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Abstract

Adjusting photographs to obtain compelling renditions
requires skill and time. Even contrast and brightness ad-
justments are challenging because they require taking into
account the image content. Photographers are also known
for having different retouching preferences. As the result of
this complexity, rule-based, one-size-fits-all automatic tech-
niques often fail. This problem can greatly benefit from
supervised machine learning but the lack of training data
has impeded work in this area. Our first contribution is
the creation of a high-quality reference dataset. We col-
lected 5,000 photos, manually annotated them, and hired
5 trained photographers to retouch each picture. The result
is a collection of 5 sets of 5,000 example input-output pairs
that enable supervised learning. We first use this dataset to
predict a user’s adjustment from a large training set. We
then show that our dataset and features enable the accurate
adjustment personalization using a carefully chosen set of
training photos. Finally, we introduce difference learning:
this method models and predicts difference between users. It
frees the user from using predetermined photos for training.
We show that difference learning enables accurate predic-
tion using only a handful of examples.

1. Introduction

Adjusting tonal attributes of photographs is a critical as-
pect of photography. Professional retouchers can turn a flat-
looking photograph into a postcard by careful manipulation
of tones. This is, however, a tedious process that requires
skill to balance between multiple objectives: contrast in one
part of the photograph may be traded off for better contrast
in another. The craft of photo retouching is elusive and,
while a plethora of books describe issues and processes,
the decision factors are usually subjective and cannot be di-
rectly embedded into algorithmic procedures. Casual users
would greatly benefit from automatic adjustment tools that
can acquire individual retouching preferences. Even profes-

sional photographers often wish they could rely more on au-
tomatic adjustment when dealing with large collections in a
limited amount of time (e.g. a wedding photoshoot). Photo
editing packages offer automatic adjustment such as image
histogram stretching and equalization. Unfortunately, such
simple heuristics do not distinguish between low- and high-
key scenes or scenes with back-lighting and other difficult
lighting situations.

We propose to address the problem of automatic global
adjustment using supervised machine learning. As with any
learning approach, the quality of the training data is critical.
No such data are currently available and previous work has
resorted to rule-based, computer-generated training exam-
ples [10]. Another alternative is to use on-line photo col-
lections such as Flickr, e.g. [4]. However, since only the
adjusted versions are available, these methods require un-
supervised learning. This is a hard problem and requires
huge training sets, up to a million and more. Furthermore,
it is unclear how to relate the adjusted output images to
the unedited input [4]. This makes it impossible to train
such methods for one’s style, as a user would have to man-
ually adjust thousands of images. To address these short-
comings and enable high-quality supervised learning, we
have assembled a dataset of 5,000 photographs, with both
the original RAW images straight from the camera and ad-
justed versions by 5 trained photographers (see Figure 1 for
an example).

The availability of both the input and output image in
our collection allows us to use supervised learning to learn
global tonal adjustments. That is, we learn image trans-
formations that can be modeled with a single luminance
remapping curve applied independently to each pixel. We
hypothesize that such adjustments depend on both low level
features, such as histograms, and high-level features such
as presence of faces. We propose a number of features and
apply a regression techniques such as linear least squares,
LASSO, and Gaussian Process Regression (GPR). We show
a good agreement between our predicted adjustment and
ground truth.
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While a brute-force supervised learning approach is con-
venient for learning a single “neutral” rendition correspond-
ing to one of the photographers hired to retouch our dataset,
it necessitates a large investment in retouching thousands
of photographs. In order to accommodate a greater variety
of styles without requiring thousands of examples for each
style, we build on Kang et al. [10]: We seek to select a small
number of photographs so that adjustments on new photos
can be best predicted from this reduced training set. A user
then only needs to retouch this small set of training pho-
tographs to personalize future adjustments. We show that
our dataset together with our new features provide signifi-
cant performance improvement over previous work.

The above-mentioned approach still requires users to
retouch a predefined set of images that come from the
database, as opposed to their own photos. We want to al-
leviate this and learn the adjustments of a user directly from
arbitrary photographs. We hypothesize that there is a cor-
relation between users. We use a two-step approach, where
the prediction from our neutral style trained on thousands of
images is combined with a method that learns on-the-fly the
difference between neutral and the new style of adjustment.
The learning is further helped by the use of a covariance
matrix learned on the large database. We show that this
can enable good predictions using only a handful of user-
provided adjustments.

1.1. Related Work

Photo editing software such as Adobe Photoshop enables
arbitrary pixel modifications with a plethora of tools. In
contrast, we want to focus on the fundamentals of photo ren-
dition, and in particular the adjustment of brightness, con-
trast, and a tonal response curve in the spirit of the zone
system [1, 2]. These are the type of edits that motivated
lighter-weight packages such as Adobe Lightroom and Ap-
ple Aperture that provide simpler, parametric control over
photo renditions and enable a much faster workflow. These
packages offer automatic photo adjustment tools but unfor-
tunately, little is known about the actual techniques used.
As far as we can tell, many of them apply simple rules such
as fixing the black and white points of the image to the dark-
est and brightest pixels. Although this may work on simple
cases, these approaches fail on more complex examples for
which a photographer would apply more sophisticated mod-
ifications.

There are numerous books about image adjustment,
e.g. [1, 2, 6, 13]. However, their suggestions cannot be di-
rectly converted into an algorithm. The guidelines rarely
provide actual values and often rely on the subjective judg-
ment of the viewer. The recommendations can also be con-
tradictory when several elements are present in a photo. To
adjust images, photographers make decisions and compro-
mises. Our dataset provides numerous examples of these
complex adjustments and thereby enables their systematic

modeling using supervised machine learning.
Tone mapping algorithms [15] compress the tonal range

of HDR images. By default, these techniques produce a
generic rendition. Although the achieved look can be con-
trolled by parameters, these are set by the user. Bae et al. [3]
and Hertzmann et al. [9] adjust photos using a model pro-
vided by the user. In comparison, we focus on fully auto-
matic adjustment.

Several methods, e.g. [5, 12], have been proposed to as-
sess the visual quality of photos. However, using these tech-
niques in the context of adjustment would be nontrivial be-
cause these methods strongly rely on the image content to
discriminate the good images from the bad ones. In compar-
ison, an adjustment modifies the rendition while the content
is fixed. From this perspective, our dataset offers an op-
portunity to revisit the style-vs-content problem studied by
Tenenbaum and Freeman [17].

Gehler et al. [7] have shown that supervised learning can
be a successful approach to inferring the color of the light
that illuminates a scene. Our work shares the machine-
learning approach with this paper but focuses on tonal ad-
justments.

Dale et al. [4] restore damaged photos using a corpus
of images downloaded from Internet. The dataset is huge
but only the final rendition is available. In comparison, our
images are not damaged and we seek to improve their rendi-
tion, not repair problems such as over- and under-exposure.
More importantly, our dataset provides both input and out-
put images.

Kang et al. [10] personalize the output of an automatic
adjustment method by using a small but predetermined set
of examples from their collection. Given a new image, their
approach copies the adjustment of nearest user-retouched
example. To determine the similarity metric between pho-
tos, Kang et al. use metric learning and sensor place-
ment [11]. However, metric learning requires a large train-
ing set to be effective. On that issue, Kang et al. note that “it
is infeasible for any user to find these parameters manually
because no large collection of photos including untouched
input and retouched versions is available,” which motivates
their generating synthetic training data using gray-highlight
white balance and histogram stretching. In contrast, we col-
lected adjustments from trained photographers. Also, en-
able users to train the system without a predetermined set
of examples by learning the difference between photogra-
phers. Thus, we leverage our dataset while freeing the user
from working on training images.

1.2. Contributions

A reference dataset We have collected 5,000 photos in
RAW format and hired 5 trained photographers to re-
touched each of them by hand. We tagged the photos
according their content and ran user study to rank the
photographers according to viewers’ preference.
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(a) input (b) Retoucher A (c) Retoucher B

(d) Retoucher C (e) Retoucher D (f) Retoucher E

Figure 1. On this photo, the retouchers have produced diverse of outputs, from a sunset mood (b) to a day light look (f). There is no single
good answer and the retoucher’s interpretation plays a significant role in the final result. We argue that supervised machine learning is well
suited to deal with the difficult task of automatic photo adjustment, and we provide a dataset of reference images that enables this approach.
This figure may be better viewed in the electronic version.

Global learning We use this dataset for supervised learn-
ing. We describe a set of features and labels that enable
the prediction of a user’s adjustment.

Sensor placement Our dataset enables sensor placement to
select a small set of representative photos. Using ad-
justments made to these photos by new users we accu-
rately learn preferences of new users.

Difference learning We show that predicting the difference
between two photographers can generate better results
than predicting the absolute adjustment directly, and
that it can be used for learning users’ preferences on-
the-fly.

2. A Dataset of Input-Output Photographs

We have collected 5,000 photographs taken with SLR
cameras by a set of different photographers. They are all in
RAW format, i.e., all the information recorded by the cam-
era sensor is available. We have made sure that the pho-
tographs cover a broad diversity of scenes, subjects, and
lighting conditions. We then hired five photography stu-
dents in an art school to adjust the tone of the photos. Each
of them retouched all the 5,000 photos using a software ded-
icated to photo adjustment (Adobe Lightroom) on which
they were extensively trained. We asked the retouchers to
achieve visually pleasing renditions, akin to a postcard. The
retouchers were compensated for their work. A visual in-
spection reveals that the retouchers made large modifica-
tions to the input images. Moreover, their adjustments are
nontrivial and often differ significantly among the retouch-
ers. Figure 1 shows an example of this diversity. We nu-

merically evaluate these points with statistics computed in
the CIE-Lab color space. The difference between the input
photo and the retouched versions is 5.5 on average and can
be as much as 23.7. And the average difference between the
retouched version is 3.3 and the maximum is 23.5. For ref-
erence, the difference between white and black in CIE-Lab
is 100. We also augmented the dataset with tags collected
with Amazon Mechanical Turk to annotate the content of
the photos. We also ran a user study in a controlled setting
to rank photographers according to users’ preference on a
subset of our dataset.

We studied the dimensionality of the tone remapping
curves that transform the input image luminance into the
adjusted one. We found that the first three principal com-
ponents explain 99% of the variance of the dataset and that
the first component alone is responsible for 90% of it. This
is why we focus our learning on this component.

3. Learning problem setup

3.1. Labels

We express adjustments as a remapping curve from input
luminance into output luminance, using the CIE-Lab color
space because it is reasonably perceptually uniform. The
curve is represented by a spline with 51 uniformly sampled
control points. We fit the spline to the pairs of input-output
luminance values in a least-squares sense.

We want to avoid bias due to the type of camera used for
a photo and the skill of the particular photographer. In par-
ticular, different camera metering systems or a user’s man-
ual settings might result in different exposures for a given
scene. This is why we normalize the exposure to the same
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baseline by linearly remapping the luminance values of each
image so that the minimum is 0 and the maximum 100.

We focus on learning the first PCA coefficient of the
remapping curves, which is a good approximation to the
full curve (§ 2). At run time, we predict the new adjustment
by reconstructing the full curves and interpolating linearly
between samples.

3.2. Features

The features that we use for learning are motivated by
photographic practice and range from low level descriptions
of luminance distribution to high-level aspects such as face
detection. Before computing features, we resize the images
so that their long edge is 500 pixels.

� Intensity distributions: Photographers commonly rely
on the distribution of intensities as depicted by a log-scale
histogram to adjust the tonal balance. We consider the dis-
tribution of the log-intensity log(R+G+B) and compute
its mean and its percentiles sampled every 2%. We also
evaluate the same percentiles on two Gaussian-convolved
versions of the photo (σ = 10 and σ = 30) to account for
the tonal distributions at larger scales.

� Scene brightness: We hypothesize that scenes that are
dark vs. bright in the real world might be adjusted differ-
ently. We evaluate the scene brightness as: (Ŷ ×N2)/(∆t×
ISO) where Ŷ is the median intensity, N is the lens aper-
ture number that is inversely proportional to the aperture
radius, ∆t is the exposure duration, and ISO is the sensor
gain. This quantity is proportional to the light reaching the
camera sensor and assumes that there is no filter attached.

� Equalization curves: Photographers tend to use the
entire available intensity range. Histogram equalization is a
coarse approximation of this strategy. We compute the cor-
responding curve, i.e., the cumulative distribution function
(CDF) of the image intensities, and project it on the first 5
PCA components of the curve

� Detail-weighted equalization curves: Detailed regions
often receive more attention. We represent this by weight-
ing each pixel by the gradient magnitude, and then project
the weighted CDF onto the first 5 PCA components of the
curve. We estimate the gradients with Gaussian derivatives
for σ = 1, σ = 100, and σ = 200 to account for details at
different scales.

� Highlight clipping: Managing the amount of highlight
that gets “clipped” is a key aspect of photo retouching. We
compute the label values that clip the following fraction of
the image: 1%, 2%, 3%, 5%, 10%, and 15%.

� Spatial distributions: The fraction of highlights, mid-
tones, and shadows are key aspects discussed in the pho-
tography literature. However, their percentage alone does
not tell the whole story, and it is important to also consider
how a given tone range is spatially distributed. We split the
intensity range in 10 intervals. For each of them, we fit a

2D spatial Gaussian to the corresponding pixels. The fea-
ture value is the area of the fitted Gaussian divided by the
number of pixels in the given tone range. We also use the
xy coordinates of the center of the Gaussian as a feature
representing the coarse spatial distribution of tones.

� Faces: People are often the main subject of a photo
and their adjustment has priority. We detect faces and com-
pute the following features: intensity percentiles within fa-
cial regions (if none, we use the percentiles of the whole
image), total area, mean xy location, and number of faces.

We also experimented with other features such as local
histograms, color distributions, and scene descriptors but
they did not improve the results in our experiments.

3.3. Error Metric

We use the L2 metric in the CIE-Lab color space to
evaluate the learning results because this space is percep-
tually uniform. The difference between white and black is
100, and distance of 2.3 corresponds to a just-noticeable-
difference (JND) [16]. Since we focus on tonal balance,
we measure the difference in luminance between the pre-
dicted output and the user-adjusted reference. We evaluate
our learning methods by splitting our dataset into training
on 80% dataset and testing on the remaining 20%.

4. Learning Automatic Adjustment

We consider two practical cases. First, we aim for re-
producing the adjustment of a single photographer given a
large collection of examples. In the second case, we seek
to learn adjustments from a specific user from a small set of
examples, assuming that we have access to a large collec-
tion of examples by another photographer. To validate our
approach, we compare it to the recent method of Kang et
al. [10] because it tackles similar issues and requires only
minor changes to work on our dataset.

4.1. Predicting a User’s Adjustment

In this scenario, we have a large dataset of examples
from a single user and we learn to adjust images similarly
to this photographer. This is useful for a camera or soft-
ware company to train an automatic adjustment tool. We
tested several regression algorithms: linear regression as a
simple baseline, LASSO as a simple and still efficient tech-
nique [8], and Gaussian Processes Regression (GPR) as a
powerful but computationally more expensive method [14].
LASSO performs a linear regression on a sparse subset of
the input dimensions. We trained it using 5-fold cross-
validation on the training set. GPR has been shown to have
great abilities to learn complex relationships but is also sig-
nificantly more expensive in terms of computation. To keep
the running time reasonable, we trained it only on 2,500
randomly selected examples.
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Comparison to Metric Learning For comparison, we
implemented a variant of the method by Kang et al. [10]
so that it uses our dataset and handles a single user. We
used the user’s adjustments instead of computer-generated
data for learning the metric. We kept sensor placement un-
changed, i.e., we select the images that maximize the mu-
tual information with the user’s adjustments. The nearest-
neighbor step is also unaltered except that we transfer the
tonal curve extracted from our data instead of Kang’s para-
metric curve and white balance.

Results We selected Retoucher C for our evaluation be-
cause the high ranking in our user study. Using labels from
Retoucher C we compared several options: the mean curve
of the training set; the metric learning method using 25 sen-
sors as recommended by the authors of [10]; least-squares
regression (LSR); LASSO set to keep about 50 features; and
GPR. The prediction accuracy is reported in Table 1. Re-
gression techniques perform significantly better than other
approaches. We also computed the leave-one-out perfor-
mance of metric-learning method: 9.8, which means that it
is limited independently of the number of sensors that we
select. This is further confirmed in the next section.

mean metric learning LSR LASSO GPR
13.2 11.5 5.2 4.9 4.7

Table 1. LAB error of several methods (lower is better) when pre-
dicting a user’s adjustment. For reference, not adjusting the photos
at all produces an error of 16.3.

Figure 2 shows error CDFs for automatic image adjust-
ment methods. In this figure, all methods were evaluted
on the same test set of 2,500 photos. Our method was
trained on 2,500 examples. The metric computation (a vari-
ant of [10]) used all 5,000 examples, but the nearest neigh-
bor prediction was done only using 2,500 training exam-
ples. Commerical methods were not trained on our dataset
and are shown for reference only.

Data versus Covariance GPR proceeds in two steps.
During training, it optimizes the hyper-parameters of a co-
variance function so that it best explains the training set. At
run time, it uses this covariance function to drive the com-
bination of some of the training curves. To find out whether
the performance of GPR comes from the covariance or from
the training data, we did the following comparison. First,
we trained the GPR covariance on the whole training set
of 2,500 photos but used only small number n of example
curves at run-time for prediction. We also trained the co-
variance with only n images and used the same n images for
prediction, practically reducing the size of the training set.
In the two tests, the run time data are the same, but in the
first case, the covariance function comes from a rich training
set while in the second case, it comes from a small set. Fig-
ure 4 shows that using the well-trained covariance function

Figure 2. Error CDFs of automatic photo adjustment methods
(higher is better). An error of 2.3 L units corresponds to 1 JND
(just noticeable difference). For visual calibration see Figure 3.
Lightroom, Photoshop, and Picasa were not trained on our dataset
and are shown for refernce only.

(a) Expert rendition (b) Prediction with error 0.8

(c) Expert rendition (d) Prediction with error 5.5

(e) Expert rendition (f) Prediction with error 7.6

(g) Expert rendition (h) Prediction with error 10.6

Figure 3. Sample prediction results for our method provided for
visual calibration of error values in Figure 2.
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Figure 4. Using pre-trained covariance function improves the ac-
curacy of prediction when only a few examples are available. In
the above example directly learning from 30 images results in the
same error as learning from 10 images and using pre-trained co-
variance.

yields significantly better prediction given the same small
number of run-time data. This highlights the importance
of the covariance function in the prediction process since
it models the structure of the photograph space. We build
upon this insight in the following sections.

4.2. Transferring a User’s Adjustments

The technique described in the previous section is suit-
able for off-line training. However, adjusting 5,000 images
requires several weeks of work, normal users cannot reason-
ably train this algorithm for their own style. In this section,
we leverage the fact that we already have a large dataset L
of 5000 images adjusted by the reference retoucher to en-
able learning from only a small set of examples S by a new
photographer.

4.2.1 Experimental Setup

To evaluate our approach, we implemented the following
algorithm. We run GPR on the large set L to compute a
covariance function. Akin to Kang et al. [10], we use sen-
sor placement [11] to select a small set S of images to be
adjusted by the new photographer. For the covariance ma-
trix needed to compute the mutual information, we use ΣL
(see [11] for detail). To predict the new photographer’s ad-
justment on an unseen photo, we use the covariance func-
tion trained on the large set L to run GPR interpolation on
the labels of the small set S .

For comparison, we also implemented the method of
Kang et al. We reproduced the automatic adjustment pro-
cedure that generates 4D vectors for each image of L. We
implemented the photo similarity functions that are pro-
posed, and linearly combined them to approximate in a

least-squares sense the L2 distance on the 4D coefficient
vectors. We ran sensor selection [11] to select S using the
described covariance matrix. Given an unseen image, we
search its nearest neighbor in S according to the learned
metric, and apply its tone curve onto the new image. We
also implemented variants to evaluate specific aspects. We
trained the metric of Kang et al. on a photographer’s curve
instead of the original synthetic data. We also replaced
nearest-neighbor search by GPR based on the covariance
matrix used for sensor placement.

4.2.2 Results

Figure 5 reports the results for several options. For each
scenario, we plot the accuracy as a function of the size of
S . In this figure, we compare a random selection with sen-
sor placement selection; we also indicate the leave-one-out
bound for reference. For all options but ours, the accu-
racy quickly reaches 10 and then plateaus (a, b, and d) or
degrades (c). Using our dataset instead of synthetic data
improves the leave-one-out performance (a vs. b). A sim-
ilar improvement happens when using the metric learned
with GPR instead of metric learning using a least-squares
fit [10] (a vs. d). Using GPR with a covariance matrix
optimized with metric learning yields poor results when S
grows (c). In all cases, sensor placement using mutual in-
formation produces better results on average than a random
selection. Although comparisons with Picasa have a limited
scope because Picasa is not trained on any data, our results
are consistent with the findings of Kang et al.: the differ-
ence between Picasa and their method using 25 images is
below 1 (11.4 vs 10.6), which is marginal. In comparison,
our approach performs significantly better than Picasa with
an improvement of almost 4 (11.4 vs 7.6). Most impor-
tantly, our tests show that using GPR with our dataset yields
results equivalent to other options up to 10 images, and per-
forms significantly better than them for larger sizes of S ,
producing an accuracy of about 7.6 with 25 images, instead
of about 10.6 for the other techniques, i.e. an improvement
on the order of 30% (f).

4.3. Difference Learning

The method described in the previous section reduces the
number of training examples to a few tens. However, new
users may prefer to train the system using their own pho-
tos instead adjusting a predefined set of example to train
the system. In this section, we explore the scenario where
the preferences are learned on-the-fly using adjustments on
random pictures for training. Instead of learning the adjust-
ment of the new photographer directly, we propose to learn
the difference between the reference photographer and the
new adjustment. For a new photo, we first predict the ref-
erence adjustment and then predict its difference with the
new photographer’s version. Our experiments described in
the results section show the benefits of difference learning.
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Figure 5. Performance of various options to predict Retoucher C’s adjustments using a small set S of his examples and a large set L of
examples, either synthetic or from Retoucher D. We report the prediction error in CIE-Lab units as function of the size of S. We plot the
accuracy the sensor-placement selection (in red), of a random selection (average in blue, up to one standard deviation in gray), and of a
leave-one-out bound (in green). See text for detail.

Our Approach We first trained GPR on the large training
set L. Then, we predict the reference curves for each photo
of the small training set S and compute their difference with
the curves of the new photographers. This gives a series of
adjustment offsets. Given a new photo, we first predict the
reference adjustment r using the covariance trained on L
and the adjustments in L. We also predict an adjustment
offset o using the L covariance and the offsets computed
on S , and add it to the reference adjustment r. Finally, we
apply this combined adjustment r+ o to the photo.

Results Figure 6 shows that our approach using Re-
toucher E for L and Retoucher C for S . In this case,
Retoucher E and Retoucher C adjust photos similarly and
transfer learning as described in the previous section (§ 4.2)
does not predict C’s adjustments better than using GPR di-
rectly (§ 4.1) using only E’s photos. That is, the curves
predicted using of E’s data only are already a good approx-
imation of C’s adjustments, and transfer learning is unable
to improve over this baseline. In comparison, our differ-
ence learning approach yields better predictions than this
baseline, even if the available photos of C are randomly se-
lected. On average, as few as 3 examples photos are enough
to produce better results. Although the crossing point may

depend on the considered photographers, we believe that the
ability of difference learning to learn preferences from only
a few examples and its accuracy make it highly practical.

5. Conclusion

We have built a high-quality reference dataset for auto-
matic photo adjustment, which addresses a major need and
will enable new research on the learning of photographic
adjustment. In particular, we include data from five differ-
ent users to enable not only training but also comprehensive
validation. We have demonstrated that our photo collection
is a powerful tool to learn photo adjustment and study var-
ious aspects of it. We have shown that with high-quality
data, supervised learning can perform better than existing
techniques based on simple rules or synthetic training sets.
We have also found that regression with our new set of im-
age features outperforms previous methods. We have per-
formed transfer learning and shown that our dataset enables
better selection through sensor placement. We have also
shown that difference learning enables preference learning
in a on-the-fly context where the training photos are not pre-
determined. In addition to enabling these applications, our
dataset proves invaluable for validation.
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Figure 6. Several strategies to predict Retoucher C’s adjustments
from only n of his or her photos. We can directly train GPR on
these examples only but the predictions are poor (first plot from
the top). To improve the results, we can use transfer learning and
precompute the GPR covariance function using a large dataset by
Retoucher E (§ 4.2). This significantly improves the result (sec-
ond plot) and if the we can select which photos of Retoucher C
are available, sensor placement further improves the result (third
plot). However, in this case, C and E produce adjustments similar
enough so that applying GPR directly on E’s photos without using
any data from C better predicts C’s adjustment than the previously
mentioned options (fourth plot). This means that if our system
was trained off-line with E’s photos, the previous options would
not allow C to get predictions closer to his or her preferences. In
comparison, learning differences between C and E (§ 4.3) yields
better results. If the photos of C are random, the improvement
starts when 3 or more of C’s photos are available (fifth plot). If we
can select the photos with sensor placement, two example photos
are sufficient to see an improvement (bottom plot).
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