
To appear in the ACM SIGGRAPH conference proceedings

Real-time Edge-Aware Image Processing with the Bilateral Grid

Jiawen Chen Sylvain Paris Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Figure 1: The bilateral grid enables edge-aware image manipulations such as local tone mapping on high resolution images in real time.
This 15 megapixel HDR panorama was tone mapped and locally refined using an edge-aware brush at 50 Hz. The inset shows the original
input. The process used about 1 MB of texture memory.

Abstract

We present a new data structure—the bilateral grid, that enables
fast edge-aware image processing. By working in the bilateral grid,
algorithms such as bilateral filtering, edge-aware painting, and local
histogram equalization become simple manipulations that are both
local and independent. We parallelize our algorithms on modern
GPUs to achieve real-time frame rates on high-definition video. We
demonstrate our method on a variety of applications such as image
editing, transfer of photographic look, and contrast enhancement of
medical images.

Keywords: Computational Photography, Edge-Aware Image Pro-
cessing, Bilateral Filter, Real-time Video Processing

1 Introduction

Nonlinear filters have enabled novel image enhancement and ma-
nipulation techniques where image structure such as strong edges
are taken into account. They are based on the observation that many
meaningful image components and desirable image manipulations
tend to be piecewise smooth rather than purely band-limited. For
example, illumination is usually smooth except at shadow bound-
aries [Oh et al. 2001], and tone mapping suffers from haloing arti-
facts when a low-pass filter is used to drive local adjustment [Chiu
et al. 1993], a problem which can be solved with nonlinear filters
[Tumblin and Turk 1999; Durand and Dorsey 2002].

In particular, the bilateral filter is a simple technique that smoothes
an image except at strong edges [Aurich and Weule 1995; Tomasi
and Manduchi 1998; Smith and Brady 1997]. It has been used in a
variety of contexts to decompose an image into a piecewise-smooth
large-scale base layer and a detail layer for tone mapping [Durand
and Dorsey 2002], flash/no-flash image fusion [Petschnigg et al.
2004; Eisemann and Durand 2004], and a wealth of other appli-

1

To appear in the ACM SIGGRAPH conference proceedings

cations [Bennett and McMillan 2005; Xiao et al. 2006; Bae et al.
2006; Winnemöller et al. 2006]. A common drawback of nonlin-
ear filters is speed: a direct implementation of the bilateral filter
can take several minutes for a one megapixel image. However, re-
cent work has demonstrated acceleration and obtained good perfor-
mance on CPUs, on the order of one second per megapixel [Du-
rand and Dorsey 2002; Pham and van Vliet 2005; Paris and Durand
2006; Weiss 2006]. However, these approaches still do not achieve
real-time performance on high-definition content.

In this work, we dramatically accelerate and generalize the bilat-
eral filter, enabling a variety of edge-aware image processing ap-
plications in real-time on high-resolution inputs. Building upon
the technique by Paris and Durand [2006], who use linear filter-
ing in a higher-dimensional space to achieve fast bilateral filtering,
we extend their high-dimensional approach and introduce the bilat-
eral grid, a new compact data structure that enables a number of
edge-aware manipulations. We parallelize these operations using
modern graphics hardware to achieve real-time performance at HD
resolutions. In particular, our GPU bilateral filter is two orders of
magnitude faster than the equivalent CPU implementation.

This paper makes the following contributions:

• The bilateral grid, a new data structure that naturally enables
edge-aware manipulation of images.

• Real-time bilateral filtering on the GPU, which is two orders
of magnitude faster than previous CPU techniques, enabling
real-time processing of HD content.

• Edge-aware algorithms. We introduce a number of real-
time, edge-aware algorithms including edge-preserving paint-
ing, scattered data interpolation, and local histogram equal-
ization.

Our approach is implemented as a flexible library which is dis-
tributed in open source to facilitate research in this domain.
The code is available at http://groups.csail.mit.edu/
graphics/bilagrid/. We believe that the bilateral grid data
structure is general and future research will develop many new ap-
plications.

1.1 Related Work

Bilateral Filter The bilateral filter is a nonlinear process that
smoothes images while preserving their edges [Aurich and Weule
1995; Smith and Brady 1997; Tomasi and Manduchi 1998]. For an
image I , at position p, it is defined by:

bf (I)p =
1

Wp

∑
q∈N(p)

Gσs(||p − q||) Gσr(|Ip − Iq|) Iq (1a)

Wp =
∑

q∈N(p)

Gσs(||p − q||) Gσr(|Ip − Iq|) (1b)

The output is a simple weighted average over a neighborhood where
the weight is the product of a Gaussian on the spatial distance (Gσs)
and a Gaussian on the pixel value difference (Gσr), also called the
range weight. The range weight prevents pixels on one side of a
strong edge from influencing pixels on the other side since they
have different values. This also makes it easy to take into account
edges over a multi-channel image (such as RGB) since the Gaussian
on the pixel value difference can have an arbitrary dimension.

Fast numerical schemes for approximating the bilateral fil-
ter are able to process large images in less than a second.
Pham et al. [2005] describe a separable approximation that
works well for the small kernels used in denoising but suffers

from artifacts with the larger kernels used in other applications.
Weiss [2006] maintains local image histograms, which unfortu-
nately limits this approach to box spatial kernels instead of the
smooth Gaussian kernel.

Paris and Durand [2006] extend the fast bilateral filter introduced
by Durand and Dorsey [2002] and recast the computation as a
higher-dimensional linear convolution followed by trilinear interpo-
lation and a division. We generalize the ideas behind their higher-
dimensional space into a data structure, the bilateral grid, that en-
ables a number of operations, including the bilateral filter, edge-
aware painting and interpolation, and local histogram equalization.

Other edge-preserving techniques include anisotropic diffusion
[Perona and Malik 1990; Tumblin and Turk 1999] which is related
to the bilateral filter [Durand and Dorsey 2002; Barash 2002]. Op-
timization [Levin et al. 2004; Lischinski et al. 2006] can also be
used to interpolate values while respecting strong edges. Our work
introduces an alternative to these approaches.

High-Dimensional Image Representation The interpretation of
2D images as higher-dimensional structures has received much at-
tention. Sochen et al. [1998] describe images as 2D manifolds em-
bedded in a higher-dimensional space. For instance, a color image
is embedded in a 5D space: 2D for x and y plus 3D for color. This
enables an interpretation of PDE-based image processes in terms of
geometric properties such as curvature. Our bilateral grid shares the
use of higher-dimensional spaces with this approach. It is nonethe-
less significantly different since we consider values over the entire
space and not only on the manifold. Furthermore, we store homo-
geneous values, which allows us to handle weighted functions and
the normalization of linear filters. Our approach is largely inspired
by signal processing whereas Sochen et al. follow a differential
geometry perspective.

Felsberg et al. [2006] describe an edge-preserving filter based on a
stack of channels that can be seen as a volumetric structure simi-
lar in spirit to the bilateral grid. Each channel stores spline coeffi-
cients representing the encoded image. Edge-preserving filtering is
achieved by smoothing the spline coefficients within each channel
and then reconstructing the splines from the filtered coefficients. In
comparison, the bilateral grid does not encode the data into splines
and allows direct access. This enables faster computation; in par-
ticular, it makes it easier to leverage the computational power of
modern parallel architectures.

2 Bilateral Grid

The effectiveness of the bilateral filter in respecting strong edges
comes from the inclusion of the range term Gσr(|Ip − Iq|) in the
weighted combination of Equation 1: although two pixels across an
edge are close in the spatial dimension, from the filter’s perspec-
tive, they are distant because their values differ widely in the range
dimension. We turn this principle into a data structure, the bilat-
eral grid, which is a 3D array that combines the two-dimensional
spatial domain with a one-dimensional range dimension, typically
the image intensity. In this three-dimensional space, the extra di-
mension makes the Euclidean distance meaningful for edge-aware
image manipulation.

The bilateral grid first appeared as an auxiliary data structure in
Paris and Durand’s fast bilateral filter [2006]. In that work, it was
used as an algebraic re-expression of the original bilateral filter
equation. Our perspective is different in that we view the bilateral
grid as a primary data structure that enables a variety of edge-aware
operations in real time.

2

To appear in the ACM SIGGRAPH conference proceedings

2.1 A Simple Illustration

Before formally defining the bilateral grid, we first illustrate the
concept with the simple example of an edge-aware brush. The
edge-aware brush is similar to brushes offered by traditional editing
packages except that when the user clicks near an edge, the brush
does not paint across the edge.

When the user clicks on an image E at a location (xu, yu), the edge-
aware brush paints directly in the three-dimensional bilateral grid
at position

(
xu, yu, E(xu, yu)

)
. The spatial coordinates are deter-

mined by the click location, while the range coordinate is the inten-
sity of the clicked pixel. The edge-aware brush has a smooth falloff
in all three dimensions. The falloff along the two spatial dimen-
sions is the same as in classical 2D brushes, but the range falloff
is specific to our brush and ensures that only a limited interval of
intensity values is affected. To retrieve the painted value V in im-
age space at location (x, y), we read the value of the bilateral grid
at position

(
x, y, E(x, y)

)
. We use the same terminology as Paris

and Durand [2006] and call this operation slicing. In regions where
the image E is nearly constant, the edge-aware brush behaves like
a classical brush with a smooth spatial falloff. Since the range vari-
ations are small, the range falloff has little influence. At edges, E
is discontinuous and if only one side has been painted, the range
falloff ensures that the other side is unaffected, thereby creating a
discontinuity in the painted values V . Although the grid values are
smooth, the output value map is piecewise-smooth and respects the
strong edges of E because we slice according to E. Figure 2 illus-
trates this process on a 1D image.

(a) grid and reference function

ra
n
g
e

space
mouse clicks

(b) reconstructed values

V(x)

x

Figure 2: Example of brush painting on a 1D image E. When the
user clicks at location x, we add a smooth brush shape in the grid
at location

(
x, E(x)

)
. The image space result of the brush oper-

ation at a position x is obtained by interpolating the grid values
at location

(
x, E(x)

)
. Although the grid is smooth, we obtain an

image space result that respects the image discontinuity.

This simple example demonstrates the edge-aware properties of the
bilateral grid. Although we manipulate only smooth values and ig-
nore the issue of edge preservation, the resulting function generated
in image space is piecewise-smooth and respects the discontinuities
of the reference image thanks to the final slicing operation. Further-
more, computations using the bilateral grid are generally indepen-
dent and require a coarser resolution than the reference image. This
makes it easy to map grid operations onto parallel architectures.

2.2 Definition

Data Structure The bilateral grid is a three dimensional array,
where the first two dimensions (x, y) correspond to 2D position
in the image plane and form the spatial domain, while the third
dimension z corresponds to a reference range. Typically, the range
axis is image intensity.

Sampling A bilateral grid is regularly sampled in each dimen-
sion. We name ss the sampling rate of the spatial axes and sr the
sampling rate of the range axis. Intuitively, ss controls the amount

of smoothing, while sr controls the degree of edge preservation.
The number of grid cells is inversely proportional to the sampling
rate: a smaller ss or sr yields a larger number of grid cells and
requires more memory. In practice, most operations on the grid re-
quire only a coarse resolution, where the number of grid cells is
much smaller than the number of image pixels. In our experiments,
we use between 2048 and 3 million grid cells for the useful range of
parameters. The required resolution depends on the operation and
we will discuss it on a per-application basis.

Data Type and Homogeneous Values The bilateral grid can
store in its cells any type of data such as scalars and vectors. For
many operations on the bilateral grid, it is important to keep track
of the number of pixels (or a weight w) that correspond to each
grid cell. Hence, we store homogeneous quantities such as (wV, w)
for a scalar V or (wR, wG, wB, w) if we deal with RGB colors.
This representation makes it easy to compute weighted averages:
(w1V1, w1)+ (w2V2, w2) =

(
(w1V1 +w2V2), (w1 +w2)

)
where

normalizing by the homogeneous coordinate (w1 + w2) yields the
expected result of averaging V1 and V2 weighted by w1 and w2.
Intuitively, the homogeneous coordinate w encodes the importance
of its associated data V . It is also similar to the homogeneous inter-
pretation of premultiplied alpha colors [Blinn 1996; Willis 2006].

2.3 Basic Usage of a Bilateral Grid

Since the bilateral grid is inspired by the bilateral filter, we use it as
the primary example of a grid operation. We describe a set of new
manipulations in Section 4. In general, the bilateral grid is used
in three steps. First, we create a grid from an image or other user
input. Then, we perform processing inside the grid. Finally, we
slice the grid to reconstruct the output (Fig. 3). Construction and
slicing are symmetric operations that convert between image and
grid space.

Grid Creation Given an image I normalized to [0, 1], ss and sr,
the spatial and range sampling rates, we construct the bilateral grid
Γ as follows:

1. Initialization: For all grid nodes (i, j, k), Γ(i, j, k) = (0, 0).
2. Filling: For each pixel at position (x, y):

Γ ([x/ss] , [y/ss] , [I(x, y)/sr]) += (I(x, y), 1)

where [·] is the closest-integer operator. We use the notation
Γ = c (I) for this construction. Note that we accumulate both the
image intensity and the number of pixels into each grid cell using
homogeneous coordinates.

Processing Any function f that takes a 3D function as input
can be applied to a bilateral grid Γ to obtain a new bilateral grid
Γ̃ = f(Γ). For the bilateral filter, f is a convolution by a Gaussian
kernel, where the variance along the domain and range dimensions
are σs and σr respectively [Paris and Durand 2006].

Extracting a 2D Map by Slicing Slicing is the critical bilateral
grid operation that yields a piecewise-smooth output. Given a bi-
lateral grid Γ and a reference image E, we extract a 2D value map
M by accessing the grid at

(
x/ss, y/ss, E(x, y)/sr

)
using trilinear

interpolation. We use the notation M = sE(Γ). If the grid stores
homogeneous values, we first interpolate the grid to retrieve the ho-
mogeneous vector; then, we divide the interpolated vector to access
the actual data.

Slicing is symmetric to the creation of the grid from an image. If
a grid matches the resolution and quantization of the image used

3

To appear in the ACM SIGGRAPH conference proceedings

(b) grid created from 1D image

ra
n
g
e

space
(c) filtered grid and slicing image (d) filtered 1D image

bf(I)

x
(a) input 1D image

I

x

create process slice

Figure 3: Bilateral filtering using a bilateral grid demonstrated on a 1D example. Blue grid cells are empty (w = 0).

for creation, slicing will result in the same image; although in prac-
tice, the grid is much coarser than the image. Processing in the
grid between creation and slicing is what enables edge-aware op-
erations. Moreover, the particular grid operation determines the
required sampling rate.

Recap: Bilateral Filtering Using our notation, the algorithm by
Paris and Durand [2006] to approximate the bilateral filter in Equa-
tion 1 becomes (Fig. 3):

bf (I) = sI

(
Gσs,σr ⊗ c (I)

)
(2)

We embed the image I in a bilateral grid, convolve this grid with a
3D Gaussian kernel with spatial parameter σs and range parameter
σr, and slice it with the input image. A contribution of our work is to
demonstrate that the bilateral grid extends beyond bilateral filtering
and enables a variety of edge-preserving processing.

3 GPU Parallelization

In developing the bilateral grid, one of our major goals was to facili-
tate parallelization on graphics hardware. Our benchmarks showed
that on a CPU, the bottleneck lies in the slicing stage, where the
cost is dominated by trilinear interpolation. We take advantage of
hardware texture filtering on the GPU to efficiently perform slicing.
The GPU’s fragment processors are also ideally suited to executing
grid processing operations such as Gaussian blur.

3.1 Grid Creation

To create a bilateral grid from an image, we accumulate the value
of each input pixel into the appropriate grid voxel. Grid creation is
inherently a scatter operation since the grid position depends on a
pixel’s value. Since the vertex processor is the only unit that can
perform a true scatter operation [Harris and Luebke 2004], we ras-
terize a vertex array of single pixel points and use a vertex shader
to determine the output position. On modern hardware, the vertex
processor can efficiently access texture memory. The vertex array
consists of (x, y) pixel positions; the vertex shader looks up the cor-
responding image value I(x, y) and computes the output position.
On older hardware, however, vertex texture fetch is a slow oper-
ation. Instead, we store the input image as vertex color attribute:
each vertex is a record (x, y, r, g, b) and we can bypass the vertex
texture fetch. The disadvantage of this approach is that during slic-
ing, where the input image needs to be accessed as a texture, we
must copy the data. For this, we use the pixel buffer object exten-
sion to do a fast copy within GPU memory.

Data Layout We store bilateral grids as 2D textures by tiling the z
levels across the texture plane. This layout lets us use hardware bi-
linear texture filtering during the slicing stage and reduce the num-
ber of texture lookups from 8 to 2. To support homogeneous coordi-
nates, we use four-component, 32-bit floating point textures. In this
format, for typical values of ss = 16 and sr = 0.07 (15 intensity

levels), a bilateral grid requires about 1 megabyte of texture mem-
ory per megapixel. For the extreme case of ss = 2, the storage cost
is about 56 megabytes per megapixel. In general, a grid requires
16 × number of pixels/(ss

2 × sr) bytes of texture memory. Grids
that do not require homogeneous coordinates are stored as single-
component floating point textures and require 1/4 the memory. In
our examples, we use between 50 kB and 40 MB.

3.2 Low-Pass Filtering

As described in Section 2.3, the grid processing stage of the bilat-
eral filter is a convolution by a 3D Gaussian kernel. In constructing
the grid, we set the the sampling rates ss and sr to correspond to the
bandwidths of the Gaussian σs and σr, which provides a good trade-
off between accuracy and storage [Paris and Durand 2006]. Since
the Gaussian kernel is separable, we convolve the grid in each di-
mension with a 5-tap 1D kernel using a fragment shader.

3.3 Slicing

After processing the bilateral grid, we slice the grid using the input
image I to extract the final 2D output. We slice on the GPU by ren-
dering I as a textured quadrilateral and using a fragment shader to
look up the stored grid values in a texture. To perform trilinear inter-
polation, we enable bilinear texture filtering, fetch the two nearest
z levels, and interpolate between the results. By taking advantage
of hardware bilinear interpolation, each output pixel requires only
2 indirect texture lookups.

3.4 Performance

We benchmark the grid-based bilateral filter on three generations of
GPUs on the same workstation. Our GPUs consist of an NVIDIA
GeForce 8800 GTX (G80), which features unified shaders, a
GeForce 7800 GT (G70) and a GeForce 6800 GT (NV40). They
were released in 2006, 2005, and 2004, respectively. Our CPU is
an Intel Core 2 Duo E6600 (2.4 GHz, 4MB cache).

The first benchmark varies the image size while keeping the bilat-
eral filter parameters constant (σs = 16, σr = 0.1). We use the
same image subsampled at various resolutions and report the aver-
age runtime over 1000 iterations. Figure 4 shows that our algorithm
is linear in the image size, ranging from 4.5ms for 1 megapixel to
44.7ms for 10 megapixels on the G80. We consistently measured
slowdowns beyond 9 megapixels for the older GPUs, which we sus-
pect is due to an overflow in the vertex cache. For comparison, our
CPU implementation ranges from 0.2 to 1.9 seconds on the same
inputs. Our GPU implementation outperforms Weiss’s CPU bilat-
eral filter [2006] by a factor of 50.

The second benchmark keeps the image size at 8 megapixels and the
range kernel size σr at 0.1 while varying the spatial kernel size σs.
As with the first benchmark, we use the same image and report the
average runtime over 1000 iterations. Figure 5 shows the influence
of the kernel size. With the exception of a few bumps in the curve

4

To appear in the ACM SIGGRAPH conference proceedings

 0

 40

 80

 120

 160

 200

 2 4 6 8 10

NVIDIA NV40

NVIDIA G70

NVIDIA G80

ru
n
n
in

g
 t

im
e

in
 m

s

image size in megapixels

Figure 4: Bilateral
filter running times as
a function of the image
size (using σs = 16 and
σr = 0.1). The memory
requirements increase
linearly from 625 kB at
1 megapixel to 6.25 MB
at 10 megapixels.

NVIDIA NV40

NVIDIA G70

NVIDIA G80

 0

 50

 100

 150

 200

 20 40 60 80 100 120

ru
n
n
in

g
 t

im
e

in
 m

s

spatial sigma in pixels

Figure 5: Bilateral
filter running times as
a function of the spatial
sigma (8 megapixels,
σr = 0.1). The memory
requirements decrease
quadratically from
3.2 MB at σs = 20 down
to 130 kB at σs = 120.

at σs = 30 and σs = 60 that we suspect to be due to hitting a
framebuffer cache boundary, our algorithm is independent of spatial
kernel size. This is due to the fact that the 3D convolution kernel
on the bilateral grid is independent of σs. As we increase σs, we
downsample more aggressively; therefore, the convolution kernel
remains 5 × 5 × 5. For comparison, our CPU implementation and
Weiss’s algorithm both consistently run in about 1.6s over the same
values of σs.

All three generations of hardware achieve real-time performance
(30 Hz) at 2 megapixels, the current 1080p HD resolution. The G80
attains the same framerate at 7 megapixels. On all generations of
hardware, the bottleneck of our algorithm lies in the grid construc-
tion stage; the other stages are essentially free. We have verified
with an OpenGL profiler that on older hardware with a fixed num-
ber of vertex processors, the algorithm is vertex limited while the
rest of the pipeline is starved for data. This situation is largely im-
proved on current hardware because it features unified shaders. The
bottleneck then lies in the raster operations units.

3.5 Further Acceleration

On current hardware, we can run multiple bilateral filters per frame
on 1080p HD video, but on older hardware, we are limited to a
single filter per frame. For temporally coherent data, we propose
an acceleration based on subsampling. A cell of the grid stores
the weighted average of a large number of pixels and we can ob-
tain a good estimate with only a subset of those pixels. For typical
values of σs ∈ [10, 50] and σr ∈ [0.05, 0.4], using only 10% of
the input pixels produces an output with no visual artifacts. We
choose the 10% of pixels by rotating through a sequence of pre-
computed Poisson-disk patterns to obtain a good coverage. To com-
bat “swimming” artifacts introduced by time-varying sampling pat-
terns, we apply a temporal exponential filter with a decay constant
of 5 frames. This produces results visually indistinguishable from
the full bilateral filter except at hard scene transitions.

4 Image Manipulation with the Bilateral Grid

The bilateral grid has a variety of applications beyond bilateral fil-
tering. The following sections introduce new ways of creating, pro-

cessing and slicing a bilateral grid.

4.1 Cross-Bilateral Filtering

A direct extension to the bilateral filter is the cross-bilateral fil-
ter [Petschnigg et al. 2004; Eisemann and Durand 2004], where the
notion of image data is decoupled from image edges. We define a
new grid creation operator with two parameters: an image I , which
defines the grid values, and an edge image E which determines the
grid position.

Γ

([
x

ss

]
,

[
y

ss

]
,

[
E(x, y)

sr

])
+= (I(x, y), 1) (3)

We use the notation Γ = cE(I) for this operator. Analogously,
the slicing operator uses the edge image E to query the grid and
reconstruct the result:

cbf (I, E) = sE

(
Gσs,σr ⊗ cE(I)

)
(4)

4.2 Grid Painting

We now elaborate on the edge-preserving brush mentioned in Sec-
tion 2.1. Analogous to a classical 2D brush, where users locally
“paint” characteristics such as brightness, the bilateral brush fur-
ther ensures that modifications do not “bleed” across image con-
tours (Figure 2). We use a bilateral grid Γbrush to control a 2D in-
fluence map M that defines the strength of the applied modifica-
tion. We initialize a scalar (i.e., non-homogeneous) grid Γbrush to
0. When the user clicks on an image pixel (x, y, I(x, y)), we add
to the grid values a 3D brush (e.g., a Gaussian) centered at posi-
tion

(
x/ss, y/ss, I(x, y)/sr

)
. We set ss to the spatial bandwidth

of the Gaussian brush shape, and sr is set to the desired degree of
edge preservation. We obtain M by slicing Γbrush with the image I:
M = sI(Γbrush).

(a) input and stroke (b) intermediate (c) output

Figure 6: Bilateral Grid Painting allows the user to paint without
bleeding across image edges. The user clicks on the input (a) and
strokes the mouse. The intermediate (b) and final (c) results are
shown. The entire 2 megapixel image is updated at 60 Hz. Memory
usage was about 1.5 MB for a 20 × 20 brush and sr = 0.05.

GPU Implementation We tile Γbrush as a single-component 2D
texture. When the user clicks the mouse, a fragment shader renders
the brush shape using blending. Slicing is identical to the case of the
bilateral filter. A modern GPU can support bilateral grid painting
on very large images. For a 2 × 2 brush with sr = 0.05, the grid
requires 20 MB of texture memory per megapixel; a 5 × 5 brush
consumes less than 1 MB per megapixel.

Results In Figure 6, the user manipulates the hue channel of an
image without creating a mask. An initial mouse click determines
(x0, y0, z0) in the grid. Subsequent mouse strokes vary in x and y,
but z0 is fixed. Hence, the brush affects only the selected intensity
layer and does not cross image edges.

5

To appear in the ACM SIGGRAPH conference proceedings

(d) extracted influence map

x

(b) smoothly interpolated grid (c) grid after sigmoid(a) grid and reference function

ra
n
g
e

space
mouse clicks

M(x)

Figure 7: Edge-aware interpolation with a bilateral grid demonstrated on a 1D example. The user clicks on the image to indicate sparse
constraints (a) (unconstrained cells are shown in blue). These values are interpolated into a smooth function (b) (constraints are shown in
green). We filter the grid using a sigmoid to favor consistent regions (c). The resulting is sliced with the input image to obtain the influence
map M (d).

4.3 Edge-Aware Scattered Data Interpolation

Inspired by Levin et al. [2004], Lischinski et al. [2006] introduced
a scribble interface to create an influence map M over an image I .
The 2D map M interpolates a set of user-provided constraints
{M(xi, yi) = mi} (the scribbles) while respecting the edges of the
underlying image I . We use a scalar bilateral grid Γint to achieve a
similar result: instead of solving a piecewise-smooth interpolation
in the image domain, we solve a smooth interpolation in the grid
domain and then slice.

We lift the user-provided constraints into the 3D domain:
{Γint ([x/ss] , [y/ss] , [I(x, y)/sr]) = mi}, and minimize the vari-
ations of the grid values:

argmin
∫

||grad(Γint)||2 (5)

under the constraints:
{

Γint

([
x
ss

]
,
[

y
ss

]
,
[

I(x,y)
sr

])
= mi

}

The 2D influence map is obtained by slicing: M = sI(Γint).
Finally, we bias the influence map toward 0 and 1 akin to
Levin et al. [2007]. We achieve this by applying a sigmoid function
to the grid values. Figure 7 summarizes this process and Figure 8
shows a sample result.

Discussion Compared to image-based approaches [Levin et al.
2004; Lischinski et al. 2006], our method does not work at the
pixel level which may limit accuracy in some cases; although our
experiments did not reveal any major problems. On the other hand,
the bilateral grid transforms a difficult image-dependent and non-
homogeneous 2D optimization into a simpler smooth and homoge-
neous interpolation in 3D. Furthermore, the grid resolution is de-
coupled from the resolution of the image, which prevents the com-
plexity from growing with image resolution.

Another difference is that image-based techniques use the notion of
“geodesic distance” over the image manifold, while we consider the

(a) input & scribbles (b) influence map (c) output

Figure 8: Fast scribble interpolation using the Bilateral Grid. The
user paints scribbles over the input (a). Our algorithm extracts an
influence map (b), which is used to adjust the input hue and produce
the output (c). The entire 2 megapixel image is updated at 20 Hz.
Memory usage was about 62 kB for ss = 256 and sr = 0.05.

Euclidean distance in a higher-dimensional space. The comparison
of those two measures deserves further investigation and we believe
that which method is most appropriate is an application-dependent
choice.

GPU Implementation Analogous to grid painting, we rasterize
scribble constraints into the bilateral grid using a fragment shader.
To obtain a globally smooth bilateral grid that respects the con-
straints, we solve Laplace’s equation by extending a GPU multigrid
algorithm [Goodnight et al. 2003] to handle irregular 3D domains.
The domain has holes because the user-specified hard constraints
create additional boundaries.

Results We demonstrate real-time scribble interpolation with a
simple color adjustment application. The user paints scribbles over
an image; white scribbles denote regions where the hue should be
adjusted, while black scribbles protect the image region. In prac-
tice, the sampling rate of Γint can be very coarse and still yield
good influence maps. The example in Figure 8 was generated us-
ing a coarse grid containing about 600 variables, allowing our GPU
solver for generating the influence map in real time (40 Hz). When
finer adjustments are required, we can still achieve interactive rates
(1 Hz) on finely sampled grids with over 500,000 variables. Refer
to the supplemental video for a screen capture of an editing session.

4.4 Local Histogram Equalization

Histogram equalization is a standard technique for enhancing the
contrast of images [Gonzales and Woods 2002]. However, for some
inputs, such as X-Ray and CT medical images that have high dy-
namic range, histogram equalization can obscure small details that
span only a limited intensity range. For these cases, it is more use-
ful to perform histogram equalization locally over image windows.
We perform local histogram equalization efficiently using a bilat-
eral grid, and achieve real-time performance using the GPU.

Given an input image I , we construct a scalar bilateral grid Γhist.
We initialize Γhist = 0 and fill it with:

Γhist

([
x

ss

]
,

[
y

ss

]
,

[
I(x, y)

sr

])
+= 1 (6)

We denote this operator Γhist = chist(I). Γhist stores the number of
pixels in a grid cell and can be considered a set of local histograms.
For each (x, y), the corresponding column splits the ss×ss covered
pixels into intensity intervals of size sr. By using the closest-integer
operator when constructing Γhist, we perform a box filter in space. If
a smoother spatial kernel is desired, we blur each z level of the grid
by a spatial kernel (e.g., Gaussian). We perform local histogram
equalization by applying a standard histogram equalization to each
column and slicing the resulting grid with the input image I .

6

To appear in the ACM SIGGRAPH conference proceedings

(b) histogram grid from 1D image

ra
n
g
e

space

(c) equalized grid & slicing image (d) locally equalized 1D image

lhe(I)

x
(a) input 1D image

I

x

Figure 9: Local histogram equalization demonstrated on a 1D image. We build a grid that counts the number of pixels in each bin (b). Each
grid column corresponds to the histogram of the image region it covers. By equalizing each column, we obtain a grid (c) which leads to an
image-space signal with an enhanced contrast that exploits the whole intensity range (d).

GPU Implementation We construct the bilateral grid the same
way as in bilateral filtering, except we can ignore the image data.
Next, we execute a fragment shader that accumulates over each
(x, y) column of the bilateral grid. This yields a new grid where
each (x, y) column is an unnormalized cumulative distribution
function. We run another pass to normalize the grid to between
0 and 1 by dividing out the final bin value. Finally, we slice the grid
using the input image.

Results Our algorithm achieves results visually similar to MAT-
LAB’s adapthisteq (Figure 10). In both cases, low-contrast de-
tails are revealed while the organ shapes are preserved. Our method
based on the bilateral grid achieves a speed-up of one order of mag-
nitude: 100ms compared to 1.5s on a 3.7 megapixel HDR image.

5 Applications and Results

In this section, we describe a variety of applications which take
advantage of image processing using the bilateral grid. Refer to the
supplemental video for a demonstration of our results. For the video
applications, decoding is performed on the CPU in a separate thread
that runs in parallel with the GPU. The timings measure the average
throughput for the entire pipeline. On our CPU, the largest input
video (1080p resolution using the H.264 codec) takes about 25ms
to decode each frame; which means that in many cases, decoding
is more expensive than our edge-aware operators and becomes the
pipeline bottleneck.

5.1 High Resolution Video Abstraction

Winnemöller et al. [2006] demonstrated a technique for stylizing
and abstracting video in real time. A major bottleneck in their ap-
proach was the bilateral filter, which limited the video to DVD res-
olution (0.3 megapixels) and the framerate to 9 to 15 Hz. To attain
this framerate, they used a separable approximation to the bilateral
filter with a small kernel size and iterated the approximation to ob-
tain a sufficiently large spatial support [Pham and van Vliet 2005].
Using the bilateral grid with our GPU acceleration technique (with-
out the additional acceleration described in Section 3.5), we are
able to perform video abstraction at 42 Hz on 1080p HD video
(1.5 megapixels).

Progressive Abstraction To further enhance the technique, we
incorporated a progressive abstraction component in the spirit of the
stylization technique by DeCarlo et al. [2002] where details near a
focus point are less abstracted than those far away. In our method,
we build a 4-level bilateral pyramid—bilateral grids computed at
multiples of a base ss and sr. To abstract an input frame, we first
compute a distance map that falls off from the user’s focus point.
We ensure that this map respects the image edges by cross-bilateral
filtering it with the image as reference to get an importance map.
We use the importance map to linearly interpolate between the input
frame (at the focus point) and the levels of the multiscale bilateral
grid. We use the result as input to the rest of the video abstraction
pipeline. We found that extracting the lines from the first pyramid
level yields more coherent outputs. With a 4-level pyramid, we are
still able to maintain 20 Hz on 1080p video.

(a) input (1760 x 2140, HDR) (b) MATLAB’s adapthisteq (1.5s) (c) our result (100ms)

Figure 10: Local histogram equalization reveals low-contrast details by locally remapping the intensity values. The input (a) is an HDR
chest X-Ray (tone mapped for display). Our algorithm (c) based on the bilateral grid has a similar visual appearance to MATLAB’s
adapthisteq (b) while achieving a speedup of an order of magnitude. For this example, we used ss = 243.75, sr = 0.0039; memory
usage was 500 kB total for the two grids.

7

To appear in the ACM SIGGRAPH conference proceedings

5.2 Transfer of Photographic Look

Bae et al. [2006] introduced a method to transfer the “look” of a
model photograph to an input photograph. We adapt their work
to operate on videos in real time. We describe two modifications
to handle the constraints inherent to video. We use a simplified
pipeline that yields real-time performance while retaining most of
the effects from the original process. We also specifically deal with
noise and compression artifacts to handle sources such as DVDs
and movies recorded using consumer-grade cameras.

Processing Pipeline Akin to Bae et al., we use the bilateral filter
on each input frame I and name the result the base layer Bi =
bf (I) and its residual the detail layer Di = I − Bi. We perform
the same decomposition on the model image M to get Bm and Dm.
We use histogram transfer to transform the input base Bi so that
it matches the histogram of Bm. We denote by ht the histogram
transfer operator and Bo = htBm(Bi) the base output. For the
detail layer, we match the histogram of the amplitudes: |Do| =
ht |Dm|(|Di|). We obtain the detail layer of the output by using the
sign of the input detail: Do = sign(Di) |Do|. The output frame O
is reconstructed by adding the base and detail layers: O = Bo+Do.

Bi Bo

Di

|Di| |Do|

Do

bf ht

ht

sign

abs

-
*

+
input output

Figure 11: Tone management pipeline.

Denoising A number of videos are noisy or use a compression
algorithm that introduces artifacts. These defects are often not no-
ticeable in the original video but may be revealed as we increase the
contrast or level of detail. A naı̈ve solution would be to denoise the
input frames before processing them but this produces “too clean”
images that look unrealistic. We found that adding back the de-
noising residual after processing yields superior results with a more
realistic appearance. In practice, since noise amplitude is low com-
pared to scene edges, we use a bilateral filter with small sigmas.

Discussion Compared to the process described by Bae et al., our
method directly relies on the detail amplitudes to estimate the level
of texture of a frame. Although the textureness measure proposed
by Bae et al. capture more sophisticated effects, it induces three
additional bilateral filtering steps whose computational cost would
prevent our algorithm to run in real time on HD sequences. Our re-
sults show that detail amplitude is a satisfying approximation. Fur-
thermore, it provides sufficient leeway to include a denoising step
that broadens the range of possible inputs.

5.3 Local Tone Mapping

We describe a user-driven method to locally tone map HDR images
based on grid painting. We build upon Durand and Dorsey’s tone
mapping algorithm [2002], where the log luminance L of an im-
age is decomposed into a base layer B = bf (L) and a detail layer
D = L−B. The contrast of the base is reduced using a simple lin-
ear remapping B′ = αB+β while the detail layer D is unaffected.
This reduces the overall dynamic range without losing local detail.
The final output is obtained by taking the exponential of B′ + D
and preserving color ratios.

Our method extends this global remapping of the base layer and

lets users locally modify the remapping function using an edge-
aware brush. We represent the remapping function with a grid ΓTM
initialized with a linear ramp:

ΓTM(x, y, z) = αz + β (7)

If ΓTM is unedited, slicing ΓTM with B yields the same remapped
base layer as Durand and Dorsey’s operator: B′ = sB(ΓTM).

Users edit ΓTM with an edge-aware brush to locally modify the grid
values. The modified base layer is still obtained by slicing accord-
ing to B. Clicking with the left button on the pixel at location (x, y)
adds a 3D Gaussian centered at (x/ss, y/ss, L(x, y)/sr) to the grid
values. A right click subtracts a 3D Gaussian. In practice, we use
Gaussian kernels with a user-specified amplitude A and parameters
σs = ss and σr = sr. The spatial sampling ss controls the size of
the brush and the range sampling sr controls its sensitivity to edges.
If users hold the mouse button down, we lock the z coordinate to
the value of the first click L(x0, y0)/sr, thereby enabling users to
paint without affecting features at different intensities.

Using our GPU algorithm for the bilateral filter that creates the base
layer and for grid painting, we tone map a 15 megapixel image at
50 Hz (Figure 1). Refer to the video for a screen capture of a local
tone mapping session.

6 Discussion and Limitations

Memory Requirements Our approach draws its efficiency from
the coarser resolution of the bilateral grid compared to the 2D im-
age. However, operations such as a bilateral filter with a small spa-
tial kernel require fine sampling, which results in large memory and
computation costs for our technique. In this case, Weiss’s approach
is more appropriate [2006]. Nonetheless, for large kernels used
in computational photography applications, our method is signifi-
cantly faster than previous work.

Due to memory constraints, the bilateral grid is limited to a one-
dimensional range that stores image intensities and can cause prob-
lems at isoluminant edges. We found that in most cases, we achieve
good results with 7 to 20 levels in z. A future direction of research
is to consider how to efficiently store higher dimensional bilateral
grids: 5D grids that can handle color edges and even 6D grids for
video. Another possibility is to look at fast dimensionality reduc-
tion techniques to reduce the memory limitations.

Interpolation We rely on trilinear interpolation during slicing
for optimal performance. Higher-order approaches can potentially
yield higher-quality reconstruction. We would like to investigate
the tradeoff between quality and cost in using these filters.

Thin Features Techniques based on the bilateral grid have the
same properties as the bilateral filter at thin image features. For
example, in an image with a sky seen through a window frame, the
edge-aware brush affects the sky independently of the frame; that
is, the brush paints across the frame without altering it. Whether or
not a filter stops at thin features is a fundamental difference between
bilateral filtering and diffusion-based techniques. We believe that
both behaviors can be useful, depending on the application.

7 Conclusion

We have presented a new data structure, the bilateral grid, that en-
ables real-time edge-preserving image manipulation. By lifting im-
age processing into a higher dimensional space, we are able to de-
sign algorithms that naturally respect strong edges in an image. Our
approach maps well onto modern graphics hardware and enables
real-time processing of high-definition video.

8

To appear in the ACM SIGGRAPH conference proceedings

Acknowledgements We thank the MIT Computer Graphics
Group and the anonymous reviewers for their comments. We are
especially grateful to Jonathan Ragan-Kelley for fruitful discus-
sions on GPU programming and Tom Buehler for his assistance in
making the video. This work was supported by a National Science
Foundation CAREER award 0447561 “Transient Signal Process-
ing for Realistic Imagery,” an NSF Grant No. 0429739 “Parametric
Analysis and Transfer of Pictorial Style,” and a grant from Royal
Dutch/Shell Group. Jiawen Chen is partially supported by an NSF
Graduate Research Fellowship and an NVIDIA Fellowship. Frédo
Durand acknowledges a Microsoft Research New Faculty Fellow-
ship and a Sloan Fellowship.

References

AURICH, V., AND WEULE, J. 1995. Non-linear gaussian filters
performing edge preserving diffusion. In Proceedings of the
DAGM Symposium.

BAE, S., PARIS, S., AND DURAND, F. 2006. Two-scale tone man-
agement for photographic look. ACM Transactions on Graphics
25, 3, 637 – 645. Proceedings of the ACM SIGGRAPH confer-
ence.

BARASH, D. 2002. A fundamental relationship between bilateral
filtering, adaptive smoothing and the nonlinear diffusion equa-
tion. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 24, 6, 844.

BENNETT, E. P., AND MCMILLAN, L. 2005. Video enhancement
using per-pixel virtual exposures. ACM Transactions on Graph-
ics 24, 3 (July), 845 – 852. Proceedings of the ACM SIGGRAPH
conference.

BLINN, J. F. 1996. Fun with premultiplied alpha. IEEE Computer
Graphics and Applications 16, 5, 86–89.

CHIU, K., HERF, M., SHIRLEY, P., SWAMY, S., WANG, C., AND
ZIMMERMAN, K. 1993. Spatially nonuniform scaling functions
for high contrast images. In Proceedings of the conference on
Graphics Interface, 245–253.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. ACM Transactions on Graphics 21, 3.
Proceedings of the ACM SIGGRAPH conference.

DURAND, F., AND DORSEY, J. 2002. Fast bilateral filtering for
the display of high-dynamic-range images. ACM Transactions
on Graphics 21, 3. Proceedings of the ACM SIGGRAPH con-
ference.

EISEMANN, E., AND DURAND, F. 2004. Flash photography en-
hancement via intrinsic relighting. ACM Transactions on Graph-
ics 23, 3 (July). Proceedings of the ACM SIGGRAPH confer-
ence.

FELSBERG, M., FORSSÉN, P.-E., AND SCHARR, H. 2006. Chan-
nel smoothing: Efficient robust smoothing of low-level signal
features. IEEE Transactions on Pattern Analysis and Machine
Intelligence 28, 2 (February), 209–222.

GONZALES, R. C., AND WOODS, R. E. 2002. Digital Image
Processing. Prentice Hall. ISBN 0201180758.

GOODNIGHT, N., WOOLLEY, C., LEWIN, G., LUEBKE, D., AND
HUMPHREYS, G. 2003. A multigrid solver for boundary value
problems using programmable graphics hardware. In Proceed-
ings of the ACM SIGGRAPH / EUROGRAPHICS conference on
Graphics Hardware.

HARRIS, M., AND LUEBKE, D. 2004. GPGPU. In Course notes
of the ACM SIGGRAPH conference.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM Transactions on Graphics 23, 3 (July).
Proceedings of the ACM SIGGRAPH conference.

LEVIN, A., RAV-ACHA, A., AND LISCHINSKI, D. 2007. Spectral
matting. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND
SZELISKI, R. 2006. Interactive local adjustment of tonal values.
ACM Transactions on Graphics 25, 3, 646 – 653. Proceedings
of the ACM SIGGRAPH conference.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001.
Image-based modeling and photo editing. In Proceedings of the
ACM SIGGRAPH conference.

PARIS, S., AND DURAND, F. 2006. A fast approximation of the bi-
lateral filter using a signal processing approach. In Proceedings
of the European Conference on Computer Vision.

PERONA, P., AND MALIK, J. 1990. Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions Pattern Analysis
Machine Intelligence 12, 7 (July), 629–639.

PETSCHNIGG, G., AGRAWALA, M., HOPPE, H., SZELISKI, R.,
COHEN, M., AND TOYAMA, K. 2004. Digital photography with
flash and no-flash image pairs. ACM Transactions on Graphics
23, 3 (July). Proceedings of the ACM SIGGRAPH conference.

PHAM, T. Q., AND VAN VLIET, L. J. 2005. Separable bilateral
filtering for fast video preprocessing. In Proceedings of the IEEE
International Conference on Multimedia and Expo.

SMITH, S. M., AND BRADY, J. M. 1997. SUSAN – a new ap-
proach to low level image processing. International Journal of
Computer Vision 23, 1 (May), 45–78.

SOCHEN, N., KIMMEL, R., AND MALLADI, R. 1998. A general
framework for low level vision. IEEE Transactions in Image
Processing 7, 310–318.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Proceedings of the IEEE International
Conference on Computer Vision, 839–846.

TUMBLIN, J., AND TURK, G. 1999. LCIS: A boundary hierarchy
for detail-preserving contrast reduction. In Proceedings of the
ACM SIGGRAPH conference, 83–90.

WEISS, B. 2006. Fast median and bilateral filtering. ACM Trans-
actions on Graphics 25, 3, 519 – 526. Proceedings of the ACM
SIGGRAPH conference.

WILLIS, P. J. 2006. Projective alpha colour. Computer Graphics
Forum 25, 3 (Sept.), 557–566. 0167-7055.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Transactions on Graphics 25, 3,
1221 – 1226. Proceedings of the ACM SIGGRAPH conference.

XIAO, J., CHENG, H., SAWHNEY, H., RAO, C., AND ISNARDI,
M. 2006. Bilateral filtering-based optical flow estimation with
occlusion detection. In Proceedings of the European Conference
on Computer Vision.

9

