Influence of the Projection Profile on Canny's Filter

Appendix to the paper

Capture of Hair Geometry from Multiple Images

Appeared in ACM SIGGRAPH conference 2004

Sylvain Paris Hector M. Briceño François X. Sillion Artis GRAVIR/IMAG-INRIA*

We show how to derive the formula used to plot the graph in Figure 6 of the paper *Capture of Hair Geometry from Multiple Images*. It demonstrates that the more extended the projection profile of an oriented filter is, the lower is the variance of its response curve – the more reliable the filter is.

We focus on the response of Canny's filter $F_{(0,0)}^{\mathbb{C}}(\theta)$ at the origin for a sinusoidal signal s(x,y). For a shorter derivation and without loss of generality, we make s turn according to $-\theta$ and fix the orientation kernel filter. Since the final computation is normalized and with absolute value, we ignore the real constants and use \sim to indicate proportional quantities.

Let's $G_{\sigma_x,\sigma_y}(x,y) = \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right)$ be a 2D Gaussian function with standard deviations σ_x and σ_y . Canny's kernel is then $\partial G_{\sigma_x,\sigma_y}/\partial x$ and the signal is $s_{\theta}(x,y) = \sin(\omega(x\cos(\theta) + y\sin(\theta)))$.

To match the sigmal wavelength and the filter pseudo-wavelength, $\sigma_x = \frac{\omega}{4}$ and we set $\sigma_y = \alpha \sigma_x$ to study the influence of α . We set $\sigma_y = \alpha \sigma_x$ and study the influence of α . With $\mathcal{F}(\cdot)$ the Fourier transform, the formula derives from:

$$F_{(0,0)}^{C}(\theta) = \left| \mathcal{F}^{-1} \left(\mathcal{F} \left(\frac{\partial G_{\sigma_x,\sigma_y}}{\partial x} \right) \mathcal{F} \left(s_{-\theta} \right) \right) (0,0) \right|$$

For (u, v) the Fourier coordinates, $\delta(\cdot)$ Dirac's delta function, $\mathbf{k_0} = (\frac{\omega}{2\pi}\cos(\theta), -\frac{\omega}{2\pi}\sin(\theta))$, $\mathbf{k} = (u, v)$ and $i^2 = -1$, the classical formulæ give:

$$\mathcal{F}\left(\frac{\partial G_{\sigma_{x},\sigma_{y}}}{\partial x}\right)(u,v) \sim iu\mathcal{F}\left(G_{\sigma_{x},\sigma_{y}}\right) \sim iuG_{\sigma_{x}^{-1},\sigma_{y}^{-1}}(u,v)$$
$$\mathcal{F}\left(s_{-\theta}\right) \sim i\delta(\mathbf{k} + \mathbf{k_{0}}) - i\delta(\mathbf{k} - \mathbf{k_{0}}))$$

Multiplying both and using $G_{\sigma_x,\sigma_y}(-\mathbf{k}) = G_{\sigma_x,\sigma_y}(\mathbf{k})$ we get a term proportional to:

$$\cos(\theta) \textit{G}_{\sigma_{x}^{-1},\sigma_{y}^{-1}}(\mathbf{k_{0}}) \left(\delta(\mathbf{k}+\mathbf{k_{0}}) + \delta(\mathbf{k}-\mathbf{k_{0}}) \right) \right)$$

Since $\mathcal{F}^{-1}(\delta(\mathbf{k}+\mathbf{k_0})+\delta(\mathbf{k}-\mathbf{k_0}))\sim\cos(\omega(x\cos(\theta)+y\sin(\theta)))$ that equals 1 at the origin (0,0), we have: $F_{(0,0)}^C(\theta)\sim|\cos(\theta)G_{\sigma_x^{-1},\sigma_y^{-1}}(\mathbf{k_0})|$. With $\beta=\omega^2\sigma_x^2/8\pi^2$ and then simplifying the cosine:

$$F_{(0,0)}^{\rm C}(\theta) \sim \left| \cos(\theta) e^{\beta \left(\cos^2(\theta) + \alpha^2 \sin^2(\theta) \right)} \right| = \left| \cos(\theta) e^{\beta (1 - \alpha^2) \sin^2(\theta)} \right|$$

Figure 6 is a plot of $F_{(0,0)}^{\mathbb{C}}$ for $\alpha \in \{1, \cdots, 10\}$ and $\beta = 1$.

^{*}Artis is a team within the GRAVIR/IMAG laboratory, a joint research unit of CNRS, INPG, INRIA, and UJF. {sylvain.paris|hector.briceno|francois.sillion}@imag.fr