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Abstract

We introduce a new surface representation method, gadlethwork to extend three-dimensional
surface reconstruction capabilities from multiple imagepatchwork is the combination of several
patcheghat are built one by one. This design potentially allowslf@reconstruction of an object with
arbitrarily large dimensions while preserving a fine levietletail. We formally demonstrate that this
strategy leads to a spatial complexity independent of theedsions of the reconstructed object, and
to a time complexity that is linear with respect to the obgeta. The former property ensures that we
never run out of storage and the latter means that recotistguan object can be done in a reasonable
amount of time. In addition, we show that the patchwork repn¢ation handles equivalently open and
closed surfaces whereas most of the existing approachéméesl to a specific scenario, an open or
closed surface but not both.

The patchwork concept is orthogonal to the method chosesudace optimization. Most of
the existing optimization techniques can be cast into ttaméwork. To illustrate the possibilities
offered by this approach, we propose two applications thatahstrate how our method dramatically
extends a recent accurate graph technique based on minitsalge first revisit the popular carving
techniques. This results in a well-posed reconstructiablpm that still enjoys the tractability of
voxel space. We also show how we can advantageously combumsgas image-driven criteria to
achieve a finely detailed geometry by surface propagatitves@ two examples demonstrate the
versatility and flexibility of patchwork reconstructionh&y underscore other properties inherited
from patchwork representation: Although some min-cut mé¢hhave difficulty in handling complex
shapes (e.g., with complex topologies), they can naturalynipulate any geometry through the
patchwork representation while preserving their intéregialities. The above properties of patchwork
representation and reconstruction are demonstrated @atimage sequences.

Index Terms

(I. Computing Methodologies).(4 Image Processing and QGderp/ision).(5 Reconstruction) &
(9 Applications): patchwork representation and recomwsion, space carving, graph-cuts, level-sets,

patch-wise carving, patch-wise propagation.
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. INTRODUCTION

Three-dimensional automated reconstruction from matiplages is a natural extension of
stereoscopic reconstruction. Combining information fraesal images makes the process
more robust and precise. It is also possible to handle lssgenes since more viewpoints
and view directions are available. A wealth of quality workshbeen produced to address
the resulting challenges and to propose usable applicatiothe domains of virtual reality,
movie making, entertainment, etc. In particular, greatgpees has been made in terms of
camera calibration and surface optimization. The formerkvaetermines the parameters of
the cameras such as their positions and focal lengths, wheldatter work focuses on the
actual geometry of the observed scene. In this paper, we fmcihe geometry reconstruction
part as we believe several points can be further improved.

Our paper focusses on two major issues that remain largely usddressed in surface
reconstruction: scalability and flexibility. First, even in a favorable situation, one cannot re-
cover an arbitrarily large geometry due to resource linateg. Most of the existing techniques
handle the entire scene at once. Therefore, for a givenutsio| the size of the reconstructed
scene is bound by the available memory of the machine thaué®the program. In addition
to this storage issue, since the time complexity of the agatron algorithms is higher than
linear, increasing the scene size inherently leads to alog®p of the processing timed. an
increase of the object size yields an even greater incrdas@ming time). Thus, large scenes
are limited to coarse reconstructions that ignore the firtailde Second, existing methods
represent the object’s surface either with a single-valymi@t depthfield,z(z, y) (or d(z,y)
for disparity maps), or with a voxel space or an implicit ftiao ¢(z,y,z) = 0 (i.e, level
set). These two representations address different coafigns. Depthfields and disparity maps
perform well with cameras that lie only on one side of the sdaut it is difficult to extend these
methods to arbitrary camera positions. Voxel spaces arad $&is provide effective solutions
when numerous cameras are available, but they break dowrimited view directions. As a
consequence, these techniques cannot cope with an ayloignasera layout, and the user has to
select the algorithm according to the scenario.

In order to overcome these limitations, in this paper we gme®ur patchwork surface
representation method. It consists of a collection of ssatface pieces, theatchesthat are
progressively reconstructed and stitched together. Beegpiapparent simplicity, it is built on
the fundamental assumption that the reconstruction pnoldea local issue. Let us consider
the example of acquiring the geometry of a head. It seemsmeat: and even desirable that,
whatever process we use, the shape of one ear does not depehd shape of the other.
Any other behavior would mean, for instance, that addingarniregg on one side changes the

June 24, 2006 DRAFT



geometry of the other ear. This would be incoherent. Thigragsion will be formally defined
and assessed. We show that except for visibility, (whether or not a point is visible from a
camera), the other components involved in the existingip#tion techniques are local.

Independently of the selected optimization technique patichwork representation method
induces several interesting gains. The first advantageaisdialing with patches makes the
amount of handled data fixed and the processing time prapaitio the number of patches.
These properties are formally proven. Second, the patdmpeterization can be adjusted for
each patch. This allows for the representation of complefasas with methods that usually
handle only depthfields or disparity maps. Third, the foratioh is independent of the topology
of the surface, and thus the same algorithm deals seamieisisligoth open and closed surfaces
depending on the setup. If the cameras provide enough iaftwm the whole scene is built; if
not, only a partial reconstruction is achieved.

We also address the practical issues that make this repagiserfully usable. All the patches
are registered into a distance field to build a coherentirec\We define a proper shape for the
patches in order to preserve the continuity at their bouadave expose an ordering strategy
to maximize the quality of the produced surface. This comepfeamework is demonstrated
with two practical reconstruction algorithms based on malicuts. The first one builds upon
carving techniques to associate, in an effective way, waetl graph optimization. The voxel
space provides a robust estimation of the visibility anchefabject topology whereas minimal
cuts are used to produce a finely detailed geometry. The dexwcombines several geometric
cues to recover the object shape. Reliable 3D points are ssgdréing points for a propagation
process that uses images to build the final shape progrssive
Contributions. In summary, the patchwork representation and reconstrudgscribed in this
paper enables scalable and flexible algorithms by intradyitie following contributions:

1) Local Prior: We introduce a new interpretation of the smoothness assomhe scope
of the corresponding prior is only local.

2) Scalability The representation allows for the reconstruction of ssef@rbitrary size (or
equivalently, a fine level of details).

3) Versatility. The reconstruction can be used with classical optimipatzhniques while
preserving their intrinsic qualities.

4) Flexibility: The reconstruction makes it possible to overcome lingtetisuch as topology
handling inherent in some optimization techniques. Thetmigsificant advantage of this
flexibility is the ability of our algorithm to retrieve botlomplete shapes (when the whole
scene is visible) and open surfaces (when some regionsduert)i
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Il. PREVIOUS WORK

The three-dimensional reconstruction problem is inhdyelhipposed. There are several ge-
ometric solutions that are consistent with the input image®rder to alleviate the problem
arising from the multiple solutions, the usual approachb &sdd ara priori hypothesis concern-
ing the objects. Classically, this hypothesis states tleatdbonstructed surface must be regular,
i.e. the objects must be smooth. This assumption is interpreteatious frameworks, resulting
in different mathematical formulations. Combining coremgy with thisa priori regularity
leads to an optimization step that dominates the other stefgsms of spatial and temporal
complexity. In the following sections, we review the exigfireconstruction methods while
focusing on their optimization techniques and their comipfananagement.

A. No Optimization

These techniques do not use optimization. Instead, theopeapsurface is the largest one
consistent with a given criterion.

1) Visual Hull: Laurentiniet al. [1] introduced thevisual hull as the largest volume con-
sistent with the silhouettes observed from several viemgoiThis results in an approximate
shape that captures the large features of the scene butyngokes the small details. Several
efficient approaches have followed: fast computation [2tonstruction from uncalibrated
cameras [3], spline model [4], and so on. These approaclkemainly used for real-time
applications [5] or as a first step to initiate a more accuypabeess [6], [7].

Relatively to our goal, the visual hull scales up nicely butraat be considered as a final
result because it lacks detail.

2) Photo Hull: Seitz and Dyer [8] popularized the use of a discrete volumetpresentation
(the voxels) in conjunction with a color criterion, tpaoto-consistencyConsidering a poinp
that is visible from the camerasc V), seeing coIors{Of,}, the photo-consistency, of p is
computed using the color distanée

Pp:ﬁZd(C’;,C) with C:ﬁZC;. 1)
i€Vp i€Vp

The algorithm sweeps through the voxel space and carvesheuwdxels with a photo-
consistency above a given threshold. The rationale is thagréectly Lambertian poinp
appears in the same color as from the viewpoint and tRyis+= 0. The threshold relaxes the
hypothesis to process scenes that are not perfectly Laiaerhis approach has been devel-
oped in numerous directions such as a better sweep schepmelj@$tness against noise [10],
transparency [11], a probabilistic framework [12], [13hdaother voxel shapes [2]. More
references can be found in the survey [14].
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In practice, these methods are easy to set up but yields dowracy results on untextured
regions because of the lack of color variation. The voxekaagh is limited by the available
resources because the necessary storage is proportiaghalllounding volume of the scene.

B. Optimization by Local Operators

A number of methods formulate a global objective for thetimzation stage and then solve
the objective by means of local operators.

1) Level Sets:Level sets [15] are a flexible method to optimize functiorthlat can be
expressed as a weighted minimal surface:

[/w@ym. )

A time-evolving surface(t) is represented at timeby the zero level set of an implicit function
o(x,t), i.e. 9(S(t),t) = 0. To minimize Functional (2), the surface evolves accordm@
steepest-descent process. From the Euler-Lagrange faymisldriven by a partial differential

equation (PDE):
0] Vo

— . 3
ot Vel ©
It is important to note that the global integral (2) is mina@d using local differential opera-

Vu Vo + wl||Ve| div

tors (3) that only consider the local neighborhood of eaghtpDespite the global formulation,
the technique is driven on a local scale.

Faugeras and Keriven [16] cast the reconstruction probfemthe level-set framework to
allow for complex objects of arbitrary genus to be rebutlalso eases visibility management
by estimating occlusions between each evolution stepuliuaction in Equation (2) is defined
to account for the texture correlation by computing the zesan normalized cross-correlation
(ZNCC) between pairs of camerd€’;, C;}. For a 3D pointx, the ZNCC valueZ;;(x) is
defined with the projectionp, and p; of x in camerasC; and C;. For an image poinp,

I, and o, denote the mean and standard deviation of the intensityeiméighborhood\/,.
Using a homography to account for the perspective distortion between the twoeras i .e.
7(pi) = p; andw(Np,) = Np,), we finally get:

1 - _

T . (Ig = Ip:)(In(a) = Ip,)- (4)
| Npi|20-pi0—pj qg;p a” ‘p (a) p;

Zij(x)

This results in convincing reconstructions, especialinigh-genus objects. The counterpart
is a lack of surface sharpness because of the high-ordarmatieess that control the process
(Eq. 3). Several methods have extended the original teaknigith contours [17], with con-
tours and 3D points [18], for non-Lambertian objects [19]] a0 on.
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These methods are limited by resources: A direct implentientaandles the whole volume
of the scene, while thearrow bandtechnique [20] stores only the values close to the surface
and requires an amount of memory proportional to the arelaso$tene.

2) Generalized CylinderTerzopoulost al.[21] used general cylinders to retrieve the scene
geometry from a set of silhouettes. They add symmetry caimssrto their model to work from
a single image. The optimization is expressed as an integirdamization, leading to local
evolution rules based on partial derivatives. Relativelypto aim, the drawback is that it is
unlikely to capture fine details because the solution spabimited to generalized cylinders.

3) Snake:Herri‘g,%dez and Schmitt [7] determine the surface topology from thea’s
visual hull. They use a snake approach basegradient vector flovto preserve this topological
information. Akin to level sets, the evolution is driven lmgal differential operators.

The accuracy of the results is impressive but the cost ishibiita surfacic and a volumetric
data structure are maintained. Although a hierarchicatsire is used, it still grows with the
object size, impeding the scalability and inducing a longcpssing time (several hours).

4) Free-Form Deformation:sidoro and Sclaroff [6] minimized the retro-projectiorrar
using free-form deformations. The applied transformatiare also local although the goal is a
global decrease in the errors. The surfacic representatiem obstacle to scalability.

C. Global Optimization

The previous methods adjust a deformable model step bystéglie actual geometry and
we have shown that the modification applied at each time stepbint is explicitly determined
from its neighborhood. We now review another category ofitégues that we caljlobal in
the sense that the treatment applied to a surface point degenthe whole surface, at least
formally, and cannot be explicitly derived from its neigibood.

1) Minimal Cuts on Disparity Maps and Depthfield®poy and Cox [22] showed how to use
the graph-flow theory [23] to generalize the purely one-disi@nal Dynamic Programming
technique to the two-dimensional problem raised by dispanaps. They designed a weighted
graph such that computing its maximum flow and extractingraesponding cut leads to an
exact solution of a functional of the following form (witly being the consistency at a pixe|
d, the disparity, andd, the set of the four-connected adjacent pixels):

Zcp + Z |dp — dg| - (5)
P (p.a)€A4
This functional models the trade-off between the consgstéleft term) and the regularity of
the result (right term). The advantage compared to othénigoes is that the functional (5) is
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solved exactlyi.e., a global minimum of the functional is found whereas mosthefinethods
such as level sets and snakes reach only a local minimum.

Other approaches have been proposed to use minimal cuti@y(b) can be interpreted in
the Markov Random Field framework [24]. Pagisal.[25] reinterpreted it in three-dimensional
world to handle depthfields instead of disparity maps. Themahstrated how to solve the
following continuous functional up to an arbitrary disezation (the surface is parameterized
as a depthfield(z, y), and then,, anda,, functions modulate the regularization term):

0z
//( .y, 2(%,y)) + ax(z,y) | 5
Kirsanov and Gortler [26] have described a generic optittonaframework that leads to

+ ay(x,y) ‘—D dzx dy. (6)

optimal solutions for such(z, y) or d(x, y) parameterizations. This has been demonstrated on
three-view reconstructions [27].

Boykov et al.[28] introduced thev-expansion technique to apply graph cuts to more general
functionals. This opens the way for finer numerical modelstha convergence to a global
minimum is lost. Kolmogorov and Zabih [29] characterizedemgral theory on the set of
functionals that can be handled by graph cuts. They alsoegpiiieir method to disparity maps
in the multi-view context [30]. In general, these dispanityap techniques yield accurate object
boundaries but lack depth precision compared with the diefdrapproach.

None of these methods scale up nicely because of their votionepresentation of space.

2) Segmented Disparity MapsSeveral approaches [31], [32] have shown that satisfying
disparity maps can be achieved by segmenting the input isnag¢e small regions of constant
color. Although this clearly reduces the amount of datagé@ginot address the scalability issue.
The challenge is to scale up while preserving details wisettea segmentation strategy takes
advantage of the lack of precision to “smartly” downsampkdisparity map.

3) Minimal Cuts on General SurfaceBoykov and Kolmogorov [33] showed how weighted
minimal surfaces (Eq. 2) can be minimized whenr/s is a Riemannian metric. The major
novelty of this work is that general surfaces are handledpaoed to the disparity maps and
depthfields of the previously discussed methods. Vogiatzas. [34] formulate the multi-view
scene reconstruction problem using this framework. Froensitalability point of view, the
volumetric structure limits the scene size.

4) Weak MembraneBlake and Zisserman [35] described a global optimizatiohrieue
inspired by the mechanical properties of an elastic menghranmemarkable point in their study
is that they formally prove that two distant features do migifere [35, p. 60] and behave as
though each one were alone. Therefore, even if no local gpeisadetermined, this result
proves that the underlying process depends only on locghberhoods.
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D. Local Optimization

The following methods are the most similar to ours. They mewa local approach to the
scene recovery problem.

1) Particles: Fua [36] introduced a particle technique to recover the sggometry using
particles. The particles obey a global optimization. THoiigs a global scheme, it is defined by
local interactions between the closest particles onlys Tepresentation can scale up because
the particles can be handled separately. However, theawcaf this representation is relatively
low. The particles are flat disks whereas our patches havea gemeral shape.

2) Image-Space Aggregatior8zeliski and Golland [11] disambiguated regions with poor
information by diffusing the adjacent data. This step carsdxen as a local reconstruction of
the geometry. It does not, however, address our goals betaisdocal aggregation is only one
step in an algorithm that is global most of the time.

3) Depth Maps FusionNarayanaret al.[37] reconstructed several depth maps that are ag-
gregated into a single structure. This approach is sinolauts because it reconstructs the final
scene by merging several partial results. However, theridbestprocess appears to be highly
redundanti(e., large portions of the scene are reconstructed severas}jrmelucing a large
amount of unnecessary computation. Furthermore, the metbes not focus on scalability
and each depth map deals with the entire scene from a givespeiet.

4) Quadratic Patches:In the context of stereo-vision, Hoff and Ahuja [38] consted
a disparity map by gathering the information stemming frewesal quadratic patches. The
main difference in our approach is that our patches can belepihfields, not only quadratic
shapes. Our surface representation is also self suffiarehin@ependent from the optimization
technique whereas Hoff-Ahuja patches need to be integmblett obtain the final result and
rely exclusively on a least squares fit. Carceroni and KutddB9] extended the approach to
motion and reflectance recovery. However, the geometrigracy is still limited by the patch
shape. Ohtake et al. [40] showed impressive results in théexbof surface reconstruction
from points but the extension to multi-view stereo is unclea

In comparison, our patchwork defines a complete surfaceseptationi.e., it reconstructs
a patchwork that is equivalent to reconstructing the serfidgself; no additional treatment
is needed, the patches spread across the whole surface mtivlity is handled during the
reconstruction process.

E. Summary

None of the existing methods reaches our scalability objectn terms of running time,
carving techniques are the most efficient because they dperédrm any optimization. But
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their lack of accuracy and their high memory requirementtlthem. In terms of storage, the
narrow band implementation of level sets is among the méistezft but this method still needs
to store the whole surface in the memory to perform the ogaition. Our approach strikes a
new balance by building the surface piece by piece, therebigang linear time complexity
and requiring only a subset of the data to be in memory at a time

The existing methods are specialized for closed or opeasest One has to knoavpriori
whether or not the camera configuration allows for a compietenstruction. Our approach
does not require such an information since both types ohsasgfare seamlessly handled.

[11. CONCEPTDEFINITION AND THEORETICAL STUDY

Here we formalize our problem to highlight the fundamengasons that justify the use of
patches. Le#(-) be a functional that represents our go&, F assigns a value to any surface,
S, and¥ is designed so that we consider a minimizetfo&s the result of the reconstruction
problem. For now, we do not give more details ab®ub keep it as general as possible. The
design of such a functional is discussed later.

Patch definition:Intuitively, a patchis a small piece of a surface Formally speaking, a
patch,P, is a connected subset 8f A patchworkrepresentation of is a set of patche§pP; }
such that JP;, = S.

A. Patchwork Reconstruction

In the previous section, we showed that many reconstrustiiegies are driven — either
explicitly or implicitly — by local criteria. Here we stat@fmally our base assumption: The
result at a point depends only on its neighborhood, whiledigpoints can be ignored.

1) Locality Assumption:We nameS, a
minimizer of ¥ over the whole 3D space,
e, S = argming s F(S). 7 andr are
such that) < 7 < . B, and B, denote the
two balls centered on a poipt with radii

andr. Minimizing & in the ball3, returns a

Fig. 1. We assume that there exisand3 such that, insidés,
the resultS of the optimization within3 equals the global result

surfaceS = argminy_;  F(S). See Figure 1

for a 3D illustration of these entities. So. This common portion corresponds to the stripped area.

Thelocality assumptiorlaims that, if the visibility information is known, thereist values
for 7 andr such that for any poinp € Sy:

SNB, = S NBp. 7)
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¢ Interpretation: This assumption means that a local optimization yields gecbresult
except on the border of the considered volume, (betweenlS’p and l’§p). This restriction is
reasonable because the border points have a truncatedoogiglod (we cannot expect any
optimization algorithm to give reliable results with pattdata).

2) Global Optimality: In a number of cases, andr can be set so that a succession of
local optimizations and a single global optimization progludentical or similar results. This
demonstrates that a locally driven process is as stable labal gne.

e Weak MembraneBlake and Zisserman [35] studied the weak-membrane mod&hwh
approximates the databy a piecewise-smooth membraméy optimizing the energy function
controlled by the parametetsand ), with dA anddl the area and length measures:

£ = /{(u—d)2 + N(Vu)’}dA + a/dl. (8)
They showed that two discontinuities whose distance isifstgntly larger than\ do not
interfere [35, page 60]. In our context, this means thatrggettr > » + A ensures that
any discontinuity interacting with points in are in B’p, thereby considered by the local
optimization. Therefore, potential differences betwedacal and global process can impact
only the continuous regions, yielding at most limited difieces since these areas are smooth.

e Level Sets:Level-set optimization is an iterative process wherebycilneent estimate
is modified according to Equation (3). We nafMiehe number of iterations (or a bound over
it). Derivatives of order involve the adjacent values up to a distafieg2]|. Thus, using the
discretization step of the level-set grid and the maximum order of the involvedwdgivess?,
wesetr =7+ 19 [%] . This guarantees that all the pointstfi’g have been exactly computed
as in the global strategy since all the involved data artépin

e Graph Cuts: For the graph cut approaches, Kolmogorov and Zabih [30] ards Bt
al. [25] handle discontinuities, hence continuous regiondgradependent. Thus it is sufficient
to setr so thath contains the largest continuous region.

e Discussion: In several cases, the locality assumption is either exact|@vel sets
and min cuts) or approximate (for weak membranes). Howelatermining the characteristic
parameters of a given scene might be difficult. In partigutlae graph-cut criterion requires
an analysis of the whole scene. Therefore, in practice, iteed the local volume is set by
the user and may not meet these criteria. Nonetheless, veeahstvong result: For sufficiently
large patches, the local optimization is equivalent orekosa global one. We further study this
difference between global and local optimization in thédieing section.

3) Study of the Functionald always contains a teri@ related to the consistency to ensure
that the final surfac& matches the image content. With a consistency functifag. photo-
consistency or ZNCC) and a surface measlirethis part can be written as:
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G://Scdu. 9)

Usingdp = ds to measure the surface area leads to the level set func{@ndalhe problem is
then well posed but the sharp details of the scene are naireapt

Another option for the regularization is to add a smoothamgis (i.e. ¥ = €+ §). To do so,
we parameterizé& as a depth field(z, y) (or d(x,y) for a disparity map) and we introduce a
function s that measures the variations:ofFrom Equation (6), this induces the plane measure

dp = dx dy:
8§ = // s(z) dz dy. (20)
S

This approach yields higher accuracy but it depends omrghecoordinate system. Since the
integrals in (9) and (10) consider the whole surf&;ehis inherently limits the representable
surfaces. Intuitively, splittings into small pieces makes it possible to defifiavith several
depth fields according to different coordinate systems.

Local Coordinate Systentor each patchP;, a local coordinate systemy; z; is defined
to parameterizé; asz;(z;,y;). An appropriate choice for the axis is the surface normal at
the location of the patch. The orientationagfandy; has no major influence. We propose two
practical strategies to build these axes in the followingiees.

Local Prior: The smoothness assumption is expressed locally. Insteagpdying the
smoothness ter® on the whole surface at once, we apply it to each patch separat

8§ = Z //732 s(z;) dx; dy;. (12)

The integration is now split in several domaiRs and a coordinate systemy; z; is introduced
for each of them. This overcomes the parameterizationdtiom of the global approach since
S is now represented as an assembly of depth fields insteadrgfla ene. The same treatment
can be applied t&. Hence, withf = ¢ + s, we can elegantly summarize the transformation
from a global formulation to a local one:

F = / fdx dy ~ F = / fdx; dy; . (12)
Ur; zz: Pi

Thus, our patchwork representation is relatively natundlsimple from a formal point of view:
A union in the geometric realm is transformed into a sum inftimetional domain.

This local expression shows that the patches can be optinmndependently. In practice, we
minimize Equation (6) for each patch using the depth-fielteste [25].
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4) Surface Reconstructio:he patchwork reconstruction consists of building a seatipes
{P;} that represents the whole surfageSeveral local optimization processes are i, we
use several local volumes;, each one producing a surface portién Because the border
points ofS; are not reliable, we keep only the center pﬁrh ;. This is the actual patch;
produced by the local process. In order to smoothly conreadet local patches together and
form a global surface, we consider the following three atpec

a) Continuity: We set the size of the local volumes so that the domains o€anfgatch
reconstructions overlap with each other. As a consequangacent patches share part of their
data. This favors continuity. Moreover, we design the Biitg process in order to guarantee
the surface continuity (see Section 1lI-D).

b) Order: Since a reliable patch is fixed after it has been built, it iggdhe computation
that occurs after its creation; and, as we have just deshribtakes into account the already
created patches. This temporal scheme can be seen as a datA fieew” patch receives
information from the “old” patches. Thus, we can exploit thréler in which the patches are
built to reconstruct by priority the most reliable regioli¢e develop this ordering strategy in
our practical implementations.

c) Distance Field:Once each patch is built, it is aggregated in a distance fsetidacribed
by Curless and Levoy [41]. When all the patches are recovehnediral surface is extracted
using the Marching Cube technique [42]. We give further detaiSection II-D.

B. Study of the Complexity

We here compare the temporal and spatial complexities ohargéglobal optimization and
of our patchwork approach. Let us consider tSdtas a 2D areas and a 3D volumes, and
that it is represented by a discrete structure with a digeatbdn sizej. For instance, for level
sets, this structure is the distance field embedding thaserrfor min cuts, it is the quantized
3D (or disparity) space that supports the surface vertices.

Global optimization:An algorithm that minimize§ over the whole surfacg§ deals with
a data structure at lea®t(as 6—2) in size. This is the case for some graph-cut techniques [43]
and for the narrow-band implementation of level sets [20[n8 algorithms (such as level sets,
carving methods or some graph-cut techniques) use voliomepresentations and hence have
a space complexity in the order 6X(vs 62).

We consider a minimizing process with a complexity of degree 1. Therefore, the time
complexity isO(a2 §72%) or O(vg §3) depending on the surface representation. The com-
plexity of level sets [16], [18] is unclear because it depeod the number of iterations, which
in turn depends on the starting point and the target shape-chti algorithms are typically
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TABLE |

COMPARISON OF THE COMPLEXITY AMONG DIFFERENT METHODS

SPACE TIME

global  patches gain global patches gain

surfacic | as 672 | ap 677 n a% 672 nap 7 | gt
volumetric | vs 672 | vp 67° n? v 673 o 58 | piel

cubic (or slightly better [44]). In practice, they behavmaskt linearly ¢ ~ 1.2) [45]. Note that
some min-cut techniques.g, Kolmogorov and Zabih [43]) are iterative and their comghex
could be higher as mentioned for level sets.

Patch Optimization:Let us subdivide the surfacg into patchesP with areaap. The
number of patches is on order ofO(as/ap). To compare withS, we also define a pseudo-
volumevp = O(aﬁ) by considering that surfaces and volumes are related byaaitbmic
ratio of g Optimizing F over a patch has a space complexity on the orded @f» 5-2) or
O(vp 673). Patches are processed one by one; therefore, the ovesalt spmplexity is the
same. Only the storage of the final result requires more dm#dais can be done off-line(g,
on the hard drive). Since we optimizepatches, the overall time complexity@(n a% §—2)
or O(n v 673%).

Comparison: Table | summarizes all these results. It appears that treh@atring sig-
nificant gains in terms of space and time complexity. Theigpabmplexity is the main gain
since we can divide the memory needed by a factor of the nuofh@atches used. However,
we cannot decrease the size of the patches infinitely toasertheir number because we would
not be able to find a satisfactory result (see Section VI).

Scalability property: The patches allow for almost unlimited scalability becatigespace
complexity depends only on the patch size and not on the tfijee.

Note that we need to store the position of each patch rel&titee global surface. This
requires storage on the order 6flog(vs 6?)), which is negligible because it always fits
within three classical floating-point valueg-.

C. Study of the Parameterization

The patch also alleviates the limitation on the paramedtamanherent in disparity map and
depthfield methods. These methods handle a scalar field. uisheil, the depth is a function
of the two other coordinatese., z = f(x,y) for some functionf. This limits the usability
of these techniques. First, special care is needed for ptapelling of the cases that require
severak values for a singlézx, y). Several functionsfy, fs,..., are then manipulated. Moreover,
if the object surface is tangent to thexis, these methods fail becausg|8f || = oc.
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The patch approach eliminates these short-
comings. By definition, the patch reconstruc-
tion deals with several surfaces and intrinsi-
cally manipulates severgl functions. Fur-
thermore, theryz coordinate system can be
adapted to each patch. This means that the

z axis can be chosen orthogonally to the
Fig. 2. Three patches with their local coordinate system  surface to guarantee that the tangent case
never occurs.

The topology is not a problem in the sense that patches cawaitipany topology. However,
the topology is not determined by the patches themselvestélyeon a side technique to
determine the topology. We propose practical solutionkigodide technique later.

Multi-resolution: This local parameterization opens avenues for a multinéisa recon-
struction. It would be possible to control the precisionia# teconstruction patch by patch to
focus on the most detailed parts. Though interesting, shieyond the scope of this paper and
is kept for future work.

D. Study of the Stitching Process

To collect all the patches and construct the final surfacepseea technique inspired by
Curless and Levoy [41]. It has the advantage of allowing imenetal updates with a fine
control over the fusion. It is also shown to be optimal in astessuare sense under some mild
assumptions (see [41] for details). There are nonethelessniportant caveats to consider:
The patch borders should not be incorporated into the firréhsel since they are not reliable,
and this step must not incur spurious discontinuities orsthéace.

Technically, the stitching process relies on two struc-
tures: a signed distance field and a volumetric weight
functionW > 0, both sampled on a regular 3D grid. Each
new patch locally modified) and V. At the end of the
process, the surface is extracted as the zero level set of

D using theMarching Cubegechnique [42].W can be

N

Fig. 3 Thepatchp The dashed lines Understood as the “history” of the construction/of each
delimit the neighborhoo is the center of patch “records its influence” if¥. Thus, we adapt the
P, whilen s the local normal estimation. -y 14 ching Cubes algorithm to cope with a partially defined
distance field. If a grid cell contains an uninitialized oflid value, no triangle is produced.

In practice, for each new pat@, we compute a distance field» and a weight functiom/»
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restricted to the neighborhood Bf(i.e., D» = Wp = 0 outside the neighborhood, cf. Fig. 3).
Dy is the signed distance t8. Wy is related to the confidence we haveT its design is
discussed later. At each grid vertexD andlV are updated as follows:
W(x)D(x) + Wp(x)Dp(x)
D — 13a
(x) W(x) + Wp(x) (132)

W(x) = W(x)+ Wp(x). (13b)

These equations (13) show thatx) is the mean of patch distanc®s, weighted byip,.

1) Patch Weight:The previous remark outlines the importancef, in determining the
influence ofP; on the final result. There are two major issues: discardiagitireliable points
near the patch border and ensuring continuity across tlebh@atBoth objectives are fulfilled
by using alVp, function that smoothly decreases to 0 near the boundarg, The:border points
have a negligible influence compared to the other patchesefriver that the patches overlap).
Continuity is guaranteed since the weights smoothly crads-f

Formal Study: To achieve surface continuity, from the Implicit Functiohébrem, it
suffices that:
(1) Dis C" continuous and,
(2) VD is not null whenD = 0.
From Equations (13), iD» andWWp areC"?, then Condition (1) is fulfilled. Condition (2) is not
as direct. Theoretically, the gradient could vanish, bigtigwunlikely to occur in practice. First,
V(WpDyp) = DpVWp+WpV Dp can vanish near the border becalise = 0 andVilp = 0
but it does not affecV D since the patches overlap. Then, within the patch neightwoatv Dy
cannot vanish becaugde, is a signed distance function. However merging severahgatat
the same location may cancel the gradiemnD. In practice, the zeros db are near the zeros
of Dp, thus D,VW5 is negligible compared td/»V Dp. The gradient cancellation would
therefore imply that two patches have been reconstructdeeaame place with their normals
forming an angle greater than During our experiments, such an extremely large errormneve
occurred.

Implementation:We use the patch center, to definelV/p: |

2 2
o (1—”*;—3') if ||x ol <o
X) =

0 otherwise

Wp (14)

We seto such that, for any poinp on the border ofP,
|p — o|| > o. With this condition, Condition (1) is fulfilledtVs % , o
Fig. 4. z (1— jé) if |2| <

o, 0 otherwise. This function is
by Wp = 0 andVWp = 0. also known as the Tukey function.

is C'', and the border discontinuities bf> andV Dy are cancelled
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2) Weight RefinementThe previous construction is independent of the input iraje
depends only on the patch size. We refine this approach¥jthy accounting for the “quality”
of the points: Consistent points are given more influencerate, this further reduces the
influence of the border points if they are erroneous. A dire@ementation could bV} =
max(0, Z) Wp (max(-) keeps it non-negative and cancels the gross errors). Howfeveeal
images, the ZNCC is unlikely to k&', and Condition (1) would therefore be violated.

To address this point, we smooth the ZNCC while preservingvsall structure (we should
not lower the influence of consistent regions close to inisb@ist areas). We apply an edge-
preserving filter inspired by Perona and Malik [46]. Using thy;z; coordinate system of
P;, we considerp(x;, y;) = max(0, Z(x;, y;, zi(x;,y;))), the restriction ofinax(0, Z) to P;.
Similarly to [47], we assume that surface areas of the sariwg ace coherent regions. Thus,
we preserve the edges where the color changes (we build amalo of P; by averaging the
colors seen by the ZNCC cameras). The color intensity gra8iérnhen yields an effective and
computationally efficient estimation of the edges. Putting together with a stopping function
g [48], we obtain:

22— av((IV11) V) (15)

Note that theg function is designed to slightly smooth the edges in ordeauoid sharp
discontinuities. Thus, Condition (1) is satisfied and theatimiog mainly occurs within regions
of the same color. Finally, we extegdo 3D: ®(x;, y;, 2;) = ¢(x;, y;) and defineW; = @Wp.

This refinement improves the accuracy because the incensigsbints have less influence.
Moreover, it makes the boundaries of the open surfaces slaaa the gross errors in the patch
borders are discarded.

E. Discussion

1) Problem SpecificityThe complexity study relies on the locality assumptionisgathat
the patches can be optimized independently. This is difteh@m the classical approach
in parallel computing that subdivides a large problemg{ equilibrium in Mechanics [49])
into small subproblems and boundary problems that assarewrall coherence between the
subproblems. Classically, the subproblems are iteratse@lyed until convergence and lead to
a complexity at least equal to the original. In our case, piim the visibility, which we handle
separately, there is no phenomenon with an overall influémclkke forces in Mechanics for
instance). Thus we do not have to solve a boundary problem.ekplains the gain in time.

2) Normals and TopologyThe surface normal has to be determined to align the loaals
with it. To address this issue, we use a side technique tbatdas an initial guess. Numerous
choices exist: photo hull [9], visual hull [1], level setH]letc. We do not require this side
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technique to produce an accurate reconstruction; we ordyg a@ estimation of the normal.
Typically, it can be run at a coarse resolution that fits witthie available resources. In addition,
we might also rely on this side technique to provide the togwln the following sections, we

detail a scenario for which a side technique is used for ntsrarad topology, and one for which

another side technique is used to bootstrap the reconsimymicess.

IV. APPLICATION |: PATCH-WISE CARVING FROM MULTIPLE IMAGES

We introduce a practical algorithnthat is directly inspired by Space Carving [9]. Carving
is flexible (any camera position, any object topology) bwgsuso prior and thus deals with
an ill-posed problem. The outcome from untextured objeds significantly differ from the
actual geometry. We revisit this carving strategy with oatchwork representation method.
We approximately locate the object surfa®gvith voxels. The fine geometry is retrieved using
a local graph-cut optimization on each pafh

A. Initialization

The algorithm starts with a set of calibrated images. If theldiground is known, we extract
the object contours and we use thsual hull[1] as a bounding volume (this initialization is
akin to [6], [7]). Otherwise, we require the user to provideaunding box. This volume is
then discretized into cubic voxels. It is important to engphba that the voxels are used only
to estimate the visibility and the topology, whereas thei@obbject surface is defined by the
patches. The shape resolution is not directly linked to theelsize. Thus, we can afford
larger voxels than the ones used in the classical carvirfghigaes. Although there might be
some unusual cases for which this incurs topological inawses, it has never occurred in our
experiments (cf. the result section).

B. Local Optimization

We have chosen the depthfield optimization method [25] basedin-cuts because its
geometric formulation is suitable for our goal and, in aiddif it ensures the convergence to a
global minimum of Equation (6). On the other hand, it is lieditby a parameterizationiz, y),
but the patchwork representation addresses this pointtwithultiple local coordinate systems.
We refer to the original paper [25] for the technical details

1The main idea of this algorithm has been proposed in our prior work [B@his section, we describe the algorithm based
on the new theory that is proposed in the previous sections. It is a typi@aime derived from patchwork reconstruction.
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C. Voxel Carving

We build upon a classical carving strategy. The voxels arsidered one by one and the
inconsistent ones are removed. Each time, the visibiligormputed from the current voxel set
(for this purpose, we use the effective technique desciibgsl]). The process is iterated until
no more voxels can be carved. In this global framework, wendedur own carving criterion
and ordering scheme.

1) Carving Criterion: Instead of computing the photo-consistency of a voxel taddec
whether it is carved, we reconstruct a patch withfo We run a graph-cut process; this re-
sults in a patchP and a functional valu&(P) = C(P) + 8(P). The voxel is kept if the
consistency valu€(P) is less than a threshold; otherwise, it is carved. The rationale is that
the consistency oP is high (.e, C(P) is low) only if P is part of the surface. Note that we
do not use the smoothness vali(g®) since the carving decision is not directly related to the
creation of the fine surface. At the carving level, only thaesistency is important.

This carving strategy might not carve enough voxels, akithooriginal Space Carving
method [9]. However, this would only happen with large, tegtess regions since our voxels
are one order larger than those of the classical method.dti@al our criterion is more robust
than the original because it is based on a whole surface pstead of a single point. Thus,
we have not experienced any problem in our tests, even os fhaeinclude large areas with
little texture (cheeks, forehead — cf. Figures 5, 9 and 10).

Normal Estimation:To define the coordinate system, we need a normal estimatien.
first start by fitting a plane to the current voxel and its adfasurface voxels to gaf, (shown
as short lines on Fig. 5-7.b). Then we build a pa®# from which we estimate a new normal
n;. If n; # ny, we buildP™ usingn,. We iterate untiln,,,; = n,. In practice, this occurs in
two or three steps. We defirie = P*) to compute the carving criterio®(7?). In inconsistent
regions, this may not converge. Therefore, if the procesgtistabilized aftek .y iterations,
the voxel is considered to be inconsistent and is carved.

Consistency FunctionEor the consistency function(Eq. 6), we use the ZNCC valug;
(Eq. 4) computed from the two most front-facing visible caase’; andC; according to the
normal estimates. For a 3D poirf we wish to choose a consistency functigs) > 0 that
decreases when the match quality increases, which can eutedbyc(x) = arccos(Z;;(x)).
This corresponds to the interpretation of ZNCC as a dot priotluour experiments, it discrim-
inates inconsistent points better than a linear inversich sisl — Z;; does. This strategy yields
satisfying results at a reasonable computational costutusd work, it would be interesting to

Note that the patch is not strictly within the voxel. It is large enough to overlgipits neighbors, cf. Section I1I-D.
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test other consistency estimators [7], [16], [52].

Whenever the visual hul is available, we add a termto constrain the patch withii:
v(x) = 0if x € V, oo otherwise. In this case(x) = arccos(Z;(x)) + v(x).

2) Ordering SchemeThe ZNCC is more reliable when computed with front-facing esas
because it limits the perspective distortion and the nuraémaccuracy inherent in it. There-
fore, we use the following strategy to reduce the number gélgoprocessed with grazing view
directions: For each voxel, we determine the angles witinénmal of the two most front-facing
unoccluded cameras. The voxels with small angles are cemegldirst. The underlying idea is
that processing the reliable voxels first is likely to carveag inconsistent voxels that were
occluding front-facing cameras for other voxels. In oth@rds, this ensures that we always
consider the voxel with the “most reliable” ZNCC evaluatiaterding to the current shape
estimation. Once a voxel is found to be consistent, it is arkdefinitely visible” and it is
no longer examined by the carving process (except as a pitectluder). The corresponding
patch is merged onto the surface.

D. Summary and Discussion

At a coarse level, our algorithm behaves like a carving teghe except that we use the
patch consistency instead of the photo-consistency and a visibility-driveder. At a fine
level, we use a graph cut to build the patches by minimizirgyftinctional (6) within each
voxel. The optimization scheme [25] reaches a global minmui the functional (6). In this
respect, the patches are optimal. The consistent patcadber incorporated into a distance
field as described in Section IlI-D. We have shown that, withreper update scheme, this
produces a continuous surface. Finally, when no more demsigoxels are found, the surface
is extracted from the distance field.

It is important to highlight that the same algorithm handlemplete and partial reconstruc-
tions. If the images cover the whole scene, the patches fooloseed shape. Otherwise, if
some regions remain hidden, an open surface is producedessiyn The Marching Cubes
algorithm naturally creates a boundary when it reaches amtiatized domain. Compared to
a classical level-set approach, this may produce holes all snwisible regions whereas the
level set would seamlessly fill the gap. However, we advottaethese holes are beneficial
since they conversely ensure that the produced surfaces §tem actual image data and not
from a “blind” interpolation. One can then apply effectiveléHilling techniques to produce a
high-quality interpolation [53].
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V. APPLICATION Il: PATCH-WISE PROPAGATION FROM3D DATA IN MULTIPLE IMAGES

In this section, we apply the patchwork concept to combirsiegeral information sources,
especially 3D points and images. This apprdashmotivated by the fact that most scanning
devices, such as laser scanners, take a photograph of teesicabject. Purely image-based
approaches, such as Lhuillier and Quan’s method [55], algaige reliable 3D points using
only standard photographs. We propose a technique thaessks two major points. First,
meshing a point cloud is difficult because of the noise ands#rapling rate, which may be
insufficient. Techniques, such as the ones by Amenta et@laj@d by Hoppe et al. [57], exist
but they do not exploit the images that are available in a rarrobcases, which would help.
Associating images and points eases this reconstructidryietds accurate surfaces. Second,
the point set may have holes,g, image-based techniques do not extract reliable points in
textureless regions. In that case, relying only on poiritsaal for an interpolation surface that
lacks details whereas using the available images makessilge to recover these details. The
patchwork provides an effective framework to handle thes®us situations coherently.

In our method, 3D points and images are considered as inputddVot assume that there
is any special property, except that we can estimate thasirformal at the 3D points. This is
possible as long as the point cloud is dense enough (see Apddor details). In practice, we
use Lhuillier and Quan’s technique [55] to produce the 3himiWe have chosen this method
because it gives irregularly distributed point sets tHasirate our work well. Nonetheless, the
proposed technique can work with any range scanner thaid@®veliable 3D points.

Our strategy is to perform a propagation in 3D space stafttorg reliable feature 3D points,
which help to avoid potential ambiguities and build a preasrface. To drive this propagation,
we need to first define a set of control points, skedsWe define a seed as a coufden), with
s being a 3D position, and being the surface normal estimation at this position. Tleel $ist
is initialized with the input 3D points and the normal comgalifrom them (cf. Appendix I). We
then proceed iteratively. Each iteration of the propagelomp picks a seed from the current
list using a best-first strategy, estimates its visibilieg@rding to the current surface estimate,
constructs an optimal patch around the seed and generateserds for further propagation. It
is important to notice here that, in each step, the steragtpare regarded as hard constraints
for building a new patch. The whole process ends with theskastl.

3This algorithm was presented in the ECCV conference [54]. Here, seithe it based on our proposed patchwork concept
and reconstruction.
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A. Patch Creation and New Seed Selection

Given a seed (the selection process is described later)etwe Iscal coordinate based on
the seed normal and run a min-cut optimization to build amagdtpatch. This patch creation
remains the same as the previous patch-wise carving asloksan Section IV-B.

To continue the propagation, new seeds are created fronpateh. These new seeds are
selected in order to maximize their reliability becauseythee the anchor points of future
patches. The location of the selected new seeds is detatiinora several criteria.

1) Patch quality First of all, the value of the functiondl = F(P) indicates the confi-
dence of the optimal patch. If the confidence is too loe.,(J is too high), the surface
patch is discarded and no seed is created.

2) Match quality A point with a high ZNCC valu€Z is more likely to provide a robust
starting point for further propagation.

3) Surface regularity A singular point does not represent accurate propertiethef
patch. With the principal curvatures andx,, points with high curvatur&” = x3+r2
are therefore to be avoided.

4) Propagation efficiencyTo ensure a faster propagation, distant points are pesferr
This relies on the distanc@ between the patch center and the potential new seeds.

A value A is computed for each potential location of a new seed to sejitats appropriate-
ness relative to these objectives:

w(Z) w(D)

A= % (16)
wherew(-) are non-negative weights to balance the different critéfiam our experiments,
w(Z) = w(D) = w(F) = w(K) = 1 yields satisfying results. Exploring the possibilities
offered by these weights is kept as future work.

The number of new seeds created is inspired by the triangéh menfiguration. From the
Euler property, the average number of neighbors of a vesex and the average angular
distance between two neighborsisThus, the directions of the new seeds in relation to the
patch center are selected so that the angular distance dretwe neighboring seeds lies in
[2%, 2%]. In each direction, the locatios with the highest\ is selected and the normal ats’
is computed and attached to form a new seed.

B. Selection of the Next Seed

To select the next sedd, n) for propagation, we define a criteridhto evaluate how “good
for propagation” a seed is. With this criterion, we followlassical best-first strategy to ensure
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that the most reliable seed is picked each time. This chaisegthe propagation directly
because it indicates where the growing regions are.

First of all, the initial seeds.g., the input 3D points) are regarded as reliable 3D points on
the surface. Therefore, they are always selected beforeetbds generated from the patches.
The algorithm ends when there is no seed left in the list.

Selection Criterion for the Input 3D PointdDepending on how the input 3D points are
obtained, an estimation of their accuracy may be availdhléhis case, the input points are
ranked in order to pick the most accurate ones first. Formastafor the normal estimation we
propose in Appendix I, we can estimate the normal precisiomfthe local planarity of the
point set. This corresponds to the ratio between the eiggmeathogonal to the plana ) and
the smallest one within the plan&,]. Thus:II = i—g

Selection Criterion for Generated Seedsor a generated seed , we use the ZNCC cor-
relation scoreZ from its two most front-facing cameras, since a strong maieks a high
confidence level. This strategy ensures that the surfasesgrom the part that is more likely
to be precise and robust. Thus$:= Z. If the criterion is computed from occluded cameras,
the local textures in both images will not match and the ZNCloes&s low. Therefore, a seed
without occlusion is processed before a seed with occludibe occluded parts “wait” until
other parts are reconstructed. The visibility of the preeesseed is classically determined
by the current propagated surface using ray tracing. Therimgl scheme according to the
matching score ensures that a seed is processed only whettaodne is available. In all our
experiments, this led to a correct visibility estimatiohowing for manipulating objects with
strong occlusion (see Figure 11).

C. Summary and Discussion

This propagation algorithm reconstructs the surface aisodjects from a set of 3D points,
which can be robustly computed. These points are the infiomaources from which the
surface is grown along the tangent directions. Meanwhile,itnages are used to guide the
propagation, fill the holes and add high-resolution geoimdétails. Compared with patch-wise
carving, which employs a low-resolution voxel space in the/fpus section, this propagation
leads to a relatively faster reconstruction, since the 3Mtpgrovide accurate locations on
several parts of the surface. The counterpart is that a sahique is required to obtain these
3D points.
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(a) Input image (b) Voxels (c) Patches (d) Surfacel (e) Inputimage (f) Surface

Fig. 5. Head reconstruction using our carving approach. This exasept®nstrates the ability of our approach to deal with
non-Lambertian surfaces (skin and hair). The voxel resolution (B21s this is one order coarser than traditional carving
techniques. Although the process has been done patch by patch éeamds visible on the final result (d,f).

VI. RESULTS ANDDISCUSSION
A. Patch-wise Carving

Implementation DetailsThe presented results use real photographs shot with a hand-
held consumer-grade camera. The camera geometry is cairiputee quasi-dense approach
in [55], [58]. The window size to compute the ZNCCIlis x 11. The patch size is set to twice
the voxel size to ensure a sufficient overlap. To avoid gaziaws, we ignore cameras whose
angle to the normal is greater thgnThe distance field has a resolutiod? times finer than
the voxel grid. The min-cut process is run on a grid of resotuof 152. We stop the normal
estimations aftek,.x = 4 iterations. For example, for the owl sequence in Figure feréorm
3054 graph-cut optimizations and examine 1897 voxels. dtigesponds to an average of 1.6
graph cuts to estimate the normal. In Equation (35)VI||) = max(0,1 — ||VI|| /16) with
I € [0;255]. We use the min-cut code of the Boost librawhich leads to a computation time
of between 20 min (the owl in Figure 7) and 45 min (the gargayl€igure 6).

As future work, we hope to try an implementation [59] thatdaun faster on our small
graphs. We initialize all the sequences with the visual.lBdunding boxes produce equivalent
results, but in a longer time depending on the box size (moxelg have to be processed).

o> The head sequence (Fig. 5) shows that non-Lambertian sgrfzan be reconstructed by
patch-wise carving. There are 21 viewsi86 x 640. The voxel space i823. It is important
to notice that this kind of sequence is typically difficult foaditional space carving methods
because the image appearance significantly changes fromi@mdo another; skin and hair
are well-known to be highly non-Lambertian.

*htt p: // ww. boost . org
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1
(@) Inputimage (b) Voxels (c) Patches (d) Surface| (e) Inputimage (f) Surface

Fig. 6. Gargoyle reconstruction using our carving approach. Thiehi@s two holes (above and under its arm). The carving
step correctly recovers this topology (b). Then, the patches (c) pecatine surface (d,f). The back of the stick (d) is not as
accurate as the rest of the model because the gargoyle’s body eschast of the cameras. Only views with a grazing angle
can be used for this part of the model.

The role of each step of the algorithm appears clearly. At asmlevel, our algorithm
behaves as a carving technique (Figure 5b) except that wéhasgatch consistency as the
carving criterion. At a fine level, minimal cuts build the glag¢s that capture the fine geometry
within the voxels (Figure 5c). These patches are stitchgdtteer to produce the final surface.
As predicted, our stitching scheme achieves a seamlessatidwous result (Figure 5d,f).
o> The gargoyle sequence (Fig. 6) shows that a non-spherigalagy can be reconstructed
by patch-wise carving. There are 16 views'a x 486 although the gargoyle only covers an
area of abou200 x 400. This demonstrates the performance of our technique orésatution
data. The voxel space 25 x 50 x 25. We encourage the reader to compare this result with the
one obtained by existing techniques [9], [10] that work fribve same images. The precision is
dramatically improved.
o> The owl sequence (Fig. 7) demonstrates the performance eé¢tihnique on concavities and
thin sharp features. We correctly reconstruct the earsegsamany existing techniques would
have difficulties because of the curvatures of the ears.eTaer 37 views at00 x 800. The
voxel resolution i5 x 50 x 25.

(a) Inputimage (b) Voxels (c) Patches (d) Surface| (e) Inputimage (f) Surface

Fig. 7. Owl reconstruction using our carving approach. Our techniqueectly recovers the geometry even within deep
concavities. The thin and sharp ears are also accurately reconstriictedr knowledge, few existing methods attain such
precision on these kinds of features.
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(a) 5 views ( 86°) (b) 7 views ¢ 120°) (c) 10 views (- 171°) (d) 21 views & 360°)

Fig. 8. Partial reconstruction. The 21 input images form a rough circeral the head. To demonstrate that the algorithm
handles both partial and complete shapes, we have used only a suheseamages: 5 (a), 7 (b), 10 (c) and all views (d).

Partial versus Complete Reconstructiolo demonstrate the capabilities of our approach
to handle both partial and complete reconstruction, we lmédliack of the head by omitting
some images. Without any change in the algorithm, the frantip reconstructed as an open
surface (Figure 8a,b,c). When all the images are availatdeteichnique naturally produces a
closed surface (Figure 8d). Note that the geometry of thbleipart is stable and independent
of the setup. Th& function makes the border clean (cf. Section I1I-D.2).

B. Patch-wise Propagation

o> The two faces (Figures 9 and 10) illustrate the accuracy ofatgorithm and its behavior

with two different sampling densities. Figure 9 has a rati@nogeneous point density (there
is no large holes) whereas Figure 10 contains two large hioldse cheeks due to the lack of
texture at this location. The point cloud is also denser @fifst case than in the second one.
Nonetheless, our technique achieves convincing resulbotnconfigurations, demonstrating
its versatility. Our algorithm deals efficiently with difient point densities, and the propagation
strategy fills in holes with a consistent detailed surface fuure work, we want to quantify

the influence of the point density and accuracy on the p@tisi the recovered surface.

(@) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Input image (f) Surface
Fig. 9. Head reconstruction using our propagation approach. Thepopu cloud (b) is rather uniform on this model. Using
the reliable input 3D points, small details (on the eyes, the nose and theeaobtained.
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(a) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Inputimage (f) Surface
Fig. 10. Head reconstruction using our propagation approach. Tl pgint cloud (b) that we have extracted using an
image-based approach [55] has two large holes in the areas of tHescheeause these two regions have almost no texture in
the input images (a,e). In addition, the point density is also coarser edrapared to the first one in Figure 9. However, the
proposed algorithm produces a surface with an equivalent quality.

> The toy example (Figure 11) illustrates the correctnessrabdstness of the patch-wise
propagation. Fur is traditionally difficult in surface restruction because its appearance is
strongly view dependent. This model also contains largeus@ns (the legs and arms are
hidden in several images). Despite these difficulties, tgorghm performs well: The geom-
etry is accurately recovered and occlusions are correeitglled. There are 22 images with a
resolutiord80 x 640.

o> The bas-relief (Figure 12) is a typical scenario in which@teque dedicated to a closed
surface would fail. This highlights the advantage of hamglitlosed and open surfaces equiva-
lently. This model is made of polished metal. Most of the getmgnis correctly recovered, but
there are two small artifacts. Such a borderline object isigh interest since it delineates the
abilities of our technique. To handle more complex matsyiahe would have to implement
more robust but also more computationally expensive ctarssy estimators such as [7], [19].
There are 23 images with the resoluti@it x 800.

C. Comparison

In Figure 13, we use the same image sequence as in Figure Bfmce our two algorithms
with a level-set method [18] and Space Carving [9]. The firshpis that Space Carving fails
to capture a good geometry because of the non-Lamberti@atiagpthe head. To avoid over-
carving, we had to sacrifice accuracy. Then, our two methedsver more details than level
sets although the overall shape is smooth and thus shoul@eii sets. Note that our methods

(@) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Input image (f) Surface
Fig. 11. Toy reconstruction using our propagation approach. Thisifautt example because of the fur and of the occlusions.
Nonetheless, our algorithm yields a satisfactory result.
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(@) Inputimage (b) Input 3D points  (c) Patches (d) Surface| (e) Inputimage (f) Surface

Fig. 12. Bas-relief reconstruction with patch-wise propagation. Thistgituanderlines the advantage of being able to cope
with open surfaces since obviously no information is available for the pack The acquired geometry is mostly correct

except in two regions: There are artifacts on the top of the head and ttieenbaf the bust. This means that this shiny metal is
just at the borderline of the material that our algorithm can cope with. fertdgandle such highly non-Lambertian materials,

one would have to use dedicated and more computationally costly congist&timators [7], [19].

and the level-set technique work from the same image seqaamd the same input 3D points.
Then, between carving and propagation, the results lookalgat. The propagation is slightly
more precise in most cases (see the nose and the mouth) witieliin of the 3D points, except
on regions where the visibility is difficult to estimate.q, near the face-hair boundary). This
advocates integrating both approaches, which is undolybpedmising future work. From
a performance point of view, the propagation is about 30%efa@bout 20 min instead of
30 min) since the input 3D points directly indicate the area$ocus on. Nonetheless, the
carving technique has the advantage of being usable evénpbsts are not available.

D. Role of the Resolution

We have compared several results from different settindgiseoflistance field resolution and
of the size of the graphs used for the optimizations (Figdie This confirms that the distance
field resolution is directly linked to the details that canreeovered: A finer distance field
makes it possible to represent finer details. These redatisuaderline the importance of the
spatial dimension of the patches. If the size of the grapkejp$ constant while the resolution
increases, the patches become smaller and smaller. Fergiréitision increases but at some
point, the results degrade. This behavior shows that teexe@gsolution beyond which the min-
cut technique ceases to extract further information. Beybrsd'limit resolution”, the patches
rely comparatively on less information since they becomallemand no more information is
gained from the finer resolution. Hence, the patches careotdile infinitely small, and there
is a bound to the complexity gain that can be achieved. On tifer @nd, when the patches
are too large, several advantages.(sharp normal or complex topologies) of our patchwork
reconstruction are lost.

This experiment opens several promising research avekuss. characterizing and com-
paring the “limit” resolution for different optimizatiorethniques €.g, minimal cuts, level
sets) would give valuable insights into their relative edincy. A careful examination of these
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Existing algorithms Proposed algorithms

(a) Input image

(d) Input 3D points (e) Level set (f) Patch-wise propagation

Fig. 13. Comparison. (a) One of the input images (b) Space Carvin@i[9 to build a satisfying reconstruction due to
the non-Lambertian surfaces. To achieve a fair comparison withodiraiathe voxel volume has been triangulated using
Marching Cubes [42]. (c) Patch-wise carving and (f) propagatiold beasonable results by patches that consider both image
information and regularity. (e) The level-set technique [18] builds afgatgsgeometry but is less detailed compared with our
techniques (c,f)e.g, observe the chin, the eyes and the forehead. (d) The input 3D psedsmu(e) and (f).

results also suggests that adjusting the patch size to ta dharacteristics of the surface
would further enhance the accuracy of the final result (atesetre lower lip on the bottom row
of Figure 14 where smaller patches better match the highatum®). Such a multi-resolution
approach could refine the most curved areas of a surface.

E. Quantitative Analysis

Table Il shows typical values for memory usage and runningesi for our algorithm on
an Intel PIII-1.9GHz. These numbers correspond to the @xjert shown in Figure 14. This
validates our space complexity analysis: The requirecag®ifor the optimization does not
depend on the object size. Although the patch stitching hedarface extraction require more
memory, we advocate that these steps are scalable sincénttodye only simple and local
memory accesses that can be handled “out of the dagg’by storing the data structure on
the hard drive and performing only local updates in the mgm®uch an approach would be
non-trivial, if not impossible, for the optimization stepdause the involved algorithms need
global access to the data.
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SIZE OF THE GRAPH
73 153 313

RESOLUTION OF THE DISTANCE FIELD

Fig. 14. The effect of the resolution of the distance field and of the gs&aeh We use the carving algorithm. Increasing the
distance field resolution allows for capturing more details. When the giiaphisskept constant, the corresponding patches
become smaller. First the results improve (from the first row to the skonge) and then they degrade (the first and second
columns, from the second row to the third one). Note also that very laghgs perform poorly (top right result).
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QUANTITATIVE COMPARISON AMONGDIFFERENTRESOLUTIONS

DISTANCE GRAPH SIZE DISTANCE GRAPH SIZE
FIELD RES. 73 153 313 FIELD RES. 73 153 313
75° 229s (2785) | 297s (559) 520s (104) 75° 1M (105) | 2M (106) | 15M (119)
150° 1010s (11876)| 1455s (2772) | 2406s (554) 150° 1M (121) | 2M (122) | 15M (134)
300° 3960s (45917)| 6483s (11643)| 12458s (2747) 300° 1M (238) | 2M (239) | 15M (251)
(a) Running time (number of patches) (b) Memory used by patch opfiimizéotal space)

To validate the time complexity analysis of Section I11-B, firet remark that the meaningful
size of the problem in terms of complexity is the area of thrée®e to reconstruct relative to the
targeted resolution. Formally speaking, the problem sizmithe order 0®(as/A3g), where
as IS the area of the surface to reconstruct aag is the distance field discretization step. Thus
to measure the influence of an increasing problem size, wadawmporus (i.e., using a larger
object) or upomMpr (i.e., using a finer distance field). Varyinpr coherently uses the same
object throughout the measure. We always use graphs ofsiz&he ratioap /A2 is therefore
constant (withap is the patch area). Thus, the number of patches, O(as/ap), is on the
order of O(Ap#). From our analysis, we expect a complexity proportional of. Table 1) or
equivalently quadratic in the distance field resolut{tAéer@. This is the best possible complexity
since it is linear to the problem size becayse O(as/Ajg).

Figure 15 summarizes our measures. Fitting a polynomiakogives a complexity ab (ApZ ).
We obtain a nearly optimal result. The overhead stems franfiett that our carving algorithm
needs to “dig through” the concavities to “reach” the actuaface. These steps introduce a
volumetric component into the complexity. This is confirnigdthe number of built patches
(including the ones discarded by the carving process), wisi@lso slightly higher than the
quadratic, on the order @ (Ap#""). This result demonstrates the scalability of our approach.
To our knowledge, our patchwork representation methodeaditkt reconstruction technique
that is proven to have a linear complexity that is practjcetinfirmed on a real example.

(@) Running time

(b) Number of local optimizations

10 1(;0 2(;0 300 10 1(;0 2(;0 300
Resolution of distance field Resolution of distance field

Fig. 15. We measure the running time and the number of local optimizatigemis of the resolution of distance field (from
382 to 300%). Fitting a polynomial curve gives a running time in the orde(’b(ngﬁ‘w) and a number of built patches in
the order ofO (A7 7). They are close to the optimal solutié A7) (the dashed green lines); the dotted blue lines show
O(Ap?) for comparison.
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VIlI. CONCLUSION

We have presented a new patchwork representation methodnsists of a collection of
small surface pieces that are progressively reconstruantedstitched together. It can repre-
sent both complete (closed) and partial (open) surfacekevleing able to recover complex
topologies. The achieved results are accurate, even op f&ures and concavities.

From a theoretical point of view, we have introduced a newheatatical formulation of the
a priori smoothness of the objects. This formulation is purely Idaa] it involves only a patch
whereas the existing technique relies on the whole surfdtis.local prior enables complex
shapes by alleviating the parameterization problem intienesome global formulations. The
relationship with a global approach is rigorously charazésl for a number of optimization
techniques. We describe an efficient way to stitch the pattbgether that guarantees the
continuity of the produced surface. Furthermore, our pagphesentation method is proven to
induce an optimization process that requires a constantianad memory that is independent
of the object size. The temporal complexity is demonstraidd optimal. These two theoretical
results on the complexity are backed by actual measurements

We have introduced two algorithms based on the patchworkemnThe first one combines
a carving strategy with a min-cut optimization to retrietie bbject’'s geometry. The second
algorithm is specially designed to exploit reliable 3D psitihat are available from a number of
configurations. Both are demonstrated on real examples. 8dmstructed surfaces compare
favorably with existing techniques such as Space Carvindearsd sets.

The patchwork approach strikes a balance between pureitexchniquesd.g, Space Carv-
ing) and global optimization methods, such as min-cuts ewel Isets. The patches aggregate a
sufficient amount of data to be robust and precise while avgithe manipulation of the whole
surface that inherently makes the process less flexible. Asface representation, the patch-
work greatly broadens the range of objects recoverable byhmai cuts while preserving their
key advantages: accuracy and convergence. We have deatedstre patchwork concept with
a min-cut optimization. Nonetheless, most of our resultsipitally extend to any optimization
technique. As a consequence, we believe that the patchwoidept makes a significant con-
tribution: Any optimization technique can enjoy enhanceaability and flexibility simply by
using patches to represent the object surface.

Future Work: Throughout this paper, we have mentioned several avenudatioe re-
search that we summarize here. Testing more robust camsysestimators would certainly
further enhance the capacity of our algorithms. In somesduas, it may be difficult to get
reliable 3D points. Nonetheless, such “no-point” configiores are rare, thus combining our
two algorithms into a single one is likely to improve the periance. A valuable extension is
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to develop an out-of-core stitching process to work on vargéd and/or very detailed objects
that would be impossible to acquire with other techniquésalfy, we have used the patches
with min-cuts but other methods such as level sets would teeasting to investigate.

APPENDIX|: NORMAL ESTIMATION FROM 3D STEREOPOINTS

As described in Section V, given a set of quasi-dense 3D 9¢&8], we can estimate a
normal for each of these points. The surface normals at tha@is¢s are estimated to form the
initial seeds. For each 3D poind;, the surface normat;, is provided by the symmetrit x 3
positive semi-definite matrixy S, s , y(» (¥ — Pj) ® (¥ — p;), whereB, (p;) denotes a ball
with radiusr. Among the eigenvectors;;, vo, v3, respectively associated to the eigenvalues
A1 > A2 > A3, We choosen; to be eithervs or —v;3. The sign depends on the cameras used to
reconstrucp;.

B,(p;) (P may contain very few points, baffling the orientation estiora In dense re-
gions, a large radius results in an over-smoothed estimatieereas a small radius makes the
estimation sensitive to noise. Therefores defined as a function qf;: in dense regions; is
fixed to a reference valueg...., representing the minimum scale. In the diluted regions, th
radius is increased so thit(p,) contains at least 3D stereo points. From our experiments, a
good compromise is to defing,.,. to be the radius of local patches ahtb be 15-20.
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