Hair Photobooth: Geometric and Photometric Acquisition of Real Hairstyles

Sylvain Paris¹, Will Chang², Wojciech Jarosz², Oleg Kozhushnyan³, Wojciech Matusik¹, Matthias Zwicker², and Frédo Durand³

¹Adobe ²UCSD ³MIT CSAIL

Capturing Real Hairstyles

Useful for special effects, simulation, cosmetics...

reference photograph (not in the input data)

Previous Work

Hair Modeling

Toolboxes for artists
 [Hadap 01, Kim 02...]

 Hard and tedious to match someone's hairstyle

[Hadap 01]

Hair Capture

 Lightweight setups to capture whole head of hair [Paris 04, Wei 05]

 Limited accuracy because of moving parts

No reflectance

Triangulation Scanning

- Accurate [Curless 95 & 97, Pulli 97, Levoy 00...]
- Robust to complex environments [Hawkins 05, Narasimhan 05]
- Never used for unstructured material like hair
 - Hair does not have a smooth surface.

Parametric Reflectance Models

 Inspired by physics [Kajiya 89, Marschner 03, Moon 08, Zink 08...]

 Parameters are hard to set

Image-based Rendering

- Reproduce complex effects [Debevec 00, Matusik 02...]
- Challenged by high-frequency BRDF like hair

[Matusik 02]

Our Approach

A Hardware-intensive, Data-rich Approach

Acquisition: many cameras, many lights, many projectors

Geometry: triangulation of position and orientation

Rendering: model-driven image-based rendering

Camera-Projector Triangulation

- Redundancy important for occlusions and highlights
 - Each point lit by 1-2 projectors
 - Each point viewed by 3-6 cameras

Reflectance Field

- Sampling view and light directions
 - Cameras every ~30 degrees
 - Lights every ~15 degrees

sample input views

Acquisition Setup

150 LEDs

3 video projectors

16 video cameras

Everything is fixed and accurately calibrated off-line.

Hardware intensive [Debevec 00, Weyrich 06...]

Movie / special-effect studios

Acquisition: Triangulation Step

- Sweep the hair volume with a white line
 - once with each projector
- Current system slow
 - bottleneck: network
 - about 17 minutes for full hair
 - video sped up 10x

 Full light every 10 frames for motion tracking

(cf. paper)

Acquisition: Triangulation Step

- Sweep the hair volume with a white line
 - once with each projector
- Current system slow
 - bottleneck: network
 - about 17 minutes for full hair
 - video sped up 10x
- Full light every 10 frames for motion tracking (cf. paper)

Acquisition: Triangulation Step

- Sweep the hair volume with a white line
 - once with each projector
- Current system slow
 - bottleneck: network
 - about 17 minutes for full hair
 - video sped up 10x
- Full light every 10 frames for motion tracking (cf. paper)

Position Triangulation

Triangulation Output

- Occupancy volume
 - more accurate than visual hull[Paris 04, Wei 05]
 - remaining holes are filled later

Orientation Triangulation

• 1st step: 2D orientation per pixel [Paris 04]

Orientation Triangulation

• 2nd step: triangulation from 2 cameras [Wei 05]

Orientation Triangulation

• 2nd step: triangulation from 2 cameras [Wei 05]

Inferring Hidden Data

- Triangulation: only visible geometry, no connection to scalp
- Inference using structure tensors (see paper)

Inferring Hidden Data

- Triangulation: only visible geometry, no connection to scalp
- Inference using structure tensors (see paper)

Strand Growth

- Progressive growth from scalp until outer boundary
- Strand = polyline, sampled every 0.5 mm

Reconstructed Geometry

Hair Rendering

- Render realistic images of hair at any desired viewpoint and illumination
 - Match the original appearance of a hairstyle
- Our contribution: Model-Based Interpolation

Rendering

Reference Photograph

Image-Based Rendering

- Leverage acquired photometric data
- Render any desired viewpoint and illumination

Linear Interpolation

Rendering with Linear Interpolation

- Realistic hair
- Washed-out, faded appearance

Linear interpolation

Reference Photograph

Linear Interpolation

Improving Linear Interpolation

- Incorporate domain-specific information
 - Known hair BRDF + strand orientation

Model-Based Interpolation

- Parametric hair BRDF (Kajiya-Kay lobe)
 - Lobe width fit globally
 - Scaled locally to match image data
- Advantages:
 - BRDF provides sharp highlights
 - Image data reproduces hair color variation, shadows

Model-Based Interpolation

Using Model-Based Interpolation

Faithfully preserves specular highlights

Linear interpolation

Model-Based interpolation

Reference Photograph

Results

Side-by-Side Comparison

Rendered hairstyle closely matches reference

Rendering

Reference Photograph (not in data)

View Interpolation

Tangled Hair Rendering

Rendering Comparison: Linear Interpolation

Rendering Comparison: Model-Based Interpolation

Performance Statistics

- Highly Detailed Geometry Reconstruction
 - 100,000 strands and 4,000,000 vertices
 - 10 hrs on a single core
 - Bottleneck: motion tracking, triangulation
 - Intended as a one-time, offline step
- Image-Based Rendering
 - 90 to 140 seconds per frame on a single core
 - Bottleneck: accessing image data
 - Compress image data for real-time performance

Discussion

- Use of both geometric and photometric data
 - IBR is great for high-quality images
 - Geometry is great for changing viewpoints & animations
- Reconstructed hair geometry enables animation
 - Further work needed to apply IBR for animated geometry
- Hardware-heavy solution
 - Light-weight acquisition solution needed for wide-spread practical deployment
 - Higher resolution needed to observe fine-scale detail while increasing capture volume

Conclusion

- High quality hair capture for movies and games
 - Triangulation scanning for hair geometry
 - Hole filling to infer occluded orientation field
 - Model-based interpolation for specular highlight

Rendering

Reference Photograph

Rendering

Reference Photograph

Thank you!

- Janet McAndless, Peter Sand, Tim Weyrich, John Barnwell, Krystle de Mesa
- MERL, MIT Pre-Reviewers, SIGGRAPH Reviewers
- NSF CAREER Award 0447561, Microsoft Research New Faculty Fellowship, Sloan Fellowship, Adobe

3D geometry (about 100,000 strands)

reflectance (image-based rendering)

reference photograph (not in the input data)

our result