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Figure 1: Starting with a 3D model (a), we derive an editable layered vector representation (b). We introduce an algorithm to perform the
necessary number of cuts to be able to spread arbitrary manifold models on layers in a consistent way. Layer representations are common to
many vector illustration packages. Their power is illustrated in the various examples produced by us (c) and by artists (d,e) from our output.

Abstract

Artists often need to import and embellish 3D models coming
from CAD-CAM into 2D vector graphics software to produce, e.g.,
brochures or manuals. Current automatic solutions tend to result,
at best, in a 2D triangle soup and artists often have to trace over
3D renderings. We describe a method to convert 3D models into
2D layered vector illustrations that respect visibility and facilitate
further editing. Our core contribution is a visibility method that
can partition a mesh into large components that can be layered ac-
cording to visibility. Because self-occluding objects and objects
forming occlusion cycles cannot be represented by layers without
being cut, we introduce a new cut algorithm that uses a graph rep-
resentation of the mesh and curvature-aware geodesic distances.

This paper is the author’s version and only a preprint. The
definitive version is published in the Transactions on Graphics
28(3) (Proceedings of SIGGRAPH 2009)
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1 Introduction

In a variety of contexts, artists need to create 2D vector art of a
given 3D CAD-CAM model. The following examples, gathered
from an informal survey of users of 2D vector graphics software,
show the need for a 3D to 2D conversion enabling editing. For ex-
ample, while architects model buildings and interiors in 3D, many
presentations to clients are created by artists with 2D vector graph-
ics. The 2D illustrator typically chooses the viewpoint that best
suits the scene, converts the models into 2D illustrations, and shades
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them in a stylized manner characteristic of architectural previews.
A similar pipeline is often used to create mechanical illustrations,
e.g., cutaways and exploded views. In this case, illustrators also
work on the layout of the diagram, increase the size of important
small parts, remove useless details, and add annotations. In con-
trast, existing conversion methods are designed as the final step of
the authoring pipeline, that is, they generate illustrations that are
not meant to be edited. As a result, many artists need to perform
the conversion manually, either tracing over a bitmap rendering,
or working from the triangle soup produced by a simple projection.
They spend tedious time recreating meaningful primitives from dis-
connected lines and organizing elements into depth layers [Vector-
Tuts.com 2008]. While in some cases, it might be possible to create
the final illustration directly from the 3D model, e.g. [Li et al.
2007; Li et al. 2008; Vollick et al. 2007], these dedicated methods
cover only a subset of the tasks of an illustrator.

In this paper, we address the critical need to convert 3D meshes
into editable 2D vector graphics, focusing on visibility and layer-
ing. Occlusions in vector illustrations are typically handled through
ordering and layers that separate occluding and occluded objects.
Our approach focuses on this aspect and produces a multi-layer il-
lustration. The major difficulty of layer representations are self-
occluding objects and complex occlusion dependencies. For in-
stance, a self-occluding object always needs to be spread on sev-
eral layers. Figure 1 shows such situations. The stairwell is passing
through the floor and hence a cut is necessary. Even small details,
like the lamp or some leafs of the flower contain self occlusions
and need cuts. None of these elements could be placed on a sin-
gle layer without causing order-related artifacts. Consequently, the
mesh needs to be decomposed. The main contribution of this pa-
per is how we decide which parts and along which line to cut. We
describe a graph that represents the occlusion and adjacency rela-
tionships in the scene. We show that self-occlusions and occlusion
cycles are oriented cycles of this graph, i.e., cycles containing at
least one arc. Layer creation then boils down to a graph decompo-
sition problem for which we describe an effective solution. Itera-
tively we will determine conflicts in the graph that we solve by cuts
on the mesh. These cuts separate initially neighboring faces and
hence remove cycles from the graph. We use biased geodesic dis-
tances over the mesh surface to locate these cuts so that the editing
possibilities are preserved as much as possible.



We demonstrate our method on diverse inputs, from simple objects
to complex scenes. We have asked artists to work using the doc-
uments produced by our algorithm and their results illustrate the
possibilities offered by our method.

1.1 Related Work

A variety of techniques deal with 2D vector content [Isenberg et al.
2005] and we review some methods that are related to our work.

Alternatives Pipelines When possible, it can be beneficial to
create the final illustration directly from the 3D model. For in-
stance, Kalnins et al. [2002] directly specify NPR style on the 3D
model in their WYSIWYG NPR approach, while Li et al. [2007;
2008] render cutaways and exploded views directly from 3D. In
contrast, we address the case where artists need to work with 2D
vector graphics software for flexibility or workflow reasons. From
this perspective, our work is related to Asente’s planar maps [2007].
However, we focus on the 3D-to-2D conversion and layer creation
whereas the planar maps are flat 2D structures.
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Figure 2: Depth peeling gives correct layering, but breaks objects
apart when it is not necessary, even in simple scenes. In contrast,
our algorithm decomposes objects only when necessary.

Hidden Surface Removal and Transparency Our method or-
ders a 3D scene into a series of components sorted by depth. This
relates to back-to-front rendering [Newell et al. 1972; Sutherland
et al. 1974] and to depth peeling that is used to render transpar-
ent objects [Mammen 1989]. These techniques decompose a scene
into elements that are sorted by depth so that rendering them in or-
der yields a final image with the correct visibility or transparency.
These algorithms work at the facet level and focus only on resolv-
ing occlusions. The input scene is broken up into many triangles
and, from the illustrator’s standpoint, the scene structure is lost.
An example of this shortcoming is shown in Figure 2. Snyder
and Lengyel [1998] proposed to avoid cutting by deriving blending
functions to solve occlusion. Their solution used a similar, but sim-
pler occlusion graph structure but did not resolve all situations. In
contrast, we create valid layered documents meant for editing that
respect the scene structure. Ryu [2001] also decomposes a model
into occlusion-free layers. His algorithm works mostly at the trian-
gle level and addresses rendering performance whereas we analyze
a graph and focus on editing.

Bitmap Vectorization Bitmaps can be vectorized and many
methods exist on this topic, e.g. [Orzan et al. 2008; Sun et al. 2007].
Commercial solutions, like SWIFT or LiveTrace render 3D models
and vectorize these images. Some components, e.g., illumination,
can be separated, but since all geometric primitives lie in the same
layer, the input structure is lost and the resulting document is diffi-
cult to edit (Figure 3).

Adobe Live Trace 

Our Layered Solution

Figure 3: Bitmap to vector conversion techniques such as Live-
Trace (in Illustrator) lack accuracy and lack a layering structure.
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Figure 4: Previous methods culled invisible parts for a fixed con-
figuration (a). Manipulations reveal obvious artifacts (b). Our lay-
ering strategies support such modifications (c).

Vector Rendering of 3D Models Recently, Stroila et al. [2008]
and Eisemann et al. [2008] described algorithms to convert 3D
models into vector graphics. But their objectives are significantly
different. Stroila et al. focus on contour line extraction. Eisemann
et al. handle conversion and stylization at the same time. Besides
overlaid shading curves, the vector representations are flat. Editing
is limited, as illustrated in Figure 4. Eisemann et al.’s algorithm
relies on a planar map containing some information about hidden
parts, but it is unclear how to extend it to layer decomposition.

1.2 Contributions

Our paper introduces the following contributions:

Rendering a 3D model as a multi-layer vector illustration: We
transform an input 3D mesh into a 2D vector document that
is organized in depth layers that respect the input structure.

Graph-based mesh analysis: We introduce an adjacency-occlu-
sion graph that lets us study the visibility and connectivity
of a 3D model on a compact and discrete structure.

Cuts: We decide where to cut a model using locally-defined dis-
tance functions on its surface.

2 Mesh Decomposition according to Visibility

Overview Given a manifold 3D mesh without self-intersection
and a viewpoint, we create a layered 2D vector illustration. That is,
we decompose the mesh into parts that can be ordered with respect
to visibility, i.e., back to front rendering yields the correct image.

Furthermore, we seek to facilitate editing by the user. For this, we
want to avoid polygon soups and aim for larger components.This is
a major difference with the traditional Painter’s algorithm [Newell
et al. 1972] that operates at the polygon level. However, an object
might exhibit self occlusion (Fig 5a), or a group of objects might not
be possible to order according to visibility because of an occlusion
cycle [Newell et al. 1972] (Fig. 6). In this case, we need to cut the
mesh into multiple components to ensure visibility ordering. We
want to avoid placing such cuts at places in the vector art where they
might be difficult to handle for the user. In particular, we avoid the
coincidence of cuts and contours (the separation between the front-
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Figure 5: Simple example of graph construction. We first remove the back faces (shown in wireframe on the middle views), then we compute
the view map (a, bottom) by projecting the contours in the image plane. We backproject the view map cells to obtain regions of constant
visibility (b). From these, we build a graph with regions as nodes, undirected edges between neighboring regions, arcs between occluding
and occluded regions (c). Oriented cycles in this graph correspond to layering inconsistencies. The involved regions can be used to derive a
distance field that helps us deduce the location of a necessary cut. The cut disconnects the two regions in conflict (e) and eliminates the cycle
in the graph. Once all cycles are removed, a layering becomes possible (f).

and backfacing surface) because it complicates element selection
and navigation through the layers.

Figure 5 is an overview of our algorithm. We use two data struc-
tures to achieve our decomposition. A view map, e.g. [Grabli
et al. 2004], decomposes the mesh into regions of constant visibil-
ity. These regions have a constant number of surfaces in front and
behind them (Fig. 5b). In a sense, it is an over-segmented solution
to our problem, just like depth peeling. By definition, these regions
can be ordered back-to-front, but this strategy results in excessive
subdivision and cuts perfectly aligned with contours. We want to
create larger components and place cuts away from contours.

We also use a graph data structure, which we call the adjacency-
occlusion graph. Its nodes are the regions of constant visibility of
the mesh. The graph first represents adjacency between regions.
In Figure 5 (c), the edges between regions 0 and 1, 1 and 2, etc.,
follow the mesh topology. The more of these edges we retain, the
less disconnected regions will appear in the final output. We call
regions/nodes neighboring if they are linked by an adjacency edge,
and adjacent if there is a sequence of intermediate neighboring re-
gions. In addition, the graph encodes information about visibility.
A directed edge, the occlusion arc links regions that project to the
same area of the view map. An edge goes from the region closest
to the viewpoint to the occluded region, such as the edge between
regions 3 and 1 in Figure 5 (c). These edges signify occlusions.
Consequently, we call a node with incoming/outgoing occlusion
arc(s) an occludee/occluder. We call nodes connected if there is
a sequence of arcs (respecting orientation) and edges from one to
the other. All cycles that include at least one such edge indicate that
a proper visibility ordering is not possible and we refer to them as
oriented cycles. Other cycles can exist and indicate adjacency on
the mesh, which we try to maintain, where possible, in our output.

Given our adjacency-occlusion graph, our problem of mesh decom-
position according to visibility is to eliminate oriented cycles in
the graph. For this, we split nodes into subnodes, which corre-
sponds to cutting the mesh across the corresponding region. Again,
this is related to the Painter’s algorithm where polygons need to
be cut to eliminate oriented cycles, except that we deal with non-
planar objects that can self occlude and hence, need to create a view
map from contours. Finally, the precise cut location is based on a
heuristic using a curvature-aware distance notion on the mesh (Fig-
ure 5(d)). In the end, we obtain a decomposition of the input mesh
into a small number of components, two in Figure 5(e), that can be
ordered back-to-front and yield correct visibility (f).

Our algorithm proceeds as follows, and is detailed below.

1. We remove the parts of the input mesh facing away from the
input viewpoint.

2. We compute a view map of the input, that is, we project the
mesh contours in the image plane of the input viewpoint. We
backproject the view map in 3D to define the regions of con-
stant visibility of the mesh.

3. We build a graph in which each region is a node and edges
indicate either adjacency or occlusion between two regions.

4. We search for oriented cycles in the resulting graphs. These
correspond to conflicts such as self-occlusions that require the
mesh to be cut. We describe a method to treat several oriented
cycles at the same time.

5. We cut the mesh to eliminate selected oriented cycles from the
graph. The cuts are lines equidistant between occluding and
occluded regions where the metric is based on the geodesic
distance and the curvature of the mesh.

6. We assign a layer ID to the foremost component created by
the cut. We extract it, update the graph and iterate Steps 4, 5,
and 6 until all parts of the mesh are simplified on layers.

2.1 View Map

To capture the changes of visibility, we compute a view map by
projecting all contours in the image plane of the viewpoint. The
view map consists of cells delineated by projected contours. We
backproject these cells onto the mesh to define regions of constant
visibility. To gain more intuition, we observe a simple case: a point
a occluding another point b. Since a occludes b, the two points are
on the same line of sight and project on the same point in the view
map. If we backproject the cell containing this point, we obtain two
regions A and B that contain a and b respectively. By definition
of the view map, there is no contour in A nor B, which means
that the entire region A occludes the entire region B. This shows
the usefulness of the decomposition: we can solve occlusions with
regions since there are no visibility changes within them. The view
map is related to Appel’s quantitative invisibility [1967] that counts
the objects in front of a point. However, our representation is not
equivalent since we also take the objects behind into account.

Building the View Map We construct the view map and the con-
stant visibility regions with a method inspired by BSP-trees. First,
we detect the contours of the model. For each contour segment, we
compute the equation of the plane containing this segment and the
viewpoint. If a face intersects this plane, we compute the equation



of the plane containing this face and project the contour segment
onto it. If this projection intersects the face, we cut the face along
the contour plane. During this process, we make sure that the mesh
remains manifold by maintaining mesh connectivity and subdivid-
ing the uncut faces neighboring to a cut face. Robustness of the
cutting process is addressed by using a small ε for the plane inter-
section test, and by carefully treating vertices with a distance to the
contour plane below this threshold (cf. supplemental material).

Regions are constructed with a flood-fill algorithm. Region bound-
aries are necessarily cuts or contours, so we assign a region ID to
an unlabeled face and propagate it until we reach a cut or boundary.
We then start a new propagation with a new unlabeled face and ID.

2.2 Adjacency-Occlusion Graph

Our adjacency-occlusion graph summarizes adjacency and occlu-
sion relationships between regions. Each region of constant visibil-
ity is a node in our graph. If two regions are neighboring, we create
an undirected adjacency edge between them. When possible, to
preserve the model’s structure, they should be assigned to the same
layer. Occlusion arcs are added using ray tracing. A ray is shot
through each region center and we add arcs between successively
intersected region pairs. When creating layers, we must ensure that
nodes linked by an occlusion arc are in different layers.

Simple Example The input model in Figure 5 is a bent cylinder
that projects into an “alpha”. An occlusion occurs where the cylin-
der passes on top of itself. The view map has 4 cells: the two ends,
the center, and the overlapping part. Backprojecting the view map
generates 5 regions, one for each cell, except for the overlapping
cell which gives an occluder-occludee pair. We number the regions
from 0 to 4. The undirected edges between neighboring regions
create the chain 0 − 1 − 2 − 3 − 4. The arc 3 → 1 represents
the occluder-occludee pair. We cannot put the object in a single
layer without overlap because it is self-occluding. The oriented cy-
cle 1− 2− 3→ 1 indicates a conflict since it means that 1, 2, and
3 are in a connected component that contains an occlusion. The
following section discusses such cases in more detail.

2.3 Finding Conflicts using the Graph

There are two main reasons to cut the input mesh. If an object oc-
cludes itself, we need to separate occluder and occludee by breaking
the connectivity. The other case is an occlusion cycle such as the
three bars of Figure 6 that cannot be ordered by depth. In our graph,
both cases correspond to the same configuration: an oriented cycle.

If there are no oriented cycles in the graph, layering is possible
without cutting the model. Each mesh component, defined by adja-
cency, can be put on one layer. The partial ordering induced by the
occlusion arcs is used to sort the layers.

If there are oriented cycles, the input model has self-occlusions or

graph

regions in sideview

input mesh

view map derived layers

Figure 6: Inconsistencies with respect to layers do arise from self
occlusions, and occlusion cycles produced by chains of objects.

occlusion cycles. We resolve these cases with cuts. In graph terms,
a cut splits a node of an oriented cycle into subnodes. The subn-
odes are relinked in the graph by adding an adjacency edge between
nodes whose corresponding regions on the mesh are neighboring
and not separated by a cut. Formally, our objective is to split nodes
until all oriented cycles are eliminated. For the bent cylinder (Fig-
ure 5), we cut the node 2. The subnodes 2a and 2b are not linked
but 2a is linked to 1 and 2b to 3 because they are neighboring. After
the cut, we have two layers: {0, 1, 2a} and {2b, 3, 4}.

optimal: single cut our solution: 2 cuts

Figure 7: Minimizing the number of cuts can lead to unnatural de-
compositions (left). In comparison, our heuristic yields more satis-
fying layers (right).

The problem is related to the minimum-feedback-arc-set and
minimum-feedback-vertex-set problems that seek to remove a min-
imal set of edges or nodes so that the remaining graph is acyclic.
These graph problems are known to be NP-hard [Kann 1992]. Our
problem is not equivalent because we do not remove nodes but split
them and we use the input geometry to determine the graph adja-
cency after a cut. Also, the notion of optimality is hard to define
in our case. Cut or region minimization can yield difficult-to-edit
shapes (see Figure 7). This motivated our use of heuristics to create
editable layers. Figure 8 summarizes our approach.

function CREATELAYERS(input: Graph G, Mesh M )

0. Extract the strongly connected components of G.
for each strongly connected component g of G

1. Choose node i with largest number of occlusion arcs in g.
2. Create cut mesh M ′ from M to break i’s oriented cycles:

(a) Create a set R containing i and all adjacent occluders
not neighboring to an occludee.

(b) On Mesh M : Compute the equidistant curve C be-
tween R and all occluded regions.

(c) Cut regions traversed byC, producing meshM ′. Split
corresponding nodes in g and update adjacency in g.

3. Create a layer containing i:
(a) Create selection L with i and its adjacent nodes in g.
(b) Assign a layer ID to L and remove L’s nodes from g.

4. If g is not empty, call CREATELAYERS(g,M ′).

Figure 8: Pseudo-code for creating layers.

Since we are concerned about cycles, we can restrict ourselves to
strongly connected components which are maximal sets of nodes
such that any two nodes are connected. Since all nodes of a cycle
are connected, they are always contained within a single such com-
ponent. Working within components is an optimization that lets us
deal with smaller graphs (Step 0). We first process the region that
occludes the largest number of occludees (Step 1). This heuristic
is based on the intuition that this region is involved in many cy-
cles since it occludes many regions. This strategy is similar to the
heuristic proposed by Skiena [1998] to find feedback sets. This re-
gion has no occluder and no region has more occludees, hence, it
also has the maximum difference between the number of outgoing
edges (occludees) and the number of incoming edges (occluders),
which is Skiena’s criterion. Once we have selected the most oc-
cluding region, we search for other occluders to process simultane-
ously (Step 2a). Figure 9 shows that handling occluders one by one



can produce unsatisfying layers. We select all those occluders not
next to an occludee to prevent superimposed splines due to a cut
aligned with a contour. We compute a cut line (as detailed in the
next section) to separate these occluding regions from the occludees
(Step 2b). We split the crossed faces and update the graph accord-
ingly, that is, no edges across cuts and undirected adjacency edges
for neighboring regions on the mesh (Step 2c). We use a flood-fill
algorithm to extract the portion of the model delineated by the cut
that contains the most occluding region selected earlier (Step 3a).
We assign a new layer ID to the corresponding mesh faces and re-
move the regions from the graph (Step 3b). If faces remain in the
current component, we start the layer creation algorithm again on
the remaining graph (Step 4).

0
2

3
4

1

sideview with graph

distance propagation
input mesh

independent con�ict 
handling

our cut placement

a)

b)

c) d)

e)

Figure 9: Two bumps (a) already lead to an interesting layering
problem. Treating conflicts in the graph (c) independently leads to
undesirable cuts (b). Our diffusion solution (d, explained in Sec-
tion 2.4) treats many conflicts at once to improve the cuts (e).

2.4 Cutting the Model

Once we have selected the regions to separate, we cut the model.
To gain intuition, we first consider computing the geodesic distance
from both the occluding and the occluded region sets. We locate
the equidistant points, and we cut the model along this boundary.
The cut separates the occluder and occludee and breaks the cycles
that ran through its boundary.

The distance on the mesh is approximated by shortest paths along
edges. We compute the distance of every vertex to the nearest oc-
cluding and occluded regions using a connectivity-respecting front-
propagation algorithm based on a priority queue. Each vertex stores
a marker indicating whether the closest region is an occluder or
an occludee. The cut is placed where the two fronts meet. Most
models yielded satisfying cuts despite the path approximation. For
regular quad meshes random triangulation and subdivision helped.

The geodesic distance may not always yield satisfying lines. The
problem of finding “good lines” on 3D models has been largely
studied in the context of mesh segmentation, e.g. [Attene et al.
2006], and for line drawings, e.g. [DeCarlo et al. 2003; Judd et al.
2007; Cole et al. 2008]. Several options have been proposed and
one or another performs better depending on the considered model.

Figure 10: Penalizing curvature often leads to fuzzy boundaries
(left), the opposite more quickly isolates the part in conflict and
propagates a frontier that respects the feature (right).

Our strategy is to weight the metric in the direction ~d at point x by a
factor w(x, ~d). We consider two options. The first one places more
weight on high curvature points: w×(x, ~d) = |κn(x, ~d)| where κn

denotes the normal curvature at x in direction ~v. The second one

weights them less:

w÷(x, ~d) =
1

1 + |κn(x, ~d)|
(1)

In our tests, the latter performed better and our results are obtained
with it. This comes from the fact that self-occluding areas are often
thin and elongated akin to the bent cylinder (Fig. 5). The weightw×
exaggerates the distances along the feature, which creates wiggly
cuts. In contrast, w÷ attenuates the distance along the features,
which generates smoother boundaries (Figure 10).

Contours induce layer boundaries. At cusps, our smooth cut sep-
arates tangentially meeting conflict regions. Because of how the
diffusion is initialized, the cuts must join up with contours on the
surface at obtuse angles. Since the surface is also viewed edge on
at these points, these cuts extend contours with G1 continuity in
2D [DeCarlo et al. 2003]. In general, the distance diffusion process
leads to a smoothly delineated extracted layer (Figure 11).

Figure 11: Simple cases showing the cut-placement behavior.

2.5 Creating the Final Output

After a cut, the extracted faces have no occlusion and can be flat-
tened on a layer. Each such face set receives a layer ID. After all
cuts, the graph is acyclic and we can sort the layers by depth using
topological order. As a post-process, we further reduce the number
of layers. Each layer receives a new ID equal to the maximum ID of
its occluders plus one. Hence, no occluder-occludee pair is assigned
the same ID, while layers sharing the same ID can be merged.

To create the vector representation of a layer, we extract its bound-
ary by walking over the faces. We obtain a three-dimensional poly-
line. This boundary is projected in 2D and we apply a Newton-
Raphson optimization [Press et al. 1992] to convert the obtained
2D polyline into splines. To prevent holes between neighboring
regions, we decompose this 2D polyline into sub-chains such that
each sub-chain is of maximal length and the faces on the other side
have the same layer ID. We convert the sub-chains into splines in-
dependently. This ensures that the boundary between two regions
is represented by the same spline.

To support objects with holes such as tori, all splines are grouped in
a single compound path. The interior and exterior regions are then
correctly defined by the winding number. This feature is common in
vector editing packages. We also found it useful to output separate
splines for contours to ease the application of a style.

3 Results

Performance We have tested our algorithm with a number of
polygonal models. Performance statistics can be found in Table 2.
Our prototype is able to convert 3D models of moderate complexity
into editable 2D vector graphics. Computation costs are dominated
by ray casting because we do not use any acceleration structures.
Note the relatively low number of final layers, which is important
to facilitate the tasks of artists editing the 2D vector document.

One limitation of our approach are poorly-conformed 3D meshes
represented as polygonal soups. Mesh repair techniques,



nodes occluders occludees both edges directed SCC largest SCC cut executions
Apartment (Fig. 1) 4,825 1,122 1,308 2,336 19,834 9,646 253 74 4
Elephant (Fig. 13) 37 15 15 1 59 17 4 26 2
Car (Fig. 15) 1,234 425 390 271 3,565 1,329 92 473 16
Alien (Fig. 16) 150 60 58 9 250 85 28 32 8

Table 1: Statistics about the numbers of nodes (total, occluding, occluded, occluding & occluded), number of edges (total, directed), number
of strongly connected components (SCC), number of nodes in the largest SCC, number of executions of the cut algorithm.
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TalusTalus Navicular Bone(a) input (b) our layers

(c) illustration by an artist (d) illustration by an artist

Figure 12: The original model (a) was transformed into a layer representation (b). The output was then transformed by artists. For the
example (c), the original input was rich enough to finish the entire illustration in about 15 minutes.

scene apartment elephant car
number of faces 20,427 38,399 65,192
cycle removal and layering 3.3s 0.3s 1.6s
graph creation 84s 11s 154s
final # of visibility layers 22 3 15

Table 2: Performance on a Pentium Centrino 2.2 GHz. The graph
creation dominates the computation due to missing optimizations.

Figure 13: Examples. Stylization took 5 to 10 minutes.

e.g., [Nooruddin and Turk 2003] could be used as a preprocess to
our algorithm to ensure mesh connectivity.

Prospective-User Feedback We asked a few illustrators to work
with the documents that we created. The illustrators were recruited
from research participation mailing lists and received small com-
pensation for their time. They worked with the editing software Il-
lustrator. We asked them to modify the documents along guidelines
such as “create an educational illustration” or “create an architec-
tural drawing with cutaways” (Examples are given as supplemental
material). The participants were not supervised nor observed while
they drew. Beside the theme of the illustration, the illustrators were
free to draw what they wanted. The participants answered a short
questionnaire about their experience.

Figures 1, 12, 14, 15 show returned illustrations. The edits range
from simple changes of color and shape (Fig. 14) to complex lay-
out design (Fig. 1) and sophisticated inclusion of bitmap elements
(Fig. 15). The level of complexity of some of these edits demon-
strate that our results are usable for advanced editing tasks. In ad-
dition, the received comments were globally positive as shown by

bulky,
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body

short legs

short, wide
snout horn

forward-pointing
horns up to 3 ft

(90 cm) long

short tail

5-toed feet

cheek
protuberance

toothless
beak

Figure 14: For this example, professional artists were asked to cre-
ate an annotated illustration as can be found in schoolbooks.

the following examples.

‘‘The layers are very handy in order to quickly select and modify
groups of shapes. I like this arrangement. Nice and flexible - it
matches my usual work flow in the use of layers - especially when
working with content from 3D. It’s also nice to have ordered layers.
It would be nice to see options for generating this content.”

“[The layers] were helpful. Made Creating depth easier. You don’t
have to be as exact since you can use existing element to “trap” or
Clip objects placed below them.”

“[The layers] were helpful to distinguish between the various sec-
tions of the figure. I personally do not rely heavily on layers, so it
was more of an adjustment for me to use them while working. I un-
derstand the benefits of them, but I never got into the habit of using
them. Old habits die hard, I guess.”

This last comment is particularly interesting as it describes a usage
of our layers that we did not expect. We also received less positive
comments, mostly related to the usage of Illustrator. For instance,
a participant did not know how to reduce the number of control
points, which slowed them down. The main criticism by one par-
ticipant was the number of layers that can be large with complex
illustrations such as the apartment (Fig.1). This suggests creating
hierarchical layers as future work. An interesting observation is
that none of the five artists commented on the positioning of the cut
lines, showing that our motivation to make areas quickly accessible
by avoiding cuts on contours seems to be a valid criterion.



4 Summary

We presented a method to convert 3D models into editable vector
graphics. Our approach generates documents structured in visibil-
ity layers. An informal user study showed that these documents
address a need and help illustrators create compelling results. Even
though, we focused on static images, our method can also be helpful
for 2D animation, e.g., Adobe’s Flash (see video and Figure 16).
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Fellowship, and a generous gift from Adobe. This work was sup-
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Figure 15: The upper left illustration was created automatically.
The upper right shows a version edited by one of the authors, which
took about 20 minutes including the conception of the design. Note
that we were able to reveal the back wheel that was hidden in the
initial view. The bottom illustration was done by a professional
artist who used the extracted regions to clip bitmap components.

Figure 16: Simple 2D vector animation using the initial pose (left).
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