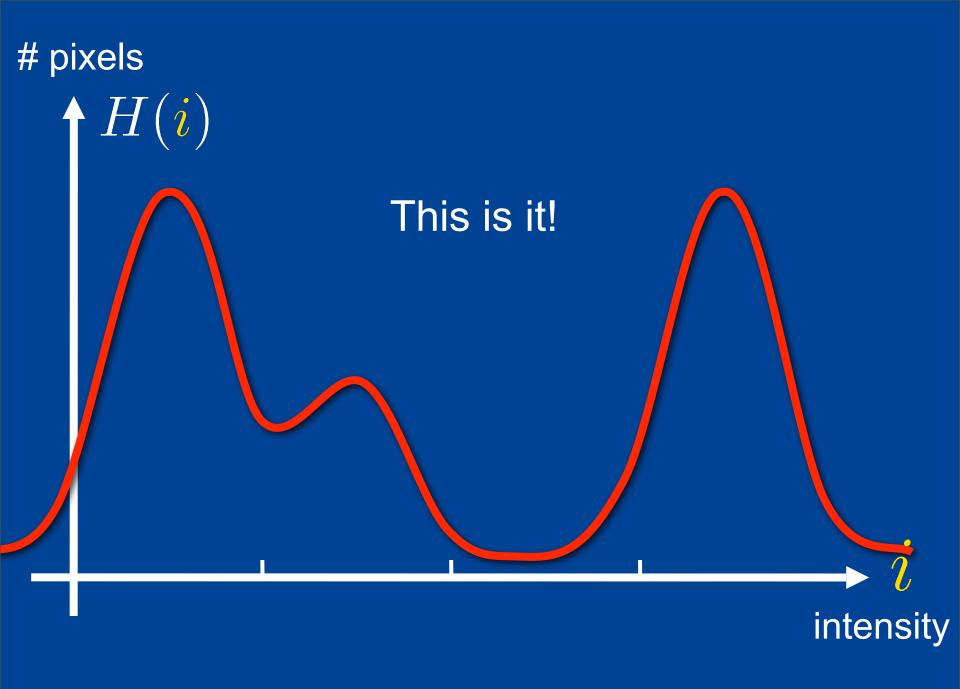












Definition of a *local* smoothed histogram

We introduce a « smooth window »

$$H(i, \boldsymbol{p}, \sigma_r, \sigma_s) = \sum_{q \in \Omega} G_{\sigma_s}(\boldsymbol{p} - \boldsymbol{q}) G_{\sigma_r}(i - I(q))$$

where $\left\{ egin{array}{l} \sigma_r = \mbox{Smoothing of intensities} \\ \sigma_s = \mbox{Spatial window} \end{array}
ight.$

And that's the formula to have in mind!

Definition of local modes

$$\frac{\partial}{\partial i}H(i,p,\sigma_r,\sigma_s) = 0?$$

 $\circ \mathcal{P}$

Local modes?

Given

$$H(i, p, \sigma_r, \sigma_s) = \sum_{q \in \Omega} G_{\sigma_s}(p-q) G_{\sigma_r}(i-I_q)$$

We look for
 $i / \frac{\partial}{\partial i} H(i, p, \sigma_r, \sigma_s) = 0?$

• Result: $\mathbf{i} = \frac{\sum_{q \in \Omega} G_{\sigma_s}(p-q) G_{\sigma_r}(\mathbf{i} - I_q) I_q}{\sum_{q \in \Omega} G_{\sigma_s}(p-q) G_{\sigma_r}(\mathbf{i} - I_q)}$

Summary

• A local mode *i* verifies:

$$\mathbf{i} = \frac{\sum_{q \in \Omega} G_{\sigma_s}(p-q) G_{\sigma_r}(\mathbf{i} - I_q) I_q}{\sum_{q \in \Omega} G_{\sigma_s}(p-q) G_{\sigma_r}(\mathbf{i} - I_q)}$$

Hey! That looks like bilateral filter!!!

One iteration of the bilateral filter amounts to converge to the local mode

p

Discussion

- The bilateral filter goes to a LOCAL mode, not necessarily the global mode
- Often desirable: mode closest to input pixel
- Sometimes not: impulse noise case
 Recall the use of the median as pre-filter
 - amounts to going to the global mode

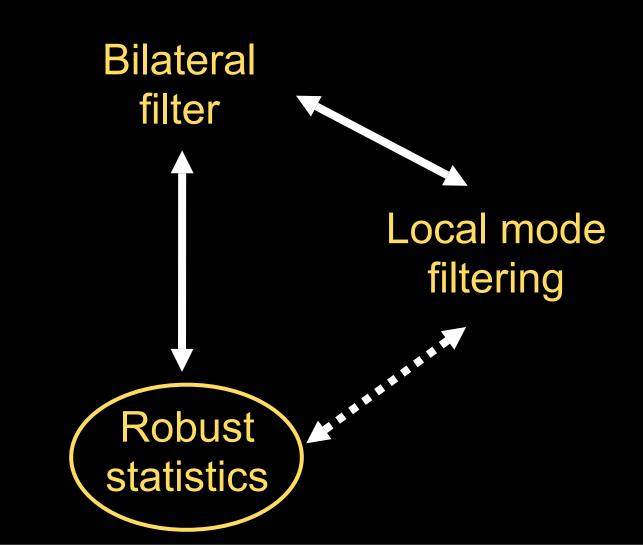
Take home message #1

Bilateral filter is equivalent to mode filtering in local histograms

[Van de Weijer, Van den Boomgaard, 2001, etc]

Goal: Understand how does bilateral filter relates with other methods

Partial differential equations



Robust statistics?

Goals: Reduce the influence of outliers

 In standard robust statistics I_q are measured data, I_p is a robust average of the data

[Huber 81, Hampel 86]

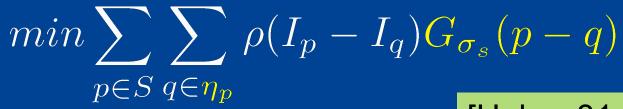
Robust statistics?

 In our case: the output at a pixel should be a robust smoothing of its neighbors

Error norm

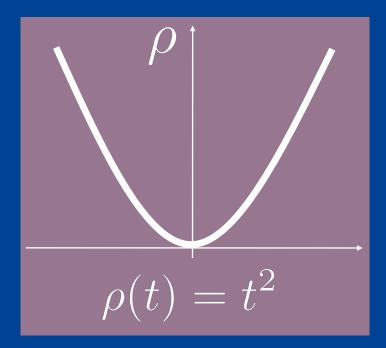
Minimizing a cost

 $\min\sum_{p\in S}\sum_{q\in\eta_p^4}\rho(I_p-I_q)$ • Extended local formulation



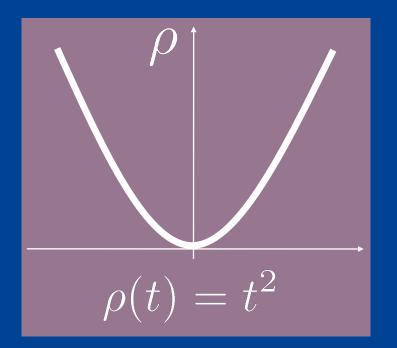
[Huber 81, Hampel 86]

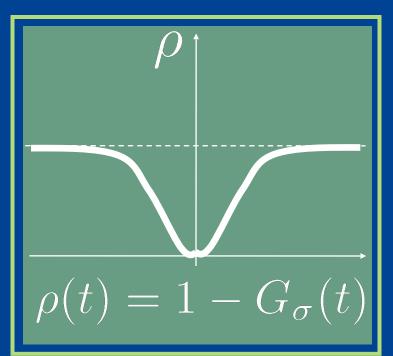
How to choose the error norm? $\min \sum_{p \in \Omega} \sum_{q \in \eta_p^4} \rho(I_p - I_q)$



Least square pays a big penalty for big errors
 problem in the presence of outliers

How to choose the error norm? $\min \sum_{p \in \Omega} \sum_{q \in \eta_p^4} \rho(I_p - I_q)$





 Strong differences must not be too penalizing, otherwise, everything will be smoothed!

How to minimize the cost function?

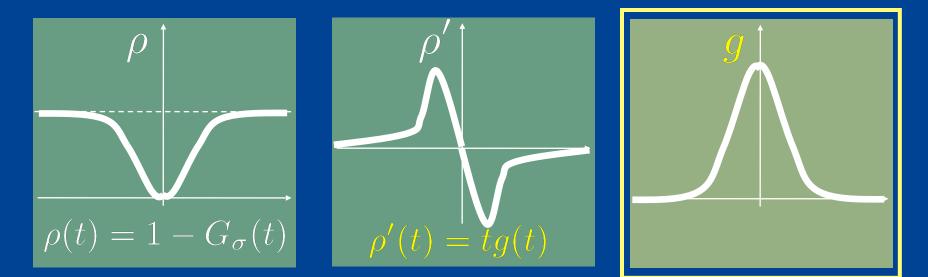
Gradient descent and iterative scheme

$$I_p^{t+1} = I_p^t + \frac{\lambda}{|\eta_p|} \sum_{q \in \eta_p} G_{\sigma_s}(q-p)\rho'(I_q^t - I_p^t)$$

Getting closer to bilateral filter

Rewrite introducing a new function

$$I_{p}^{t+1} = I_{p}^{t} + \frac{\lambda}{|\eta_{p}|} \sum_{q \in \eta_{p}} G_{\sigma_{s}}(q-p) \mathbf{g} (I_{q}^{t} - I_{p}^{t}) (I_{q}^{t} - I_{p}^{t})$$

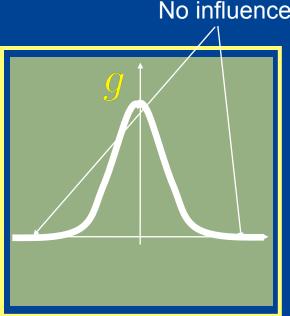


Getting closer to bilateral filter

Rewrite introducing a new function

$$I_p^{t+1} = I_p^t + \frac{\lambda}{|\eta_p|} \sum_{q \in \eta_p} G_{\sigma_s}(q-p) g (I_q^t - I_p^t) (I_q^t - I_p^t)$$
No influence

- g has the same qualitative behavior than a Gaussian
- Now this operator reminds us about bilateral filter!



Really the same?

$I_p^{t+1} = I_p^t + \frac{\lambda}{|n_p|} \sum \text{Festimator}_r (I_q^t - I_p^t) (I_q^t - I_p^t)$

[Hampel etal, 1986]: M-estimators and W_estimators are essentially equivalent and solve the same minimization problem

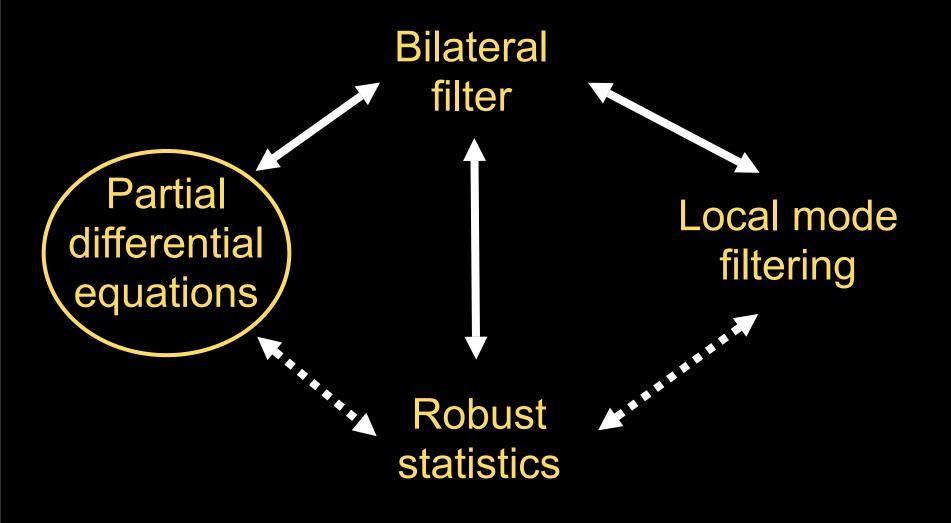
 $I_p^{t+1} = \frac{\sum_q G_{\sigma_s}(q-p)G_{\sigma_r}(I_q-I_p)I_q}{\sum_q G_{\sigma_s}(q-p)G_{\sigma_r}(I_q-I_p)}$

Take home message #2

Bilateral filter can be interpreted in term of robust statistics since it is related to a cost function!

[Durand, Dorsey, 2002, Black, Marimont, 1998, etc]

Goal: Understand how does bilateral filter relates with other methods



Disclaimer

- We will shrink the neighborhood
- This will lose some properties of the bilateral filter
- But although partial, this parallel is insightful

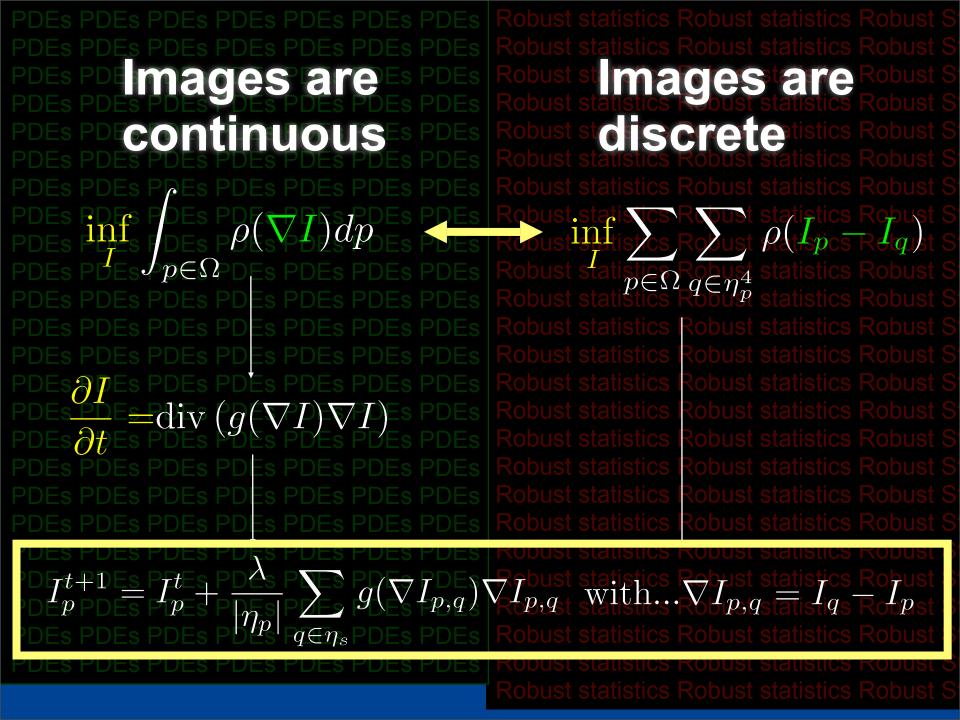
What do I mean by PDEs?

- Images live in a continuous domain
- Two kinds of formulations – Variational approach $\inf_{I} \int_{p \in \Omega} F(p, I, \nabla I) dp$ – Evolving a partial differential equation $\frac{\partial I}{\partial t} = G(p, I, \nabla I, H(I))$

Recall robust statistics

$$\min\sum_{p\in\Omega}\sum_{q\in\eta_p^4}\rho(I_p-I_q)$$

$$I_{p}^{t+1} = I_{p}^{t} + \frac{\lambda}{|\eta_{p}|} \sum_{q \in \eta_{p}} G_{\sigma_{s}}(q-p) g (I_{q}^{t} - I_{p}^{t}) (I_{q}^{t} - I_{p}^{t})$$



Some technical results to establish

Considering the Yaroslavsky Filter

 $YNF_{\sigma_{s},\sigma_{r}}I(p) = \frac{1}{C(p)} \int_{B_{\sigma_{s}}(p)} G_{\sigma_{r}}(I(q) - I(p))I(q)dq$ • When $\sigma_{s}, \sigma_{r} \to 0$, $\sigma_{r} = \mathcal{O}(\sigma_{s}^{\alpha})$, and $\alpha = 1$ $YNF_{\sigma_{s},\sigma_{r}}I(p) - I(p) \approx \text{nonlinear diffusion operator}$

(operation similar to M-stimators)

At a very local scale, the asymptotic behavior of the integral operator corresponds to a diffusion operator

[Buades, Coll, Morel, 2005]

The PDE world at a glance

Mathematical Problems in Image Processing **Partial Differential** Equations and the Calculus of Variations

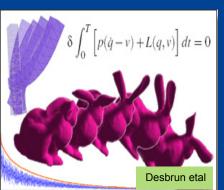
Second Edition

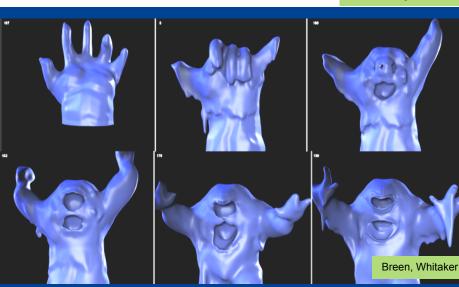
sources/destinations

cloning

seamless cloning Perez, Gangnet, Blake

Deringer





Discussion

- We shrunk the kernel
- •

Take home message #3

Bilateral filter is a discretization of a particular kind of a PDEbased anisotropic diffusion.

[Barash 2001, Elad 2002, Durand 2002, Buades, Coll, Morel, 2005]

Welcome to the PDE-world!

[Kornprobst 2006]

Bilateral filter is one technique for anisotropic diffusion and it makes the bridge between several frameworks. From there, you can explore news worlds!

