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Abstract

We introduce a new surface representation, thepatchwork, to extend the problem of surface

reconstruction from multiple images. A patchwork is the combination of severalpatchesthat are

built one by one. This design potentially allows the reconstruction of an object of arbitrarily large

dimensions while preserving a fine level of detail. We formally demonstrate that this strategy leads to a

spatial complexity independent of the dimensions of the reconstructed object, and to a time complexity

linear with respect to the object area. The former property ensures that we never run out of storage

(memory) and the latter means that reconstructing an objectcan be done in a reasonable amount of

time. In addition, we show that the patchwork representation handles equivalently open and closed

surfaces whereas most of the existing approaches are limited to a specific scenario (open or closed

surface but not both).

Most of the existing optimization techniques can be cast into this framework. To illustrate the

possibilities offered by this approach, we propose two applications that expose how it dramatically

extends a recent accurate graph-cut technique. We first revisit the popular carving techniques. This

results in a well-posed reconstruction problem that still enjoys the tractability of voxel space. We also

show how we can advantageously combine several image-driven criteria to achieve a finely detailed

geometry by surface propagation. These two examples demonstrate the versatility and flexibility of the

patchwork reconstruction. The above properties of the patchwork representation and reconstruction

are extensively demonstrated on real image sequences.

Index Terms

(I. Computing Methodologies).(4 Image Processing and Computer Vision).(5 Reconstruction &

9 Applications): patchwork representation and reconstruction, space carving, graph-cuts, level-sets,

patch-wise carving, patch-wise propagation.
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I. I NTRODUCTION

Three-dimensional reconstruction from multiple images isa natural extension to stereoscopic

reconstruction. Combining the information from several images make the process more robust

and precise. It is also possible to handle larger scenes since more viewpoints and view directions

are available. A wealth of quality work has been produced to address the resulting challenges

to propose usable applications in the domains of virtual reality, movie making, entertainment,

etc. In particular, great progress has been made in terms of camera calibration and surface

optimization. The former retrieves the parameters of the cameras such as their positions and

focal lengths, while the latter produces the actual geometry of the scene. In this paper, we focus

on the geometry reconstruction part.

Two major issues remain largely unaddressed: scalability and flexibility. First, even in a

favorable situation, one cannot recover an arbitrarily large geometry due to resource lim-

itations. Most of the existing techniques handle the entirescene at once. Therefore, for a

given resolution, the size of the reconstructed scene is bounded by the available memory of

the machine that executes the program. In addition to this storage issue, since the temporal

complexity of the optimization algorithms is high (i.e. more than linear), increasing the scene

size inherently leads to an explosion in the processing time. Thus, large scenes are limited

to large scale reconstructions that ignore the fine details.Second, existing methods represent

the object surface either with a single-value explicit depthfield z(x, y) (or d(x, y) for disparity

maps) or with a voxel space or an implicit functionφ(x, y, z) = 0 (a.k.a. level set). These

two options address different configurations. Depthfields and disparity maps perform well with

cameras that lie only on one side of the scene but they are hardto extend to arbitrary camera

positions. Level sets provide effective solutions when numerous cameras are available but they

break down with limited view directions. As a consequence, these techniques cannot cope with

an arbitrary camera layout, and the user has to select the algorithm according to the scenario.

In order to overcome these limitations, in this paper we present thepatchworksurface repre-

sentation. It consists of a collection of small surface pieces, thepatches, that are progressively

reconstructed and stitched together. Despite its apparentsimplicity, it implies a fundamental

assumption that the reconstruction problem is a local issue. Let us consider the example of

acquiring the geometry of a head. It seems reasonable and even desirable that, whatever process

we use, the shape of one ear does not depend on the shape of the other. Another behavior would

mean for instance that adding an earring on one side changes the geometry of the other ear. It
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would be incoherent. This assumption is formally defined andassessed. We show that except

the visibility all the other components involved in the existing optimization techniques are local.

Independent of the selected optimization technique, the patchwork representation induces

several interesting gains. The first advantage is that dealing with patches makes the amount

of handled data fixed and the processing time proportional tothe number of patches. These

properties are formally stated and proven. Second, the patch parameterization can be adjusted

for each patch. For instance, this allows the representation of complex surfaces with methods

that usually handle only depthfields or disparity maps. Third, the formulation is independent of

the surface topology, the same algorithm deals seamlessly with both open and closed surfaces

depending on the setup. If the cameras provide enough information, the whole scene is built; if

not, only a partial reconstruction is achieved.

We also address the practical issues that make this representation fully usable. All the patches

are registered into a distance field to build a coherent structure. We define a proper shape

for the patches in order to preserve the continuity at their boundaries. We also expose an

ordering strategy to maximize the quality of the produced surface. This complete framework is

demonstrated with two practical reconstruction algorithms based on minimal cuts. The first one

builds upon carving techniques to associate, in an effective way, voxels and graph optimization.

The voxel space provides a robust estimation of the visibility and of the object topology whereas

minimal cuts are used to produce a finely detailed geometry. The second one combines several

geometric cues to recover the object shape. Reliable 3D points are used as starting points for a

propagation process that uses images to progressively build the final shape.

Contributions: In summary, the patchwork representation and reconstruction described in this

paper focuses on the following contributions:

1) Local Prior: We introduce a new local interpretation of the smoothness assumption. The

scope of the corresponding prior is only local.

2) Scalability: The representation allows for the reconstruction of scenes of arbitrary size (or

equivalently, a fine level of details).

3) Versatility: The reconstruction can be used with classical optimization techniques (such as

graph cuts) while preserving their intrinsic qualities.

4) Flexibility: The reconstruction makes it possible to overcome limitations (such as topology

handling) inherent to some optimization techniques. The most significant advantage of this

flexibility is the ability of our algorithm to retrieve both complete shapes (when the whole

scene is visible) and open surfaces (when some regions are hidden).
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II. PREVIOUS WORK

The 3D reconstruction problem is inherently ill-posed: There exist several geometric solu-

tions that are consistent with the input images. In order to alleviate this point, the usual approach

add an a priori hypothesis concerning the objects. Classically, this hypothesis states that the

reconstructed surface must be regular,i.e. the smoothness. This assumption is interpreted in var-

ious frameworks, resulting in different mathematical formulations. We here review the existing

reconstruction methods while focusing on the optimizationtechniques and their complexity.

A. No Optimization

1) Visual Hull: Laurentiniet al. [35] introduced thevisual hullas the largest volume con-

sistent with the silhouettes observed from several viewpoints, which is an over-estimation that

captures the large scale features of the scene but ignores the small details. Several efficient

approaches have followed: fast computation from Boyer and Franco [8], reconstruction from

uncalibrated cameras by Cipolla and Wong [16], spline model by Sullivan and Ponce [47],

etc. These approaches are mainly used for real-time applications that add in the details with a

texture map (e.g.Matusiket al.[40]) or as a first step to initiate a more accurate process such as

Isodoro and Sclaroff [26], and Hernández and Schmitt [20]. Several techniques [49], [51] exist

to extract more information from contours but the process suffers from numerical instabilities.

2) Photo Hull: Seitz and Dyer [46] popularized the use of a discrete volumetric represen-

tation (the voxels) in conjunction with a color criterion, thephoto-consistency. Considering a

pointp visible from the camerasi ∈ Vp seeing colors
{

Ci
p

}

, the photo-consistencyPp of p is

computed using the color distanced:

Pp =
1

|Vp|

∑

i∈Vp

d
(

Ci
p
, C̄

)

with C̄ =
1

|Vp|

∑

i∈Vp

Ci
p

(1)

The original method then sweeps through the voxel space and carves out the voxels with

a photo-consistency criterion higher than a given threshold. The rationale of this technique is

that for a perfectly Lambertian object, a consistent pointp appears in the same color as from

the viewpoint and thus,Pp = 0. The threshold relaxes the hypothesis to process scenes that

are not perfectly Lambertian. This approach has been developed in numerous directions such

as better sweep scheme [34], robustness against noise [33],transparency [48], probabilistic

framework [12], [19], other voxel shapes [8], [56].

Since no optimization is evolved, these two kinds of methodsare efficient and have the

advantage of being easy to set up. In practice, they yield satisfying results on convex or textured
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areas (where the color information is dense) whereas the concave or untextured regions are

poorly reconstructed. The voxel approach is also drastically limited by the available resources

because the necessary storage is proportional to the bounding volume of the scene.

B. Optimization by Local Operators

1) Level Sets:Level sets are a flexible method to optimize functionals thatcan be expressed

as a weighted minimal surface:
∫∫

w(x) ds (2)

A time-evolving surfaceS(t) is represented at timet by the zero level set of an implicit function

φ(x, t), i.e. φ(S(t), t) = 0. To minimize Functional (2), the surface evolves accordingto a

steepest-descent process. From the Euler-Lagrange formula,φ is driven by a partial differential

equation (PDE):
∂φ

∂t
= ∇w · ∇φ + w ||∇φ|| div

∇φ

||∇φ||
(3)

It is important to note that the global integral (2) is minimized by means of local differential

operators (Eq. 3) that only consider a local neighborhood ofeach point. It shows that, despite a

global formulation, the technique is driven at a local scale.

Faugeras and Keriven [21] have cast the reconstruction problem into this framework. The

advantage is that complex objects of arbitrary genus can be rebuilt. It also eases visibility

management because occlusions can be estimated between each evolution step. Thew function

in Equation (2) is defined to account for the texture correlation by computing the zero-mean

cross-correlation (a.k.a. ZNCC) between pairs of cameras{Ci, Cj}. For a 3D pointx, the

ZNCC valueZij(x) is defined with the projectionspi and pj of x in camerasCi and Cj.

For an image pointp, Īp andσp denote the mean and standard deviation of the intensity in the

neighborhoodNp. Usingπ to account for the perspective distortion between the two cameras

(i.e.π(pi) = pj andπ(Npi
) = Npj

), we have:

Zij(x) =
1

|Npi
|2σpi

σpj

∑

q∈Npi

(Iq − Īpi
)(Iπ(q) − Īpj

) (4)

This results in convincing reconstructions, especially for the topology: High-genus objects

are recovered automatically. The counterpart of this technique is a lack of surface sharpness.

This comes from the high-order derivatives that control theprocess (Eq. 3).

Inspired by this work, several techniques have extended theoriginal techniques. Jinet al.[28]

use contours as a source of information to definew. They also extend the consistency criterion
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to handle non-Lambertian objects [29]. Lhuillier and Quan [37] combine texture correlation,

silhouettes and 3D points to reach faithful models.

2) Generalized Cylinder:In a spirit akin to the level-set method of Jinet al. [28], Terzopou-

los et al. [50] use a general cylinder representation to retrieve the scene geometry from a set

of silhouettes. They add symmetry constraints to their model; thus they can work from a single

image. Their optimization scheme is expressed as an integral minimization, leading to local

evolution rules based on partial derivatives. Relatively toour aim, the main drawback of this

method is its general cylinder representation that is unlikely to capture fine details.

3) Snake: Herńandez and Schmitt [20] determine the surface topology from the object

visual hull. Thus, they use a classical snake approach instead of the level sets to preserve this

topological information. Then, they deform a 2D snake usingthegradient vector flowtechnique

to promote the surface data in 3D. The accuracy of the resultsis impressive but the cost is that

both surface and volume data structure are maintained, impeding the scalability and inducing

long processing time (several hours).

4) Free Form Deformation:Isidoro and Sclaroff [26] minimize the retro-projection error

using free form deformations. In this framework, the applied transformations are local, and the

goal is a global decrease of the error. The surface representation is an obstacle to scalability.

C. Global Optimization

1) Minimal Cuts on Disparity Maps and Depthfields:Roy and Cox [44], [45] have shown

how to use the graph-flow theory [2] to generalize the purely one-dimensional Dynamic Pro-

gramming technique to the two-dimensional problem raised by disparity maps. They design a

valued graph such that computing its maximum flow and extracting a corresponding cut leads

to an globally optimal solution of a functional of the following form (cp being the consistency

at a pixelp, dp the disparity, andA4 the set of the 4-connected adjacent pixels):

∑

p

cp +
∑

(p,q)∈A4

|dp − dq| (5)

This functional models a trade-off between the consistency(left term) and the regularity of

the result (right-hand term). The advantage compared to theother techniques is that the func-

tional (5) is solved exactlyi.e. a global minimum of the functional is found whereas most of

the methods such as level sets and snakes only reach a local minimum.

The original technique has been extended in several directions. Hishikawa and Geiger [25]

demonstrate that Equation (5) can be interpreted in the Markov Random Field framework. They
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also extend the regularization term to any convex function.Pariset al. [42] reinterpret Roy and

Cox’s work in the three-dimensional world to handle depthfields instead of disparity maps.

They show how to solve the following continuous functional up to an arbitrary discretization

(the surface is parameterized by the depthz as a function ofx andy, and theαx andαy functions

modulate the regularization term):

∫∫
(

c
(

x, y, z(x, y)
)

+ αx(x, y)

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

+ αy(x, y)

∣

∣

∣

∣

∂z

∂y

∣

∣

∣

∣

)

dx dy (6)

Kirsanov and Gortler [30] have described a generic optimization framework that leads to

optimal solutions for suchz(x, y) or d(x, y) parameterizations. This has been demonstrated on

the three-view reconstruction by Buehleret al. [13] with a weighted minimal surface.

Boykov et al. [11] introduce theα-expansion technique to apply graph cuts to more general

functionals. This opens the way to finer numerical models butthe convergence to a global

minimum is lost. Kolmogorov and Zabih [31] have characterized a general theory on the set of

functionals that can be handled by graph cuts. They also apply their method to disparity maps

in the multi-view context [32]. In general, none of these methods scale up nicely due to the

complexity of the global optimization.

Segmented Disparity Maps:Wei and Quan [53] (in the stereoscopic case) and Bleyer and

Gelautz [7] (in the multi-view case) have shown that satisfying disparity maps can be achieved

by segmenting the input images into small regions of constant color. They expose modified

algorithms to assign a disparity value per segment instead of per pixel, which clearly reduces

the amount of data. The challenge is to preserve fine details whereas the segmentation strategy

takes advantage of the lack of depth precision to “smartly” downsample the disparity map.

2) Minimal Cuts on General Surfaces:Boykov and Kolmogorov [9] have shown how a

weighted minimal surface (Eq. (2)) can be minimized whenw ds is a Riemannian metric. The

major novelty of this work is that general surfaces are handled compared to the disparity maps

and depthfields of the previously discussed methods. Vogiatzis et al. [52] formulate the multi-

view scene reconstruction problem using volumetric representation. From the scalability point

of view, the volumetric structure limits the scene size.

D. Local Optimization

1) Partition of Unity: Ohtake et al. [41] introduced a surface representation thatshares some

common properties with ours. To recover a surface from a dense set of points, they locally fit

quadratic patches. The stitching weights sum up to 1, forming apartition of unity.
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2) Particles: Fua [22] exposed a particle technique to recover the scene geometry using

particles. The particles obey a global optimization. Though it is a global scheme, it is defined

by local interactions between the closest particles only. This representation could scale up

because the particles can be handled separately. However, the accuracy is relatively low, since

the particles are regarded as flat disks.

3) Quadratic Patches:In the context of stereo-vision, Hoff and Ahuja [23] constructed

a disparity map by gathering the information stemming from several quadratic patches. The

differences with our approach are nevertheless important.First, we encompass a broader con-

text by being independent from the number of cameras. Second, the shape of our patches is

general and not limited to a quadratic parametrization. Moreover our patchwork representation

can be combined with numerous optimization methods, while Hoff-Ahuja use a least-square

technique. Carceroni and Kutulakos [14] have extended the approach to motion and reflectance

recovery. However the geometric accuracy is still limited by the patch shape.

Summary

Almost all of the existing methods have difficulties in handling large objects with fine details.

In comparison, the proposed patchwork reconstruction defines a complete surface representa-

tion as a set of patches: Reconstructing the patchwork is equivalent to reconstructing the surface

itself; The patches spread the whole surface and the continuity is handled during the reconstruc-

tion process. Thus, a large surface is separated, and each part is reconstructed efficiently with

a certain optimization technique. Furthermore, it helps some of the most accurate techniques

based on minimal cuts to cope with complex shapes. In the restof the paper, we present our

patchwork representation that addresses these issues.

III. C ONCEPTDEFINITION AND THEORETICAL STUDY

Here we formalize our problem to outline the fundamental reasons that justify the use of

patches. LetF(·) be a functional that represents our goali.e. F assigns a value to any surface

S, andF is designed so that we consider a minimizer ofF as the result of the reconstruction

problem. For now, we do not give more details aboutF to keep it as general as possible. The

design of such a functional is discussed later.

Patch definition:Intuitively, apatchis a small piece of a surfaceS. Formally speaking, a

patchP is a connected subset ofS. A patchworkrepresentation ofS is a set of patches{Pi}

such that
⋃

Pi = S.
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A. Patchwork Reconstruction

In the Previous Work section, we have shown that many reconstruction strategies are driven

– either explicitly or implicitly – by local criteria. Here we state formally our base assumption:

Two distant points do not interfere. We then derive our reconstruction strategy.

Ḃ

B̊

S̊

S0

Fig. 1. We assume that there existḂ andB̊ such that, inside

Ḃ, the resultS̊ of the optimization withinB̊ equals the global

result S0. This common portion corresponds to the stripped

area.

1) Locality Assumption:We nameS0 a

minimizer ofF over the whole 3D spacei.e.

S0 = argminS⊂R3 F(S). We consider two

real numberṡr and r̊ such that0 < ṙ < r̊.

Ḃp andB̊p denote the two balls centered on

a point p with radii ṙ and r̊. Minimizing

F in the ball B̊p returns a surface̊S =

argminS⊂B̊p
F(S). See the figure on the right

for a 3D illustration of these entities.

The locality assumptionclaims that, if the visibility information is known, there exist values

for ṙ andr̊ such that for any pointp ∈ S0:

S̊ ∩ Ḃp = S0 ∩ Ḃp (7)

• Interpretation: This hypothesis means that a local optimization yields a correct result

except on the border of the considered volume (i.e. betweenḂp and B̊p). This restriction

is reasonable since the border points have a truncated neighborhood (we cannot expect any

optimization algorithm to give reliable results with partial data).

• Discussion:One can wonder hoẇr andr̊ are determined in practice. This depends on

the chosen functional and optimization technique. For instance, using the notation of Blake and

Zisserman [6] on page 60, to guarantee a correct detection ofthe discontinuities, it is sufficient

to set:

ṙ > 0 and r̊ ≫ ṙ + λ (8)

In the case of level sets, if we know the number of iterationsΥ (or a bound over it), we can

deriveṙ andr̊ since at each step, the derivatives of orderω involve the adjacent values up to a

distance⌈ω/2⌉. Hence, using the discretization stepδ of the level-set grid andΩ the maximum

order of the involved derivatives, we obtain:

ṙ > 0 and r̊ = ṙ + Υ δ

⌈

Ω

2

⌉

(9)
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For the graph cut approaches, Kolmogorov and Zabih [32] and Paris et al. [42] handle dis-

continuities, hence continuous regions are independent. Thus it is sufficient to seṫr and r̊ to

contain the largest continuous region. The previous examples show that, in several cases, the

locality assumption is rigorously valid. However, determining the characteristic parameters of

a given scene might be difficult. In particular, the graph-cut criterion requires an analysis of the

whole scene which is not compliant with our local approach. Therefore, in practice, the size of

the local volume is set by the user. Nonetheless, we have thisstrong result that for sufficiently

large patches, the local optimization is equivalent to a global one. We rigorously express this

difference between global and local optimization in the following section.

2) Study of the Functional:F always contains a termC relating to the consistency to ensure

that the final surfaceS matches the image content. With a consistency functionc (e.g.photo-

consistency or ZNCC) and a surface measuredµ, this part can be written as:

C =

∫∫

S

c dµ (10)

Usingdµ = ds to measure the surface area leads to the level set functional(2). The problem is

then well-posed but the sharp details of the scene are not captured.

Another option for the regularization is to add a smoothing termS (i.e. F = C + S). To do

so, we parameterizeS as a depth fieldz(x, y) (or d(x, y) for a disparity map) and we introduce

a functions that measures the variations ofz. Observing Equation (6), this induces the plane

measuredµ = dx dy:

S =

∫∫

S

s(z) dx dy (11)

This approach yields higher accuracy but it depends on thexyz coordinate system. Since the

integrals (10) and (11) consider the whole surfaceS, this inherently limits the representable

surfaces. Intuitively, splittingS into small pieces makes it possible to defineS with several

depth fields according to different coordinate systems.

Local Coordinate System:For each patchPi, a local coordinate systemxiyizi is defined

to parameterizePi aszi(xi, yi). An appropriate choice for thezi axis is the surface normal at

the location of the patch. The orientation ofxi andyi has no major influence. We will propose

two practical strategies to build these axes.

Local Prior: The smoothness assumption is expressed locally. Instead ofapplying the

smoothness termS on the whole surface at once, we apply it to each patch separately:

S =
∑

i

∫∫

Pi

s(zi) dxi dyi (12)
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The integration is now split in several domainsPi, introducing a coordinate systemxiyizi for

each of them. This overcomes the parameterization limitation of the global approach sinceS is

now represented as an assembly of depth fields instead of a single one. The same treatment can

be applied toC. Hence, withf = c + s, we can elegantly summarize the transformation from a

global formulation to a local one:

F =

∫∫

S

Pi

f dx dy  F =
∑

i

∫∫

Pi

f dxi dyi (13)

Thus, the patchwork representation is relatively natural and simple from a formal point of view:

A union in the geometric world is transformed into a sum in thefunctional domain.

This local expression shows that the patches can be optimized independently. In practice, we

minimize Equation (6) for each patch using the depth-field scheme [42].

3) Surface Reconstruction:The patchwork reconstruction consists of building a set of patches

{Pi} that represent the whole surfaceS. Several local optimization processes are runi.e.we use

several local volumes̊Bi, each one producing a surface portion̊Si. Because the border points

of S̊i are not reliable, we keep only the center partS̊i∩Ḃi : This is the actual patchPi produced

by the local process.

a) Continuity: We set the size of local volumes so that the domains of adjacent patch

reconstructions overlap with each other. The overlapping region provides information for a

seamless stitching among the patches. Moreover, when we build a new patch, we may further

consider the neighboring reliable patches that have already been built. These data are used

has a hard constraint for the new patch. Thus the optimization of F acts upon the new patch

while considering the reliable ones. Formally, we nameS̄ the surface built by the previously

recovered reliable patches, and we compute:

S̊ = argminS⊂B̊ F(S) with the constraint S ⊃
(

S̄ ∩ B̊
)

(14)

b) Order: Since a reliable patch is fixed after it has been built, it ignores the computation

that occurs after its creation; and, as we have just described, it takes into account the already

created patches. This temporal scheme can be seen as a data flow: A “new” patch receives

information from the “old” ones. Thus, we can exploit the order in which the patches are built

to reconstruct in priority the most reliable regions so thatthe weakest patches rely on them to

be more accurate. We develop this ordering strategy in our practical implementations.

c) Distance Field:Once each patch is built, it is aggregated in a distance field as described

by Curless and Levoy [18]. When all the patches are recovered, the final surface is extracted

using the Marching Cube technique [39]. We give further details in Section III-D.
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B. Study of the Complexity

We here compare the temporal and spatial complexities of a general global optimization

and of our patchwork approach. Let us consider thatS has a 2D areaaS and a 3D volumevS

and that it is represented by a discrete structure with a discretization sizeδ. For instance, for

level-sets, this structure is the distance field embedding the surface and for graph-cuts, it is the

quantized 3D (or disparity) space that supports the surfacevertices.

Global optimization:An algorithm that minimizesF over the whole surfaceS deals with

a data structure of size at leastO(aS δ−2). This is the case for some graph-cut techniques [32]

and for the narrow-band implementation of level sets [1]. Some algorithms (such as level sets,

carving methods or some graph-cut techniques) use volumetric representations, hence have a

space complexity in the order ofO(vS δ−3).

We consider a minimizing process with a complexity of degreeα ≥ 1. Therefore the time

complexity isO(aα
S δ−2α) or O(vα

S δ−3α) depending on the surface representation. The com-

plexity of level sets [21], [37] is unclear because it depends on the number of iterations; which

in turn depends on the starting point and the target shape. Min-cut algorithms are typically

cubic (or slightly better [15]). In practice, they behave almost linearly (α ≈ 1.2) [44]. Note that

some min-cut techniques (e.g.Kolmogorov and Boykov [32]) are iterative and their complexity

could be higher as mentioned for level sets.

Patch Optimization:Let us subdivide the surfaceS into patchesP with areaaP . The

number of patchesη is in order ofO(aS/aP). To compare withS, we also define a pseudo-

volumevP = O
(

a
− 3

2
P

)

by considering that surfaces and volumes are related by a logarithmic

ratio of 3
2
.

OptimizingF over a patch has a space complexity in the order ofO(aP δ−2) (orO(vP δ−3)).

Patches are processed one by one, therefore the overall space complexity is the same. Only

the storage of the final result requires more space but this can be done off-line (e.g. on the

hard drive). Since we optimizeη patches, the overall time complexity is inO(η aα
P δ−2α) or

O(η vα
P δ−3α).

Comparison:Table I summarizes all these results. It appears that the patches bring signif-

icant gain in terms of space and time complexity. The spatialcomplexity is the main gain since

we divide the memory needed by a factor in order of the number of patches used. However, we

cannot decrease the size of the patches infinitely to increase their number because we would

not be able to find a satisfactory result (this issue is discussed later in the paper).
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SPACE TIME

global patches gain global patches gain

surfacic aS δ−2 aP δ−2 η aα
S δ−2α η aα

P δ−2α ηα−1

volumetric vS δ−3 vP δ−3 η
3

2 vα
S δ−3α η vα

P δ−3α η
3

2
α−1

TABLE I

COMPARISON OF THE COMPLEXITY

Scalability property: The patches allow for almost unlimited scalability becausethe space

complexity depends only on the patch size and no more on the object size.

Rigorously speaking, we need to store the position of each patch relative to the global surface.

This requires a storage in the order ofO(log(vS δ−3)) which is negligible because it always fits

within three classical floating-point valuesxyz.

The gain in volumetric representations is more important because the patches ignore the

inner volume of the object. In this way, they are comparable to a narrow band [1].

C. Study of the Parameterization

The patch also alleviates the limitation on the parametrization inherent in disparity map and

heightfield methods. These methods handle a scalar field: In anutshell, the depth is a function

of the two other coordinatesi.e. z = f(x, y) for some functionf . This limits the usability of

these techniques. First, special care is needed to properlyhandle the cases that require several

z values for a single(x, y). Several functionsf1, f2,... are then manipulated. Moreover, if the

object surface is tangent to thez axis, these methods fail because of||∇f || = ∞.

xx

x

y

y

y

z

z

z

Fig. 2. Three patches with their local coordinate system

The patch approach eliminates these short-

comings. By definition, the patch reconstruc-

tion deals with several surfaces and intrinsi-

cally manipulates severalf functions. Fur-

thermore, thexyz coordinate system can be

adapted to each patch: Thez axis can be cho-

sen orthogonally to the surface to guarantee

that the tangent case never occurs.

Note that complex topology is not a problem in the sense that patches can cope with any

topology. However, topology is not determined by the patches themselves: We rely on a side

technique to determine it (this point is discussed later).
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Multi-resolution: This local parameterization opens avenues for a multi-resolution recon-

struction. It would be possible to control the precision of the reconstruction patch by patch to

focus on the most detailed parts. Though interesting, it is beyond the content of this paper and

kept for future work.

D. Study of the Stitching Process

To collect all the patches and construct the final surface, weuse a technique inspired by

Curless and Levoy [18]. It has the advantage of allowing incremental updates with a fine

control over the fusion. There are nonetheless two important caveats to consider: First, the

patch borders should not be incorporated into the final surface since they are not reliable. Also

this step must not incur spurious discontinuities on the surface.

Technically, the stitching process relies on two structures: a signed distance fieldD and a

volumetric weight functionW ≥ 0, both sampled on a regular 3D grid. Each new patch locally

modifiesD andW . At the end of the process, the surface is extracted as the zero level set ofD

using theMarching Cubestechnique [39].W can be seen as the “history” of the construction

of D; each patch “records its influence” inW . Thus we adapt the Marching Cubes algorithm

to cope with a partially defined distance field: If a grid cell contains an uninitialized or nullW

value, no triangle is output.

n

o

P

D <0

D >0

P

P

D =W =0P P

Fig. 3. The patchP. The dashed lines

delimit the neighborhood.o is the center of

P, andn the local estimation of the normal.

In practice, for each new patchP, we compute a dis-

tance fieldDP and a weight functionWP restricted to

the neighborhood ofP (i.e. DP = WP = 0 outside the

neighborhood, cf. Fig. 3).DP is the signed distance toP.

WP is related to the confidence we have inP, its design is

discussed later. At each grid vertexx, D andW are updated

as follows:

D(x) =
W (x)D(x) + WP(x)DP(x)

W (x) + WP(x)
(15a)

W (x) = W (x) + WP(x) (15b)

The equations (15) show thatD(x) is the mean of all the patch distancesDPi
weighted byWPi

.

1) Patch Weight:The previous remark outlines the importance ofWPi
in determining the

influence ofPi on the final result. As previously mentioned, there are two major issues: discard-

ing the unreliable points near the patch border, and ensuring continuity across the patches. Both

objectives are fulfilled by using aWPi
function that smoothly decreases to 0 near the boundary.
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Thus the border points have a negligible influence compared to the other patches (remember

that the patches overlap). Continuity is guaranteed since the weights smoothly cross-fade.

More formally, to achieve continuity, from the Implicit Function Theorem, it suffices that:

(1) D is C1 continuous and,

(2) ∇D is not null whenD = 0.

From Equations (15), ifWPDP andWP areC1, then Condition (1) is fulfilled. Condition (2)

is not as direct. Theoretically, the gradient could vanish,but it is very unlikely to occur in

practice. First,∇(WPDP) = DP∇WP +WP∇DP can vanish near the border becauseWP = 0

and∇WP = 0 but it does not affect∇D since the patches overlap. Then, within the patch

neighborhood,∇DP cannot vanish becauseDP is a signed distance function. However merging

several patches at the same location may cancel the gradient∇D. In practice, the zeros ofD

are near the zeros ofDP , thusDP∇WP is negligible compared toWP∇DP . The gradient

cancellation would therefore imply that two patches have been reconstructed at the same place

with their normals forming an angle greater thanπ
2
. During our experiments, such an extremely

large error never happened. We use the patch centero to defineWP (see plot on Figure 4):

WP(x) =











(

1 − ||x−o||2

σ2

)2

if ||x − o|| < σ

0 otherwise
(16)

 0

 1

 0 σ

Fig. 4. x 7→
“

1 − x2

σ2

”2

if |x| <

σ, 0 otherwise. This function is

also known as the Tukey function.

We set σ such that for any pointp on the border ofP,

||p − o|| > σ. In this condition, Condition (1) is fulfilled:WP is

C1, and the border discontinuities ofDP and∇DP are cancelled

by WP = 0 and∇WP = 0.

2) Weight Refinement:The previous construction is indepen-

dent of the input images:WP depends only on the patch size. We

refine this approach withW ⋆
P by accounting for the “quality” of the

points: Consistent points are given more influence. In practice, this

further reduces the influence of the border points if they areerroneous. A direct implementation

could be:W ⋆
P = max(0, Z) WP , (max(·) keeps it non-negative and cancels the gross errors).

However, for real images, ZNCC is unlikely to beC1, thus Condition (1) would be violated.

To address this point, we smooth ZNCC while preserving its overall structure (we should

not lower the influence of consistent regions close to inconsistent areas). We apply an edge-

preserving filter inspired by Perona and Malik [43]. Using the xiyizi coordinate system of

Pi, we considerϕ(xi, yi) = max(0,Z (xi, yi, zi(xi, yi))), the restriction ofmax(0,Z ) to Pi.
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Similarly to [57], we assume that surface areas of the same color are coherent regions. Thus,

we preserve the edges where the color changes (we build a color map ofPi by averaging the

colors seen by the ZNCC cameras). The color intensity gradient ∇I then yields an effective and

computationally efficient estimation of the edges. Puttingthis together with a stopping function

g [5], we obtain:
∂ϕ

∂t
= div

(

g(||∇I||)∇ϕ
)

(17)

Note that theg function is designed to slightly smooth the edges in order topreserve continuity.

Thus Condition (1) is satisfied and the smoothing mainly occurs within regions of the same

color. Finally we extendϕ to 3D:Φ(xi, yi, zi) = ϕ(xi, yi) and define:W ⋆
P = ΦWP .

This refinement improves the accuracy because the inconsistent points have less influence.

Moreover, it makes the boundaries of the open surfaces cleansince the gross errors in the patch

borders are discarded.

E. Discussion

1) Problem Specificity:The complexity study relies on the locality assumption stating that

the patches can be optimized independently. In that it is different from the classical approach

in parallel computing that subdivides a large problem (e.g. equilibrium in Mechanics [36])

into small subproblems and boundary problems that assure the overall coherence between the

subproblems. Classically, the subproblems are iterativelysolved until convergence and lead to

a complexity at least equal to the original. In our case, except for the visibility, which we handle

separately, there is no phenomenon with an overall influence(unlike forces in mechanics for

instance), thus we do not have to solve a boundary problem. This explains the gain in time.

2) Normals and Topology:As previously discussed, the surface normal has to be determined

to align the localz axis with it. To address this issue, we use a side technique that provides an

initial guess. Numerous choices exist: photo hull [34], visual hull [35], level sets [21], etc.

Note that we do not require this side technique to produce an accurate reconstruction, we only

need an estimation of the normal. Typically, it can be run at acoarse resolution that fits within

the available resources. In addition, we might also rely on this side technique to provide the

topology.

In the following sections, we describe in detail a scenario for which we use the side technique

for normals and topology, and one for which it is only used to bootstrap the reconstruction

process.
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IV. A PPLICATION I: PATCH-WISE CARVING FROM MULTIPLE IMAGES

Based on the new theory that are proposed in the previous sections, we now describe a

practical algorithm [55] that is directly inspired by SpaceCarving [34]. Carving is flexible

(any camera position, any object topology) but it has a drawback: The consistency issue is

considered without any prior, leading to an ill-posed problem. For untextured objects, it may

significantly differ from the actual geometry. In addition,the accuracy degrades when the scene

is not Lambertian. These have motivated us to adapt the carving criterion by considering the

existence of a local patchP. We use a carving approach to approximately locate the object

surfaceS. The fine geometry is retrieved using a local graph-cut optimization on each patch.

A. Initialization

The algorithm starts with a set of calibrated images. If the background is known, we can

extract the object contours and use thevisual hull[35] as a bounding volume (this initialization

is akin to [20], [26]). Otherwise, we require the user to provide a bounding box. This volume

is then discretized into cubic voxels. It is important to emphasize that the voxels are used only

to estimate the visibility and the topology, whereas the actual object surface is defined by the

patches. The shape resolution is not directly linked to the voxel size. Thus we typically use

voxels that are one order larger than the ones in the classical carving techniques.

B. Local Optimization

We have chosen the depth-field optimization method [42] based on min-cuts because its

geometric formulation is suitable for our goal and, in addition, it ensures the convergence to a

global minimum of Equation 6. On the other hand, it is limitedby a parametrizationz(x, y) but

the patchwork representation addresses this point with itsmultiple local coordinate systems.

We refer to the original article [42] for the technical details.

C. Voxel Carving

We build upon a classical carving strategy. The voxels are considered one by one and the

inconsistent ones are removed. Each time, the visibility iscomputed from the current voxel set

(for this purpose, we use the effective technique describedin [17]). The process is iterated until

no more voxels can be carved. In this global framework, we define our own carving criterion

and ordering scheme.
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1) Carving Criterion: Instead of computing the photo-consistency of a voxel to decide

whether it is carved, we reconstruct a patch within it1. We run a graph-cut process; this results

in a patchP and a functional valueF(P) = C(P) + S(P). The voxel is kept if the consistency

valueC(P) is less than a thresholdτ , otherwise it is carved. The rationale is that the consistency

of P is high (i.e. C(P) is low) only if P is part of the surface. Note that we do not use the

smoothness valueS(P) since the carving decision is not directly related to the creation of the

fine surface. At the carving level, only the consistency is important.

This carving strategy might not carve enough voxels, akin tothe original Space Carving [34].

However, this would only happen with large textureless regions since our voxels are one order

bigger the one of the classical method. In addition, our criterion is more robust than the original

because it is based on a whole surface piece instead of a single point. Thus, we have not

experienced any problem in our tests, even on faces that include large areas with low textures

(cheeks, forehead – cf. Figures 5,9 and 10).

Normal Estimation:To define the coordinate system, we need a normal estimation.We

first start by fitting a plane to the current voxel and its adjacent surface voxels to getn0 (shown

as short lines on Fig. 5-7.b). Then we build a patchP(0) from which we estimate a new normal

n1. If n1 6= n0, we buildP(1) usingn1. We iterate untilnk+1 = nk. In practice, this occurs in 2

or 3 steps. We defineP = P(k) to compute the carving criterionF(P). In inconsistent regions,

this may not converge. Therefore, if the process is not stabilized afterkmax iterations, the voxel

is considered to be inconsistent and it is carved.

Consistency Function:For the consistency functionc (Eq. 6), we use the ZNCC value (Eq. 4)

computed from the two most front-facing visible camerasCi andCj according to the normal

estimate. For a 3D pointx, we wish to choose a consistency functionc(x) ≥ 0 that decreases

when the match quality increases, which can be computed byc(x) = arccos(Zij(x)). This

corresponds to the interpretation of ZNCC as a dot product. Inour experiments, it better

discriminates inconsistent points than a linear inversionsuch as1 − Zij. This strategy yields

satisfying results at a reasonable computational cost. As future work, it would be interesting to

test other consistency estimators [20], [21], [29].

If visual hull V is available, we add a termv to constrain the patch withinV: v(x) = 0 if

x ∈ V, ∞ otherwise. In this case:c(x) = arccos(Zij(x)) + v(x).

1Note that the patch is not strictly within the voxel, it is large enough to overlap withits neighbors, cf. Section III-D.
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2) Ordering Scheme:ZNCC is more reliable when computed with front-facing cameras be-

cause it limits the perspective distortion and the numerical inaccuracy inherent in it. Therefore,

we use the following strategy to reduce the number of voxels processed with grazing view

directions: For each voxel, we determine the angles with thenormal of the two most front-

facing unoccluded cameras. The voxels with small angles areconsidered first. The underlying

idea is that processing the reliable voxels first is likely tocarve away inconsistent voxels that

were occluding front-facing cameras for other voxels. In other words, this ensures that we

always consider the voxel with the “most reliable” ZNCC evaluation according to the current

shape estimation.

Once a voxel is found consistent, it is marked “definitely visible” and it is no longer examined

by the carving process (except as a potential occluder). Thecorresponding patch is merged onto

the surface.

D. Summary and Discussion

At a coarse level, our algorithm behaves like a carving technique except that we use the patch

consistencyC instead of the photo-consistency, and a visibility-drivenorder. At a fine level,

we use a graph cut to build the patches by minimizing the functional (6) within each voxel.

The optimization scheme [42] reaches a global minimum of Functional (6). In this respect,

the patches are optimal. The consistent patches are then incorporated into a distance field as

described in Section III-D. We have shown that, with a properupdate scheme, this produces a

continuous surface. Finally when no more consistent voxelsare found, the surface is extracted

from the distance field.

It is important to highlight that the same algorithm handlescomplete and partial reconstruc-

tions. If the images cover the whole scene, the patches form aclosed shape. Otherwise, if some

regions remain hidden, an open surface is produced seamlessly. The Marching Cubes algorithm

naturally creates a boundary when it reaches an uninitialized domain.

V. A PPLICATION II: SURFACE RECONSTRUCTION BYPROPAGATING

3D STEREODATA IN MULTIPLE 2D IMAGES

In this section, we apply the patchwork concept to combiningseveral information sources,

especially 3D points and images [54]. This approach is motivated by the fact that most of

scanning devices such as laser scanners also take a photograph of the scanned object. Purely

image-based approaches, such as the method of Lhuillier andQuan [38], also provide reliable
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3D points using only standard photographs. We propose a technique which addresses two major

points. First, meshing such a point cloud is difficult because of the noise, and of the sampling

rate which may be insufficient, and so on. Techniques such as the ones by Amenta et al. [3], [4]

and by Hoppe et al. [24] exist but they do not exploit the images that are available in a number

of cases, which would help. Associating images and points ease this reconstruction and yields

accurate surfaces. Second, the point set may have holes e.g.image-based techniques do not

extract reliable points in textureless regions. In that case, relying only on points allows for an

interpolation surface that lacks details whereas using theavailable images makes it possible to

recover details. The patchwork representation provides aneffective framework to coherently

handle these various situations.

In our method, 3D points and images are considered as input. We do not assume any special

property except that we can estimate the surface normal at the 3D points. This is possible as

long as the point cloud is dense enough (see Appendix I for details). In practice, we use the

technique of Lhuillier and Quan [38] to produce the 3D points. We have chosen this method

because it gives irregularly distributed point sets that well illustrate our work. Nonetheless, the

proposed technique can work with any range scanners that provide reliable 3D points.

Our strategy is to perform a propagation in 3D space startingfrom reliable feature 3D points,

which help to avoid potential ambiguities and build a precise surface. To drive this propagation,

we need to first define a set of control points, the “seeds”. We define a seed as a couple(s,n),

with s being a 3D position, andn being the surface normal estimation at this position. The seed

list is initialized with the input 3D points and the normal computed from them (cf. Appendix I).

We then proceed iteratively. Each iteration of the propagation loop picks a seed from the current

list using a best-first strategy, estimates its visibility according to the current surface estimate,

constructs an optimal patch around the seed and generates new seeds for further propagation. It

is important to notice here that, in each step, the stereo points are regarded as hard constraints

for building a new patch. The whole process ends with the lastseed.

A. Patch Creation and New Seed Selection

Given a seed (the selection process is described later), we set a local coordinate based on the

seed normal and run a min-cut optimization to build an optimal patch.

To continue the propagation, new seeds are created from thispatch. These new seeds are

selected in order to maximize their reliability because they will the anchor points of future

patches. The location of the selected new seeds is determined by several aspects.
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1) Patch quality: First of all, the value of the functionalF = F(P) indicates the confi-

dence of the optimal patch. If the confidence is too low (i.e. F too high), the surface

patch is discarded and no seed is created.

2) Match quality: A point with a high ZNCC valueZ is more likely to provide a robust

starting point for further propagation.

3) Surface regularity: A singular point does not represent accurate properties ofthe

patch. Using the principal curvaturesκ1 and κ2, points with high curvatureK =

κ2
1 + κ2

2 are therefore to be avoided.

4) Propagation efficiency: To ensure a faster propagation, distant points are preferred.

This relies on the distanceD between the patch center and the potential new seeds.

A valueΛ is computed for each potential location of a new seed to represent its appropriate-

ness relative to these objectives.

Λ =
Z

ω(Z)
· D

ω(D)

F ω(F ) · Kω(K)
(18)

whereω(·) are non-negative weights to balance the different criteria. From our experiments,

ω(Z) = ω(D) = ω(F ) = ω(K) = 1 yields satisfying results. Exploring the possibilities

offered by these weights is kept as future work.

The number of new seeds created is inspired by the triangle mesh configuration. From the

Euler property, the average number of neighbors of a vertex is 6 and the average angular

distance between two neighbors isπ
3
. Thus, the directions of the new seeds in relation to the

patch center are selected so that the angular distance between two neighboring seeds lies in

[2π
5

, 2π
7

]. In each direction, the locations′ with the highestΛ is selected and the normaln
′ at s′

is computed and attached to form a new seed.

B. Selection of the Next Seed

To select a new seed(s,n) for propagation, we define a criterionΠ to evaluate how “good for

propagation” a seed is. With this criterion, we follow a classical best-first strategy to ensure that

the most reliable seed is picked each time. This choice drives the propagation directly because

it indicates where the growing regions are.

First of all, the initial seeds (i.e. the input 3D points) are regarded as reliable 3D points on

the surface. Therefore, they are always selected before theseeds generated from the patches.

The algorithm ends when there is no seed left in the list.
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Selection Criterion for the Input 3D Points:Depending on how the input 3D points are

obtained, an estimation of their accuracy may be available.In this case, the input points are

ranked in order to pick first the most accurate ones. For instance, for the normal estimation

we propose in Appendix I, we can estimate the normal precision from the local planarity

of the point set. This corresponds to the ratio between the second large eigenvalueλ2 (the

corresponding eigenvector lies in the tangent plane) and the smallest oneλ3 (the corresponding

eigenvector is orthogonal to this plane). Thus, we haveΠ = λ2

λ3
.

Selection Criterion for Generated Seeds:For a generated seed , we use the ZNCC correla-

tion scoreZ by its two most front-facing cameras, since a strong match gives a high confidence.

This strategy ensures that the surface grows from the part which is more likely to be precise and

robust. Thus:Π = Z. If the criterion is computed from occluded cameras, the local textures

in both images will not match and the ZNCC value is then low. Therefore a seed without

occlusion is processed before a seed with occlusion. The occluded parts “wait” until other parts

are reconstructed. The current visibility of the processedseed is classically determined by the

current propagated surface using a ray-tracing technique.The ordering scheme according to the

matching score ensures that a seed is processed only when no better one is available. In all our

experiments, this led to a correct visibility estimation, allowing for manipulating objects with

strong occlusion (see Figure 11).

C. Summary and Discussion

This propagation algorithm reconstructs the surface of scene objects from a set of stereo

points, which can be robustly computed. These points are theinformation sources, from which

the surface is grown along the tangent directions. Meanwhile, the images are used to guide the

propagation, fill the holes and add high-resolution geometric details. Compared with the patch-

wise carving, which employs a low-res. voxel space in the above section, the propagation leads

to a relatively fast reconstruction, since the additional stereo points provide accurate locations

on several surface regions. However, a side technique is required to obtain these stereo points.

VI. RESULTS AND DISCUSSION

A. Patch-wise Carving

Implementation Details:The presented results use real photographs shot with a handheld

consumer-grade camera. The calibration is done as a pre-process. ZNCC is computed with a

11 × 11 window. The patch size is set to twice the voxel size to ensurea sufficient overlap.

September 14, 2005 DRAFT



24

(a) Input image (b) Voxels (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 5. Head reconstruction using our carving approach. This exampledemonstrates the ability of our approach to deal with

non-Lambertian materials (skin and hair). The voxel resolution (b) is32
3; this is one order coarser than traditional carving

techniques. Although the process has been done patch by patch (c), noseam is visible on the final result (d,f).

To avoid grazing views, we ignore cameras whose angle to the normal is greater thanπ
3
. The

distance fieldD has a resolution43 times finer than the voxel grid. The min-cut process is

run on a grid of resolution153. We stop the normal estimations afterkmax = 4 iterations.

For example, for the owl sequence, we perform 3054 graph-cutoptimizations and examine

1897 voxels. This corresponds to an average of 1.6 graph cutsto estimate the normal. In

Equation (17),g(||∇I||) = max(0, 1 − ||∇I|| /16) with I ∈ [0; 255]. We use the min-cut

code of the Boost library2 which leads to a computation time of between 20 min (the owl) and

45 min (the gargoyle). As future work, we want to try an implementation [10] that should run

faster on our small graphs. We initialize all the sequences with the visual hull. Bounding boxes

produce equivalent results, but in a longer time depending on the box size (more voxels have to

be processed).

⊲ The head sequence (Fig. 5) shows that non-Lambertian objects can be reconstructed by

patch-wise carving. There are 21 views at480 × 640. The voxel space is323. It is important

to notice that this kind of sequence is typically difficult for traditional space carving methods

because the image appearance significantly changes from oneview to another; skin and hair

are well-known to be highly non-Lambertian.

The role of each step of the algorithm is clearly put into evidence. At a coarse level, our

algorithm behaves as a carving technique (Figure 5-b) except that we use the patch consistency

as the carving criterion. At a fine level, minimal cuts build the patches that capture the fine

geometry within the voxels (Figure 5-c). These patches are stitched together to produce the

final surface. As predicted, our stitching scheme achieves aseamless and continuous result

(Figure 5-d,f).

2http://www.boost.org
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(a) Input image (b) Voxels (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 6. Gargoyle reconstruction using our carving approach. This model has two holes (above and under its arm). The carving

step correctly recovers this topology (b). Then the patches (c) produce a fine surface (d,f). The back of the stick (d) is not as

accurate as the rest of the model because the gargoyle body occludesmost of the cameras. Only views with a grazing angle

can be used for this part of the model.

⊲ The gargoyle sequence (Fig. 6) shows that non-spherical topology can be reconstructed by

patch-wise carving. There are 16 views at720× 486 although the gargoyle only covers an area

of about200×400. This demonstrates the performance of our technique on low-resolution data.

The voxel space is25 × 50 × 25. We encourage the reader to compare this result with the one

obtained by existing techniques [33], [34]. The precision is improved.

⊲ The owl sequence (Fig. 7) demonstrates the performance of the technique on concavities and

thin sharp features. We correctly reconstruct the ears whereas many existing techniques (such

as level sets) would have some difficulties due to the high curvatures. There are 37 views at

600 × 800. The voxel resolution is25 × 50 × 25.

Partial versus Complete Reconstruction:To demonstrate the capabilities of our approach

to handle both partial and complete reconstruction, we hid the back of the head by omitting

some images. Without any change in the algorithm, the front part is reconstructed as an open

surface (Figure 8-a,b,c). When all the images are available,the technique naturally produces a

closed surface (Figure 8-d). Note that the geometry of the visible part is stable, independently

of the setup. TheΦ function makes the border clean (cf. Section III-D.2).

(a) Input image (b) Voxels (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 7. Owl reconstruction using our carving approach. Our techniquecorrectly recovers the geometry even within deep

concavities. The thin and sharp ears are also accurately reconstructed. To our knowledge, few existing methods attain such

precision on these kinds of features.
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(a) 5 views (∼ 86
◦) (b) 7 views (∼ 120

◦) (c) 10 views (∼ 171
◦) (d) 21 views (∼ 360

◦)

Fig. 8. Partial reconstruction. The 21 input images form a rough circle around the head. To demonstrate that the algorithm

handles both partial and complete shape, we have used only a subset ofthese images: 5 (a), 7 (b), 10 (c) and all views (d).

B. Patch-wise Propagation

⊲ The two faces (Figures 9 and 10) illustrate the accuracy of our algorithm and its behavior

with two different sampling densities. Figure 9 has rather homogeneous point density (there

is no large holes) whereas Figure 10 contains two large holesin the cheeks due to the lack of

texture at this location. The point cloud is also denser in the first case than in the second one.

Nonetheless, our technique achieves convincing results onboth configurations, demonstrating

its versatility. Our algorithm deals efficiently with different point density, and the propagation

strategy fills in holes with a consistent detailed surface. As future work, we want to quantify

the influence of the point density and accuracy on the precision of the recovered surface.

⊲ The toy example (Figure 11) illustrates the correctness androbustness of the patch-wise prop-

agation. Fur is traditionally hard for surface reconstruction because its appearance is strongly

view-dependent. This model also contains large occlusions(the legs and arms are hidden in

several images). Despite these difficulties, our algorithmperforms well: The geometry is accu-

rate recovered and occlusions are correctly handled. Thereare 22 images with the resolution

480 × 640.

⊲ The bas-relief (Figure 12) is a typical scenario in which a technique dedicated to a closed

surface would fail. This highlights the advantage of handling closed and open surfaces equiv-

(a) Input image (b) Input 3D points (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 9. Head reconstruction using our propagation approach. The input point cloud (b) is rather uniform on this model. Using

the reliable input 3D points, small details (on the eyes, the nose and the ears) are obtained.
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(a) Input image (b) Input 3D points (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 10. Head reconstruction using our propagation approach. The input point cloud (b) that we have extracted using an

image-based approach [38] has two large holes on the cheeks, because these two regions have almost no texture in the input

images (a,e). In addition, the point density is also coarser compared to the first one. However, the proposed algorithm produces

a surface with an equivalent quality.

alently. This model is made of polished metal. Most of the geometry is correctly recovered,

but there are two small artifacts. Such a borderline object is of high interest since it delineates

the abilities of our technique. To handle more complex materials, one would have to implement

more robust but also computationally more expensive consistency estimators such as [20], [27].

There are 23 images with the resolution600 × 800.

C. Comparison

In Figure 13, we use the same image sequence as Figure 5 to compare our two algorithms

with a level-set method [37] and Space Carving [34]. The first point is that Space Carving fails

to capture any good geometry because of the non-Lambertian aspect of the head. To avoid over-

carving, we had to sacrifice accuracy. Then, our two methods recover more details than level

sets although the overall shape is smooth and thus should suit level sets. Note our methods and

the level-set technique work fairly from the same image sequences and the input 3D points.

Then, between carving and propagation, the results look equivalent. The propagation is slightly

more precise in most cases (see the nose and the mouth) with the help of the 3D points,

except on regions where the visibility is hard to estimate (e.g.near the face-hair boundary).

(a) Input image (b) Input 3D points (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 11. Toy reconstruction using our propagation approach. It is a difficult example because of the fur and of the occlusions.

Nonetheless, our algorithm yields a satisfying result.
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(a) Input image (b) Input 3D points (c) Patches (d) Surface (e) Input image (f) Surface

Fig. 12. Bas-relief reconstruction with patch-wise propagation. This situation underlines the advantage of being able to cope

with open surfaces since obviously no information is available for the backpart. The acquired geometry is mostly correct

except on two regions: There are artifacts on the top of the head and the bottom of the bust. It shows that this shiny metal is

just at the borderline of the material that our algorithm can cope with. To better handle such highly non-Lambertian materials,

one would have to use dedicated and more costly consistency estimators [20], [27].

This advocates for integrating both approaches which is undoubtedly promising future work.

From a performance point of view, the propagation is about 30% faster (about 20 min instead

of 30 min) since the input 3D points directly indicate the areas to focus on. Nonetheless, the

carving technique is more suitable when 3D points are not available.

D. Role of the Resolution

We have compared several results from different settings ofthe distance field resolution and

of the size of the graphs used for the optimizations (Figure 14). This confirms that the distance

field resolution is directly linked to the amount of details that can be recovered: A finer distance

field makes it possible to represent finer details. These results also underline the importance

of the spatial dimension of the patches. If the size of the graphs is kept constant while the

resolution increases, the patches become smaller and smaller. First the precision increases but

at some point, the results degrade. This behavior shows thatthere is a resolution beyond which

the min-cut technique we use ceases to extract further information. Thus, beyond this “limit”

resolution, the patches rely comparatively on less information since they become smaller and

no more information is gained from the finer resolution. Hence, the patches cannot be made

infinitely small, there is a bound to the complexity gain thatcan be achieved. On the other end,

when the patches are too large, several advantages of patchwork reconstructions are lost.

This experiment opens several promising research avenues.First, characterizing and compar-

ing the “limit” resolution for different optimization techniques (e.g.minimal cuts, level sets)

would give valuable insights on their relative efficiency. Acareful examination of these results

also suggests that adjusting the patch size to the local characteristics of the surface would

further enhance the accuracy of the final result (observe thelower lip on the bottom row, smaller

patches better match its high curvature).
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Input Existing algorithms Proposed algorithms

(a) Input image (b) Photo hull (c) Patch-wise carving

(d) Input 3D points (e) Level set (f) Patch-wise propagation

Fig. 13. Comparison. (a) One of the input images (b) Space Carving [34] fails to build a satisfying reconstruction due to

the non-Lambertian materials involved. To achieve a fair comparison without aliasing, the voxel volume has been triangulated

using the Marching Cubes [39]. (c) Patch-wise carving and (f) propagation build reasonable results by patches that consider

both image information and regularity. (e) The level-set technique [37] builds a satisfying geometry but less detailed compared

to our techniques (c,f)e.g.observe the chin, the eyes and the forehead. (d) The input 3D points used in (e) and (f).

E. Quantitative Analysis

Table II shows typical values for memory usage and running times on an Intel PIII-1.9GHz.

These numbers correspond to the experiment of Figure 14. This validates our space complexity

analysis: The required storage for the optimization does not dependent on the object size. Note

that the global memory footprint increases because our implementation keeps the patches in

memory after their creation. This strong result encouragesus to implement an out-of-core

method that stores the patches on the hard drive and thus enjoy an almost unlimited scalability.

To validate the time complexity analysis of Section III-B, wefirst demonstrate that the mean-

ingful size of the problem in term of complexity is the area ofthe surface to reconstruct relative

to the targeted resolution. Formally speaking, the problemsize is in the order ofO(aS/∆2
DF)

whereaS is the area of the surface to reconstruct and∆DF is the distance field discretization

step. Thus to measure the influence of an increasing problem size, we can act uponaS (i.e.
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Fig. 14. Illustration of the effect of the resolution of distance field and of the graph size. We use the carving algorithm.

Increasing the distance field resolution allows for capturing more details. When the graph size is kept constant, the

corresponding patches become smaller. First the results improve (from the first row to the second one) and then they degrade

(the first and second columns, from the second row to the third one). Note also that, too large patches perform poorly (top right

result). These issues are further discussed in the text.
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DISTANCE GRAPH SIZE

FIELD RES. 7
3

15
3

31
3

75
3 229s (2785) 297s (559) 520s (104)

150
3 1010s (11876) 1455s (2772) 2406s (554)

300
3 3960s (45917) 6483s (11643) 12458s (2747)

DISTANCE GRAPH SIZE

FIELD RES. 7
3

15
3

31
3

75
3 1M (105) 2M (106) 15M (119)

150
3 1M (121) 2M (122) 15M (134)

300
3 1M (238) 2M (239) 15M (251)

(a) Running time (number of patches) (b) Memory used by patch optimization (total space)

TABLE II

QUANTITATIVE COMPARISON AMONGDIFFERENTRESOLUTIONS

using a bigger object) or upon∆DF (i.e. using a finer distance field). Varying∆DF coherently

uses the same object throughout the measure. We always use graphs of size153, hence the ratio

aP/∆2
DF is constant (withaP is the patch area). Thus, the number of patchesη = O(aS/aP) is

in the order ofO
(

∆−2
DF

)

. From our analysis, we expect a complexity relatively linear to η (cf.

Table I) or equivalently quadratic in the distance field resolution 1
∆DF

. This is the best possible

complexity since it is relatively linear to the problem sizeη = O(aS/∆2
DF).

Figure 15 summarizes our measures. Fitting a polynomial curve gives a complexity ofO
(

∆−2.16
DF

)

.

We obtain a nearly optimal result. The overhead stems from the fact that our carving algorithm

needs to “dig through” the concavities to “reach” the actualsurface. These steps introduce a

volumetric component into the complexity. This is confirmedby the number of built patches (in-

cluding the ones discarded by the carving process) which is also slightly higher than quadratic,

in order ofO
(

∆−2.07
DF

)

. Nonetheless, we believe that this result is very strong in terms of

scalability. To our knowledge, the patchwork representation is the first reconstruction technique

that is proven to have a linear complexity which is practically confirmed on a real example.
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Fig. 15. We measure the running time and the number of local optimizations interms of the resolution of distance field (from

38
3 to 300

3). Fitting a polynomial curve gives a running time in the order ofO
`

∆
−2.16
DF

´

and a number of built patches in the

order ofO
`

∆
−2.07
DF

´

. They are close to the optimal solutionO
`

∆
−2
DF

´

(i.e. the below green curve), and are much better than

the global optimization, which is at leastO
`

∆
−3
DF

´

(i.e. the above green curve).
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VII. C ONCLUSION

We have presented a new patchwork representation. It consists of a collection of small

surface pieces that are progressively reconstructed and stitched together. It can represent both

complete (closed) and partial (open) surfaces while being able to recover a complex topology.

The achieved results are accurate, even on sharp features and concavities.

From a theoretical point of view, we have introduced a new mathematical formulation of the

a priori smoothness of the objects. This formulation is purely local i.e. it involves only a patch

whereas the existing technique relies on the whole surface.This local prior enables complex

shapes by alleviating the parameterization problem inherent in some global formulations. The

relationship with a global approach is rigorously characterized for a number of optimization

techniques. We describe an efficient way to stitch the patches together that guarantees the

continuity of the produced surface. Furthermore, the patchrepresentation is proven to induce

an optimization process that requires a constant memory footprint, independently of the object

size. The temporal complexity is demonstrated to be optimal. These two theoretical results on

the complexity are backed by actual measurements.

We have described two algorithms based on the patchwork concept. The first one combines

a carving strategy with min-cut optimization to retrieve the object geometry. The second al-

gorithm is specially designed to exploit reliable 3D pointsthat are available in a number of

configurations. Both are demonstrated on real examples. The reconstructed surfaces compare

favorably with existing techniques.

The patchwork approach strikes a balance between purely local techniques (e.g.Space Carv-

ing) and global optimization methods such as min-cuts and level sets. The patches aggregate a

sufficient amount of data to be robust and precise while avoiding the manipulation of the whole

surface that inherently makes the process less flexible. Representing the surface as a patchwork

greatly broadens the range of objects recoverable by minimal cuts while preserving their key

advantages: accuracy and convergence. We have demonstrated the patchwork concept with a

min-cut optimization. Nonetheless, most of our results potentially extends to any optimization

technique. As a consequence, we believe that the patchwork concept has this great contribution:

Any optimization technique can enjoy enhanced scalabilityand flexibility simply by using

patches to represent the object surface.

Future Work: Throughout the paper, we have mentioned several avenues forfuture re-

search that we summarize here. Testing more robust consistency estimators would certainly
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further broaden the capacity of our algorithms. In some situations, it may be hard to get

reliable 3D points. Nonetheless, the “no-point” configuration are rare, thus combining our two

algorithms into a single one is likely to enhance their performances. An extension of developing

an out-of-core stitching process for very large and/or verydetailed objects (e.g.monuments)

would be useful. Finally, we have obtained the patches with min-cuts but other methods such

as level sets would be interesting to examine.
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