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Abstract

We introduce a new surface representation, ghtchwork to extend the problem of surface
reconstruction from multiple images. A patchwork is the bamation of severapatchesthat are
built one by one. This design potentially allows the recamgton of an object of arbitrarily large
dimensions while preserving a fine level of detail. We folgndeémonstrate that this strategy leads to a
spatial complexity independent of the dimensions of themstructed object, and to a time complexity
linear with respect to the object area. The former propenguees that we never run out of storage
(memory) and the latter means that reconstructing an obgttbe done in a reasonable amount of
time. In addition, we show that the patchwork representaliandles equivalently open and closed
surfaces whereas most of the existing approaches aredirata specific scenario (open or closed
surface but not both).

Most of the existing optimization techniques can be cast this framework. To illustrate the
possibilities offered by this approach, we propose two iapfibns that expose how it dramatically
extends a recent accurate graph-cut technique. We firgitréivé popular carving techniques. This
results in a well-posed reconstruction problem that stijbgs the tractability of voxel space. We also
show how we can advantageously combine several imagendtivieria to achieve a finely detailed
geometry by surface propagation. These two examples deratenthe versatility and flexibility of the
patchwork reconstruction. The above properties of thehpaick representation and reconstruction

are extensively demonstrated on real image sequences.

Index Terms

(I. Computing Methodologies).(4 Image Processing and GgdarpVision).(5 Reconstruction &
9 Applications): patchwork representation and reconsitncspace carving, graph-cuts, level-sets,

patch-wise carving, patch-wise propagation.
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|. INTRODUCTION

Three-dimensional reconstruction from multiple imagesnsitural extension to stereoscopic
reconstruction. Combining the information from severalgesmake the process more robust
and precise. Itis also possible to handle larger scenes since viewpoints and view directions
are available. A wealth of quality work has been produceditiress the resulting challenges
to propose usable applications in the domains of virtudityeaovie making, entertainment,
etc. In particular, great progress has been made in termaroé@ calibration and surface
optimization. The former retrieves the parameters of theeras such as their positions and
focal lengths, while the latter produces the actual geonudtthe scene. In this paper, we focus
on the geometry reconstruction part.

Two major issues remain largely unaddressed: scalabitity feexibility. First, even in a
favorable situation, one cannot recover an arbitrarilgdageometry due to resource lim-
itations. Most of the existing techniques handle the ergtene at once. Therefore, for a
given resolution, the size of the reconstructed scene isdexl by the available memory of
the machine that executes the program. In addition to tliage issue, since the temporal
complexity of the optimization algorithms is highg. more than linear), increasing the scene
size inherently leads to an explosion in the processing.tiieis, large scenes are limited
to large scale reconstructions that ignore the fine det@ésond, existing methods represent
the object surface either with a single-value explicit &éiptd = (z, y) (or d(z, y) for disparity
maps) or with a voxel space or an implicit functiof, y, ) = 0 (a.k.a.level set). These
two options address different configurations. Depthfiefdsdisparity maps perform well with
cameras that lie only on one side of the scene but they aretbiaxtend to arbitrary camera
positions. Level sets provide effective solutions when arous cameras are available but they
break down with limited view directions. As a consequenigesé techniques cannot cope with
an arbitrary camera layout, and the user has to select thatalgp according to the scenario.

In order to overcome these limitations, in this paper wegmethepatchworksurface repre-
sentation. It consists of a collection of small surface pgthepatchesthat are progressively
reconstructed and stitched together. Despite its appanemicity, it implies a fundamental
assumption that the reconstruction problem is a local iskaeus consider the example of
acquiring the geometry of a head. It seems reasonable andleg@able that, whatever process
we use, the shape of one ear does not depend on the shape hieghé&aother behavior would

mean for instance that adding an earring on one side chahgegbmetry of the other ear. It
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would be incoherent. This assumption is formally defined asgessed. We show that except
the visibility all the other components involved in the aixig optimization techniques are local.

Independent of the selected optimization technique, thehpark representation induces
several interesting gains. The first advantage is that mgpalith patches makes the amount
of handled data fixed and the processing time proportionghéonumber of patches. These
properties are formally stated and proven. Second, thépetiameterization can be adjusted
for each patch. For instance, this allows the representaficaomplex surfaces with methods
that usually handle only depthfields or disparity maps. d,ttme formulation is independent of
the surface topology, the same algorithm deals seamlesgiybath open and closed surfaces
depending on the setup. If the cameras provide enough iatorm the whole scene is built; if
not, only a partial reconstruction is achieved.

We also address the practical issues that make this repagiserfully usable. All the patches
are registered into a distance field to build a coherent wtrec\We define a proper shape
for the patches in order to preserve the continuity at theirnolaries. We also expose an
ordering strategy to maximize the quality of the producetbse. This complete framework is
demonstrated with two practical reconstruction algorghbased on minimal cuts. The first one
builds upon carving techniques to associate, in an effegtay, voxels and graph optimization.
The voxel space provides a robust estimation of the vigjtalnd of the object topology whereas
minimal cuts are used to produce a finely detailed geomelg.sEcond one combines several
geometric cues to recover the object shape. Reliable 3Dgaietused as starting points for a
propagation process that uses images to progressively thilfinal shape.

Contributions. In summary, the patchwork representation and reconstrudgscribed in this
paper focuses on the following contributions:
1) Local Prior: We introduce a new local interpretation of the smoothnessimption. The
scope of the corresponding prior is only local.
2) Scalability The representation allows for the reconstruction of ss@fh@rbitrary size (or
equivalently, a fine level of details).
3) Versatility. The reconstruction can be used with classical optiminaggehniques (such as
graph cuts) while preserving their intrinsic qualities.
4) Flexibility: The reconstruction makes it possible to overcome linateti(such as topology
handling) inherent to some optimization techniques. Thetsignificant advantage of this
flexibility is the ability of our algorithm to retrieve botlomplete shapes (when the whole

scene is visible) and open surfaces (when some regionsdder)i
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Il. PREVIOUSWORK

The 3D reconstruction problem is inherently ill-posed: fehexist several geometric solu-
tions that are consistent with the inputimages. In ordeli¢wiate this point, the usual approach
add an a priori hypothesis concerning the objects. Cla$githis hypothesis states that the
reconstructed surface must be regulatrthe smoothness. This assumption is interpreted in var-
ious frameworks, resulting in different mathematical fatations. We here review the existing

reconstruction methods while focusing on the optimizatewrhniques and their complexity.

A. No Optimization

1) Visual Hull: Laurentiniet al. [35] introduced thevisual hullas the largest volume con-
sistent with the silhouettes observed from several viemgpivhich is an over-estimation that
captures the large scale features of the scene but ignageshll details. Several efficient
approaches have followed: fast computation from Boyer amaadée [8], reconstruction from
uncalibrated cameras by Cipolla and Wong [16], spline mogeSbllivan and Ponce [47],
etc. These approaches are mainly used for real-time apiphsathat add in the details with a
texture mapé€.g.Matusiket al.[40]) or as a first step to initiate a more accurate proceds asic
Isodoro and Sclaroff [26], and Heiindez and Schmitt [20]. Several techniques [49], [51] exist
to extract more information from contours but the procesesifrom numerical instabilities.

2) Photo Hull: Seitz and Dyer [46] popularized the use of a discrete voltimetpresen-
tation (the voxels) in conjunction with a color criteriohgtphoto-consistencyConsidering a
point p visible from the camerase V,, seeing coIors{Cﬁ,}, the photo-consistendy, of p is
computed using the color distanée

Pp:ﬁZd(Cfﬂé) with é:ﬁZC; (1)
i€Vp i€Vp

The original method then sweeps through the voxel space ane< out the voxels with
a photo-consistency criterion higher than a given threshbhe rationale of this technique is
that for a perfectly Lambertian object, a consistent ppisppears in the same color as from
the viewpoint and thusl’, = 0. The threshold relaxes the hypothesis to process scertes tha
are not perfectly Lambertian. This approach has been daeél;m numerous directions such
as better sweep scheme [34], robustness against noisetf@3$parency [48], probabilistic
framework [12], [19], other voxel shapes [8], [56].

Since no optimization is evolved, these two kinds of methads efficient and have the

advantage of being easy to set up. In practice, they yieisfgiay results on convex or textured
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areas (where the color information is dense) whereas theagenor untextured regions are
poorly reconstructed. The voxel approach is also dra$fiGalited by the available resources

because the necessary storage is proportional to the bauwmolume of the scene.

B. Optimization by Local Operators

1) Level Setslevel sets are a flexible method to optimize functionals tlaatbe expressed

[ wioas @)

A time-evolving surface(t) is represented at timeby the zero level set of an implicit function

as a weighted minimal surface:

o(x,t), i.e. (S(t),t) = 0. To minimize Functional (2), the surface evolves accordm@
steepest-descent process. From the Euler-Lagrange faymisldriven by a partial differential
equation (PDE):

O

. Vo
— = Vw-Vo + wl||Ve¢|l div
o 6 + w|Voll dvieoy

It is important to note that the global integral (2) is minm@dl by means of local differential

®3)

operators (Eq. 3) that only consider a local neighborhoaeheh point. It shows that, despite a
global formulation, the technique is driven at a local scale

Faugeras and Keriven [21] have cast the reconstructionlgmomto this framework. The
advantage is that complex objects of arbitrary genus carebeilt. It also eases visibility
management because occlusions can be estimated betwéezvehtion step. The function
in Equation (2) is defined to account for the texture coriretaby computing the zero-mean
cross-correlationg.k.a. ZNCC) between pairs of camerd¢’;, C;}. For a 3D pointx, the
ZNCC value Z;;(x) is defined with the projectionp; and p; of x in camerasC; and C;.
For an image poinp, I, ando,, denote the mean and standard deviation of the intensityein th
neighborhoodV,,. Using~ to account for the perspective distortion between the twoeras
(i.e.m(p;) = p; andw(Np,) = Ny,,), we have:

1 - _

Z ([q - [Pi)([W(Q) - [pj> (4)
qENp,;

Zij(x)

~ WalPopon,
This results in convincing reconstructions, especiallytf@ topology: High-genus objects
are recovered automatically. The counterpart of this teghmis a lack of surface sharpness.
This comes from the high-order derivatives that controlgtaxess (Eq. 3).
Inspired by this work, several techniques have extendedrtgmal techniques. Jiet al.[28]

use contours as a source of information to defin@hey also extend the consistency criterion
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to handle non-Lambertian objects [29]. Lhuillier and Quaid][combine texture correlation,
silhouettes and 3D points to reach faithful models.

2) Generalized Cylinderin a spirit akin to the level-set method of &nhal.[28], Terzopou-
los et al. [50] use a general cylinder representation to retrieve tie@es geometry from a set
of silhouettes. They add symmetry constraints to their males they can work from a single
image. Their optimization scheme is expressed as an integnamization, leading to local
evolution rules based on partial derivatives. Relativelptio aim, the main drawback of this
method is its general cylinder representation that is ehfiko capture fine details.

3) Snake:Herrmandez and Schmitt [20] determine the surface topology frbendbject
visual hull. Thus, they use a classical snake approachadsitthe level sets to preserve this
topological information. Then, they deform a 2D snake usiregradient vector flovtechnique
to promote the surface data in 3D. The accuracy of the reisuligpressive but the cost is that
both surface and volume data structure are maintained,dimgehe scalability and inducing
long processing time (several hours).

4) Free Form Deformation:sidoro and Sclaroff [26] minimize the retro-projectiornrar
using free form deformations. In this framework, the apptimnsformations are local, and the

goal is a global decrease of the error. The surface repmasamts an obstacle to scalability.

C. Global Optimization

1) Minimal Cuts on Disparity Maps and DepthfieldRoy and Cox [44], [45] have shown
how to use the graph-flow theory [2] to generalize the purelg-dimensional Dynamic Pro-
gramming technique to the two-dimensional problem raisedigparity maps. They design a
valued graph such that computing its maximum flow and extrg& corresponding cut leads
to an globally optimal solution of a functional of the follovg form (¢, being the consistency
at a pixelp, d,, the disparity, and4, the set of the 4-connected adjacent pixels):

Zcp + Z |dp — dq ©))

p (p,a)€A4

This functional models a trade-off between the consistdtedy term) and the regularity of
the result (right-hand term). The advantage compared tottier techniques is that the func-
tional (5) is solved exactly.e. a global minimum of the functional is found whereas most of
the methods such as level sets and snakes only reach a lggaium.

The original technique has been extended in several directHishikawa and Geiger [25]

demonstrate that Equation (5) can be interpreted in the dWaRandom Field framework. They
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also extend the regularization term to any convex functariset al.[42] reinterpret Roy and

Cox’s work in the three-dimensional world to handle depthBehstead of disparity maps.
They show how to solve the following continuous functionglta an arbitrary discretization
(the surface is parameterized by the depdls a function of: andy, and thex,, and,, functions

modulate the regularization term):

// (c(x,y, 2(z,9)) + au(z,y) ‘% + (7, y) ‘g—;D dz dy (6)

Kirsanov and Gortler [30] have described a generic optittonaframework that leads to

optimal solutions for such(z, y) or d(x, y) parameterizations. This has been demonstrated on
the three-view reconstruction by Buehégral. [13] with a weighted minimal surface.

Boykov et al.[11] introduce thex-expansion technique to apply graph cuts to more general
functionals. This opens the way to finer numerical modelstbatconvergence to a global
minimum is lost. Kolmogorov and Zabih [31] have charactedia general theory on the set of
functionals that can be handled by graph cuts. They alsgdpeir method to disparity maps
in the multi-view context [32]. In general, none of these hoels scale up nicely due to the
complexity of the global optimization.

Segmented Disparity Map&Vei and Quan [53] (in the stereoscopic case) and Bleyer and
Gelautz [7] (in the multi-view case) have shown that samgfdisparity maps can be achieved
by segmenting the input images into small regions of constalor. They expose modified
algorithms to assign a disparity value per segment instéadropixel, which clearly reduces
the amount of data. The challenge is to preserve fine detagseas the segmentation strategy
takes advantage of the lack of depth precision to “smartbyisample the disparity map.

2) Minimal Cuts on General Surface®oykov and Kolmogorov [9] have shown how a
weighted minimal surface (Eg. (2)) can be minimized wheds is a Riemannian metric. The
major novelty of this work is that general surfaces are heshdbmpared to the disparity maps
and depthfields of the previously discussed methods. \agiet al. [52] formulate the multi-
view scene reconstruction problem using volumetric regmreion. From the scalability point

of view, the volumetric structure limits the scene size.

D. Local Optimization

1) Partition of Unity: Ohtake et al. [41] introduced a surface representatiorstiees some
common properties with ours. To recover a surface from aalsasof points, they locally fit

guadratic patches. The stitching weights sum up to 1, fograjpartition of unity.
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2) Particles: Fua [22] exposed a particle technique to recover the sceomejey using
particles. The particles obey a global optimization. THougs a global scheme, it is defined
by local interactions between the closest particles onlys Tepresentation could scale up
because the particles can be handled separately. Howegexcturacy is relatively low, since
the particles are regarded as flat disks.

3) Quadratic Patches:in the context of stereo-vision, Hoff and Ahuja [23] consted
a disparity map by gathering the information stemming frewesal quadratic patches. The
differences with our approach are nevertheless imporkargt, we encompass a broader con-
text by being independent from the number of cameras. Se¢badshape of our patches is
general and not limited to a quadratic parametrization.ddeer our patchwork representation
can be combined with numerous optimization methods, whoé-Hhuja use a least-square
technique. Carceroni and Kutulakos [14] have extended theaph to motion and reflectance

recovery. However the geometric accuracy is still limitgdie patch shape.

Summary

Almost all of the existing methods have difficulties in handllarge objects with fine details.
In comparison, the proposed patchwork reconstruction egfncomplete surface representa-
tion as a set of patches: Reconstructing the patchwork is@euit to reconstructing the surface
itself; The patches spread the whole surface and the catytintnandled during the reconstruc-
tion process. Thus, a large surface is separated, and eedl peconstructed efficiently with
a certain optimization technique. Furthermore, it helpaesof the most accurate techniques
based on minimal cuts to cope with complex shapes. In theofdbe paper, we present our

patchwork representation that addresses these issues.

[11. CONCEPTDEFINITION AND THEORETICAL STUDY

Here we formalize our problem to outline the fundamentatoea that justify the use of
patches. LefF(-) be a functional that represents our gbal F assigns a value to any surface
S, andTJ is designed so that we consider a minimizetJoés the result of the reconstruction
problem. For now, we do not give more details ab®ub keep it as general as possible. The
design of such a functional is discussed later.

Patch definition:Intuitively, a patchis a small piece of a surface Formally speaking, a
patchP is a connected subset 8§t A patchworkrepresentation of is a set of patche§P; }
suchthatJP; = S.
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A. Patchwork Reconstruction

In the Previous Work section, we have shown that many renari&in strategies are driven
— either explicitly or implicitly — by local criteria. Here evstate formally our base assumption:
Two distant points do not interfere. We then derive our retaction strategy.

1) Locality Assumption:We namesS, a
minimizer of § over the whole 3D spadee. B

Sy = argmirg s JF(S). We consider two $

real numbers: ands such that) < » < . So

B, and 5, denote the two balls centered on

a point p with radii 7 and 7. Minimizing

F in the ball 5’ returns a SUI’f&C@O _  Fig. 1. We assume that there ex¥tand 3 such that, inside
P

B, the resultS of the optimization within3 equals the global

argmirkcl;p F(S). See the figure on the right

result Sp. This common portion corresponds to the stripped
for a 3D illustration of these entities. area.

Thelocality assumptiorlaims that, if the visibility information is known, theraist values

for # andr such that for any poinp € Sy:

SNB, = SnB, 7)

e Interpretation: This hypothesis means that a local optimization yields aeobresult
except on the border of the considered volurhe. petweens3, and 5,). This restriction
is reasonable since the border points have a truncatedbweigtod (we cannot expect any
optimization algorithm to give reliable results with pattdata).

e Discussion:One can wonder how andr are determined in practice. This depends on
the chosen functional and optimization technique. Foaimst, using the notation of Blake and
Zisserman [6] on page 60, to guarantee a correct detectithreafiscontinuities, it is sufficient
to set:

>0 and r > 7 + A (8)

In the case of level sets, if we know the number of iteratitin@r a bound over it), we can
deriver andr since at each step, the derivatives of ordenvolve the adjacent values up to a
distancefw/2]. Hence, using the discretization stepf the level-set grid an€ the maximum

order of the involved derivatives, we obtain:
Q
7 > 0 andf:f+T5[§w (9)
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11

For the graph cut approaches, Kolmogorov and Zabih [32] arc Bt al. [42] handle dis-
continuities, hence continuous regions are independdnis Tt is sufficient to set andr to
contain the largest continuous region. The previous exaesngthow that, in several cases, the
locality assumption is rigorously valid. However, deteming the characteristic parameters of
a given scene might be difficult. In particular, the graphesierion requires an analysis of the
whole scene which is not compliant with our local approadieréfore, in practice, the size of
the local volume is set by the user. Nonetheless, we havsttioisg result that for sufficiently
large patches, the local optimization is equivalent to dal@mne. We rigorously express this
difference between global and local optimization in thédfelng section.

2) Study of the Functional¥ always contains a ter@ relating to the consistency to ensure
that the final surfac& matches the image content. With a consistency functifag. photo-

consistency or ZNCC) and a surface measlirethis part can be written as:

Cz//scdu (10)

Usingdu = ds to measure the surface area leads to the level set func{@ndlihe problem is
then well-posed but the sharp details of the scene are naireap

Another option for the regularization is to add a smoothengns (i.e. ¥ = C + 8). To do
so, we parameterizg as a depth field(z, y) (or d(z, y) for a disparity map) and we introduce

a functions that measures the variations ofObserving Equation (6), this induces the plane

S — / /S 5(2) da dy (11)

This approach yields higher accuracy but it depends omghecoordinate system. Since the

measurely = dx dy:

integrals (10) and (11) consider the whole surf&cehis inherently limits the representable
surfaces. Intuitively, splittings into small pieces makes it possible to defifievith several
depth fields according to different coordinate systems.

Local Coordinate Systentfor each patctP;, a local coordinate systemy; z; is defined
to parameterizé; asz;(z;,y;). An appropriate choice for the axis is the surface normal at
the location of the patch. The orientationagfandy; has no major influence. We will propose
two practical strategies to build these axes.

Local Prior: The smoothness assumption is expressed locally. Insteagpdying the

smoothness ter® on the whole surface at once, we apply it to each patch separat
S = Z // s(z;) dx; dy; (12)
i Pi
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The integration is now split in several domaiRgs introducing a coordinate systemy; z; for
each of them. This overcomes the parameterization lirottadf the global approach sin¢eis
now represented as an assembly of depth fields instead djlea sime. The same treatment can
be applied ta&. Hence, withf = ¢+ s, we can elegantly summarize the transformation from a

global formulation to a local one:

F :/ fdx dy ~~ F = Z/ fdu; dy; (13)
U%P i P;

Thus, the patchwork representation is relatively naturdlample from a formal point of view:

A union in the geometric world is transformed into a sum infilnectional domain.

This local expression shows that the patches can be optinmdependently. In practice, we
minimize Equation (6) for each patch using the depth-fieltbsre [42].

3) Surface Reconstructiofhe patchwork reconstruction consists of building a setttipes
{P;} that represent the whole surfa8eSeveral local optimization processes areirarwe use
several local volumes;, each one producing a surface porti.éLn Because the border points
of S; are not reliable, we keep only the center ﬁém B; : This is the actual patch; produced
by the local process.

a) Continuity: We set the size of local volumes so that the domains of adjgusch
reconstructions overlap with each other. The overlappegion provides information for a
seamless stitching among the patches. Moreover, when W duaew patch, we may further
consider the neighboring reliable patches that have alrbadn built. These data are used
has a hard constraint for the new patch. Thus the optimizati¢F acts upon the new patch
while considering the reliable ones. Formally, we nasnthe surface built by the previously

recovered reliable patches, and we compute:

o

S = argminy 5 F(S) with the constraint S O (S N l%) (14)

b) Order: Since a reliable patch is fixed after it has been built, it iggdhe computation
that occurs after its creation; and, as we have just destribgakes into account the already
created patches. This temporal scheme can be seen as a datA floew” patch receives
information from the “old” ones. Thus, we can exploit the@rth which the patches are built
to reconstruct in priority the most reliable regions so thatweakest patches rely on them to
be more accurate. We develop this ordering strategy in @gatigal implementations.

c) Distance Field:Once each patch is built, it is aggregated in a distance feeti¢acribed
by Curless and Levoy [18]. When all the patches are recovehnedjral surface is extracted

using the Marching Cube technique [39]. We give further detaiSection IlI-D.
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B. Study of the Complexity

We here compare the temporal and spatial complexities ofnargeglobal optimization
and of our patchwork approach. Let us consider thaias a 2D areas and a 3D volumes
and that it is represented by a discrete structure with aetigation size). For instance, for
level-sets, this structure is the distance field embeddiagtrface and for graph-cuts, it is the
guantized 3D (or disparity) space that supports the suxfadees.

Global optimization:An algorithm that minimize§ over the whole surfacg§ deals with
a data structure of size at le&3fas —2). This is the case for some graph-cut techniques [32]
and for the narrow-band implementation of level sets [In8algorithms (such as level sets,
carving methods or some graph-cut techniques) use voliowepresentations, hence have a
space complexity in the order 6f(vs §72).

We consider a minimizing process with a complexity of degree 1. Therefore the time
complexity isO(a% 6-2*) or O(vg §—3*) depending on the surface representation. The com-
plexity of level sets [21], [37] is unclear because it depead the number of iterations; which
in turn depends on the starting point and the target shape-chti algorithms are typically
cubic (or slightly better [15]). In practice, they behavmaskt linearly ( ~ 1.2) [44]. Note that
some min-cut techniques.g.Kolmogorov and Boykov [32]) are iterative and their comptegxi
could be higher as mentioned for level sets.

Patch Optimization:Let us subdivide the surfacg into patchesP with areaapr. The
number of patches is in order ofO(as/ap). To compare withS, we also define a pseudo-
volumevp = O(aﬁ) by considering that surfaces and volumes are related byaaitbmic
ratio of 3.

OptimizingF over a patch has a space complexity in the ord€? @fp 6-2) (or O(vp §32)).
Patches are processed one by one, therefore the overa#l spamplexity is the same. Only
the storage of the final result requires more space but tmseadone off-line €.g. on the
hard drive). Since we optimize patches, the overall time complexity is @(n a% 6-2*) or
O(n v §739).

Comparison:Table | summarizes all these results. It appears that tleb@sibring signif-
icant gain in terms of space and time complexity. The spatiaiplexity is the main gain since
we divide the memory needed by a factor in order of the numbeathes used. However, we
cannot decrease the size of the patches infinitely to inertreessr number because we would

not be able to find a satisfactory result (this issue is disedigater in the paper).
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SPACE TIME
global  patches gain global patches gain

surfacic | as 672 | ap 677 n a% 672 nag 62 | gt

volumetric | vs 672 | vp 672 ns v 673 o 6% nee-1

TABLE |

COMPARISON OF THE COMPLEXITY

Scalability property: The patches allow for almost unlimited scalability becatisespace

complexity depends only on the patch size and no more on tleetadze.

Rigorously speaking, we need to store the position of eachpatative to the global surface.
This requires a storage in the orde®flog(vs 6—2)) which is negligible because it always fits
within three classical floating-point valueg-.

The gain in volumetric representations is more importartabee the patches ignore the

inner volume of the object. In this way, they are comparabke narrow band [1].

C. Study of the Parameterization

The patch also alleviates the limitation on the parametdamanherent in disparity map and
heightfield methods. These methods handle a scalar fieldnutshell, the depth is a function
of the two other coordinatese. = = f(z,y) for some functionf. This limits the usability of
these techniques. First, special care is needed to propanigie the cases that require several
z values for a singléx, y). Several functiong, f»,... are then manipulated. Moreover, if the
object surface is tangent to theaxis, these methods fail because|&f f|| = oc.

The patch approach eliminates these short-
comings. By definition, the patch reconstruc-
tion deals with several surfaces and intrinsi-
cally manipulates severgl functions. Fur-

thermore, theryz coordinate system can be

adapted to each patch: Thexis can be cho-
sen orthogonally to the surface to guarantee
Fig. 2. Three patches with their local coordinate system  that the tangent case never occurs.

Note that complex topology is not a problem in the sense thathgs can cope with any
topology. However, topology is not determined by the patdhemselves: We rely on a side

technique to determine it (this point is discussed later).
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Multi-resolution: This local parameterization opens avenues for a multiéiso recon-
struction. It would be possible to control the precisiontad teconstruction patch by patch to
focus on the most detailed parts. Though interesting, iey®hd the content of this paper and

kept for future work.

D. Study of the Stitching Process

To collect all the patches and construct the final surfaceusesa technique inspired by
Curless and Levoy [18]. It has the advantage of allowing imenetal updates with a fine
control over the fusion. There are nonetheless two impbrtaveats to consider: First, the
patch borders should not be incorporated into the final sar§ance they are not reliable. Also
this step must not incur spurious discontinuities on théaser

Technically, the stitching process relies on two strucueesigned distance fielt and a
volumetric weight functiori¥” > 0, both sampled on a regular 3D grid. Each new patch locally
modifiesD andWV. At the end of the process, the surface is extracted as thdeaesl set ofD
using theMarching Cubegechnique [39]W can be seen as the “history” of the construction
of D; each patch “records its influence” iff. Thus we adapt the Marching Cubes algorithm
to cope with a partially defined distance field: If a grid ca&htains an uninitialized or null”

value, no triangle is output.

T DFW=0 In practice, for each new patch, we compute a dis-

tance field D» and a weight functioniVp restricted to
the neighborhood oP (i.e. D = Wp = 0 outside the
neighborhood, cf. Fig. 3)Dp is the signed distance 8.

Wp is related to the confidence we haveRnits design is

M discussed later. At each grid vertexD andV are updated

Fig. 3. The patchP. The dashed lines as follows:
imi i i Wi(x)D Wp(x)D
delimit the nelghborh-ood). is the center of D(X) _ (X) (X) + p(X) p(X) (15a)
P, andn the local estimation of the normal. W(x) + Wp(x)
W(x) = W(x)+ Wp(x) (15b)

The equations (15) show that(x) is the mean of all the patch distandes, weighted byil/p. .

1) Patch Weight:The previous remark outlines the importancéig$, in determining the
influence ofP; on the final result. As previously mentioned, there are twpmasues: discard-
ing the unreliable points near the patch border, and erguaantinuity across the patches. Both

objectives are fulfilled by using®, function that smoothly decreases to 0 near the boundary.
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Thus the border points have a negligible influence comparele other patches (remember
that the patches overlap). Continuity is guaranteed siregéights smoothly cross-fade.

More formally, to achieve continuity, from the Implicit Faton Theorem, it suffices that:
(1) Dis C" continuous and,
(2) VD is not null whenD = 0.
From Equations (15), itV»Dp andW, areC*, then Condition (1) is fulfilled. Condition (2)
is not as direct. Theoretically, the gradient could vantalt, it is very unlikely to occur in
practice. FirstV(WpDp) = DpVWp+WpV Dp can vanish near the border becalisg = 0
andVIWp = 0 but it does not affecV D since the patches overlap. Then, within the patch
neighborhoody D, cannot vanish becau$#s is a signed distance function. However merging
several patches at the same location may cancel the gradiéntn practice, the zeros ap
are near the zeros dbp, thus D, VW5 is negligible compared tdV»>V Dp. The gradient
cancellation would therefore imply that two patches havenleconstructed at the same place
with their normals forming an angle greater tharDuring our experiments, such an extremely
large error never happened. We use the patch ceritedefinell’» (see plot on Figure 4):

(1—”";—5"2)2 if ||lx—ol|l <o
Wp(X) = (16)

0 otherwise

We seto such that for any poinp on the border ofP,

||p — o|| > o. In this condition, Condition (1) is fulfillediV» is
C*, and the border discontinuities &f, andV D, are cancelled
by Wy = 0andVIWy = 0.

2) Weight RefinementThe previous construction is indepeno0 |

(e

dent of the input imagesd’» depends only on the patch size. Weig. 4. = (1 - é)Z if || <

o2

refine this approach with’; by accounting for the “quality” of the 7+ © otherwise. This function is

points: Consistent points are given more influence. In practhis Fiso knonn &s the Tulkey function.
further reduces the influence of the border points if theyear@neous. A direct implementation
could be:WW} = max(0, Z) Wp, (max(-) keeps it non-negative and cancels the gross errors).
However, for real images, ZNCC is unlikely to b&, thus Condition (1) would be violated.

To address this point, we smooth ZNCC while preserving itgall/structure (we should
not lower the influence of consistent regions close to insbeist areas). We apply an edge-
preserving filter inspired by Perona and Malik [43]. Using thy;z; coordinate system of

P;, we considerp(x;, y;) = max(0, Z(x;, y;, zi(x;,y;))), the restriction ofinax(0, Z) to P;.
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Similarly to [57], we assume that surface areas of the sarwe ace coherent regions. Thus,
we preserve the edges where the color changes (we build amalo of P; by averaging the
colors seen by the ZNCC cameras). The color intensity gra8iérihen yields an effective and
computationally efficient estimation of the edges. Putting together with a stopping function
g [5], we obtain:

22— dv((Iv11)Vy) an

Note that they function is designed to slightly smooth the edges in ord@réserve continuity.
Thus Condition (1) is satisfied and the smoothing mainly cgeuthin regions of the same
color. Finally we exteng to 3D: ®(x;, y;, z;) = (x4, y;) and defineWW; = Wp.

This refinement improves the accuracy because the incensisbints have less influence.
Moreover, it makes the boundaries of the open surfaces slaaa the gross errors in the patch

borders are discarded.

E. Discussion

1) Problem SpecificityThe complexity study relies on the locality assumptionisgathat
the patches can be optimized independently. In that it ferdiht from the classical approach
in parallel computing that subdivides a large problesrg(equilibrium in Mechanics [36])
into small subproblems and boundary problems that assarevierall coherence between the
subproblems. Classically, the subproblems are iterats@lyed until convergence and lead to
a complexity at least equal to the original. In our case, piime the visibility, which we handle
separately, there is no phenomenon with an overall influ¢mckke forces in mechanics for
instance), thus we do not have to solve a boundary problem.ekiplains the gain in time.

2) Normals and TopologyAs previously discussed, the surface normal has to be ditedm
to align the locak axis with it. To address this issue, we use a side technicatgtiovides an
initial guess. Numerous choices exist: photo hull [34]uaishull [35], level sets [21], etc.
Note that we do not require this side technique to producecanrate reconstruction, we only
need an estimation of the normal. Typically, it can be run@ase resolution that fits within
the available resources. In addition, we might also relytos side technique to provide the
topology.

In the following sections, we describe in detail a scenatathich we use the side technique
for normals and topology, and one for which it is only used ¢otstrap the reconstruction

process.
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IV. APPLICATION |: PATCH-WISE CARVING FROM MULTIPLE IMAGES

Based on the new theory that are proposed in the previousossgctive now describe a
practical algorithm [55] that is directly inspired by SpaCarving [34]. Carving is flexible
(any camera position, any object topology) but it has a demkbThe consistency issue is
considered without any prior, leading to an ill-posed peoftl For untextured objects, it may
significantly differ from the actual geometry. In additidhe accuracy degrades when the scene
is not Lambertian. These have motivated us to adapt thergaoriterion by considering the
existence of a local patcR. We use a carving approach to approximately locate the bbjec

surfaceS. The fine geometry is retrieved using a local graph-cut agation on each patch.

A. Initialization

The algorithm starts with a set of calibrated images. If taekiground is known, we can
extract the object contours and use Wisual hull[35] as a bounding volume (this initialization
is akin to [20], [26]). Otherwise, we require the user to pdeva bounding box. This volume
is then discretized into cubic voxels. It is important to éragize that the voxels are used only
to estimate the visibility and the topology, whereas thei@obbject surface is defined by the
patches. The shape resolution is not directly linked to tineelsize. Thus we typically use

voxels that are one order larger than the ones in the cldssinang techniques.

B. Local Optimization

We have chosen the depth-field optimization method [42] dbase min-cuts because its
geometric formulation is suitable for our goal and, in aiddit it ensures the convergence to a
global minimum of Equation 6. On the other hand, it is limitgda parametrization(x, y) but
the patchwork representation addresses this point witmitiple local coordinate systems.

We refer to the original article [42] for the technical dégai

C. Voxel Carving

We build upon a classical carving strategy. The voxels arsidered one by one and the
inconsistent ones are removed. Each time, the visibiligpimputed from the current voxel set
(for this purpose, we use the effective technique desciibfld’]). The process is iterated until
no more voxels can be carved. In this global framework, wendedur own carving criterion

and ordering scheme.
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1) Carving Criterion: Instead of computing the photo-consistency of a voxel tad#ec
whether it is carved, we reconstruct a patch withtn\ive run a graph-cut process; this results
in a patchP and a functional valug(P) = C(P) + 8(P). The voxel is kept if the consistency
valueC(P) is less than a threshotd otherwise it is carved. The rationale is that the conscsten
of P is high (.e. C(P) is low) only if P is part of the surface. Note that we do not use the
smoothness valu&(P) since the carving decision is not directly related to thextom of the
fine surface. At the carving level, only the consistency ipantant.

This carving strategy might not carve enough voxels, akthéariginal Space Carving [34].
However, this would only happen with large texturelessargisince our voxels are one order
bigger the one of the classical method. In addition, ouedon is more robust than the original
because it is based on a whole surface piece instead of & gpogit. Thus, we have not
experienced any problem in our tests, even on faces thaidaedarge areas with low textures
(cheeks, forehead — cf. Figures 5,9 and 10).

Normal Estimation:To define the coordinate system, we need a normal estimatien.
first start by fitting a plane to the current voxel and its adisurface voxels to gef) (shown
as short lines on Fig. 5-7.b). Then we build a pa®f from which we estimate a new normal
n;. If n; # ny, we buildP™ usingn;. We iterate untin,,; = ny. In practice, this occurs in 2
or 3 steps. We defin® = P*) to compute the carving criteridfi(P). In inconsistent regions,
this may not converge. Therefore, if the process is not l&taliafterk .y iterations, the voxel
is considered to be inconsistent and it is carved.

Consistency FunctionFor the consistency functianEqg. 6), we use the ZNCC value (Eq. 4)
computed from the two most front-facing visible camefasand C'; according to the normal
estimate. For a 3D poink, we wish to choose a consistency functigi) > 0 that decreases
when the match quality increases, which can be computed by = arccos(Z;;(x)). This
corresponds to the interpretation of ZNCC as a dot producbunexperiments, it better
discriminates inconsistent points than a linear inversioch asl — Z;;. This strategy yields
satisfying results at a reasonable computational costutsd work, it would be interesting to
test other consistency estimators [20], [21], [29].

If visual hull V is available, we add a termto constrain the patch withii: v(x) = 0 if

x € V, oo otherwise. In this case(x) = arccos(Z;;(x)) + v(x).

INote that the patch is not strictly within the voxel, it is large enough to overlapitsitreighbors, cf. Section I11-D.
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2) Ordering SchemeZNCC is more reliable when computed with front-facing carsdre-
cause it limits the perspective distortion and the numémacuracy inherent in it. Therefore,
we use the following strategy to reduce the number of voxed&€gssed with grazing view
directions: For each voxel, we determine the angles withntbrenal of the two most front-
facing unoccluded cameras. The voxels with small angles@msidered first. The underlying
idea is that processing the reliable voxels first is likely#ove away inconsistent voxels that
were occluding front-facing cameras for other voxels. Iheotwords, this ensures that we
always consider the voxel with the “most reliable” ZNCC ewdian according to the current
shape estimation.

Once a voxel is found consistent, it is marked “definitelyhlis’ and it is no longer examined
by the carving process (except as a potential occluder)cdtresponding patch is merged onto

the surface.

D. Summary and Discussion

At a coarse level, our algorithm behaves like a carving teghmexcept that we use the patch
consistencyC instead of the photo-consistency, and a visibility-driveder. At a fine level,
we use a graph cut to build the patches by minimizing the fanat (6) within each voxel.
The optimization scheme [42] reaches a global minimum ofckanal (6). In this respect,
the patches are optimal. The consistent patches are therporated into a distance field as
described in Section I1I-D. We have shown that, with a pragstate scheme, this produces a
continuous surface. Finally when no more consistent vaxeddound, the surface is extracted
from the distance field.

It is important to highlight that the same algorithm handiemplete and partial reconstruc-
tions. If the images cover the whole scene, the patches falosad shape. Otherwise, if some
regions remain hidden, an open surface is produced sedynlEss Marching Cubes algorithm

naturally creates a boundary when it reaches an uningi@ldomain.

V. APPLICATION IlI: SURFACE RECONSTRUCTION BYPROPAGATING

3D STEREODATA IN MULTIPLE 2D IMAGES

In this section, we apply the patchwork concept to combirsiegeral information sources,
especially 3D points and images [54]. This approach is W by the fact that most of
scanning devices such as laser scanners also take a plpttajrdne scanned object. Purely

image-based approaches, such as the method of LhuillieQaad [38], also provide reliable
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3D points using only standard photographs. We propose aitpodwhich addresses two major
points. First, meshing such a point cloud is difficult beeaokthe noise, and of the sampling
rate which may be insufficient, and so on. Techniques sudheasites by Amenta et al. [3], [4]
and by Hoppe et al. [24] exist but they do not exploit the insip@t are available in a number
of cases, which would help. Associating images and poirde #as reconstruction and yields
accurate surfaces. Second, the point set may have holesnage-based techniques do not
extract reliable points in textureless regions. In thaecaslying only on points allows for an
interpolation surface that lacks details whereas usingtadable images makes it possible to
recover details. The patchwork representation providesfi@ative framework to coherently
handle these various situations.

In our method, 3D points and images are considered as inputldMot assume any special
property except that we can estimate the surface normaka@hpoints. This is possible as
long as the point cloud is dense enough (see Appendix | faildgtin practice, we use the
technique of Lhuillier and Quan [38] to produce the 3D paili®& have chosen this method
because it gives irregularly distributed point sets thdt iMastrate our work. Nonetheless, the
proposed technique can work with any range scanners thatpreceliable 3D points.

Our strategy is to perform a propagation in 3D space staftorg reliable feature 3D points,
which help to avoid potential ambiguities and build a preasrface. To drive this propagation,
we need to first define a set of control points, the “seeds”. ¥fime a seed as a cougle n),
with s being a 3D position, and being the surface normal estimation at this position. Tleelse
listis initialized with the input 3D points and the normaheputed from them (cf. Appendix I).
We then proceed iteratively. Each iteration of the propagdbop picks a seed from the current
list using a best-first strategy, estimates its visibilitg@rding to the current surface estimate,
constructs an optimal patch around the seed and generateserds for further propagation. It
is important to notice here that, in each step, the steraapare regarded as hard constraints

for building a new patch. The whole process ends with theskastl.

A. Patch Creation and New Seed Selection

Given a seed (the selection process is described latergteelscal coordinate based on the
seed normal and run a min-cut optimization to build an optipagéch.

To continue the propagation, new seeds are created fronpalitch. These new seeds are
selected in order to maximize their reliability becauseythal the anchor points of future

patches. The location of the selected new seeds is detatijngeveral aspects.
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1) Patch quality First of all, the value of the functiondl = F(P) indicates the confi-
dence of the optimal patch. If the confidence is too loe. F too high), the surface
patch is discarded and no seed is created.

2) Match quality A point with a high ZNCC valué&Z is more likely to provide a robust
starting point for further propagation.

3) Surface regularity A singular point does not represent accurate propertiethef
patch. Using the principal curvatures and x,, points with high curvatureX =
k% + k3 are therefore to be avoided.

4) Propagation efficiencyTo ensure a faster propagation, distant points are pesferr

This relies on the distanc@ between the patch center and the potential new seeds.

A value A is computed for each potential location of a new seed to semitdts appropriate-

ness relative to these objectives.

w(Z) ) w(D)

Z D
= e o)
wherew(-) are non-negative weights to balance the different critéfiam our experiments,

A (18)

w(Z) = w(D) = w(F) = w(K) = 1 yields satisfying results. Exploring the possibilities
offered by these weights is kept as future work.

The number of new seeds created is inspired by the triangéh menfiguration. From the
Euler property, the average number of neighbors of a vegex and the average angular
distance between two neighborsgis Thus, the directions of the new seeds in relation to the
patch center are selected so that the angular distance dretwe neighboring seeds lies in
(22, 2%]. In each direction, the locatios with the highest\ is selected and the normal ats’
is computed and attached to form a new seed.

B. Selection of the Next Seed

To select a new sedd, n) for propagation, we define a criteridhto evaluate how “good for
propagation” a seed is. With this criterion, we follow a siasal best-first strategy to ensure that
the most reliable seed is picked each time. This choice sitive propagation directly because
it indicates where the growing regions are.

First of all, the initial seeds.g. the input 3D points) are regarded as reliable 3D points on
the surface. Therefore, they are always selected beforeeth@s generated from the patches.

The algorithm ends when there is no seed left in the list.
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Selection Criterion for the Input 3D PointdDepending on how the input 3D points are
obtained, an estimation of their accuracy may be availdbléhis case, the input points are
ranked in order to pick first the most accurate ones. Formestafor the normal estimation
we propose in Appendix I, we can estimate the normal preatifiom the local planarity
of the point set. This corresponds to the ratio between thergklarge eigenvalug, (the
corresponding eigenvector lies in the tangent plane) amdrtiallest one; (the corresponding
eigenvector is orthogonal to this plane). Thus, we Have i—g

Selection Criterion for Generated Seedr a generated seed , we use the ZNCC correla-
tion scoreZ by its two most front-facing cameras, since a strong matedsg high confidence.
This strategy ensures that the surface grows from the pactvigimore likely to be precise and
robust. ThusIl = Z. If the criterion is computed from occluded cameras, thallbextures
in both images will not match and the ZNCC value is then low. réfee a seed without
occlusion is processed before a seed with occlusion. THaded parts “wait” until other parts
are reconstructed. The current visibility of the processeetl is classically determined by the
current propagated surface using a ray-tracing technitheeordering scheme according to the
matching score ensures that a seed is processed only whettaodne is available. In all our
experiments, this led to a correct visibility estimatiohowing for manipulating objects with

strong occlusion (see Figure 11).

C. Summary and Discussion

This propagation algorithm reconstructs the surface oheabjects from a set of stereo
points, which can be robustly computed. These points armtbanation sources, from which
the surface is grown along the tangent directions. Meamytiie images are used to guide the
propagation, fill the holes and add high-resolution geoimdgtails. Compared with the patch-
wise carving, which employs a low-res. voxel space in thevalsection, the propagation leads
to a relatively fast reconstruction, since the additionateso points provide accurate locations

on several surface regions. However, a side technique usregtito obtain these stereo points.

VI. RESULTS AND DISCUSSION
A. Patch-wise Carving

Implementation DetailsThe presented results use real photographs shot with a élahdh
consumer-grade camera. The calibration is done as a poeggoZNCC is computed with a

11 x 11 window. The patch size is set to twice the voxel size to enawsafficient overlap.
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(a) Input image (b) Voxels (c) Patches (d) Surface (e) Inputimage (f) Surface

Fig. 5. Head reconstruction using our carving approach. This exasepi®nstrates the ability of our approach to deal with
non-Lambertian materials (skin and hair). The voxel resolution (BRs this is one order coarser than traditional carving

techniques. Although the process has been done patch by patch ¢éeamds visible on the final result (d,f).

To avoid grazing views, we ignore cameras whose angle todheal is greater thag. The
distance fieldD has a resolutiod? times finer than the voxel grid. The min-cut process is
run on a grid of resolutiorl5®. We stop the normal estimations aftef., = 4 iterations.
For example, for the owl sequence, we perform 3054 grapleptimizations and examine
1897 voxels. This corresponds to an average of 1.6 graphtoutstimate the normal. In
Equation (17),9(||VI||) = max(0,1 — ||VI]|| /16) with I € [0;255]. We use the min-cut
code of the Boost libra”which leads to a computation time of between 20 min (the ond) a
45 min (the gargoyle). As future work, we want to try an imp&tation [10] that should run
faster on our small graphs. We initialize all the sequenda#stive visual hull. Bounding boxes
produce equivalent results, but in a longer time dependmitpe box size (more voxels have to
be processed).

o> The head sequence (Fig. 5) shows that non-Lambertian sbyact be reconstructed by
patch-wise carving. There are 21 viewsi&6 x 640. The voxel space i823. It is important
to notice that this kind of sequence is typically difficult toaditional space carving methods
because the image appearance significantly changes fromi@mdo another; skin and hair
are well-known to be highly non-Lambertian.

The role of each step of the algorithm is clearly put into enice. At a coarse level, our
algorithm behaves as a carving technique (Figure 5-b) éxtbapwe use the patch consistency
as the carving criterion. At a fine level, minimal cuts buite tpatches that capture the fine
geometry within the voxels (Figure 5-c). These patches t@tiched together to produce the
final surface. As predicted, our stitching scheme achievesaanless and continuous result
(Figure 5-d,f).

2ht t p: / / waw. boost . or g
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(a) Input image (b) Voxels (c) Patches (d) Surface| (e) Inputimage (f) Surface

Fig. 6. Gargoyle reconstruction using our carving approach. Thishias two holes (above and under its arm). The carving
step correctly recovers this topology (b). Then the patches (c) peodtioe surface (d,f). The back of the stick (d) is not as
accurate as the rest of the model because the gargoyle body ocolodesf the cameras. Only views with a grazing angle
can be used for this part of the model.

o> The gargoyle sequence (Fig. 6) shows that non-sphericaldgp can be reconstructed by
patch-wise carving. There are 16 viewsad x 486 although the gargoyle only covers an area
of about200 x 400. This demonstrates the performance of our technique onéswlution data.
The voxel space i35 x 50 x 25. We encourage the reader to compare this result with the one
obtained by existing techniques [33], [34]. The precis®mproved.

> The owl sequence (Fig. 7) demonstrates the performance téthnique on concavities and
thin sharp features. We correctly reconstruct the earsedsemany existing techniques (such
as level sets) would have some difficulties due to the highatures. There are 37 views at
600 x 800. The voxel resolution i85 x 50 x 25.

Partial versus Complete Reconstructiolo demonstrate the capabilities of our approach
to handle both partial and complete reconstruction, we ngditack of the head by omitting
some images. Without any change in the algorithm, the frantip reconstructed as an open
surface (Figure 8-a,b,c). When all the images are avail#idetechnique naturally produces a

closed surface (Figure 8-d). Note that the geometry of thibha part is stable, independently

of the setup. Th@ function makes the border clean (cf. Section 111-D.2).

(a) Inputimage (b) Voxels (c) Patches (d) Surface| (e) Inputimage (f) Surface

Fig. 7. Owl reconstruction using our carving approach. Our techniqueectly recovers the geometry even within deep
concavities. The thin and sharp ears are also accurately reconstriictedr knowledge, few existing methods attain such

precision on these kinds of features.
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(a) 5 views (- 86°) (b) 7 views ¢ 120°) (c) 10 views ¢~ 171°) (d) 21 views ¢ 360°)
Fig. 8. Partial reconstruction. The 21 input images form a rough circleral the head. To demonstrate that the algorithm

handles both partial and complete shape, we have used only a sutiegt®images: 5 (a), 7 (b), 10 (c) and all views (d).

B. Patch-wise Propagation

o> The two faces (Figures 9 and 10) illustrate the accuracy ofatgorithm and its behavior
with two different sampling densities. Figure 9 has rath@mbgeneous point density (there
is no large holes) whereas Figure 10 contains two large holde cheeks due to the lack of
texture at this location. The point cloud is also denser @éfifst case than in the second one.
Nonetheless, our technique achieves convincing resulotnconfigurations, demonstrating
its versatility. Our algorithm deals efficiently with difient point density, and the propagation
strategy fills in holes with a consistent detailed surface fufure work, we want to quantify
the influence of the point density and accuracy on the patisi the recovered surface.

> The toy example (Figure 11) illustrates the correctnesse@inastness of the patch-wise prop-
agation. Fur is traditionally hard for surface reconsiutbecause its appearance is strongly
view-dependent. This model also contains large occlusftheslegs and arms are hidden in
several images). Despite these difficulties, our algorigi@riorms well: The geometry is accu-
rate recovered and occlusions are correctly handled. Tdrer@2 images with the resolution
480 x 640.

> The bas-relief (Figure 12) is a typical scenario in which@teque dedicated to a closed

surface would fail. This highlights the advantage of hamgliclosed and open surfaces equiv-

(@) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Input image (f) Surface

Fig. 9. Head reconstruction using our propagation approach. Thepopu cloud (b) is rather uniform on this model. Using

the reliable input 3D points, small details (on the eyes, the nose and theeaobtained.
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(@) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Input image (f) Surface

Fig. 10. Head reconstruction using our propagation approach. The jpgint cloud (b) that we have extracted using an
image-based approach [38] has two large holes on the cheekssbdbase two regions have almost no texture in the input
images (a,e). In addition, the point density is also coarser comparee fissttone. However, the proposed algorithm produces
a surface with an equivalent quality.

alently. This model is made of polished metal. Most of thergewy is correctly recovered,
but there are two small artifacts. Such a borderline obgeof high interest since it delineates
the abilities of our technique. To handle more complex niagrone would have to implement
more robust but also computationally more expensive ctargyg estimators such as [20], [27].

There are 23 images with the resoluti@it x 800.

C. Comparison

In Figure 13, we use the same image sequence as Figure 5 tamooyr two algorithms
with a level-set method [37] and Space Carving [34]. The fiost{s that Space Carving fails
to capture any good geometry because of the non-Lambedjaateof the head. To avoid over-
carving, we had to sacrifice accuracy. Then, our two methedsver more details than level
sets although the overall shape is smooth and thus shouliggeii sets. Note our methods and
the level-set technique work fairly from the same image saqas and the input 3D points.
Then, between carving and propagation, the results look&egut. The propagation is slightly
more precise in most cases (see the nose and the mouth) witheth of the 3D points,

except on regions where the visibility is hard to estima&tg.(near the face-hair boundary).

(@) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Input image (f) Surface

Fig. 11. Toy reconstruction using our propagation approach. It iiautfexample because of the fur and of the occlusions.

Nonetheless, our algorithm yields a satisfying result.
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(&) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Inputimage (f) Surface

Fig. 12. Bas-relief reconstruction with patch-wise propagation. Thistgtuanderlines the advantage of being able to cope
with open surfaces since obviously no information is available for the pack The acquired geometry is mostly correct
except on two regions: There are artifacts on the top of the head andttioenbof the bust. It shows that this shiny metal is
just at the borderline of the material that our algorithm can cope with. fiedgandle such highly non-Lambertian materials,

one would have to use dedicated and more costly consistency estim&pi{R 2.

This advocates for integrating both approaches which i@ubtédly promising future work.
From a performance point of view, the propagation is abo@t 3ster (about 20 min instead
of 30 min) since the input 3D points directly indicate theaar¢o focus on. Nonetheless, the

carving technique is more suitable when 3D points are nalsdla.

D. Role of the Resolution

We have compared several results from different settindgiseoflistance field resolution and
of the size of the graphs used for the optimizations (Figdie This confirms that the distance
field resolution is directly linked to the amount of detallat can be recovered: A finer distance
field makes it possible to represent finer details. Thesdtseslso underline the importance
of the spatial dimension of the patches. If the size of thelgsas kept constant while the
resolution increases, the patches become smaller andesnkaikt the precision increases but
at some point, the results degrade. This behavior showsibia is a resolution beyond which
the min-cut technique we use ceases to extract furthernr#gton. Thus, beyond this “limit”
resolution, the patches rely comparatively on less inféionasince they become smaller and
no more information is gained from the finer resolution. Hertbe patches cannot be made
infinitely small, there is a bound to the complexity gain tban be achieved. On the other end,
when the patches are too large, several advantages of patcheconstructions are lost.

This experiment opens several promising research avelRusss characterizing and compar-
ing the “limit” resolution for different optimization techques €.g.minimal cuts, level sets)
would give valuable insights on their relative efficiencycéreful examination of these results
also suggests that adjusting the patch size to the locahctaarstics of the surface would
further enhance the accuracy of the final result (observietier lip on the bottom row, smaller

patches better match its high curvature).
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Input Existing algorithms Proposed algorithms

(a) Input image (c) Patch-wise carving

(d) Input 3D points (e) Level set (f) Patch-wise propagation

Fig. 13. Comparison. (a) One of the input images (b) Space CarvifigidBs to build a satisfying reconstruction due to
the non-Lambertian materials involved. To achieve a fair comparison mtidiiasing, the voxel volume has been triangulated
using the Marching Cubes [39]. (c) Patch-wise carving and (f) mgapan build reasonable results by patches that consider
both image information and regularity. (e) The level-set technique [@d$a satisfying geometry but less detailed compared

to our techniques (c,B.g.observe the chin, the eyes and the forehead. (d) The input 3D poedsrué) and (f).

E. Quantitative Analysis

Table Il shows typical values for memory usage and runnimgsi on an Intel Plll-1.9GHz.
These numbers correspond to the experiment of Figure 14 vahdates our space complexity
analysis: The required storage for the optimization do¢slependent on the object size. Note
that the global memory footprint increases because ouremehtation keeps the patches in
memory after their creation. This strong result encourages$o implement an out-of-core
method that stores the patches on the hard drive and thug@mgmost unlimited scalability.

To validate the time complexity analysis of Section IlI-B, fwet demonstrate that the mean-
ingful size of the problem in term of complexity is the aredle# surface to reconstruct relative
to the targeted resolution. Formally speaking, the probdem is in the order 00 (as/Adg)
whereags is the area of the surface to reconstruct axt is the distance field discretization

step. Thus to measure the influence of an increasing prohilmwse can act upong (i.e.
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SIZE OF THE GRAPH

753

150°

RESOLUTION OF THE DISTANCE FIELD

3003

Fig. 14. lllustration of the effect of the resolution of distance field and efdhaph size. We use the carving algorithm.
Increasing the distance field resolution allows for capturing more detailenWhe graph size is kept constant, the
corresponding patches become smaller. First the results improwve {ffifirst row to the second one) and then they degrade
(the first and second columns, from the second row to the third onéd.dlkp that, too large patches perform poorly (top right

result). These issues are further discussed in the text.
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DISTANCE GRAPH SIZE DISTANCE GRAPH SIZE
FIELD RES. 73 153 313 FIELD RES. 73 153 313
75° 229s (2785) | 297s (559) 520s (104) 753 1M (105) | 2M (106) | 15M (119)
150° 1010s (11876)| 1455s (2772) | 2406s (554) 150% 1M (121) | 2M (122) | 15M (134)
300° 3960s (45917)| 6483s (11643)| 12458s (2747) 300° 1M (238) | 2M (239) | 15M (251)
(a) Running time (number of patches) (b) Memory used by patch optiimizéotal space)
TABLE Il

QUANTITATIVE COMPARISON AMONGDIFFERENTRESOLUTIONS

using a bigger object) or upafipr (i.e. using a finer distance field). Varyinpr coherently
uses the same object throughout the measure. We alwaysapesgf size 5%, hence the ratio
ap/ARc is constant (withup is the patch area). Thus, the number of patehesO(as/ap) is
in the order ofO (Agé). From our analysis, we expect a complexity relatively limear (cf.
Table I) or equivalently quadratic in the distance field reSon ALDF. This is the best possible
complexity since it is relatively linear to the problem size- O(as/A3g).

Figure 15 summarizes our measures. Fitting a polynomiabogives a complexity o (Agg'”") .
We obtain a nearly optimal result. The overhead stems franfiettt that our carving algorithm
needs to “dig through” the concavities to “reach” the actiaface. These steps introduce a
volumetric component into the complexity. This is confirnydhe number of built patches (in-
cluding the ones discarded by the carving process) whiclsdsstightly higher than quadratic,
in order of O(Ap#""). Nonetheless, we believe that this result is very strongeims of
scalability. To our knowledge, the patchwork represeotes the first reconstruction technique

that is proven to have a linear complexity which is practjcabnfirmed on a real example.
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(b) Number of local optimizations
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Resolution of distance field Resolution of distance field

=
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Fig. 15. We measure the running time and the number of local optimizatidgesms of the resolution of distance field (from
38? t0 300°). Fitting a polynomial curve gives a running time in the orde{fA,7*®) and a number of built patches in the
order of O (A7 ). They are close to the optimal solutiéh(Ap7) (i.e. the below green curve), and are much better than

the global optimization, which is at Iea@t(AES) (i.e.the above green curve).
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VIlI. CONCLUSION

We have presented a new patchwork representation. It ¢snsisa collection of small
surface pieces that are progressively reconstructed #olest together. It can represent both
complete (closed) and partial (open) surfaces while belg t@ recover a complex topology.
The achieved results are accurate, even on sharp featdesacavities.

From a theoretical point of view, we have introduced a newhematatical formulation of the
a priori smoothness of the objects. This formulation is fyulecal i.e. it involves only a patch
whereas the existing technique relies on the whole suriBitis.local prior enables complex
shapes by alleviating the parameterization problem inttenesome global formulations. The
relationship with a global approach is rigorously charazésl for a number of optimization
techniques. We describe an efficient way to stitch the pattbgether that guarantees the
continuity of the produced surface. Furthermore, the peggihesentation is proven to induce
an optimization process that requires a constant memotpriot, independently of the object
size. The temporal complexity is demonstrated to be optiiitase two theoretical results on
the complexity are backed by actual measurements.

We have described two algorithms based on the patchworkepdn€he first one combines
a carving strategy with min-cut optimization to retrieve tbbject geometry. The second al-
gorithm is specially designed to exploit reliable 3D poititat are available in a number of
configurations. Both are demonstrated on real examples. 8denstructed surfaces compare
favorably with existing techniques.

The patchwork approach strikes a balance between pureytechniquesd.g.Space Carv-
ing) and global optimization methods such as min-cuts avel kets. The patches aggregate a
sufficient amount of data to be robust and precise while avgithe manipulation of the whole
surface that inherently makes the process less flexible eRepting the surface as a patchwork
greatly broadens the range of objects recoverable by mirgata while preserving their key
advantages: accuracy and convergence. We have demoagtratpatchwork concept with a
min-cut optimization. Nonetheless, most of our resultepbally extends to any optimization
technique. As a consequence, we believe that the patchwadept has this great contribution:
Any optimization technique can enjoy enhanced scalabditg flexibility simply by using
patches to represent the object surface.

Future Work: Throughout the paper, we have mentioned several avenudstioe re-

search that we summarize here. Testing more robust comsysestimators would certainly
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further broaden the capacity of our algorithms. In someasibns, it may be hard to get

reliable 3D points. Nonetheless, the “no-point” configimatare rare, thus combining our two

algorithms into a single one is likely to enhance their pemniances. An extension of developing

an out-of-core stitching process for very large and/or \aatailed objectsg.g. monuments)

would be useful. Finally, we have obtained the patches witireuts but other methods such

as level sets would be interesting to examine.
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