Course Evaluations

http://www.siggraph.org/courses_evaluation

4 Random Individuals will win an ATI Radeon™ HD2900XT
A Gentle Introduction to Bilateral Filtering and its Applications

- From Gaussian blur to bilateral filter – S. Paris
- Applications – F. Durand
- Link with other filtering techniques – P. Kornprobst

- Implementation – S. Paris
- Variants – J. Tumblin
- Advanced applications – J. Tumblin
- Limitations and solutions – P. Kornprobst
Recap

Sylvain Paris – Adobe
Decomposition into Large-scale and Small-scale Layers

- **input**
- **smoothed** (structure, large scale)
- **residual** (texture, small scale)

edge-preserving: Bilateral Filter
Weighted Average of Pixels

• Depends on spatial distance and intensity difference
 – Pixels across edges have almost influence

\[BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\alpha_s} (\| p - q \|) G_{\alpha_r} (| I_p - I_q |) I_q \]
A Gentle Introduction to Bilateral Filtering and its Applications

Efficient Implementations of the Bilateral Filter

Sylvain Paris – Adobe
Outline

• Brute-force Implementation

• Separable Kernel [Pham and Van Vliet 05]

• Box Kernel [Weiss 06]

• 3D Kernel [Paris and Durand 06]
Brute-force Implementation

For each pixel \(p \)

For each pixel \(q \)

Compute \(G_{\sigma_s} (\| p - q \|) G_{\sigma_r} (\| I_p - I_q \|) I_q \)

8 megapixel photo: 64,000,000,000,000 iterations!

\[
BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s} (\| p - q \|) G_{\sigma_r} (\| I_p - I_q \|) I_q
\]
Complexity

• Complexity = “how many operations are needed, how this number varies”

• $S = \text{space domain} = \text{set of pixel positions}$

• $|S| = \text{cardinality of } S = \text{number of pixels}$
 – In the order of 1 to 10 millions

• Brute-force implementation: $O(|S|^2)$
Better Brute-force Implementation

Idea: Far away pixels are negligible

For each pixel p

a. For each pixel q such that $||p - q|| < cte \times \sigma_s$
Discussion

- Complexity: \(O(|S| \times \sigma_s^2) \)

- Fast for small kernels: \(\sigma_s \sim 1 \) or 2 pixels

- BUT: slow for larger kernels
Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]
Separable Kernel [Pham and Van Vliet 05]

- Strategy: filter the rows then the columns

- Two “cheap” 1D filters instead of an “expensive” 2D filter
Discussion

• Complexity: $O(|S| \times \sigma_s)$
 – Fast for small kernels (<10 pixels)

• Approximation: BF kernel not separable
 – Satisfying at strong edges and uniform areas
 – Can introduce visible streaks on textured regions
brute-force implementation
separable kernel
mostly OK,
some visible artifacts
(streaks)
Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]
Box Kernel [Weiss 06]

- Bilateral filter with a square box window [Yarovlasky 85]

\[Y[I]_p = \frac{1}{W_p} \sum_{q \in S} B_{\sigma_s}(\| p - q \|) G_{\sigma_r}(\| I_p - I_q \|)I_q \]

- The bilateral filter can be computed only from the list of pixels in a square neighborhood.
Box Kernel [Weiss 06]

- Idea: fast histograms of square windows

Tracking one window

Input:
full histogram is known

Update:
add one line, remove one line
Box Kernel [Weiss 06]

- Idea: fast histograms of square windows

Tracking two windows at the same time

Input: full histograms are known

Update:
- add one line, remove one line,
- add two pixels, remove two pixels
Discussion

- Complexity: $O(|S| \times \log \sigma_s)$
 - always fast

- Only single-channel images

- Exploit vector instructions of CPU

- Visually satisfying results (no artifacts)
 - 3 passes to remove artifacts due to box windows (Mach bands)
Bilateral Filtering in $O(1)$ [Porikli CVPR’08]

• Uses integral histograms to remove the log

• Uses Taylor expansion and power images

• Memory intensive (1 histogram per pixel)
brute-force implementation
box kernel
visually different,
yet no artifacts
Outline

- Brute-force Implementation
- Separable Kernel [Pham and Van Vliet 05]
- Box Kernel [Weiss 06]
- 3D Kernel [Paris and Durand 06]
3D Kernel [Paris and Durand 06]

- Idea: represent image data such that the weights depend only on the distance between points.

1D image

Plot

$$I = f(x)$$

Pixel intensity

close in space

far in range
1st Step: Re-arranging Symbols

\[BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(\|p - q\|)G_{\sigma_r}(\|I_p - I_q\|) I_q \]

\[W_p = \sum_{q \in S} G_{\sigma_s}(\|p - q\|)G_{\sigma_r}(\|I_p - I_q\|) \]

Multiply first equation by \(W_p \)

\[W_p \cdot BF[I]_p = \sum_{q \in S} G_{\sigma_s}(\|p - q\|)G_{\sigma_r}(\|I_p - I_q\|) I_q \]

\[W_p = \sum_{q \in S} G_{\sigma_s}(\|p - q\|)G_{\sigma_r}(\|I_p - I_q\|) 1 \]
1st Step: Summary

\[W_p \ BF[I]_p = \sum_{q \in S} G_{\sigma_s}(\|p-q\|) G_{\sigma_r}(\|I_p-I_q\|) I_q \]

\[W_p = \sum_{q \in S} G_{\sigma_s}(\|p-q\|) G_{\sigma_r}(\|I_p-I_q\|) 1 \]

- Similar equations
- No normalization factor anymore
- Don’t forget to divide at the end
2nd Step: Higher-dimensional Space

- “Product of two Gaussians” = higher dim. Gaussian
2nd Step: Higher-dimensional Space

- 0 almost everywhere, \(I \) at “plot location”
2nd Step: Higher-dimensional Space

- 0 almost everywhere, I at “plot location”
- Weighted average at each point = Gaussian blur
2nd Step: Higher-dimensional Space

- 0 almost everywhere, I at "plot location"
- Weighted average at each point = Gaussian blur
- Result is at "plot location"
New num. scheme:
- simple operations
- complex space

Higher dimensional functions

Gaussian blur

Homogeneous intensity

Higher dimensional

division

slicing
higher dimensional functions

Strategy: downsampling convolution

Downsample

Gaussian convolution

Upsample

division

slicing

Conceptual view, not exactly the actual algorithm
Actual Algorithm

• Never compute full resolution
 – On-the-fly downsampling
 – On-the-fly upsampling

• 3D sampling rate = \((\sigma_s, \sigma_s, \sigma_r)\)
Pseudo-code: Start

- **Input**
 - image I
 - Gaussian parameters σ_s and σ_r

- **Output:** $BF[I]$

- **Data structure:** 3D arrays wi and w (init. to 0)
Pseudo-code: On-the-fly Downsampling

For each pixel \((X, Y) \in S\)

- **Downsample:**
 \[
 (x, y, z) = \left(\left\lfloor \frac{X}{\sigma_s} \right\rfloor, \left\lfloor \frac{Y}{\sigma_s} \right\rfloor, \left\lfloor \frac{I(X, Y)}{\sigma_r} \right\rfloor \right)
 \]

- **Update:**
 \[
 w_i(x, y, z) \ = \ I(X, Y)
 \]
 \[
 w(x, y, z) \ = \ 1
 \]

\[
[\] = \text{closest int.}
\]
Pseudo-code: Convolving

• For each axis \vec{x}, \vec{y}, and \vec{z}

 – For each 3D point (x, y, z)

 • Apply a Gaussian mask $(1, 4, 6, 4, 1)$ to w_i and w
 e.g., for the x axis:

 $$w_i'(x) = w_i(x-2) + 4w_i(x-1) + 6w_i(x) + 4w_i(x+1) + w_i(x+2)$$
Pseudo-code: On-the-fly Upsampling

- For each pixel \((X, Y)\) in \(S\)

 - Linearly interpolate the values in the 3D arrays

\[
BF[I](X,Y) = \frac{\text{interpolate}(w_i, X, Y, I(X,Y))}{\text{interpolate}(w, X, Y, I(X,Y))}
\]
Discussion

• Complexity: \(O\left(|S| + \frac{|S||R|}{\sigma_s^2 \sigma_r} \right) \)

• Fast for medium and large kernels
 – Can be ported on GPU [Chen 07]: always very fast

• Can be extended to color images but slower

• Visually similar to brute-force computation
brute-force implementation
3D kernel
visually similar
How to Choose an Implementation?

Depends a lot on the application. A few guidelines:

- **Brute-force**: tiny kernels or if accuracy is paramount
- **Box Kernel**: for short running times on CPU with any kernel size, e.g. editing package
- **3D Kernel**:
 - if GPU available
 - if only CPU available: large kernels, color images, cross BF (e.g., good for computational photography)
- **Bilateral Pyramid [Fattal 07]**: for multi-scale
Questions ?