
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-062 December 16, 2009

The Video Mesh: A Data Structure for
Image-based Video Editing
Jiawen Chen, Sylvain Paris, Jue Wang, Wojciech
Matusik, Michael Cohen, and Fredo Durand

The Video Mesh: A Data Structure for Image-based Video Editing

Jiawen Chen1 Sylvain Paris2 Jue Wang2 Wojciech Matusik2 Michael Cohen3 Frédo Durand1

1Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

2Adobe Systems, Inc. 3Microsoft Research

Input video

Video Mesh

Texture Alpha

“Paper Cutout” view

Applications

Depth of Field Manipulation

Compositing

Viewpoint Change

Figure 1: The video mesh data structure represents the structural information in an input video as a set of deforming texture mapped triangles
augmented with mattes. The mesh has a topology that resembles a “paper cutout”. This representation enables a number of special effects
applications such as depth of field manipulation, object insertion, and change of 3D viewpoint.

Abstract

This paper introduces the video mesh, a data structure for represent-
ing video as 2.5D “paper cutouts.” The video mesh allows inter-
active editing of moving objects and modeling of depth, which en-
ables 3D effects and post-exposure camera control. The video mesh
sparsely encodes optical flow as well as depth, and handles occlu-
sion using local layering and alpha mattes. Motion is described by
a sparse set of points tracked over time. Each point also stores a
depth value. The video mesh is a triangulation over this point set
and per-pixel information is obtained by interpolation. The user ro-
toscopes occluding contours and we introduce an algorithm to cut
the video mesh along them. Object boundaries are refined with per-
pixel alpha values.

The video mesh is at its core a set of texture mapped triangles, we
leverage graphics hardware to enable interactive editing and render-
ing of a variety of effects. We demonstrate the effectiveness of our
representation with a number of special effects including 3D view-
point changes, object insertion, and depth-of-field manipulation.

Keywords: video editing, triangle mesh, compositing, feature
tracking, optical flow

1 Introduction

We introduce the video mesh, a new representation that encodes the
motion, layering, and 3D structure of a video sequence in a unified
data structure. The video mesh can be viewed as a 2.5D “paper
cutout” model of the scene as shown in Figure 1. For each frame of
a video sequence, the video mesh is composed of a triangle mesh
together with texture and alpha (transparency). Depth information
is encoded with a per-vertex z coordinate, while motion is handled
by linking vertices in time (for example, based on feature track-
ing). The mesh can be cut along occlusion boundaries and alpha
mattes enable the fine treatment of partial occlusion. It supports
a more general treatment of visibility than traditional layer-based
methods [Wang and Adelson 1994] and can handle self-occlusions
within a layer such as the actor’s hand in Figure 1. The per-vertex
storage of depth and the rich occlusion representation makes it pos-
sible to extend image-based modeling into the time dimension. Fi-
nally, the video mesh is based on texture-mapped triangles to enable
fast processing on graphics hardware.

We leverage off-the-shelf technology when possible to provide
user-assisted tools for the creation of a video mesh from an input
video. Tracking software provides motion information. Rotoscop-
ing [Agarwala et al. 2004] and matting (e.g., [Chuang et al. 2002;
Levin et al. 2006; Wang and Cohen 2007]) enable fine handling
of occlusion. A combination of structure-from-motion [Hartley
and Zisserman 2000] and interactive image-based modeling [Horry

et al. 1997; Oh et al. 2001] permit depth specification. The video
mesh enables a variety of video editing tasks such as changing the
3D viewpoint, occlusion-aware compositing, 3D object manipula-
tion, depth-of-field manipulation, and relighting.

This paper makes the following contributions:

• The video mesh, a sparse data structure for representing mo-
tion and depth in video that models the world as “paper
cutouts.”

• Algorithms for constructing video meshes and manipulating
their topology. In particular, we introduce a robust mesh cut-
ting algorithm that can handle arbitrarily complex occlusions
in general video sequences.

• Video-based modeling tools for augmenting the structure of a
video mesh, enabling a variety of novel video edits such as 3D
viewpoint changes, depth-of-field manipulation, propagation
of 2D edits, and 3D object manipulation.

1.1 Related Work

Motion Motion in video can be described by its dense optical
flow, e.g. [Horn and Schunck 1981]. We have opted for a sparser
treatment of motion based on feature tracking, e.g. [Shi and Tomasi
1994; Liu et al. 2005]. We find feature tracking more robust and
easier to correct by a user. Feature tracking is also much cheaper to
compute and per-vertex data is easier to process on graphics hard-
ware. Sand and Teller’s particle video [2006] is another sparse rep-
resentation of motion but it requires a costly dense optical flow cal-
culation as a preprocess, while our focus is on fast manipulation.
Furthermore, we seek to handle layering and depth.

Layered video representations The video mesh builds upon
and extends layer-based video representations [Wang and Adelson
1994; Apple, Inc. 2007; Adobe Systems, Inc. 2008], video-cube
segmentation [Wang et al. 2005], and video cutouts [Li et al. 2005].
Commercial packages use stacks of layers to represent and com-
posite objects. However, these layers remain flat and cannot handle
self-occlusions within a layer such as when an actor’s arm occludes
his body. Similarly, although the video-cube and video cutout sys-
tems provide a simple method for extracting objects in space-time,
to handle self-occlusions, they must cut the object at an arbitrary lo-
cation. The video mesh leverages user-assisted rotoscoping [Agar-
wala et al. 2004] and matting [Chuang et al. 2002; Levin et al. 2006;
Wang and Cohen 2007] to extract general scene components with-
out arbitrary cuts.

Image-based modeling and rendering We take advantage of ex-
isting image-based modeling techniques to specify depth informa-
tion at vertices of the video mesh. In particular, we adapt single-
view tools from Horry et al. [1997], Oh et al. [2001] to video. We
are also inspired by the Video Trace technique [van den Hengel
et al. 2007] which uses video as an input to interactively model
static objects. We show how structure-from-motion [Hartley and
Zisserman 2000] can be applied selectively to sub-parts of the video
to handle piecewise-rigid motion which are common with everyday
objects. We also present a simple method that propagates depth
constraints in space.

Our representation is also inspired by image-based rendering accel-
eration techniques that use impostors composed of texture-mapped
meshes [Sillion et al. 1997; Darsa et al. 1997; Décoret et al. 1999].
They render a static 3D scene from a given viewpoint and use depth
information from a z-buffer. Our context is different, the video

mesh seeks to represent the texture, motion, as well as complex
occlusions in video sequences.

Mesh-based video compression Using triangle meshes to rep-
resent motion is well known in the video compression commu-
nity [Altunbasak and Tekalp 1997; Celasun and Tekalp 2000; Cam-
mas et al. 2005]. These methods are designed for motion compen-
sation and handle visibility by resampling and remeshing along oc-
clusion boundaries. They typically do not support self-occlusions.
However, for video editing, we need a general representation that
can encode the complex occlusion relationships in a video. The
video mesh decouples the complexity of visibility from that of the
mesh by finely encoding it with an alpha map. It has the added
benefit of handling partial coverage and sub-pixel effects.

Multi-view stereo Recent multi-view algorithms are able to re-
cover depth in complex scenes from video sequences [Seitz et al.
2006]. However, these techniques have difficulties with non-
Lambertian materials and moving objects and also require camera
motion. When these techniques succeed, Zhang et al. demonstrate
how to perform a number of video special effects [Zhang et al.
2009]. The video mesh is complementary to these techniques. We
can use depth maps to initialize the 3D geometry and our model-
ing tools to address challenging cases such as scenes with moving
objects. Furthermore, in addition to existing effects, we provide
extended camera control including changing the 3D viewpoint and
refocusing.

Mosaicing Background collections and mosaicing can be used
to create compound representations of video, e.g., [Irani et al.
1995; Agarwala et al. 2005; Hermans et al. 2008]. Recently, Rav-
Acha et al. [2008] introduced unwrap mosaics to perform video
editing on deformable objects. This method represents the object
texture and the occlusions without explicitly recovering the 3D ge-
ometry of the object. High accuracy is achieved through a sophis-
ticated optimization scheme that runs for several hours. In com-
parison, the video mesh outputs coarse results with little precom-
putation and provides tools that let the user interactively refine the
result. Unwrap mosaics are also limited to objects with a disc topol-
ogy whereas the video mesh handles more general scenes. See also
Szeliski’s survey on video-based rendering [2004].

2 The Video Mesh Data Structure

We begin by first illustrating how the video mesh represents motion
and depth in the simple case of a smoothly moving scene with no
occlusions. In this simplest form, it is similar to morphing tech-
niques that rely on triangular meshes and texture mapping [Gomes
et al. 1998]. We then augment the structure to handle occlusions,
and in particular self-occlusions that cannot be represented by lay-
ers without artificial cuts. Our general occlusion representation
simplifies a number of editing tasks. For efficient image data stor-
age and management, we describe a tile-based representation for
texture and transparency. Finally, we show how a video mesh is
rendered.

2.1 A Triangular Mesh

Vertices The video mesh encodes depth and motion information
at a sparse set of vertices, which are typically obtained from feature
tracking. Vertices are linked through time to form tracks. They
are stored in a global vertex table that is indexed by frame number
and track index (Fig. 2). A number of those entries can be empty
because a vertex track often does not last the entire video. A sparse

class VideoMesh {

// vertex list per frame

List<Vertex>[nFrames] vertexTable;

// face list per frame

List<Face>[nFrames] faceTable;

TextureData texture;

Camera[nFrames] cameraPath;

}

class Vertex {

// current position in screen space

Vector2f position;

float z; // depth (optional)

// Original position used as texture

// coordinates. Equal to position if

// the video has not been edited.

Vector2f originalPosition;

float originalZ;

// TRACKED, S_VIRTUAL, or T_VIRTUAL

enum VertexType type;

// Accessors use the vertexTable.

// Can return null for temporal

// virtual vertices.

// predecessor in time

Vertex getPrevious();

// successor in time

Vertex getNext();

}

class Face {

int[3] vertexIndices;

// tiles occupied by this face

List<TextureTile> tiles;

// used for temporal edits

int tOriginal;

}

Figure 2: Basic video mesh data structures.

representation such as a hash table can be used for efficiency.

A vertex stores its position in the original video, which is used to
reference textures that store the pixel values and alpha. The current
position of a vertex can be modified for editing purposes (e.g. to
perform motion magnification [Liu et al. 2005; Wang et al. 2006]),
and we store it in a separate field. A vertex has access to its position
in the next and previous frames through accessors that return the
vertex in the same track at the next or previous frame index in the
vertex table (Fig. 2).

Vertices also have a field to store depth information, which can
be specified through a number of tools which we describe in Sec-
tion 3.2. Depth information is encoded with respect to a camera
matrix that is specified per frame.

Faces We use a Delaunay triangulation over each frame to define
the faces of the Video Mesh. Each triangle is texture-mapped with
the pixel values from the original video, with texture coordinates
defined by the original position of its vertices. The textures can
also be edited to enable various video painting and compositing
effects. Each face stores a list of pointers to texture tiles to enable
the treatment of multiple layers, as described below.

The triangulations of consecutive frames are mostly independent.
While it is desirable that the topology be as similar as possible be-
tween frames to generate a continuous motion field, this is not a
strict requirement. We only require vertices, not faces, to be linked
in time. The user can also force edges to appear in the triangula-
tion by adding line constraints. For instance, we can ensure that
a building is accurately represented by the video mesh by aligning
the triangulation with its contours.

Motion To illustrate with a concrete example, consider a simple
manipulation such as motion magnification that warps the video.
One starts by tracking features over time. For this simple example,
we assume that all tracks last the entire video sequence and that
there is no occlusion or layering. Each frame is then triangulated to
create faces. The velocity of a vertex can be accessed by querying

its successor and predecessor and taking the difference. A simple
scaling of displacement [Liu et al. 2005] or more complex temporal
processing [Wang et al. 2006] yields the new position of each ver-
tex. The final image for a given frame is obtained by rendering each
triangle with the vertices at the new location but with texture coor-
dinates at the original position, indexing the original frames. This
is essentially equivalent to triangulation-based morphing [Gomes
et al. 1998].

The triangulation defines a piecewise-linear interpolation of the
sparse information stored at vertices. This is implicitly applied to
depth and motion to obtain dense motion fields and depth maps.
While this yields satisfying estimates in smooth regions, disconti-
nuities require more attention, as described below.

2.2 Occlusion

Real-world scenes have occlusions, which are always the most chal-
lenging aspect of motion treatment. Furthermore, vertex tracks can
appear or disappear over time because of, for instance, occlusion or
loss of contrast. The video mesh handles these cases by introduc-
ing virtual vertices and duplicating triangles to store information
for both foreground and background parts.

Consider first the case of vertices that appear or disappear over time.
Since we rely on the predecessor and successor to extract motion
information, we introduce temporal virtual vertices at both ends of
a vertex track. Like normal vertices, they store a position, which is
usually extrapolated from the adjacent frames but can also be fine-
tuned by the user.

Real scenes also contain spatial occlusion boundaries. In mesh-
based interpolation approaches, a triangle that overlaps two scene
objects with different motions yields artifacts when motion is inter-
polated. While these artifacts can be reduced by refining the trian-
gulation to closely follow edges, e.g., [Cammas et al. 2005], this
solution can significantly increase geometric complexity and does
not handle soft boundaries. Instead, we take an approach inspired
by work in mesh-based physical simulation [Molino et al. 2004].
At occlusion boundaries, where a triangle partially overlaps both
foreground and background layers, we duplicate the face into fore-
ground and background copies, and add spatial virtual vertices to
complete the topology. To resolve per-pixel coverage, we compute
a local alpha matte to disambiguate the texture (see Figure 3). Sim-
ilar to temporal virtual vertices, their spatial counterparts also store
position information that is extrapolated from their neighbors. We
also extrapolate a motion vector at these points and create temporal
virtual vertices in the adjacent past and future frames to represent
this motion. Topologically, the foreground and background copies
of the video mesh are locally disconnected: information cannot di-
rectly propagate across the boundary.

When an occlusion boundary is not a closed loop, it ends at a sin-
gularity called a cusp. The triangle that the cusp belongs to gets
duplicated like any other boundary triangle and the alpha handles
fine-scale occlusion. We describe the topological construction of
cuts and cusps in Section 3.1.

The notion of occlusion in the video mesh is purely local and en-
ables self-occlusion within a layer, just like how a 3D polygonal
mesh can exhibit self-occlusion. Occlusion boundaries do not need
to form closed contours. We simply cut the mesh and duplicate tri-
angles locally. Depth ordering is specified through the per-vertex z
information.

FOREGROUND

color map

node type and depth

alpha matte

frame and mesh

BACKGROUND

color map

node type and depth

alpha matte

BACKGROUND

color map

node type and depth

alpha matte

FOREGROUND

color map

node type and depth

alpha matte

tracked

(z = 1)

virtual (z = 1)

virtual

(z = 1)

virtual

(z = 2)

tracked (z = 2)

tracked

(z = 2)

Figure 3: Occlusion boundaries are handled by duplicating faces.
Each boundary triangle stores a matte and color map. Duplicated
vertices are either tracked, i.e., they follow scene points, or virtual
if their position is inferred from their neighbors.

2.3 Tile-Based Texture Storage

At occlusion boundaries, the video mesh is composed of several
overlapping triangles and a pixel in the image plane can be as-
signed several values, typically one for the foreground and one for
the background. While simple solutions such as the replication of
the entire frame are possible, we present a tile-based approach that
seeks to strike a balance between storage overhead and flexibility.

Replicating the entire video frame for each layer would be wasteful
since few faces are duplicated and in practice, we would run out
of memory for all but the shortest video sequences. Another pos-
sibility would be generic mesh parameterization [Hormann et al.
2007], but the generated atlas would likely introduce distortions
since these methods have no knowledge of the characteristics of the
video mesh, such as its rectangular domain and preferred viewpoint.

Tiled texture We describe a tile-based storage scheme which
trades off memory for rendering efficiency—in particular, it does
not require any mesh reparameterization. The image plane is di-
vided into large blocks (e.g., 128×128). Each block contains a list
of texture tiles that form a stack. Each face is assigned its natu-
ral texture coordinates; that is, with (u,v) coordinates equal to the
(x,y) image position. If there is already data stored at this location
(for instance, when adding a foreground triangle and its background
copy already occupies the space in the tile), we move up in the stack
until we find a tile with free space. If a face spans multiple blocks,
we allocate into each stack using the same strategy: a new tile is
created within a stack if there is no space in the existing tiles.

To guarantee correct texture filtering, each face is allocated a one-
pixel-wide margin so that bilinear filtering can be used. If a face
is stored next to its neighbor, then this margin is already present.
Boundary pixels are only necessary when two adjacent faces are
stored in different tiles. Finally, tiles also overlap by two-pixels in
screen space to ensure correct bilinear filtering for faces that span
multiple tiles.

The advantages of a tile-based approach is that overlapping faces
require a new tile instead of duplicating the entire frame. Similarly,
local modifications of the video mesh such as adding a new bound-
ary impact only a few tiles, not the whole texture. Finally, tiles
also enable data to be stored without distortion relative to the input
video.

2.4 Rendering

The video mesh is, at its core, a collection of texture-mapped tri-
angles and is easy to render using modern graphics hardware. We
handle transparency by rendering the scene back-to-front using al-
pha blending, which is sufficient when faces do not intersect. We
handle faces that span several tiles with a dedicated shader that ren-
ders them once per tile, clipping the face at the tile boundary. Re-
call that we have added a one-pixel margin around the faces so that
we can use bilinear filtering to maintain visual quality even after
operations such as a change of viewpoint. To achieve interactive
rendering performance, we cache tiles in texture memory as a sin-
gle large atlas (e.g., 4096×4096), storing tiles as subregions. This
caching strategy also enables efficient rendering when we access
data across multiple frames, such as when we perform space-time
copy-paste operations. Finally, when the user is idle, we prefetch
nearby frames in the background into the cache to enable playback
after seeking to a random frame.

3 Video Mesh Operations

The video mesh supports a number of creation and editing opera-
tors. This section presents the operations common to most applica-
tions, while we defer application-specific algorithms to Section 4.

3.1 Cutting the mesh along occlusions

The video mesh data structure supports a rich model of occlusion as
well as interactive creation and manipulation. For this, we need the
ability to cut the mesh along user-provided occlusion boundaries.
We use splines to specify occlusions [Agarwala et al. 2004], and
once cut, the boundary can be refined using image matting [Chuang
et al. 2002; Levin et al. 2006; Wang and Cohen 2007]. In this
section, we focus on the topological cutting operation of a video
mesh given a set of splines.

A boundary spline has the following properties:

1. It specifies an occlusion boundary and is non-intersecting.

2. It is directed, which locally separates the image plane into
foreground and background.

3. It can be open or closed. A closed spline forms a loop that de-
fines an object detached from its background. An open spline
indicates that two layers merge at an endpoint called a cusp.

Ordering constraints In order to create a video mesh whose
topology reflects the occlusion relations in the scene, the initial flat
mesh is cut front-to-back. We organize the boundary splines into
a directed graph where nodes correspond to splines and a directed
edge between two splines indicates that one is in front of another.
We need this ordering only at T-junctions, when a spline a ends
in contact with another spline b. If a terminates on the foreground
side of b, we add an edge a→ b, otherwise we add b→ a. Since the
splines represent the occlusions in the underlying scene geometry,
the graph is guaranteed to be acyclic. Hence, a topological sort on
the graph produces a front-to-back partial ordering from which we
can create layers in order of increasing depth. For each spline, we
walk from one end to the other and cut each crossed face according
to how it is traversed by the spline. If a spline forms a T-junction
with itself, we start with the open end; and if the two ends form T-
junctions, we start at the middle of the spline (Fig. 7). This ensures
that self T-junctions are processed top-down.

Four configurations To cut the mesh along the splines, we dis-
tinguish the four possible configurations:

1. If a face is fully cut by a spline, that is, the spline does not end
inside, we duplicate the face into foreground and background
copies. Foreground vertices on the background side of the
spline are declared virtual. We attach the foreground face to
the uncut and previously duplicated faces on the foreground
side. We do the same for the background copy (Fig. 4).

2. If a face contains a T-junction, we first cut the mesh using the
spline in front as in case 1. Then we process the back spline in
the same way, but ensure that at the T-junction, we duplicate
the background copy (Fig. 5). Since T-junctions are formed by
an object in front of an occlusion boundary, the back spline is
always on the background side and this strategy ensures that
the topology is compatible with the underlying scene.

3. If a face is cut by a cusp (i.e., by a spline ending inside it), we
cut the face like in case 1. However, the vertex opposite the
cut edge is not duplicated; instead, it is shared between the
two copies (Fig. 6).

4. In all the other cases where the face is cut by two splines that
do not form a T-junction or by more than two splines, we sub-
divide the face until we reach one of the three cases above.

a) flat mesh and boundary spline b) cut video mesh with matted layerslat memesh and boundarmesh and bound

Figure 4: Cutting the mesh with a boundary spline. The cut faces
are duplicated. The foreground copies are attached to the adjacent
foreground copies and uncut faces. A similar rule applies to the
background copies. Blue vertices are real (tracked), white vertices
are virtual.

Motion estimation Cutting the mesh generates spatial virtual ver-
tices without successors or predecessors in time. We estimate their
motion by diffusion from their neighbors. For each triangle with
two tracked vertices and a virtual vertex, we compute the transla-
tion, rotation, and scaling of the edges with the two tracked vertices.
We apply the same transformation to the virtual vertex to obtain its
motion estimate. If the motion of a virtual vertex can be evaluated
from several faces, we find a least-squares approximation to its mo-
tion vector. We use this motion vector to create temporal virtual
vertices in the previous and next frame. This process is iterated
as a breadth-first search until the motion of all virtual vertices are
computed.

Boundary propagation Once we have motion estimates for all
spatial virtual vertices in a frame, we can use the video mesh to
advect data. In particular, we can advect the control points of the
boundary spline to the next (or previous) frame. Hence, once the
user specifies the occlusion boundaries at a single keyframe, as long

(a) frame (c) video mesh

topology

(b) video mesh

and splines

Figure 5: Cutting the mesh with two splines forming a T-junction.
We first cut according to the non-ending spline, then according to
the ending spline.

(a) cusp seen in image plane

with a spline ending

(b) video mesh topology

Figure 6: Cutting the mesh with a cusp. This case is similar to the
normal cut (Fig. 4) except that the vertex opposite to the cut edge is
shared between the two copies.

as the topology of occlusion boundaries does not change, we have
enough information to build a video mesh over all frames. We de-
tect topology changes when two splines cross and ask the user to
adjust the splines accordingly. In practice, the user needs to edit
5 to 10% of the frames, which is comparable to the technique of
Agarwala et al. [2004].

3.2 Depth Estimation

After cutting the video mesh, it is already possible to infer a pseudo-
depth value based on the foreground/background labeling of the
splines. However, for a number of video processing tasks, con-
tinuous depth values enable more sophisticated effects.

Static camera: image-based modeling For scenes that feature a
static camera with moving foreground objects, we provide simple
tools inspired from the still photograph case [Horry et al. 1997; Oh
et al. 2001] to model a coarse geometric model of the background.
The ground tool lets the user define the ground plane from the hori-
zon line. The vertical object tool enables the creation of vertical
walls and standing characters by indicating their contact point with
the ground.

The focal length tool retrieves the camera field of view from two
parallel or orthogonal lines on the ground. This proxy geometry is
sufficient to handle complex architectural scenes as demonstrated

(a) simple self T-junction (b) double self T-junction

Figure 7: If a spline forms a T-junction with itself (a), we start
from the open end (shown with a star) and process the faces in
order toward the T-junction. If a spline forms two T-junctions with
itself (b), we start in between the two T-junctions and process the
faces bidirectionally.

in the supplemental video.

Moving camera: user-assisted structure-from-motion For
scenes with a moving camera, we build on structure-from-motion
to simultaneously recover a camera path as well as the 3D position
of scene points. For the camera, we retrieve its position and ori-
entation at each time frame and a fixed focal length for the whole
sequence. In general, there might be several objects moving inde-
pendently. The user can indicate rigid objects by selecting regions
delineated by the splines. We recover their depth and motion in-
dependently using structure-from-motion [Hartley and Zisserman
2000] and register them in a global coordinate system by aligning
to the camera path which does not change. We use an off-the-shelf
structure-from-motion package [2d3 2008]. We let the user cor-
rect misalignments by specifying constraints, typically by pinning
a vertex to a given position.

Even with a coarse video mesh, these tools allow a user to create a
model that is reasonably close to the true 3D geometry. In addition,
after recovering the camera path, adding additional vertices is easy
by clicking on the same point in only 2 frames. The structure-from-
motion solver recovers its 3D position by minimizing reprojection
error over all the cameras.

3.3 Inpainting

We triangulate the geometry and inpaint the texture in hidden parts
of the scene in order to render 3D effects such as changing the view-
point without revealing holes. We have implemented several simple
strategies to handle common configurations.

Mesh For closed holes that typically occur when an object oc-
cludes the background, we list the mesh edges at the border of the
hole and fill in the mesh using constrained Delaunay triangulation
with the border edges as constraints.

When a boundary is occluded, which happens when an object par-
tially occludes another, we observe the splines delineating the ob-
ject. An occluded border generates two T-junctions which we de-
tect. We add an edge between the corresponding triangles and use
the same strategy as above with Delaunay triangulation.

Texture For large holes that are typical of missing backgrounds
(Figure 1), we use a background collection [Szeliski 1996]. After
infilling the geometry of the hole, we use the motion defined by the
mesh to search forward and backward in the video for unoccluded
pixels. A background collection is effective when there is moderate
camera or object motion and can significantly reduce the number of
missing pixels. We fill the remaining pixels by isotropically diffus-
ing data from the edge of the hole.

When the missing region is textured and stable, such as on the shirt
of an actor (Figure 1), we modify Efros and Leung texture synthe-
sis [1999] to search only in the same connected component as the
hole, ensuring that only similar patches are copied.

Finally, for architectural scenes where textures are more regular and
boundaries are straight lines, we proceed as Khan et al. [2006] and
mirror the neighboring data to fill in the missing regions.

Although these tools are simple, they achieve satisfying results in
our examples since the regions where they are applied are not the
main focus of the scene. If more accuracy is needed, one can use
dedicated mesh repair [Lévy 2003] and inpainting [Bertalmio et al.
2000] algorithms.

(a) original viewpoint

(b) new viewpoint

Figure 8: The occlusion handling and per-vertex information en-
coded in the video mesh enable viewpoint changes. Top: original
frame. Bottom: camera moved forward and left toward the river-
bank. Note the proper occlusion between the riverbank, building,
and Notre-Dame.

4 Results

We illustrate the use of the video mesh on a few practical appli-
cations. These examples exploit the video mesh’s accurate scene
topology and associated depth information to create a variety of 3D
effects. The results are available in the companion video.

Depth of field manipulation We can apply effects that depend
on depth such as enhancing a camera’s depth of field or inserting an
object into a video sequence. To approximate a large aperture cam-
era with a shallow depth of field, we construct a video mesh with
3D information and render it from different viewpoints uniformly
sampled over a synthetic aperture, keeping a single plane in focus.

(a) focus on foreground

(b) focus on background

Figure 9: Compositing and depth of field manipulation. We repli-
cated the character from the original video and composited him.
The depth information stored in the video mesh naturally achieves
the required foreshortening. We also perform a rack focus using
synthetic depth of field.

Since the new viewpoints may reveal holes, we use our inpainting
operator to fill both the geometry and texture. For manipulating de-
focus blur, inpainting does not need to be accurate. This approach
supports an arbitrary location for the focal plane and an arbitrary
aperture. We demonstrate in the companion video the rack focus
effect which is commonly used in movies: the focus plane sweeps
the scene to draw the viewer’s attention to subjects at various dis-
tances (Fig. 9). This effect can be previewed in real time by sam-
pling 128 points over the aperture. We render a high-quality version
with 1024 samples at about 2 Hz.

Object insertion and manipulation Copy-and-paste is supported
by the video mesh. The user first delineates an object with splines
and then the object can be replicated or moved anywhere by copy-
ing the corresponding faces. In addition, the depth structure of the
video mesh enables occlusions between the newly added objects
and the scene while per-pixel transparency makes it possible to ren-
der antialiased edges. This is shown in the colonnade sequence
where the copied characters are occluded by the pillars. The user
can also specify that the new object should be in contact with the
scene geometry. In this case, the depth of the object is automatically
provided according to the location in the image, in the same spirit
as the Photo Clip Art system proposed by Lalonde et al. [2007] for
static scenes. We further develop this idea by exploiting the motion
description provided by the video mesh to ensure that the copied
objects consistently move as the camera viewpoint changes. This
feature is shown in the copier sequence of the companion video.

(a) wide �eld of view,

camera close to the subject

(b) narrow �eld of view,

camera far from the subject

Figure 10: Vertigo effect enabled by the 3D information in the
video mesh. We zoom in and at the same time pull back. This
keeps the foreground character at the same size but modifies the
perspective of the background.

When we duplicate an animated object several times, we offset the
copies in time to prevent unrealistically synchronized movements.

We can also use transparency to render volumetric effects. In the
companion video, we demonstrate the insertion of smoke. To obtain
volumetric attenuation and occlusion that depends on the geometry,
we render 10 offset layers of semi-transparent animated smoke.

Change of 3D viewpoint With our modeling tools (Sec. 3.2) we
can generate proxy geometry that enables 3D viewpoint changes.
We demonstrate this effect in the companion video and in Figure 8.
In the colonnade and Notre-Dame sequences, we can fly the cam-
era through the scene even though the input viewpoint was static.
In the copier sequence, we apply a large modification to the cam-
era path to view the copier from the side. Compared to existing
techniques such as Video Trace [van den Hengel et al. 2007], the
video mesh can handle moving scenes as shown with the copier.
The scene geometry also allows for change of focal length, which
in combination with change of position, enables the vertigo effect,
a.k.a. dolly zoom, in which the focal length increases while the
camera moves backward so that the object of interest keeps a con-
stant size (Fig. 10). Resolution can be a limiting factor in areas
where there is significant magnification. However, we believe that
in many cases, the additional freedom brought by repositioning the
camera after the shot makes up for the loss of resolution.

(a) original frame

(b) relit with fog and shadows

(best viewed on screen)

Figure 11: Relighting a daytime scene to depict night. Left: orig-
inal video frame. Right: Scene relit with simulated lights, fog, and
shadows cast by composited characters.

Relighting and participating media We use the 3D geometry en-
coded in the video mesh for relighting. In the companion video,
we transform the daylight colonnade sequence into a night scene
(Fig. 11). We use the original pixel value as diffuse material color,
position light sources where light bulbs are visible, and add volu-
metric fog. We render the scene using raytracing to simulate shad-
ows and participating media [Pharr and Humphreys 2004].

Performance We implemented our prototype in DirectX 10. We
ran all our experiments on an Intel Core i7 920 at 2.66 GHz with
8 MB of cache, and a NVIDIA GeForce GTX 280 with 1 GB of
video memory. Memory usage varies between 1 GB to 4 GB de-
pending on the sequence, which is typical for video editing ap-
plication. To handle long video sequences, we use a multi-level
virtual memory hierarchy over the GPU, main memory, and disk
with background prefetching to seamlessly access and edit the data.
With the exception of offline raytracing for the fog simulation,
and high-quality depth of field effects that require rendering each
frame 1024 times, all editing and rendering operations are interac-
tive (> 15 Hz).

Discussion Although our approach enables useful effects, it is
not without limitations. First, since we rely on off-the-shelf com-
ponents, we inherit their shortcomings. As mentioned earlier, users
sometimes have to pinpoint a vertex to correct misalignment that
may appear in the structure-from-motion output. We also found
that the publicly available matting techniques [Wang and Cohen

2007; Levin et al. 2006] were challenged by some of our sequences
as can be seen for instance in the colonnade example. More directly
related to our approach, the video mesh is a coarse data structure:
high-frequency motion and thin features would be difficult to accu-
rately represent. For instance, the video mesh would not represent
blades of grass flowing in the wind well, although we believe that
other techniques would also have difficulties. For the same reason,
the video mesh cannot represent finely detailed geometry such as
a bas-relief on a wall. In this case, the bas-relief would appear as
a texture on a smooth surface which may be sufficient in a number
of cases but not if the bas-relief is the main object of interest. To
summarize, the video mesh enables effects that combine motion,
depth, and video, and works best with objects and motion that are
of medium scale or larger.

5 Conclusion

We have presented the video mesh, a data structure to represent
video sequences and whose creation is assisted by the user. The
required effort to build a video mesh is comparable to rotoscop-
ing but the benefits are higher since the video mesh offers a rich
model of occlusion and enables complex effects such as depth-
aware compositing and relighting. Furthermore, the video mesh
naturally exploits graphics hardware capabilities to provide interac-
tive feedback to users. We believe that video meshes can be broadly
used as a data structure for video editing.

References

2D3, 2008. boujou 4.1. http://www.2d3.com/.

ADOBE SYSTEMS, INC., 2008. After effects cs4.

AGARWALA, A., HERTZMANN, A., SALESIN, D. H., AND SEITZ,
S. M. 2004. Keyframe-based tracking for rotoscoping and ani-
mation. ACM Transactions on Graphics 23, 3, 584–591.

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M., CO-
HEN, M., CURLESS, B., SALESIN, D. H., AND SZELISKI, R.
2005. Panoramic video textures. ACM Transactions on Graphics
24, 3 (Aug.), 821–827.

ALTUNBASAK, Y., AND TEKALP, A. 1997. Occlusion-adaptive,
content-based mesh design and forward tracking. IEEE Trans-
actions on Image Processing 6, 9 (Sep), 1270–1280.

APPLE, INC., 2007. Motion 3.0.2.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. In Proceedings of the ACM SIG-
GRAPH conference, ACM, 417–424.

CAMMAS, N., PATEUX, S., AND MORIN, L. 2005. Video coding
using non-manifold mesh. In Proceedings of the 13th European
Signal Processing Conference.

CELASUN, I., AND TEKALP, A. 2000. Optimal 2-d hierarchical
content-based mesh design and update for object-based video.
IEEE Transactions on Circuits and Systems for Video Technol-
ogy 10, 7 (Oct), 1135–1153.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN, D.,
AND SZELISKI, R. 2002. Video matting of complex scenes.
ACM Trans. Graph 21, 3, 243–248.

DARSA, L., SILVA, B. C., AND VARSHNEY, A. 1997. Navigating
static environments using image-space simplification and mor-
phing. In SI3D, 25–34, 182.

DÉCORET, X., SILLION, F. X., SCHAUFLER, G., AND DORSEY,
J. 1999. Multi-layered impostors for accelerated rendering.
Comput. Graph. Forum 18, 3, 61–73.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE International Conference on
Computer Vision, 1033–1038.

GOMES, J., DARSA, L., COSTA, B., AND VELHO, L. 1998.Warp-
ing and morphing of graphical objects. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple View Geom-
etry in Computer Vision. Cambridge University Press, June.

HERMANS, C., VANAKEN, C., MERTENS, T., REETH, F. V., AND

BEKAERT, P. 2008. Augmented panoramic video. Computer
Graphics Forum 27, 2 (Apr.), 281–290.

HORMANN, K., LÉVY, B., AND SHEFFER, A. 2007. Mesh param-
eterization: Theory and practice. In ACM SIGGRAPH Course
Notes. ACM.

HORN, B., AND SCHUNCK, B. 1981. Determining Optical Flow.
Artificial Intelligence 17, 1-3, 185–203.

HORRY, Y., ANJYO, K., AND ARAI, K. 1997. Tour into the pic-
ture: Using a spidery mesh interface to make animation from
a single image. In Proceedings of SIGGRAPH 97, Computer
Graphics Proceedings, Annual Conference Series, 225–232.

IRANI, M., ANANDAN, P., AND HSU, S. 1995. Mosaic based rep-
resentations of video sequences and their applications. In ICCV,
605–611.

KHAN, E. A., REINHARD, E., FLEMING, R., AND BUELTHOFF,
H. 2006. Image-based material editing. ACM Transactions on
Graphics 25, 3 (July). Proceedings of the ACM SIGGRAPH
conference.

LALONDE, J.-F., HOIEM, D., EFROS, A., ROTHER, C., WINN,
J., AND CRIMINISI, A. 2007. Photo clip art. ACM Transactions
on Graphics 26, 3 (July). Proceedings of the ACM SIGGRAPH
conference.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2006. A Closed
Form Solution to Natural Image Matting. Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition-Volume 1, 61–68.

LÉVY, B. 2003. Dual domain extrapolation. ACM Transactions
on Graphics 22, 3 (July). Proceedings of the ACM SIGGRAPH
conference.

LI, Y., SUN, J., AND SHUM, H.-Y. 2005. Video object cut and
paste. ACM Transactions on Graphics 24, 3, 595–600.

LIU, C., TORRALBA, A., FREEMAN, W. T., DURAND, F., AND

ADELSON, E. H. 2005. Motion magnification. ACM Transac-
tions on Graphics 24, 3, 519–526.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node
algorithm for changing mesh topology during simulation. ACM
Transactions on Graphics 23, 3, 385–392.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001.
Image-based modeling and photo editing. In Proceedings of the
ACM SIGGRAPH conference.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. August.

RAV-ACHA, A., KOHLI, P., ROTHER, C., AND FITZGIBBON, A.
2008. Unwrap mosaics: a new representation for video editing.
ACM Transactions on Graphics 27, 3, 17:1–17:11.

SAND, P., AND TELLER, S. 2006. Particle video: Long-range
motion estimation using point trajectories. In Proceedings of the
Computer Vision and Pattern Recognition Conference, IEEE.

SEITZ, S. M., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND

SZELISKI, R. 2006. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In Proceedings of the Com-
puter Vision and Pattern Recognition Conference, IEEE, 519–
528.

SHI, J., AND TOMASI, C. 1994. Good features to track. Computer
Vision and Pattern Recognition, 1994. Proceedings CVPR’94.,
1994 IEEE Computer Society Conference on, 593–600.

SILLION, F., DRETTAKIS, G., AND BODELET, B. 1997. Ef-
ficient impostor manipulation for real-time visualization of ur-
ban scenery. Computer Graphics Forum (Proc. EUROGRAPH-
ICS’97) 16, 3, 207–218.

SZELISKI, R. S. 1996. Video mosaics for virtual environments.
IEEE Computer Graphics and Applications 16, 2 (March), 22–
30.

SZELISKI, R. S. 2004. Video-based rendering. In Vision, Model-
ing, and Visualization, 447.

VAN DEN HENGEL, A., DICK, A., THORMÄHLEN, T., WARD, B.,
AND TORR, P. H. S. 2007. Videotrace: rapid interactive scene
modelling from video. ACM Transactions on Graphics 26, 3,
86:1–86:5. Proceedings of the ACM SIGGRAPH conference.

WANG, J. Y. A., AND ADELSON, E. H. 1994. Representing mov-
ing images with layers. IEEE Transactions on Image Processing
3, 5, 625–638.

WANG, J., AND COHEN, M. 2007. Optimized color sampling for
robust matting. In Proceedings of the IEEE CVPR, IEEE.

WANG, J., BHAT, P., COLBURN, R. A., AGRAWALA, M., AND

COHEN, M. F. 2005. Interactive video cutout. ACM Transac-
tions on Graphics 24, 3, 585–594.

WANG, J., DRUCKER, S., AGRAWALA, M., AND COHEN, M.
2006. The cartoon animation filter. ACMTransactions on Graph-
ics 25, 3, 1169–1173.

ZHANG, G., DONG, Z., JIA, J., WAN, L., WONG, T., AND BAO,
H. 2009. Refilming with depth-inferred videos. IEEE Transac-
tions on Visualization and Computer Graphics 15, 5, 828–840.

