Hair Photobooth: Geometric and Photometric Acquisition of Real Hairstyles
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Figure 1: Our method acquires photometric and geometric models of real hairstyles. It computes an accurate geometric
model (a) which is used in combination with an image-based rendering technique to produce images (b). The results closely
match an actual photograph (c) which is not part of the data set used by our algorithm. The hair can be rendered from

arbitrary viewpoints and under arbitrary illumination (d).

Abstract

We accurately capture the shape and appearance of a per-
son’s hairstyle. We use triangulation and a sweep with
planes of light for the geometry. Multiple projectors and
cameras address the challenges raised by the reflectance and
intricate geometry of hair. We introduce the use of struc-
ture tensors to infer the hidden geometry between the hair
surface and the scalp. Our triangulation approach affords
substantial accuracy improvement and we are able to mea-
sure elaborate hair geometry including complex curls and
concavities. To reproduce the hair appearance, we capture
a six-dimensional reflectance field. We introduce a new re-
flectance interpolation technique that leverages an analytical
reflectance model to alleviate cross-fading artifacts caused by
linear methods. Our results closely match the real hairstyles
and can be used for animation.
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1 Introduction

Human hair is a significant challenge in image synthesis be-
cause of its geometric and photometric complexity. The
problem becomes even harder when one wants to reproduce
faithfully the hairstyle of a given person, because traditional

3D scanners usually fail with objects that do not correspond
to a well-defined surface of Lambertian material. In this pa-
per, we present a new scanning technique to reconstruct the
geometry and reflectance of a person’s hairstyle. We seek
to capture complex geometric effects and individual hair
strands for hairstyles with non-convex features, as well as
complex appearance effects using image-based rendering.

We build on recent advances that have enabled the cap-
ture of hair geometry from image sequences [Paris et al. 2004;
Wei et al. 2005]. Both rely on the extraction of hair orienta-
tion in images and chain these 3D orientations head-to-tail
to build the geometry inside a visual hull. These methods
were the first to enable hair capture, but ambiguities inher-
ent to the visual hull make it difficult to capture complex
features such as concavities and curls.

Our technique alleviates these limitations using triangu-
lation between a plane of light and a camera. While the
principle of triangulation is standard in 3D scanning, hair
raises several challenges due to its intricate geometry and
reflectance. The highly-specular BRDF rarely reflects the
light towards the camera, and the filtering techniques imple-
mented in scanning software heavily rely on the assumption
that the object has a well-defined surface. Individual hair
fibers are tiny and, while a hairstyle has a volumetric nature,
it is hard to measure hair close to the scalp. A high-quality
3D model of hairstyle requires the reconstruction of individ-
ual hair fibers, especially when it is to be used for animation.
We introduce a new hole-filling technique based on structure
tensors to generate orientation inside the hairstyle volume.

While Marschner et al. [2003] have recently proposed a
comprehensive analytical model of hair reflectance, acquir-
ing a description of the BRDF of real hair remains unsolved
and their paper only shows qualitative manual fits. Instead,
we use a data-driven approach and acquire images under dif-
ferent lighting directions and from a number of cameras to
recover a hair reflectance field. We introduce a new image-



based rendering technique to faithfully reproduce hair. In
particular, it alleviates the cross-fading artifacts generated
by traditional multi-linear interpolation by leveraging a sim-
ple hair BRDF as basis to guide the interpolation.

Contributions We introduce the following contributions:

> A multi-projector multi-camera approach that enables the
triangulation of hair geometry.

> A new hole filling technique for hair orientation based on
structure tensors.

> A new model-based interpolation for image-based render-
ing that yields faithful interpolation of specularities.

1.1 Related Work

A wealth of work deals with three-dimensional reconstruc-
tion of real-world objects [Blais 2004]. The following sections
discuss the methods most related to our approach.

Triangulation Scanning sweeps the object with a plane of
light (e.g. laser); and simple geometry deduces 3D loca-
tions from the image of the intersection of the light plane
and the object [Curless 1997; Pulli 1997; Levoy et al. 2000;
Davis et al. 2003]. Such techniques work best on diffuse
objects that present a well-defined surface, the opposite of
hair. Structured light scanning accelerates triangulation
by covering a large part of space with each projected pat-
tern [Rusinkiewicz et al. 2002; Zhang et al. 2003], but suffers
from the same issues with hair. In comparison, single-plane
setups have shown great ability to cope with difficult con-
ditions such as smoke [Hawkins et al. 2005] and underwater
diffusion [Narasimhan et al. 2005]. This paper tackles the
difficulties linked to hair. In particular, hair fibers are too
small to completely block the light ray coming from a single
projector pixel. As a consequence, a single ray can hit sev-
eral fibers at once, resulting in complex light patterns that
would fool classical laser scanners.

Hair Modeling and Reconstruction Interactive tools have
been developed to model hair geometry [Ward et al. 2006]
and impressive results have been produced [Mihashi et al.
2003]. This provides the user with full control, but requires
time and talent to match a given hairstyle.

‘We build on recent work on hairstyle acquisition from mul-
tiple views [Grabli et al. 2002; Paris et al. 2004; Wei et al.
2005]. Our approach uses the same signal processing ap-
proach as Paris et al. to analyze the hair orientation in
input images. We convert these orientations into 3D with
a multi-view method inspired from Wei et al.. However, we
directly acquire 3D location using triangulation, while these
techniques rely on a visual hull approximation. Our setup is
made of static, carefully calibrated elements whereas Paris et
al. and Wei et al. use handheld lights or cameras. We
also minimize the subject motion with a comfortable head-
rest and compensate for the residual motion using tracking
whereas Paris et al. require the subject to move. More-
over, we also capture reflectance data and introduce a new
image-based rendering method to exploit these data whereas
Paris et al. use manually adjusted parameters and Wei et
al. compute view and light-independent colors, thereby pre-
cluding renderings under new lighting environments.

Hasinoff and Kutulakos [2006] have shown how to extract
the depth map of a hairstyle from several photographs with
varying focus and aperture settings. However, the extracted
data lack depth accuracy and do not describe the strand
structure, which precludes rendering and animation.

Scanning Human Faces Several capture setups have been
proposed to acquire geometric and photometric data of hu-
man faces [Debevec et al. 2000; Zhang et al. 2004; Wenger
et al. 2005; Weyrich et al. 2006]. They are complementary
to our approach to generate a full virtual human head but
are not suitable for hair since they are not adapted to the
one-dimensional and highly-specular nature of hair fibers.

Surface Reflectance Fields Our image-based rendering ap-
proach builds on reflectance fields, which can be thought of
as a large collection of images of an object under a num-
ber of viewing and lighting conditions [Debevec et al. 2000;
Matusik et al. 2002]. They can represent intricate geome-
try with complex reflectance properties. When the surface is
well defined, fitting analytical BRDFs alleviates the artifacts
caused by sparse sampling [Lensch et al. 2001; Weyrich et al.
2006]. If the surface is not perfectly smooth, mesostructures
can be captured by texture maps [Kautz et al. 2004]. Unfor-
tunately, hair is far from being a smooth surface with well-
defined normals and any pixel in an acquired image includes
shadowing effects and captures contributions from several
fibers with potentially varying orientations. In addition, the
BRDF of hair [Marschner et al. 2003] is a complex function
with many parameters that is hard to fit to a small number
of samples. This is why we resort to direct interpolation
of the acquired data. However, the high specularity of hair
introduces artifacts in linear interpolation and we introduce
a new data interpolation technique based on an analytical
BRDF model.

Scanning Complex Objects Matusik et al. [2002] combine
visual hull, reflectance fields and alpha matting to capture
complex objects such as a Teddy bear. They achieve real-
istic reproductions but the acquired data are not suitable
for editing nor animation since they ignore the intrinsic na-
ture of the object. Reche et al. [2004] describe a volumetric
method that captures and render faithful models of trees,
but the fine fiber structure and the specular aspect of hair
would not be addressed by this technique.

1.2 Method Overview

Capture Setup Our hair capture uses a set of cameras,
video projectors and controllable LEDs arranged in a dome
arround the hair and proceeds in two stages responsible for
geometry and photometry respectively. The geometry pass
relies on a sweep of the scene with planes of light (Fig. 4),
while the reflectance phase captures the hair illuminated
from 150 directions (Fig. 2). The duration of the acquisi-
tion makes motion compensation a necessity. Our capture
setup is described in Section 2.

Geometric Reconstruction We use triangulation to retrieve
the location of the strands, thereby recovering more intricate
geometry than previous methods. In addition to position,
orientation is a critical aspect of hair geometry. We use
a traditional approach to orientation computation but in-
troduce a new hole filling algorithm based on a quadratic
representation of lines. Finally, we grow strands within this
3D orientation field to obtain three-dimensional curves using
variations of known techniques. Geometric reconstruction is
covered in Section 3.

Reflectance Acquisition To faithfully reproduce the com-
plex reflectance of hair, we leverage the image data from
multiple cameras and light directions. To render a new view,
each 3D hair fiber location is projected onto the acquired im-
ages and we interpolate the values from the nearest neigh-
bors. We introduce a simple technique to interpolate re-



flectance samples based on an analytical reflectance model.
Our reflectance rendering is discussed in Section 4.

2 Acquisition Setup

Reconstructing the geometry and the reflectance requires a
custom measurement system in order to make the acquisi-
tion robust and accurate. Our setup (Fig. 2) is inspired by
light stages [Debevec et al. 2000; Matusik et al. 2002; Wenger
et al. 2005; Weyrich et al. 2006] and structured light scan-
ners [Rusinkiewicz et al. 2002; Zhang et al. 2003]. The sub-
ject sits in a chair with a head rest to keep the head still. It is
surrounded by 16 Basler cameras (resolution 1300 x 1030), 3
DLP projectors (resolution 1024 x 768), and 150 LED lights
mounted on a steel geodesic dome. They are regularly spaced
to span the view and light directions. The projectors and
cameras are geometrically calibrated [Zhang 2000] while the
LEDs are mounted at known positions.

Our acquisition has two steps. In the geometry step, we
capture hair images illuminated by a scanline of a single pro-
jector at a time. We simultaneously capture images with all
16 cameras. At the end, the hair volume has been swept
by light planes coming from 3 directions. Every 10 frames,
we insert a tracking frame with all projectors on to enable
tracking for motion compensation. We capture 40 512 im-
ages in about 17 minutes. Our current setup is limited by
network and storage bandwidth and does not allow more
than 2 frames per second for each camera. More recent con-
nections and drives should permit at least video frame rate
and would reduce the acquisition time to about 2 minutes.

In the reflectance step, the system sequentially turns each
LED light on in a light-stage fashion [Debevec et al. 2000;
Matusik et al. 2002; Wenger et al. 2005; Weyrich et al. 2006].
All 16 cameras capture images simultaneously. The complete
sequence takes about 25 seconds for all 150 light sources. We
capture 4 800 images. In addition, for each camera, we sum
the 150 LED images to obtain a uniformly lit image used for
extracting hair orientations.

Specifics In our approach, light positions are combined
with all camera positions. In contrast, sequential scan-
ning usually only moves the objects, for instance using a
turntable. As a result, our approach captures a wider vari-
ety of light-view configurations, which is critical to handle
the complex specularities of hair. In addition, all the cam-
eras record simultaneously, thereby reducing capture time
through temporal multiplexing.

Scalp Geometry The scalp is important because this is
where the hair fibers are rooted. We use a contact digitizer
to measure a set of points on the scalp and fit a generic head
mesh using Iterated Closest Point [Besl and McKay 1992].

3 Geometry Processing

Our geometry reconstruction (Figure 3) computes two main
pieces of information: the complex volume occupied by hair,
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Figure 2: Our acquisition setup consists of 16 digital cam-
eras, 150 LED light sources, and 3 DLP projectors.
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Figure 4: Triangulation relies on a calibrated camera and
a calibrated projector that generates a plane of light (a).
This creates a light line on the hair volume visible from the
camera (b). Since both the projector and the camera are
calibrated, the geometric configuration is fully known. For
each bright pixel in the camera image, the corresponding hair
fiber is located at the intersection between the light plane
from the projector and the light ray to the camera (b).

and the orientation of hair fibers. Our approach permits the
extraction of complex volumetric data by enabling the use
of triangulation with hair (Section 3.1). Our computation
of orientation from images (Section 3.2) is similar to previ-
ous work [Paris et al. 2004; Wei et al. 2005] but we intro-
duce a new hole filling algorithm (Section 3.3) that allows us
to generate high-quality data for the full hair volume (Sec-
tion 3.4). The input data of the geometry step are stripe im-
ages used for triangulation, uniformly lit images from which
extract hair orientations, and tracking images for estimating
the head motion.

3.1 Position Triangulation

Hair Location For each pair of camera and light plane, we
obtain a stripe image similar to Figure 3. We extract the
intersection of the light plane with the hair volume by thresh-
olding the intensity. Since both the projector and the camera
are calibrated, we can compute the intersection of the light
plane and the ray originating from the camera center to a
bright pixel to yield a 3D position (Fig. 4).

To improve accuracy, we use space-time analysis to ac-
count for the light plane thickness [Curless and Levoy 1995].
In practice, we consider only intensities corresponding to a
temporal maximum. This discards spurious side responses
which represent about 75% of the bright pixels.

We triangulate the data from all cameras separately. Since
the cameras are registered in a common coordinate system,
merging the 3D points is straightforward. To improve ac-
curacy, we compensate for the subject motion as described
below. Although we carefully acquire the data, a few out-
liers still appear due to reflections on surrounding objects
and residual subject motion. We remove those errors by
culling points outside the visual hull; these correspond to
about 2% of the acquired data. The visual hull is obtained
from approximate masks painted by hand. A faster acquisi-
tion would reduce the subject motion and alleviate the need
for the visual hull.

An example of reconstructed data is shown in Figure 3.
Observe the fine details and concavities of the acquired vol-
ume. A few regions in shadows are not triangulated and
create small holes. Yet, the final model is complete since we
are able to infer missing data (Section 3.3).

Motion Compensation Even with a head rest, small move-
ments are unavoidable and produce projection errors up to
50 pixels in our tests. We reduce this error down to at most
3 pixels with the compensation procedure described below.
In practice, we compute a rigid 3D transformation for each



stripe image and apply the inverse transform to the trian-
gulated 3D points.

e 2D Tracking: We first track the motion in the image planes
of each camera. Similarly to Wenger et al. [2005], we insert a
tracking frame with all projectors on every ten stripe frames.
We compute the rigid transformations T2 that maximize
the correlation of each frame with the reference frame F
(e.g. the last one). The user provides a mask M for the
hair, which could be automated since only an approximate
mask is required. To avoid aliasing, we convolve the images
with a small Gaussian G. Formally, we solve the following
optimization for each tracking frame F;:
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Since the movements are small, gradient descent converges
efficiently. The accuracy is on the order of a pixel.

e Recovering the 3D Motion: For each time step, we combine
the 2D motions computed for all cameras to deduce a 3D
transformation. Using a non-compensated reconstruction,
i.e. we merge the 3D points without applying any compen-
sation, we estimate the hair surface location and name c;
the closest point to camera C;. We search for the 3D rigid
transformation T°P that best approximates the 2D motions,
in a least square sense. We denote P; the projection matrix
of camera C; and u] the 2D translation component of the
transformation obtained from Equation 1 with the tracking
frame F; and the camera C;. The 3D motion is obtained
with gradient descent by optimizing:

2

argmingsp Z H [P] (T,?D (c;)) — P (Cj)] —ul (2)

frames [Wenger et al. 2005]. The overall remaining error is
in the order of a couple of pixels.

e Summary: We compute 2D motion estimates at each
tracking frame and combine them to evaluate the 3D mo-
tion at these frames. We use linear interpolation to obtain
the motion at each time step.

The use of triangulation produces an volumetric occu-
pancy map that is significantly more accurate than the visual
hull used in previous work.

3.2 Volumetric Orientation Field

We now extract a dense 3D orientation field. For the vis-
ible portion of the hair volume, we mostly follow previous
work [Paris et al. 2004; Wei et al. 2005]. We then introduce
a new hole-filling algorithm for the hidden areas.

2D Orientations We evaluate the strand orientations in the
image plane of each camera following Paris et al. [2004]. We
apply several orientation detectors and select the most reli-
able result according to the variance of the response curves.
We found that, with our setup, a single uniformly lit image

Figure 5: 3D orientation
triangulation.
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Figure 3: Our geometry reconstruction pipeline computes both a volumetric representation of hair position (bottom) and hair
orientation (top). Our algorithm takes as input 16 uniformly images lit with all 150 LED lights turned on (one such image
from each camera), 36 864 stripe images with a single line of light projected (768 lines per projector and 3 projectors), and
3 648 tracking images with all three projectors turned on (one such image every 10 stripe images). Hair fibers are then grown
inside the volume and along the orientation, starting from the scalp.



was sufficient instead of several images with different light-
ing conditions as Paris et al. do. We capture these images
with the 150 LED lights turned on. The result of this step is
a 2D orientation map for each view; that is, for each pixel,
we have a 2D line along the local hair orientation.

3D Orientations We compute the 3D orientation for each
3D point p using the cameras with the most frontal views.
For this, we fit a plane to the 3D hair points surround-
ing p [Hoppe et al. 1992] and use the normal of this plane
to determine the two most front-facing cameras C7 and Cs.
The projections of p in the images from C and C> provides
two 2D lines £; and £2 computed during the 2D step. Back-
projecting £; and £2 in space forms two 3D planes m; and .
Following Wei et al. [2005], the 3D orientation £ of p is the
intersection of m1 and m2: €p = w1 N2 (Fig. 5). Two cam-
eras are sufficient since our cameras are well spaced. The
result is a set of 3D orientations, that is, 3D lines locally
parallel to the hair fibers.

3.3 Hole Filling

The previous step recovers the orientation of the visible
fibers and to obtain a full head of hair, we need to infer
the data for the hidden parts. This step also fills in small
holes that may not have been triangulated. We seek to in-
terpolate the existing orientation, but performing operations
on orientations is not as simple as on scalars or vectors. In
particular, we do not know the direction towards the root
from the image data and cannot directly use unit vectors be-
cause two opposite vectors represent the same orientation.
Our problem is related to quaternions but we only have two
degrees of freedom (only pitch and yaw) and, as just men-
tioned, opposite directions represent the same orientation.

Structure Tensors For this purpose, we introduce the use of
structure tensors [Granlund and Knutsson 1994] (p 301). We
represent a 3D line £ by a 3x 3 symmetric matrix O such that
£ is the eigenspace corresponding to its largest eigenvalue. If
we consider the quadratic function g(x) = x' O x where x is
a 3D point, the line £ is the direction along which ¢ varies the
fastest. See a 2D illustration in Fig. 6. To manipulate 3D
lines, we operate on these quadratic functions. We sum their
matrices, and at the end, the resulting line is the orientation
of fastest variation of the modified function.

Given a line £, we build a rank-1 matrix O = vev, / |vel?
where vy is a direction vector of the line £. Because of the
product and normalization, all possible direction vectors give
the same matrix. Conversely, given a matrix O, we compute
an eigenvector corresponding to its largest eigenvalue. This
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Figure 6: Addition of two 2D lines. We use direction vec-
tors v to build structure tensors O. We visually represent a
tensor O by the plot in gray level of the quadratic function
x'Ox. We sum these tensors and extract the eigenvector of
the largest eigenvalue of the summed tensor. Our hole-filling
method uses the same orientation representation in 3D; that
is, lines and vectors are 3D and the matrices are 3 x 3.

defines a line £ and all other eigenvectors which are scaled
or flipped yield the same line. The mapping is ill-defined
only if the eigenspace is more than 1D, which corresponds to
situations that do not occur in practice, such as the addition
of two perfectly orthogonal lines.

Interpolation We interpolate the measured data with a
simple diffusion process akin to the heat equation, a.k.a.
isotropic diffusion. We build a regular 3D grid with a Imm
resolution. Fach node stores an orientation tensor O. We
compute the heat equation on this grid:

00 8%0 " 9?0 n %0 3

ot  Oa2 0y? 0z (3)
We iterate Equation 3 while using the measured orientations
as hard constraints, i.e. we do not modify their values. We
also use the scalp normals as constraints to “bend” the ori-
entation field toward the scalp. In other words, grid nodes
containing a measured orientation or on the scalp surface are
Dirichlet boundary conditions. This process defines a new
matrix field O, and the local fiber orientation at point p is
obtained by extracting the largest eigenvector of Op.

On a typical model (Fig. 3 and 7), interpolation generates

between 30% and 70% of the final geometry. This proportion
underscores the importance of this step.

Figure 7: Hole filling demonstrated on a 2D slice. We use
the measured points and the roots on the scalp as hard con-
straints (red) to infer the missing orientation data (green).

3.4 Strand Creation

From the previous sections, we have both location and orien-

tation information, regularly sampled every 1mm in space.

We construct 3D curves by following the orientation field.

We start at root points randomly sampled over the scalp.

The root density is set to produce approximately 100 000

strands, a typical number for humans. Let po be such a

root with scalp normal n. We grow a strand in the direction

dp, = n. Given a point p and a direction of growth dp, we
extend the strand as follows:

_dp_

law]"

2. Given a vector £4 along the orientation at q. The
growth direction dgq can be +£€4 or —£€4. We select
the option that induces the smaller rotation angle:
dq = sign(lq - dp) £q.

3. Iterate until a predefined maximum length is reached.

1. Compute the next point q = p + 9§

4. Create a strand starting from the root to the last mea-
sure point encountered. If no measure point encoun-
tered, delete the strand.



The integration step § in Step 1 is set to 0.5mm. Step 2 pre-
vents sharp turns. Step 3 enforces a maximum length set by
the user depending on the length of the subject’s hair. Step 4
ensures that the strands remain within the hair volume and
ends at a measured point. This last property, ending at a
measured point, is a major difference with existing methods
that rely on the visual hull. Our approach produces a de-
tailed hair volume measured by triangulation. Figure 3-right
shows an example of the reconstructed hair strands.

4 Model-based Interpolation
of Reflectance Fields

The second stage of our capture generates reflectance field
data corresponding to a large number of camera-light pairs.
We leverage this data to faithfully reproduce the appearance
of the subject’s hair, including highlights and color variation.
The quality we obtain is superior to previous image-based
approaches because we do not use a simplified geometric sur-
rogate such as a visual hull [Gortler et al. 1996; Matusik et al.
2002] but render actual hair geometry. Furthermore, we in-
troduce a new model-based interpolation scheme based on a
simple parametric BRDF [Kajiya and Kay 1989] that allows
us to reproduce sharp highlights. We expose a classical data-
driven rendering method before describing our model-based
approach. We then extend it to animation.

4.1 Standard Interpolation

We acquire a six-dimensional reflectance field that contains
samples of the hair appearance from 16 view and 150 light
directions. To reproduce the hair appearance from a new
view and light direction, we interpolate samples from the
three closest cameras and a small number of closest light
sources. For each 3D location on a hair strand, we first re-
trieve the corresponding reflectance samples by projecting
the 3D location into the acquired images. Each camera and
light pair (i,7) contributes one reflectance sample I;;. For
each sample, we compute a weight w;; that is the product of
a barycentric weight for the camera and a radially symmetric
weight function for the light. We prefer smooth radial func-
tions over barycentric interpolation for the lights because
it leads to smoother animations. Finally, the interpolated
reflectance is the weighted sum Zij wij L.

This interpolation is essentially the same as most image-
based techniques, with the exception that it uses our high-
quality geometry. It achieves good quality for still images,
but results in loss of highlight sharpness and in highlight
ghosting, which is objectionable for animation.

4.2 Model-based Interpolation

To introduce our new model-based interpolation, we take a
somewhat counterintuitive perspective on the above interpo-
lation. Consider how the standard interpolation predicts the
hair appearance over the space of view and light directions.
We simply compute a weighted sum of samples regardless of
the view and light direction. We can understand this as the
weighted average of constant functions (Fig. 8 left). Our key
idea is to replace these constant functions with a hair BRDF
(Fig. 8 right) that more faithfully captures hair reflectance
over changing view and light directions.

Reflectance Prediction We assume that the hair re-
flectance follows the Kajiya-Kay model [1989], chosen for
its simplicity:
I =L K(t,h) cos(f) (4)
with K (t,h) = p. [sin(t, b)|* + pa

standard interpolation model-based interpolation

2 2 sample 1 prediction
weighted average
1 sample 1 prediction 1
| §: weighted average sample 2 prediction
: +— sample 2 prediction
. t,h 0 t,h
sample I new sample 2 sample I new sample 2

Figure 8: On the left, we see that standard interpolation
predicts constant reflectance everywhere. In comparison, our
model-based interpolation uses the hair BRDF to predict
more accurate reflectance curves.

where I is the intensity of the reflected light, L the intensity
of the light source, t the hair direction, h the half vector
between the view and light directions, 6 the angle between
the light and the plane perpendicular to the hair direction,
ps and pq are the specular and diffuse coefficients, and « is
the shininess exponent. We postpone the discussion how to
determine the parameters ps, pa, and a and assume they are
known for now.

Given an observed reflectance sample I;; we invert Equa-
tion (4) to estimate the light intensity that reaches this sam-
ple, Li; = I;; / [K(t,hij) cos(6s;)]. Here h;; and 6;; are the
parameters of the observed view ¢ and light j. Using the
estimated incoming light, we apply the Kajiya-Kay model
to predict the reflected light L;; K (t,h) cos(6) for new light
and view directions. Therefore, we predict the reflectance at
the desired directions as:

-~ K (t,h)cos(0)
I” (h7 6) Y K(t, hij) COS(QU) (5)
where h and 6 are parameters of the desired light and view-
ing directions, and I;j, t, h;;, and 60;; are constant since they
correspond to measured data.

We interpolate these predicted values ijj (h,0) as before
using the weighted sum Zij Wi I ij- In summary, for each re-
flectance data point, we scale a Kajiya-Kay BRDF to predict
hair reflectance in its neighborhood. Figure 8 illustrates the
benefits of our model-based prediction scheme. Whereas a
standard approach systematically “cuts” highlights, our ap-
proach is able to predict them and yields significantly more
accurate results. The limitation of our approach is that it
does not take into account changes in light source visibil-
ity. Since we only extrapolate locally, however, this is not
noticeable with our data.

Parameters The parameters ps, pa, a of the Kajiya-Kay
model are scalars in our technique because the color infor-
mation comes from the sampled reflectance I;;. We assume
constant parameters over the whole hair; spatial variations
are captured by the image data. Since Equation 5 is invari-
ant under uniform scaling of ps and pq4, we set ps = 1 without
loss of generality.

We determine the two other parameters pg and a by re-
moving one light source from our image set and searching
for the values of pg and « that “best” approximate this data
using only the remaining images. We perform an exhaus-
tive search over a small range of possible values. We use the
maximum Lo error over small image areas to evaluate the
accuracy of the approximated data because it yields good
reproduction of the highlights. Since highlights cover only a
small fraction of the data, other criteria such as the average
pixel error or the Ly error over the whole image are domi-
nated by large dark regions and produce less pleasing results.



(e) our model-based
interpolation with
per-camera normals

(c) naive linear
interpolation

(a) Kajiya-Kay
shading without
per-camera normals

(b) Kajiya-Kay
shading with
per-camera normals

(d) our model-based
interpolation without
per-camera normals

(f) reference
photograph
(not in input data)

Figure 9: Our model-based view interpolation relies on the Kajiya-Kay BRDF to predict highlight location. First, we show
the hair model rendered with this model only (a,b). Our per-camera normals (b) successfully capture the fine details of the
hair reflection. We then validate our view-interpolation method. Traditional linear view interpolation (c) fails to render shiny
highlights. In comparison, our approach (d,e) matches the hair shininess observed in the photograph (f). However, without

per-camera normals, the details of the reflection patterns (d) differ from the original ones (f). Our per-camera normals (e)

yield a faithful match to the person’s hair (f).

Hair Orientation Refinement for Shading Rendering is
very sensitive to hair orientation because hair is highly spec-
ular. Therefore, we refine the 3D orientations on a per-
camera basis to optimize rendering quality. For each camera,
we adjust strand orientations so that the Kajiya-Kay model
best agrees with the variation over light directions. Using
per-camera orientations allows us to approximate the high-
light shift due to the cuticle angle [Marschner et al. 2003].

Given a strand with an original orientation t, we generate
candidate orientations tj; that uniformly cover the neigh-
borhood of t defined by a maximum angle. For each strand
segment, we collect reflectance samples {Ij;} from a single
camera k and over all lights j. We use z-buffering to discard
the samples that are on the backside of the head. With the
remaining samples, we select the orientation t; that maxi-
mizes the correlation between the predicted and measured
reflectance:

argmaxe, »; Iej K(tk, hy;) cos(Ok;)

This gives us a corrected orientation for each camera that is
more faithful to the reflectance model. Figure 9 illustrates
the gain brought by this correction.

4.3 Rendering of Animated Geometry

We extend our model-based interpolation to animation. The
challenge is that the animated strands are not located where
we measured their reflectance. Our strategy is to use the
data from the rest pose to render the animated geometry.
For each location on a moving hair strand, we look up its
reflectance sample by projecting the corresponding rest po-
sition into the acquired images. To capture the variation in
shading due to the animation, we apply Equation 5. This
predicts the reflectance of the deformed geometry using new
vectors t, h relative to the new hair orientation.

Figure 10: Rendering of animated geometry. The result on
animated data is better seen in the companion video.

We used a procedurally animated geometry to validate
our approach. The generated translations are on the order
of a few centimeters and the rotations can be up to 180°. Al-
though this strategy ignores the occlusions and disocclusions
that can occur due to the changes of geometry, it generates
plausible results as demonstrated in Figure 10 and in the
companion video. In particular, the renderings still exhibit
the visual complexity characteristic of hair.

5 Results

We validate our method with side-by-side comparisons with
real photographs for a variety of hair styles: straight (Fig. 1),
wavy, tangled, and puffy (Fig. 11). For these comparisons,
we have excluded the reference photographs from the data
set used for image-based rendering. In terms of appearance,
our result yields close visual matches with photographs of
real hairstyles. It also renders new views under new lighting
conditions (Fig. 1 and video), which is not possible with ex-
isting hair capture techniques [Paris et al. 2004; Wei et al.
2005]. We also provide videos with moving cameras and
lights in supplemental material. Due to fundamentally dif-
ferent input data, it was not possible to directly compare to
the methods of Paris et al. and Wei et al..

As shown in Figure 12, our algorithm is able to generate
complex hair models, producing on the order of 100,000 hair
strands. A distinctive property of our geometric models is
their truly volumetric nature with concavities and intricate
strands that faithfully capture the original hairstyles. In
particular, the tangled and puffy hairstyles (Fig. 11-c,d,e,f)
would be challenging for visual-hull approaches. In addition,
our method produces strands attached to the scalp that en-
able animation. The video shows an example that uses a
procedural motion field to animate the hair. In contrast,
existing approaches retrieve only the visible hair layer.

The geometric reconstruction runs in 10 hours on a
single core, most of it being due to 2D motion tracking
that involves repeated transformations and comparisons of
megapixel images. Since most computations are indepen-
dent, they could be distributed on a cluster. On a single
core of a Core2Duo 2.66GHz, rendering runs between 90s
and 140s depending on the model and requires about 700MB
of memory. Currently the bottleneck in our rendering is
the memory access to read the reflectance data. During
rendering, we access on the order of 4.3GB of reflectance
data. Each shading operation interpolates 3 camera views
and about 6 light directions. In total, accessing reflectance



samples accounts for approximately 50% of the rendering
time. The next most expensive step is the model-based in-
terpolation at about 25% of the total time. The rest is spent
in image operations and disk and memory accesses.

Priorities Our approach has two main components, the ge-
ometry and the image-based reflectance. Which of those
two aspects is most important depends on one’s application
and existing infrastructure. If one has a basic system to
create some rough geometry, one could just implement the
image-based component to render high-quality static images.
To create a movie with changing viewpoints, the geometric
part should be implemented first to correctly render occlu-
sions and disocclusions. The companion video shows that
our geometry yields superior results compared to a visual
hull, especially with puffy hairstyles. The geometric part
should also come first if the goal is to animate the geometry.

Limitations and Possible Extensions Our method achieves
results that significantly improve the state of the art. How-
ever, this comes at the price of a dedicated acquisition setup.

WAVY

TANGLED
(d) reference photograph

(e) rendering (f) reference photograph

Figure 11: Side-by-side comparisons for various hairstyles.
For fair comparison, the reference photographs were re-
moved from the data set used by our image-based rendering
method.

Straight Tangled Puffy Wavy
Strands 103,364 114,269 145,787 107,219
Vertices | 3,703,570 | 3,528,195 | 4,568,003 | 3,287,934

Figure 12: Hair geometry statistics.

The current version of our setup also has a few low-level,
technical limitations. First, the resolution of the camera
(1.3 megapixels) does not allow us to capture stray hairs
as can be seen at the silhouettes of the puffy hairstyle
(Fig. 11). An intriguing avenue for the future is using high-
resolution low-noise SLR cameras which can image individ-
ual fibers. We believe that it can lead to more accurate
and lightweight acquisition and also produce higher dynamic
range data which would better capture hair shininess. Cam-
eras with wider fields of view would also let us capture longer
hairstyles. Another limitation of our setup is that we do
not have a precise model of the neck and back of the sub-
ject, which results in inaccuracies at the lower part of the
hairstyle, e.g. the puffy model. Finally, higher bandwidth
for network connections and storage devices should drasti-
cally reduce the acquisition time. This would reduce the er-
rors remaining after motion compensation that cause small
cross-fading artifacts. It would also alleviate the need for the
visual hull used to remove strands out of the hair volume.

We also made a number of choices that may impact our
results. Our method to fill the hidden part of the hair vol-
ume produces a smooth orientation field. Although this
performed well, even on tangled hair, some hairstyles may
benefit from a more sophisticated approach that takes into
account information such as curvature statistics.

Our model-based interpolation scheme assumes that only
hair is visible at a given image pixel, which may not be
true at silhouettes where hair is thin and may reveal skin or
background objects. This induces erroneous colors at a few
spots near silhouettes. Matting the hair volume in the input
images would address this color mixture issue.

The use of the Kajiya-Kay BRDF to guide our view-
interpolation scheme yields visually convincing results. Yet,
this reflectance model has its shortcomings; in particular,
it tends to overestimate reflections at grazing angles, which
produces too bright highlights at some places in our results.
Switching to the more accurate model of Marschner and col-
leagues [2003] would reduce this effect at the cost of a higher-
dimensional, nonlinear parameter fitting problem.

6 Conclusions

We have described a method to capture both the geome-
try and the appearance of a person’s hairstyle. Our capture
setup and analysis algorithm significantly improve the ac-
curacy of the acquired geometry. We have complemented
the acquisition with a method to infer the hidden geometry
of hair. We have also shown the gain brought by incorpo-
rating a priori knowledge in the image-based rendering. As
a result, we are able to capture real hairstyles with their
full complexity.
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