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Abstract

Mean shift is a popular method to segment images and
videos. Pixels are represented by feature points, and the
segmentation is driven by the point density in feature space.
In this paper, we introduce the use of Morse theory to in-
terpret mean shift as a topological decomposition of the
feature space into density modes. This allows us to build
on the watershed technique and design a new algorithm to
compute mean-shift segmentations of images and videos. In
addition, we introduce the use of topological persistence to
create a segmentation hierarchy. We validated our method
by clustering images using color cues. In this context,
our technique runs faster than previous work, especially
on videos and large images. We evaluated accuracy with
a classical benchmark which shows results on par with ex-
isting low-level techniques, i.e. we do not sacrifice accuracy
for speed.

1. Introduction
Mean shift is a popular low-level segmentation technique

for images and videos. It has been used in numerous appli-
cations such as noise removal [8], object tracking [11], 3D
reconstruction [36], image and video stylization [1, 12, 35],
and video editing [33]. Mean shift is not limited to im-
ages [14, 21, 22, 30], and in addition, it can be used in
place of other segmentation algorithms, e.g. spectral meth-
ods [29, 37] and watersheds [32]. This audience motivated
numerous theoretical studies that rigorously characterize its
behavior [3–6, 8, 18]. However, mean shift becomes com-
putationally expensive with large data sets such as high-
resolution images and video sequences. Although accelera-
tion techniques have been proposed [2,12,13,17,21,33,38],
further improvement is still desirable: as an example, pro-
cessing a second of video still requires time on the order of a
couple of minutes [33]. Furthermore, creating a cluster hier-
archy usable for multi-scale analysis requires an additional
computational effort [7, 12, 13, 23, 33] and the theoretical
properties of the multiple levels are often unclear.

In this paper, we build upon known results of Morse the-
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Figure 1. We compute a hierarchical segmentation using mean
shift. The segmentation levels are created at no additional costs.
Our tests using color features show that our algorithm is fast.

ory, a branch of topology that analyzes manifolds through
their singular points. We propose a new algorithm for
images and videos that creates a hierarchical segmenta-
tion at the computational cost of a single-level clustering.
Cheng [6] and Comaniciu and Meer [8] showed that mean
shift is equivalent to a steepest ascent on a density function
underlying the image data. We describe an efficient scheme
to evaluate this function. This explicit representation en-
ables a simple technique to extract the density modes cor-
responding to the clusters. This approach leads to a fast
method to compute mean-shift segmentations. We inter-
pret this algorithm under the light of Morse theory, and
show that modes are unions of cells of the Morse-Smale
complex. With the notion of topological persistence intro-
duced by Edelsbrunner et al. [16], we build a hierarchical
segmentation. We demonstrate that this procedure has ad-
vantages over recursive techniques [13, 33] and scale-space
hierarchies [12, 23]. Our focus is not segmentation qual-
ity, we concentrate on computational efficiency and the cre-
ation of a hierarchy. Experiments on real data show that
our algorithm achieves good performances on large images
and videos using low-dimensional feature points. We evalu-
ated our technique with a classical benchmark [24,25] using
color similarity. Our technique achieves an accuracy equiv-
alent to previous techniques, demonstrating that our speed-
up does not sacrifice precision.

2. Related Work

Mean shift was pioneered by Fukunaga and
Hostetler [20]. Given a set of n feature points {xi}
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and a seed point y0, we build a series {yj} by computing
successive averages of data points weighted by a kernel K:

yj+1 =
∑n

i=1 K(yj − xi) xi∑n
i=1 K(yj − xi)

(1)

Classical choices for the kernel K are a Gaussian function
and a step function. Cheng [6] and Comaniciu and Meer [8]
demonstrated that this process is equivalent to a steepest as-
cent on a density function D defined by the feature points
{xi} and a shadow kernel K̃:

D(p) =
∑n

i=1 K̃(p − xi) (2)

They showed that K̃ is directly related to K and that, in
particular, the shadow of a Gaussian kernel is a Gaussian
with the same bandwidth.

Image Segmentation Clustering of the {xi} set is
achieved by placing a seed point yi

0 at each xi. Feature
points whose corresponding series converge to the same
limit are grouped. For image clustering, each pixel is as-
signed a feature point xi. For instance, to account for the
pixel position (xi, yi) and color (ri, gi, bi), 5D vectors are
used: xi = (xi, yi, ri, gi, bi). In this context, R

5 is called
the feature space. The feature points are segmented ac-
cording to their limit point, which directly translates into
a clustering of the pixels. Since, the yi

j sequences are as-
cending the density function D [6, 8], this process is equiv-
alent to grouping the points according to the density mode
which they belong to. Comaniciu and Meer [8] remarked
that Gaussian kernels yield better results at the price of
less tractable computation. A major contribution of this pa-
per is to design an efficient algorithm to compute a mean-
shift segmentation using a Gaussian kernel. Comaniciu et
al. [10] and Wang et al. [34] also showed that adapting the
kernel to the local structure of the feature points improve
the results at the cost of more computation. We keep such
extension as future work.

Gaussian Mean Shift Carreira-Perpiñán related the
Gaussian mean shift to the EM algorithm [4] and to spectral
clustering [3]. He showed that the convergence rate is lower
near mode boundaries [3], that boundaries can have com-
plex shapes [4], and that there can be modes containing no
feature points [5]. Comaniciu and Meer [8] demonstrated
that the path {yj} is smooth, and that mean-shift is a robust
estimator. Van de Weijer and van den Boomgaard pointed
out a link with bilateral filtering [31]. Fashing and Tomasi
recast it as a bound optimization [18].

On the practical side, a brute-force computation of the
{yj} sequences is computationally expensive because of
the repeated weighted averages (Eq. 1) (each yj queries all
xi). To speed up the process, Comaniciu and Meer [8] use

axis-aligned box windows. This produces many limit points
and adjacent points are merged as a post-process. This algo-
rithm is then equivalent to graph partitioning [19]. Elgam-
mal et al. [17] factor the computation of the Gaussian func-
tions. Georgescu et al. [21] perform fast nearest-neighbor
queries with spatially coherent hash tables. Yang et al. [38]
and Carreira-Perpiñán [2] accelerate the process by ap-
plying Newton iterations. Comaniciu and Meer [8] and
Carreira-Perpiñán [2] further reduce the computational cost
with dedicated downsampling schemes. All these accelera-
tion techniques deal with the feature points and the mean-
shift iterations (Eq. 1). In comparison, we concentrates on
the density function D (Eq. 2) that we represent using a
coarse grid following similar arguments to Comaniciu and
Meer, and Carreira-Perpiñán. One of our contribution is to
classify most pixels without iterating, thereby sidestepping
the bottlenecks of the previous methods.

Hierarchical Segmentation A cluster hierarchy is a pow-
erful tool to analyze data at multiple scales. Several ap-
proaches exist to construct such a multi-level structure.

Recursive segmentation has been initially proposed to
accelerate computation [13, 23, 33]. Small clusters are cre-
ated using a small kernel, and larger segments are formed
by applying mean shift on the cluster centroids. The ad-
vantages are a faster computation since only a few neigh-
bors are considered at each step, and a tree structure useful
for multi-scale tasks [12]. The downside is that the hierar-
chy levels are arbitrary chosen and a level cannot be added
without altering all the subsequent levels. At the cost of
more computation, Leung et al. [23] compute segmenta-
tions for several bandwidths. The clusters become bigger
with larger kernels and by construction the levels are inde-
pendent. But successive segmentations do not form a hier-
archical tree anymore because large clusters are not guar-
anteed to be unions of small clusters [5, 12, 23]. Comani-
ciu addresses this issue by determining the “strength” of the
boundaries between clusters and merging segments weakly
separated [7]. This produces a hierarchical structure and
one can access any level without modifying the hierarchy.
However, it involves a computationally expensive process
to find the saddles between density modes [9].

Our approach is along the line of Comaniciu’s saddle de-
tection with the major advantage that we find saddle points
at a negligible cost since we explicitly compute the density
function. Furthermore, our merging criterion enables on-
the-fly computation of any hierarchical level.

Contributions

This paper introduces the following contributions:
� A new fast algorithm to compute a Gaussian mean-shift
segmentation of an image or a video from an explicit repre-
sentation of the underlying density function.



� Efficient numerical schemes to evaluate this density func-
tion and extract its modes.

� A hierarchical segmentation based on a topological anal-
ysis of mean shift.

We do not aim for better segmentation accuracy and use
simple color features. We focus on computational efficiency
and the creation of a hierarchy.

3. Background on Morse Theory
Mean-shift sequences converge to local maxima of the

underlying density function D. Thus, the shape of the den-
sity function, e.g. its maxima and saddles, is of primary
importance. This motivates us to analyze mean shift with
Morse theory which is a vast framework to study the topol-
ogy of manifolds. In this section, we introduce the concepts
which our approach is based on. Figure 2 shows the various
entities we use. We refer to dedicated books for an in-depth
introduction [26, 27].

Morse-Smale Complex This section defines the topolog-
ical entities that we handle later. We refer to Edelsbrunner’s
article [15] for formal definitions.

We study a manifold M which we view as a terrain to
gain intuition. That is, we consider R

2 as a horizontal xy
plane, with a height function h defined at each point. We
are interested in the steepest-slope paths. These paths end
at flat points where ∇h = 0. These locations are either a
local maximum (a summit), a saddle, or a local minimum.
We name them critical points. For a given local maximum
m, we define its stable manifold as the set of points being on
a steepest-slope path ending at m. Equivalently, we define
unstable manifolds associated to local minima. A Morse-
Smale cell is the intersection of a stable manifold and an
unstable manifold, i.e. all points in a Morse-Smale cell are
on paths ending at the same two critical points. The Morse-
Smale complex is the collection of the Morse-Smale cells.
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Figure 2. Topological entities shown on a 1D example.

If we know the Morse-Smale complex, for any location, we
can tell where we end if we walk up or down.

Topological Persistence The notion of persistence quan-
tifies the stability of a topological feature. Considering the
terrain analogy, a summit is persistent if it is separated from
other summits by low saddles; that is, if one has to walk
down a lot before climbing up to the next summit.

Let Mτ be the set of all the points higher than τ :
{u ∈ M | h(u) > τ}. We observe the topology of Mτ as
τ goes down from +∞ to −∞. A known result of Morse
theory is that Mτ changes topology only when the threshold
reaches a critical point, i.e. when τ = h(a) with a ∈ M a
critical point. If the change creates a topological feature, the
critical point is said positive, if it removes a feature, it is said
negative. For instance, when τ crosses a local maximum, a
new component appears in Mτ . Thus, a local maximum is
a positive critical point. When τ crosses a saddle between
two maxima, their components merge, thereby removing a
component. This saddle is a negative critical point. Each
topological feature is associated to a couple (a, b) of pos-
itive and negative critical points. The persistence p of a
feature is the height difference |h(a) − h(b)|. Intuitively, as
τ decreases, topological features appear and disappear, and
the persistence of a feature is its life time in this process.
Another interpretation of the persistence is the “how much
h needs to be perturbed so that the feature would not exist.”
Figure 2 shows a 1D example. Edelsbrunner et al. [15, 16]
showed that the Morse-Smale complex of M induced by h
can be simplified by canceling the couples (a, b) in order of
increasing persistence. Intuitively, the small variations of
h are considered irrelevant and the topological features that
exist only because of these small variations are canceled.
We will use persistence in Section 5.

4. Mean Shift from Density Modes
We build on Cheng [6] and Comaniciu et al. [8] who

showed that a mean-shift sequence (Eq. 1) corresponds to
a steepest ascent on the density D (Eq. 2). Mean-shift seg-
mentation groups the points converging to the same local
maximum. Thus, extracting the modes of D is equivalent
since points in the same mode converge to the same maxi-
mum and belong to the same mean-shift cluster. We demon-
strate in the result section that this approach is faster for
large kernels.

Algorithm Overview First, we assign a feature point xi

to each pixel. This step consists in “glueing” the spatial co-
ordinates x and y with the color components expressed in
a color space such as RGB or CIE-Lab to form 5D vectors.
Then, we compute the density function on a coarse grid.
Using this explicit representation, we extract the density
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Figure 3. Mode extraction. We process the grid nodes gk up to down which leads to the order: g1, g4, g2, g3. The node g1 has no label
in its neighborhood, thus we create a new label m1. g4 is in the same situation and is assigned a new label m2. The label m1 is the only
one in the neighborhood of g2, thus g2 is assigned this label. g3 is adjacent to two different labels m1 and m2 which means it is a contact
point between two different modes. We mark it with a special boundary label b.

modes that separate them. Finally, we group pixels whose
feature points are in the same mode. The density evaluation
and the mode extraction are the core of our technique, and
we describe them in Sections 4.1 and 4.2.

4.1. Efficient Computation of the Density Function

Our computational scheme exploits two properties of
Gaussian kernels: they produce smooth, low-frequency re-
sults, and they are separable.

Since we use a Gaussian kernel Gσ , the density D is a
sum of Gaussian functions.Thus, from a signal-processing
standpoint, D is band-limited. Although the Gaussian ker-
nel does not completely cut the high frequencies, it ensures
that their amplitude is negligible. Similarly to Paris and Du-
rand for bilateral filtering [28], we build upon this property
and use a coarse representation of the density function.

In practice, with d-dimensional feature points xi, we
evaluate the density function D on a d-dimensional, regu-
larly spaced grid. We choose the grid step to be equal to the
kernel parameter σ. We also exploit the separability of the
Gaussian kernel to perform d 1D convolutions (one along
each axis) instead of an expensive d-dimensional convolu-
tion. In summary, we first bin the feature points in a regular
grid, then filter the bin values with a separable Gaussian.

4.2. Mode Extraction

In the previous step, we explicitly sampled the den-
sity function D. We name {gk} the positions of the grid
cells, and the density function is represented by the values
{D(gk)}. In this section, we extract the modes of D since
they contain points that converge to the same local maxi-
mum under mean-shift iterations. We associate a label ml

to each local maximum, and mark each grid node gk with
its corresponding label. The proposed algorithm is similar
in spirit to watershed [32] and topological filtration [15].

We sort the nodes gk in order of decreasing density and
label them one by one. Let ḡ be the currently processed
node. All the nodes already labelled have been processed
before and thus have a higher density. Conversely, the un-
processed nodes have a lower density. We nameNḡ = {ak}

the set of nodes adjacent to ḡ in the grid including diago-
nal neighbors, i.e. ||ḡ − ak||∞ = σ. To label ḡ, we count the
number of different labels in Nḡ and distinguish three cases:

� Zero label: All neighbors of ḡ have a density lower than
D(ḡ). ḡ is a local maximum; we create a new label and
assign it to ḡ.

� One label m: All neighbors with a density greater than
D(ḡ) belong to the same mode m. The ascent process nec-
essarily leads to this mode. ḡ is labeled with m.

� Two or more labels: ḡ is on a boundary between several
modes. We mark it with a special boundary label b. Fur-
thermore, if two modes m1 and m2 are in contact for the
first time, ḡ is a saddle point (the highest contact point be-
tween two modes). We keep this information for later use.
We do not count the b label when we examine the neigh-
borhood Nḡ. Although this may introduce minor variations
of the boundary location, this ensures that the boundary co-
dimension remains 1 (that is, the boundaries have no “vol-
ume”), and allows us to classify a larger number of nodes.

Figure 3 illustrates this algorithm on a simple 1D example.
Note that higher-dimensional cases are more complex be-
cause saddle points do not exist in 1D. Figure 5 shows that
most pixels can be classified using this technique.

Refining Boundaries The boundary nodes result in un-
classified pixels (Fig. 5). These areas can be filled with a
classical mean-shift iteration scheme. We start a series yi

j

at each unclassified point xi. We stop iterating when yi
j

enters a region with a non-boundary label m, and mark the
data point with m. Although we use an iterative scheme,
the number of iterations is limited since we do not need
to reach or even approach convergence. Furthermore, the
mean computation (Eq. 1) can be accelerated by adapting
the numerical scheme proposed by Paris and Durand for bi-
lateral filtering [28].

5. Hierarchical Segmentation
The previous section produces a partition of the d-

dimensional data space that induces a segmentation of the
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Figure 5. After mode extraction, most pixels are segmented, only
boundaries remain unclassified (black pixels in middle image).
These pixels are clustered using an iterative process that stops as
soon as it reaches a labelled region (result shown on the right).

input image. We now build a hierarchical structure by suc-
cessively merging pairs of clusters. To this end, we define
the persistence of the boundary between two modes and
merge the weakly separated modes.

In Appendix A, we demonstrate that this definition of
persistence is equivalent to the topological persistence, and
that we actually simplify the underlying Morse-Smale com-
plex as illustrated on Figure 4. Thus, our technique achieves
a topological simplification that accounts for noise and in-
accuracies in the density function.

Boundary Persistence We consider two modes m1 and
m2 with local maxima m1 and m2 and densities D(m1) >
D(m2). Let s12 be the saddle between these modes. We
define the boundary persistence pb of the boundary between
m1 and m2 as:

pb(m1, m2) = D(m2) − D(s12) (3)

Simplification To simplify the segmentation, we fix a
threshold thr and merge clusters whose boundary persis-
tence pb is less than thr . To build a hierarchy, we increase
thr from 0 to +∞. This construction is fast since local max-
ima and saddles have been detected during mode extraction
(Sec. 4.2) and because we do not rerun the mean-shift algo-
rithm. It produces a true hierarchical structure since large
clusters are unions of smaller ones. As an alternative, sim-
plification can be performed on-the-fly, that is, the merger
decision can be taken during mode extraction (App. B).

Unlike recursive techniques [13, 33], our approach does
not require additional computation and any level can be ac-
cessed arbitrarily without altering the hierarchy. And com-

pared to increasing the kernel bandwidth [23], persistence-
based simplification is guaranteed to produce a hierarchy.

5.1. Controlling the Hierarchy

In the following paragraphs, we expose two ways to con-
trol the way the hierarchy is built.

Merging Large Clusters Using the point density to define
the boundary persistence favors early fusions of small clus-
ters since the height difference between the maximum and
the saddle is bounded. Depending on the application, it may
be desirable to merge early large clusters, e.g. to group sky
pixels in a single big segment. To this end, we use a modi-
fied density function D̃ = f(D) to compute the persistence.
The proposed technique and the associated properties hold
as long as f is an increasing function because it does not
change the mode definition nor modifies the segmentation
before simplification. D̃ = log D efficiently balances large
and small clusters.

Application-Specific Hierarchy The persistence-based
hierarchy accounts only for the topological structure of the
feature space. Applications may induce additional domain-
specific objectives. Typically, when dealing with images,
color is a strong structural cue and it makes sense to favor
the fusion of clusters of similar color. This is incorporated
in our framework by using a modified persistence p̃. For
color images, one can define p̃ = p × ||∆C|| where p is the
topological persistence and ||∆C|| is the color distance be-
tween the two considered modes. One should be aware that
modifying the persistence in such way breaks the equiva-
lence between off-line and on-the-fly hierarchy. Nonethe-
less, the achieved results are often visually more satisfying.

In a probabilistic context, one could use the criterion pro-
posed by Comaniciu et al. [9]. We keep such extension as
future work.

6. Results
Running Time We timed our algorithm on an AMD
Opteron 2.6GHz with 1MB of cache with an 8-megapixel
picture (Fig. 6). On-the-fly simplification is about twice
faster than the off-line algorithm to access the same hierar-
chy level because there are fewer boundary pixels requiring
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Figure 4. Formal simplification process on a 1D example. Formally, we deal with the Morse-Smale complex (b) underlying the stable
manifolds which represent the density modes (a). We cancel the pairs of critical points with a persistence p less than a threshold thr (b,c),
and extract the stable manifolds of the resulting complex (d). We demonstrate that the mode simplification can be done without explicitly
computing the Morse-Smale complex, i.e. we go directly from (a) to (d).



mean-shift iterations. The cluster-merging step is negligi-
ble compared to the other steps. Moreover, our algorithm
runs faster with larger bandwidth since it allows for coarser
sampling of the feature space. This property is advanta-
geous on large images containing millions of pixels. For
these pictures, typical spatial bandwidths are tens of pix-
els and above. We compared with the EDISON system [8]
whose running times increase quadratically with the spatial
bandwidth: 2min 16s for 16 pixels, 39min for 64 pixels, and
so on. We also tested the graph-based method [19] which
is among the fastest techniques to compute a single-level
segmentation. It consistently runs in ≈ 18s for all settings.
Our algorithm becomes faster for spatial bandwidths greater
than ≈ 64 pixels while producing a hierarchical structure.
Table 1 shows the time used by each step. The off-line
computation is dominated by the iterative boundary refine-
ment. However these 15s has to be compared to the 39min
required by EDISON which is purely iterative. On-the-fly
computation speeds up this step by an order of magnitude
because there are fewer boundary pixels.

For faster performance, the dimensionality of the feature
space can be reduced using principal component analysis.
On color images (Fig. 7), our tests showed that the original
5D space can be reduced to 4D at almost no loss. Reducing
to 3D removes some medium-contrast details, yet the results
are still sufficient for a number of applications. PCA dra-
matically reduces running times as shown on Figure 6 and
Table 1. For practical use, reduction to 4D yields the most
valuable tradeoff accuracy versus running time. Removing
two dimensions should be reserved to applications where
performances are critical. PCA is also useful for movies to
reduce the required memory. On 6s of videos (46 megapix-
els), reducing the 6D xytLab space to 5D yields quality
results in 5min51s, and reducing to 4D achieves satisfying
results in 40s. For comparison, Wang et al. [33] reported
running times of about 10min on a similar sequence.

Accuracy We tested our algorithm with the Berkeley
benchmark [24,25] that compares computer-generated clus-
terings to man-made segmentations. Our goal is to check
whether our algorithm sacrifices accuracy for performances.
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Figure 6. Running times of our algorithm and existing techniques
on an 8-megapixel image with a color bandwidth equal to 5% of
the intensity range, and an increasing spatial bandwidth.

Off-line On-the-fly On-the-fly
thr = 1 thr = 1, PCA to 4D

Gaussian 6.08s 6.07s 0.59s
Sort 0.67s 0.67s 0.03s
Mode ext. 1.73s 1.81s 0.22s
Boundaries 15.58s 1.04s 1.02s
Other 5.23s 5.24s 1.15s
Total 29.29s 14.83s 3.01s

Table 1. Timing of each step: Gaussian estimation, density sam-
ple sort, mode extraction, boundary refinement, and other tasks
such as data structure management. We use the same 8-megapixel
picture as Figure 6 and a spatial bandwidth of 64 pixels.

Recall that we do not claim any improvement of the seg-
mentation quality. We chose a classical test scenario based
on color cues in the CIE-Lab color space, that is: xi =
(xi, yi, Li, ai, bi). We tested our method in a low-level
context: we did not “train” our algorithm, and we used
the same parameters for all images. Our technique be-
haves as expected in this scenario (Fig 8): colorful pictures
are well segmented whereas textured and camouflaged ob-
jects such as the soldiers and the tigers are poorly detected.
The benchmark numerically evaluates accuracy using the
F measure that equals 1 for exact matches with man-made
clusters, and decreases with false and missing boundaries
(details in [24]). Martin et al. report F values between 0.56
and 0.59 using color cues [24]. Our technique achieves
0.61 on average which is consistent with Martin’s study. In
summary, our algorithm achieves segmentations on par with
existing techniques while computing a hierarchy and being
significantly faster.

input PCA to 4D PCA to 3Dno PCA (5D)

0.71 0.74 0.72

0.660.620.65

Figure 7. The dimensionality of the feature space can reduced with
PCA. Removing one dimension is a good tradeoff since it does
not incur visible defects and significantly shortens running times.
Further speed-up can be obtained by removing two dimensions
although some medium-contrast features are lost (see the windows
on the second row). This option is thus more suitable for time-
critical applications. The F measure [24] is indicated in the lower-
right corner (higher is better, cf. text).



7. Conclusions

We have described a new algorithm to compute a mean-
shift segmentation. By recasting the process in Morse the-
ory, we have demonstrated that a hierarchical structure can
be computed at a negligible cost. Our approach is espe-
cially useful for large images and video sequences where
existing techniques are limited. Our technique is as precise
as previous work, yet significantly faster and it produces a
multi-level hierarchy. These properties make our technique
a meaningful choice for many practical applications such as
image and video editing, and content recognition.
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[4] M. Á. Carreira-Perpiñán. Gaussian mean shift is an EM al-
gorithm. IEEE Trans. on Pattern Analysis and Machine In-
telligence, to appear.
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A. Equivalence with Topological Persistence
The simplification process using the boundary persistence pb is

actually equivalent to applying a persistence-driven simplification
of the Morse-Smale complex induced by the density function D
on R

d.
Sketch of Proof: Directly from the definitions (Sec. 3), using the
density D as height function h, the density modes are stable man-
ifolds and thus unions of Morse-Smale cells. Since stable mani-
folds are defined by the local maximum where the steepest-slope
paths converge to, only pair cancellations involving a maximum
have an impact on the mode decomposition. When we analyze the
topological changes of Mτ when τ decreases, local maxima al-
ways correspond to the creation of an isolated connected compo-
nent. By definition, there is no higher point in their neighborhood.
Connected components disappear when they get “attached” to an-
other component whose maximum is higher. This event occurs at
a saddle point. Thus, a local maximum is always linked to a saddle
point. In conclusion, stable manifolds are only affected by cancel-
lation of pairs involving a saddle point s12 between two maxima
m1 and m2 with D(m1) > D(m2). The associated persistence
p is equal to D(m2) − D(s12) = pb(m1, m2). �

B. On-the-fly Simplification
The off-line construction of a hierarchy level T first com-

putes the whole segmentation and then increases the simplification
threshold thr from 0 to the value T . We demonstrate that modes
can be merged as soon as the saddle between them is reached dur-
ing mode extraction, and that this yields the same result as the
off-line technique.
Sketch of Proof: We consider a saddle s12 between modes m1

and m2 with local maxima m1 and m2 and D(m1) > D(m2)
such that pb(m1, m2) < T . We observe the mode-extraction pro-
cess when it reaches s12. We assumes that modes are merged on-
the-fly. Merging m1 and m2 does not alter the persistence of the
m1 boundaries since m1 is the highest point of m1 ∪ m2. How-
ever, the persistence of the m2 boundaries is modified. For the
equivalence to hold, the m1|m2 boundary must be the first one
removed by the off-line technique. Since the nodes are processed
in decreasing order of density, s12 is the highest saddle involving
m2, therefore the weakest one. Hence it would be removed first as
thr increases from 0 to T . �
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