
Spatio-Temporal Analysis for Parameterizing Animated Lines

Bert Buchholz1 Noura Faraj1 Sylvain Paris2 Elmar Eisemann1 Tamy Boubekeur1
1Telecom ParisTech - CNRS 2Adobe

Figure 1: Our algorithm builds a temporally consistent parameterization for lines extracted from an animated 3D scene.

Abstract

We describe a method to parameterize lines generated from ani-
mated 3D models in the context of animated line drawings. Car-
toons and mechanical illustrations are popular subjects of non-
photorealistic drawings and are often generated from 3D models.
Adding texture to the lines, for instance to depict brush strokes or
dashed lines, enables greater expressiveness, e.g. to distinguish be-
tween visible and hidden lines. However, dynamic visibility events
and the evolving shape of the lines raise issues that have been only
partially explored so far. In this paper, we assume that the entire 3D
animation is known ahead of time, as is typically the case for fea-
ture animations and off-line rendering. At the core of our method is
a geometric formulation of the problem as a parameterization of the
space-time surface swept by a 2D line during the animation. First,
we build this surface by extracting lines in each frame. We demon-
strate our approach with silhouette lines. Then, we locate visibility
events that would create discontinuities and propagate them through
time. They decompose the surface into charts with a disc topology.
We parameterize each chart via a least-squares approach that re-
flects the specific requirements of line drawing. This step results in
a texture atlas of the space-time surface which defines the parame-
terization for each line. We show that by adjusting a few weights
in the least-squares energy, the artist can obtain an artifact-free an-
imated motion in a variety of typical non-photorealistic styles such
as painterly strokes and technical line drawing.

Keywords: animated line drawing, temporal coherence

1 Introduction

Line drawing is a popular rendering style commonly used for me-
chanical illustrations, cartoons, and sketches and, in many cases,
these are derived from three-dimensional models. For instance,
many 3D CAD softwares applications offer line drawing as one of
the stylized rendering options. In line drawing, shapes are repre-
sented by a few carefully selected lines such as silhouettes [Hertz-
mann and Zorin 2000], suggestive contours [DeCarlo et al. 2003],
or apparent ridges and valleys [Judd et al. 2007]. The simplest ap-
proach is to render lines as continuous and textureless, as if one

used a ball-point pen with even pressure. But often, the lines are
textured to offer greater expressiveness – for instance simulating
brush strokes, dashed lines, or calligraphic curves. In this paper,
we are interested in parameterizing the lines such that such textures
can be applied to them.

A typical work session starts by creating a 3D animation. While
many research studies still work on improving this step, we use
existing tools such as Maya and Blender and assume that a 3D ani-
mation is available. The next step is to select the lines to be drawn.
In this work, we focus on the case where these lines are silhouettes.
We describe a procedure to track silhouettes across frames in Sec-
tion 2. Without this grouping, each line would be parameterized
independently of the others, which produces “sliding” artifacts, e.g.
brush strokes look “disconnected from the underlying 3D model”.
Once the lines are grouped through time, we compute a parame-
terization over these lines. This is the main focus of our paper, it
is described in Section 3. Our goal is to define how the texture is
mapped onto a line. This parameterization is directly responsible
for the stretch and compression of the texture and for its motion.
As such, it plays a critical role in the look of the rendered anima-
tion. Once we have parameterized the lines, the last step is to render
the animation, for which we use standard techniques.

The difficulty of parameterizing animated lines comes from the fact
that they are extracted from a three-dimensional model whereas the
final drawing lives in the 2D image plane. We seek a temporally
consistent parameterization such that the drawing looks like it fol-
lows the actual motion of the scene. However, there is no general
solution to this problem. For instance, if one constrains the 2D lines
to exactly follow the 3D model, effects like foreshortening may lead
to unsightly texture distortion and brush stroke may become overly
compressed or stretched. On the other hand, avoiding distortions
can lead to significant motion inconsistencies. In our approach, we
formulate temporal coherence as a least-squares optimization prob-
lem where each constraint is weighted by parameters that let users
control the look of the final output. Another major difficulty comes
from lines that merge and split, which introduces topological dis-
continuities in the drawing. Ignoring these events yields unpleas-
ing “popping” artifacts, e.g. a brush strokes suddenly becomes two
strokes. Kalnins et al. [2003] have shown that such discontinuities
can be handled by extending them in time, e.g. by always drawing



two strokes even if, in some frames, it is a single connected line.
Because Kalnins’s approach works in real time, this strategy is only
partially effective. It prevents popping due to disocclusion but not
artifacts due to occlusions. Further, it also tends to over-segment
lines, creating a large number of short strokes. We will discuss this
difficulty in more detail (Section 4). Unlike Kalnins and colleagues,
we assume that the whole animation is known from the start. Al-
though this choice makes our method inapplicable in a game con-
text, it makes it more suitable for feature animations where quality
is paramount. In this respect, our approach is complementary to
previous work.

Our approach works in the space-time domain that is the product
of the (x, y) image space with the time axis t. For each line to be
drawn, we consider the space-time set of 1D lines spanned by the
line throughout the animation, which we name `(t). It can be seen
as a 2D surface in the (x, y, t) domain and we cast the problem of
parameterizing `(t) as the parameterization of this 2D space-time
surface. This is the central idea of our paper. This construction
allows us to account for the 3D motion of the input model and
the distortion of the 2D line texture, and we can ensure the com-
plete coverage of the line. Further, we handle splitting and merging
events with a graph embedded in the line space-time surface. Our
approach enables the reuse of the line discontinuities for several
events, thereby drastically reducing the number of actual strokes
needed in a given animation.

1.1 Related Work

A wealth of articles deal with rendering line drawings from 3D
models. Several methods have been proposed to decide where to
draw lines on a given 3D model, e.g. [Hertzmann and Zorin 2000;
DeCarlo et al. 2003; Judd et al. 2007; Cole et al. 2008; Grabli et al.
2010]. Whereas most of these studies focus on static scenes, De-
Carlo et al. [2004] describe a technique specific to animation. In
this work, we focus on line parameterization and illustrate our ap-
proach on silhouette lines. We will also discuss how it can be ex-
tended to other lines.

A few methods specifically target the rendering of animations as
line drawings. However, most of them produce uniform lines with
no texture [Lee et al. 2007; Winnemöller et al. 2006]. The most
related work to ours is by Kalnins et al. [2002; 2003] who also fo-
cus on temporally consistent textured lines. We share their goal of
adding texture onto lines which greatly improves the expressive-
ness of the drawing. For instance, texture can be used to represent
dotted lines, brush strokes, or even surface details such as cactus
needles. However, Kalnins et al. demonstrate that a naive param-
eterization yields unacceptable results with texture sliding on the
object surface. They address this problem in the context of real-
time interactive simulation, where only the next frame is known at
a point. Although they demonstrate convincing results in a number
of cases, this partial knowledge of the animation limits their ability
to adapt to topological events. For instance, they cannot deal with
appearing discontinuities because these events are unknown until
they occur [Kalnins 2004, § 4.5]. This kind of “unexpected event”
is inherent to any real-time scenario. In this paper, we explore a dif-
ferent, complementary case in which the entire animation is known
in advance. In this context, our approach can “anticipate” appearing
discontinuities and adapt to them. In particular, our parameteriza-
tion does not produce popping artifacts when an occlusion occurs
and requires fewer cuts along lines, thereby rendering longer and
more visually pleasing strokes.

Depending on the parameterization, the line texture may be com-
pressed or stretched producing unpleasant renderings. Bénard et
al. [2010] address this issue by generating a multi-scale texture. The

T
im

e

Animated 
3D 

Sequence

Space-Time 
Surface 
from 

Animated Lines

Temporally 
Consistent

Line 
Parameterization

Temporally 
Consistent

Line 
Drawing

Figure 2: Principle: a temporally consistent parameterization of a
line drawing is computed by parameterizing the space time surface
it defines over time and used for texturing.

proposed parameterization focuses on the same real-time scenario
as Kalnins et al. [2003] and shares the same limitations inherent in
this setup.

Depending on the view distance, lines may become too close
or even start overlapping, altering shape perception. Shesh and
Chen [2008] solve this problem by defining a line hierarchy and
replacing multiple overlapping strokes by a single “average” line.

Temporal consistency has also been studied for the texture that rep-
resents the interior of the models and the canvas on which the illus-
tration is drawn, e.g. [Cunzi et al. 2003; Kim et al. 2008; Bénard
et al. 2009]. However, the 1D nature of lines raises specific chal-
lenges, as the topology of 1D curves significantly differs from the
topology of a 2D canvas.

1.2 Contributions

In this paper, we introduce the following contributions.

Space-time formulation We formulate the parameterization of a
animated line as the parameterization of the space-time sur-
face that it swept during the animation (see Fig. 2).

Least-squares optimization of geometric constraints We ex-
press our objectives as a series of geometric constraints. We
represent each of them by a least-squares energy term and the
trade-off between the constraints is controlled by a small set
of meaningful parameters.

Discontinuity reuse We show that line discontinuities can be
reused to limit the number of cuts made to the lines. We con-
trol the trade-off between cut reuse and temporal coherence
with a simple parameter for the maximum allowed sliding.

1.3 Overview

Input Our model takes as input an animated 3D model M(t)
where t is the time variable defined over an interval T, and a cam-
era that is represented by the function π that projects 3D points
onto the image plane. We assume that M has a temporally con-
sistent parameterization, that is, for any point P of the model, we
can compute its trajectory P(t) during the animation. In practice,
these conditions are always satisfied when the data come from a



 Extraction

Line Set

Reconstruction

Animated 3D Scene

Space Time Bands

Space Time Surface

Parameterization

Time Coherent Lines

Segmentation

Figure 3: Overview: lines are extracted independently for each
frame of the animation, before being grouped as plausible corre-
sponding lines from frame to frame. Lines may split or merge dur-
ing the animation and create a graph which is subsequently de-
composed in bands corresponding to single lines over time. These
bands, or space-time lines, are finally parameterized independently
under user control to provide time-coherent parametric lines.

3D modeler in which a base mesh is deformed while its topology is
preserved. The mesh vertices and faces are naturally linked through
time, which implicitly ensures a temporally consistent parameteri-
zation of the 3D model. We also propose a heuristic to cope with
simple models that do not have such parameterization, e.g. meta-
balls. We also assume that the camera is given as input, that is, we
have a projection function π that maps 3D points onto the image
space.

Objective We seek to parameterize the 2D lines that correspond
to the silhouettes ofM(t). We process the lines one by one. We
name L(t) a 3D line at the surface ofM at time t. As t changes,
L may move on M. We name ` the 2D projection of L, that is,
` = π(L). In this work, we seek a parameterization of ` that is
temporally consistent. Formally, we aim to define a function f(u, t)
such that at any time t ∈ T, f is a continuous one-to-one mapping
between the parameter space, e.g. u ∈ [0; 1], and `(t).

Strategy We formulate the parameterization of a line ` as the pa-
rameterization of the space-time surface S swept by ` during the
animation, that is, S =

S
t `(t). First, we construct S from the lines

extracted at each frame. Then, we expose how we deal with tempo-
ral coherence when the topology of the lines does not change over
time. We formulate desired properties such as temporal coherence,
lack of distortion, and line coverage in geometric terms expressed
on S. Then, we translate this problem into a least-squares opti-
mization that can be solved with a sparse linear system. In a second
part, we cope with splitting and merging events of these lines. To
avoid popping, we cut lines and propagate the resulting discontinu-
ities. We show how to use the same cut for several discontinuities to
avoid over-segmenting the lines. With our space-time formulation,
the cuts are geodesic lines on S and our handling of discontinuities
corresponds to decomposing S into charts with a disc topology. Fi-
nally, we present and discuss representative results of our approach.

2 Building the Space-Time Surface

In this section, we expose how to build the space-time surface S
generated by a line ` during the animation. First we describe a
technique that we use on simple examples. Then we expose a ro-
bust method that copes with complex topological changes and more
realistic models in the case where the lines can be defined as the
level set of scalar functions defined on the mesh, as is the case for
silhouettes.

topological event at P
necessarily: scalar �eld is zero at P

forward in time after eventback in time before event

P

P

P

Silhouettes can change topology 
only if viewpoint is in vertex plane

P

viewpoint

Figure 4: Robust topology change detection for lines which can be
modeled as the zero level sets of a scalar function (e.g. silhouettes).

2.1 Simple Construction

For educational examples such as Figure 2, we follow a simple ap-
proach to build the space-time surface S. We consider the lines ex-
tracted in two consecutive frames and use a voting scheme to decide
which lines should be paired, i.e. which lines are actually adjacent
on S. Each vertex of each line casts a vote for the nearest vertex in
the other frame according to the image space distance. For a given
line, we observe the votes cast by its vertices and link it to the line
in the other frame that received the most votes. This process creates
a graph where lines extracted at each frame are the nodes and where
the arcs indicate how to build the surface. Topology changes, i.e.
when lines split or merge, are detected when a line is linked to more
than one line in an adjacent frame.

The advantage of this approach is that it only assumes that we can
extract lines at each frame. For instance, it can deal with an ani-
mated 3D model inconsistently meshed from frame to frame, which
allows for processing meta-balls as shown in Figure 2. Moreover it
can handle any kind of line drawing. However, it also relies on the
fact that the image distance represents well the evolution of the lines
on the 3D model which may not always be true for more complex
models. We describe a robust approach that handles these cases in
the following section.

2.2 Robust Construction

We assume that the input modelM is a triangular mesh. If it is not,
we convert it before processing it. The silhouette ofM is made of
one or several closed loops. First, we characterize when topolog-
ical changes occur, i.e. when loops split or merge. Silhouettes are
characterized by a zero dot product between the mesh normal n and
the view direction V. We estimate a normal n at each vertex and
linearly interpolate it over the faces. With this scheme, at most one
silhouette line can cross a triangular face: if n ·V has the same sign
for all three vertices, there is no silhouette, and if the sign changes,
one silhouette line crosses the two edges with different signs. Since
a topological event corresponds to two or more lines being in con-



Time (t)

s

Periodic (e.g., Dot Lines). Aperiodic/Stretchable (e.g., Brush Stroke)

...

Animated Sequence

Figure 5: Space-time parameterization of a line set: our varia-
tional formulation offers intuitive control w.r.t. to the texture func-
tion type (stretchable or periodic).

tact, this cannot happen inside a face and must occur at a vertex.
Thus, we only need to examine vertices and time instants where
n ·V = 0. Assuming that the camera and mesh move linearly be-
tween frames, this amounts to finding the zero-crossing of a linear
function. For each possible candidate, we check whether there is
more than one line going through the vertex. If that is the case, we
mark the vertex and time instant as a topological event (Fig. 4).

Once we have listed all the events, we build the space-time surface
S by considering what happens between two frames at t and t+∆t.
There are two cases. If there is no topological event, the silhouette
loops have moved over the mesh without splitting or merging. In
this case, we label the mesh with the sign of n ·V at t and its sign
at t + ∆t. Mesh regions swept by the silhouette between the two
frames have opposite signs, and since there is no topological events
and the camera moves along a segment, these regions are discon-
nected. In particular, the linear camera movement ensures that a
vertex can change its sign at most once. Using these properties, we
build S by pairing lines at t and t+∆t that are linked by a mesh re-
gion with opposite n ·V signs. In the other case when there are one
or more events between the two frames, we split the time interval
so that a single event happens at time t0 in each interval. We extract
the loops at t0 − ε just before the event, and at t0 + ε just after it
(Fig. 4). The t0 − ε lines can be linked to the lines in the earlier
frames using the no-event case. The same applies to the t0 + ε lines
and the later frames. We also link the t0− ε lines to the t0 + ε lines
to reflect the change of topology. If we split the interval between
two frames to isolate events, we concatenate the information of all
sub-intervals and only represent the links between the lines at t and
the lines at t + ∆t. Figures 8, 10, 11 and 9 show examples of our
space-time surface reconstructed by our approach.

Discussion Our robust reconstruction relies on the fact that lines
are a zero level set of a scalar function defined on the meshM. In
the case of silhouettes, the function is n · V. While not all lines
can be expressed as a zero level set, several others lines fall in this
category [Stroila et al. 2008]. This paper focuses on silhouette pa-
rameterization, and we believe that studying other types of lines is
a natural extension for our work in the future. In particular, the
above ideas can be applied directly to albedo and specular curves.
Currently, our implementation supports rigid motions only but we
do not expect any major difficulty to extend it to non-rigid transfor-
mations.

3 Parameterizing a Line Over Time

In this section, we explain how to find a temporally consistent pa-
rameterization of a line `. For now, we assume a single open 1-
manifold line evolving over time with no topological events. The
case of multiple lines and topological events is discussed in the next
section. We first discuss the parameterization in geometric terms

before translating it into a discrete optimization problem.

3.1 Geometric Formulation

Lines as Time Slices During the animation, a single open line
` sweeps a space-time surface S that has a disc topology. We seek
a uv parameterization of S, that is, a function f(u, v) such that
f(U,V) = S with U and V the spaces on which u and v are de-
fined. Because our goal is to parameterize the lines `(t) which are
“slices” of S along planes orthogonal to the t axis, we impose that
the v parameter is the time variable t. That is, we seek a function
f(u, t) such that for a given t0 ∈ T, f(U, t0) = `(t0).

Temporal Coherence To ensure the coherence between the 3D
motion and the 2D drawing, the trajectory of a point on the line
should match the trajectory of its corresponding 3D point. This
implies that the speed of the 3D model projected in the image plane
should be equal to the speed of the line. Formally, at a given time t0,
we seek:

d

dt
π
`
P(t)

´
=

d

dt
f (u0, t) (1)

where u0 is the parameter of the projection of P(t0) on S at t0, i.e.
f(u0, t0) = π(P(t0)).

Coverage and Distortion We consider two practical cases, ape-
riodic textures such as brush strokes, that stretch to cover the line,
and periodic patterns such as dotted lines that repeat to ensure cov-
erage (see Figure 5).

B For aperiodic textures, we seek a parameterization function f
that maps the [0; 1] interval onto `. That is, at every time t, we want
f([0; 1], t) = `(t). Since f is continuous, it is sufficient to consider
p1 and p2, the end points of `.

{p1(t),p2(t)} = {f(0, t), f(1, t)} (2)

To ensure this coverage, the texture has to be stretched or com-
pressed. Large variations in this stretching/compression yields un-
sightly results and we would like this distortion to be uniform along
the line, which means:

˛̨̨̨̨̨̨̨
d

du
f(u, t)

˛̨̨̨̨̨̨̨
= length

`
`(t)
´

(3)

B With periodic patterns such as dotted lines, coverage is not an
issue since we can repeat the texture as much as needed. Because
of this property, we do not need to stretch or compress the texture
as in the aperiodic case and we seek to preserve the original aspect
of the texture. We name a the length of the pattern, and to prevent
distortion, we seek:

˛̨̨̨̨̨̨̨
d

du
f(u, t)

˛̨̨̨̨̨̨̨
= a (4)

3.2 A Least-Squares Approach

In general, the constraints described above cannot be satisfied si-
multaneously. We use a least-squares approach to find a trade-off.
For aperiodic textures, this corresponds to:



Shape

Temporal
Coherency

Spatial
Coherency

Parameter value
0 1

Figure 6: From spatial to temporal coherency control.

arg minf wdis

»˛̨̨̨̨̨̨̨
df

du

˛̨̨̨̨̨̨̨
− length(`)

–2
+ wend

h`
p1(t)− f(0, t)

´2
+
`
p2(t)− f(1, t)

´2i
+ wproj

»
d

dt
π
`
P(t)

´
− d

dt
f(u0, t)

–2 (5)

where wproj, wdis, wend control the relative importance of each con-
straint. With periodic patterns, this becomes:

arg minf wdis

»˛̨̨̨̨̨̨̨
df

du

˛̨̨̨̨̨̨̨
− a
–2

+ wproj

»
d

dt
π
`
P(t)

´
− d

dt
f(u0, t)

–2 (6)

3.2.1 Discretization

In this section, we discretize Equations 5 and 6 so that they can be
minimized with standard linear optimization toolkits. First, we reg-
ularly sample the time t every ∆t and use i to denote the ith frame
of the animation, that is, the frame at t = i∆t. For simplicity, we
use an i subscript for entities related to frame i, i.e. `i = `(i∆t).
We also sample each `i with ni points {ri,1, . . . , ri,ni}. We use
length(ri,j , ri,j+1) to denote the length of the segment of `i be-
tween ri,j and ri,j+1. The unknowns of our optimization problem
are the scalar values ui,j such that f(ui,j , i∆t) = ri,j .

Temporal Coherence Given a point ri,j , we seek to find its cor-
responding points in frame i + 1. We consider its 3D counterpart
Ri,j , that is, π(Ri,j) = ri,j , and the 3D line Li on which it is lo-
cated. We search for the corresponding point R′ ∈ Li+1 at the next
frame. If there is no topological event between i and i+1, we know
that the two lines Li and Li+1 are separated by a region R of the
modelM where the line passed, i.e., where n ·V changed signs in
the case of silhouettes (§ 2.1). We find R′ as the closest point Ri,j

when considering only paths within R. We implemented this as a
shortest path problem on the mesh edges withinR. It is also useful
to use the image metric instead of the 3D distance since we seek
to preserve the coherence in the image plane. Although the camera
may be moving, we found it sufficient to use the projection πi+ 1

2
at the middle time instant to estimate distances. If more accuracy is
needed, one can subdivide the time interval. If there are topological
events, we subdivide the frame interval such that each sub-interval
has no event and apply the same pairing algorithm within each of
them. In practice, we reuse the same subdivision as when we built
the space time surface (§ 2.1). Once we find the closest 3D point
R′, we project it onto the image plane to get r′ = πi+1(R′). We
name j′ the index of r′ and define:

Eproj =
X

i

X
j

`
ui,j − ui+1,j′

´2 (7)

Events

T
im

e

Side view Front view

Object Contour Space-Time Surface

Cut lines over the surface

Merge

Merge

Split

Cut line

Split
Split

Merge

Figure 7: Line parameterization for a scene with dynamic geome-
try and topology. Our discontinuity-reuse algorithm pairs the split
and the merger, which limits the number and extent of the cuts.

Coverage and Distortion (Aperiodic Case) The coverage con-
straint (Eq. 2) is ui,1 = 0 and ui,ni = 1 for all i. The correspond-
ing energy term is:

Ea
end =

X
i

[u2
i,1 + (ui,ni − 1)2] (8)

The discrete version of the distortion constraint (Eq. 3) is:

ui,j+1 = ui,j +
length(ri,j , ri,j+1)

length(`i)
(9)

for all i and all 1 ≤ j < n. The corresponding energy term is:

Ea
dis =

X
i

ni−1X
j=1

„
ui,j+1 − ui,j −

length(ri,j , ri,j+1)

length(`i)

«2

(10)

Distortion (Periodic Case) The equations are similar except that
the length of the texture is a and we do not impose the [0, 1] cover-
age.

Ep
dis =

X
i

ni−1X
j=1

„
ui,j+1 − ui,j −

length(ri,j , ri,j+1)

a

«2

(11)

Putting it Together We assemble all the terms to obtain the final
energy in the aperiodic case:

Ea
total = wprojEproj + wdisE

a
dis + wendE

a
end (12)

and in the periodic case:

Ep
total = wprojEproj + wdisE

p
dis (13)

This is a classical least-squares energy where the ui,j variables
are unknown. This linear system is sparse and can be solved in
the least-squares sense. In our implementation, we use a sparse
Cholesky factorization.

4 Handling Discontinuities with Cuts

The parameterization algorithm presented in the previous section
handles a single open line, that we assume that the space-time sur-
face S has a disc topology. However, in general S has a more com-
plex topology and lines split or merge when a topological event
occurs. Our strategy is to decompose S into disc-like charts so that
splits and mergers always happen at chart boundaries. Intuitively,
when two lines meet, instead of merging them, we keep them sep-
arated by cutting S. While the produced lines are shorter, this en-
sures that there is no discontinuity within a line. Further, we pair
mergers and splits so that they share cuts, thereby minimizing the
length of these cuts. Figure 7 shows an example of the cuts.



We detect the split and merger points during the construction of
the space-time surface (§ 2). We extend these points in time to
produce lines free of discontinuities. A possible option is to prop-
agate each cut in time individually. Although this would generate
discontinuity-free lines, this would also overly segment the lines
and generate visually unpleasing results. We propose a better ap-
proach where forward cuts emerging from mergers are combined
with backward cuts coming from splits. Considering all possible
combinations of forward and backward cuts would generate a com-
binatorial explosion. We propose a simple heuristic that yields sat-
isfying results in practice.

Once we have detected all the mergers and splits, we analyze the
sequence from the first frame to the last, and process the events in
order. We describe the case of a merger ki ∈ `i, splits are handled
symmetrically. We assume that users have specified a parameter
σ that represents the maximum sliding that can be introduced for
cut reuse. Similar to § 3.2.1, we find the point k′i+1 ∈ `i+1 that
corresponds to ki. We collect the points ri+1,k ∈ `i+1 such that
length(k′i+1, ri+1,k) ≤ σ and such that there is no cut between
them and the propagated k′i+1 point. If one of them is a split, we
pair it with ki and nothing needs to be done. If several of them
are splits, we pick the one with shortest length. If none of them is
a split, we propagate the ri+1,k to the next frame and iterate the
process until we find a split at frame i+n. During this process, we
keep track of the k′ points that directly corresponds to the initial
cut point ki. If we find several splits at the same time, we pick
the point k?

i+n for which the distance length(k?
i+n,k

′
i+n) is the

smallest. Finally, we build the shortest path between ki and k?
i+n

on the space-time surface S and perform a cut along it.

5 Results

We have applied our approach to several scenes with various de-
grees of dynamism and complexity, ranging from simple static
scenes with moving viewpoint to deforming geometry with dy-
namic topology. Some minor jittering can be observed because we
handle visibility at the vertex level – this could be addressed by
computing visibility at each pixel at the expense of slower com-
putation times. We use the CHOLMOD solver [Chen et al. 2009]
to handle the linear system associated with each space-time line.
Solving the least-squares systems takes about 5 seconds for a mesh
made of 20k vertices over a sequence of 100 frames. The algo-
rithm’s speed depends heavily on the number of split and merge
events, and may require up to several minutes for few seconds of
animation. Figures 8, 9, 10 and 11 show sample results that we
obtain with various shapes. Even with seemingly simple models,
the space-time surface can often be complex and nontrivial to an-
alyze, including numerous splits and mergers. Nevertheless, our
approach finds a temporally consistent parameterization each time.
Our current implementation of the line tracking algorithm handles
rigidly moving objects and we are planning to extend it to non-rigid
transformations, which requires only technical adaptations since the
algorithm itself does not assume this condition. Beside this, our
simple proximity-based tracking can handle simple non-rigid ani-
mations and demonstrates that our parameterization approach also
works in this case. For rendering purpose, we exploit the visibility
of the lines stemming from the 3D model to either hide the occluded
ones or apply a different style to them.

6 Conclusion

We have described a method to produce temporally-consistent line
parameterization that can be used to render animated line draw-
ings. The cornerstone of our approach is the introduction of the
space-time surface that represents an animated line. Our approach

is grounded on a geometric analysis of temporal consistency based
on this surface. We translate this spatio-temporal analysis into
a discrete least-squares problem. We have shown that the user
can control the trade-off between temporal coherence and distor-
tion using a few meaningful parameters. Furthermore, we avoid
over-segmentation by pairing complementary topological disconti-
nuities. Together, these elements enable temporally consistent pa-
rameterizations that we demonstrate by rendering several complex
animations as line drawings.

Acknowledgements. We would like to thank Forrester Cole, Joelle
Thollot and Adam Finkelstein. This work has been partially funded
by an Institut Telecom Future & Rupture grant, the ANR KidPocket
project and the 3DLife European Network of Excellence.

References
BÉNARD, P., BOUSSEAU, A., AND THOLLOT, J. 2009. Dynamic solid textures for

real-time coherent stylization. In ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D), 121–127.

BÉNARD, P., COLE, F., GOLOVINSKIY, A., AND FINKELSTEIN, A. 2010. Self-
similar texture for coherent line stylization. In NPAR 2010: Proceedings of the 8th
International Symposium on Non-photorealistic Animation and Rendering, ACM
Press.

CHEN, Y., DAVIS, T. A., HAGER, W. W., AND RAJAMANICKAM, S. 2009.
Algorithm 887: Cholmod, supernodal sparse cholesky factorization and up-
date/downdate. ACM Trans. Math. Software 35, 3.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S., FINKELSTEIN,
A., FUNKHOUSER, T., AND RUSINKIEWICZ, S. 2008. Where do people draw
lines? ACM Transactions on Graphics 27, 3 (Aug.), 88:1–88:11.

CUNZI, M., THOLLOT, J., PARIS, S., DEBUNNE, G., GASCUEL, J.-D., AND DU-
RAND, F. 2003. Dynamic canvas for non-photorealistic walkthroughs. In Graphics
Interface 2003, 121–130.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA, A. 2003.
Suggestive contours for conveying shape. ACM Transactions on Graphics 22, 3
(July), 848–855.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S. 2004. Interactive ren-
dering of suggestive contours with temporal coherence. In NPAR 2004, 15–24.

GRABLI, S., TURQUIN, E., DURAND, F., AND SILLION, F. X. 2010. Programmable
rendering of line drawing from 3d scenes. ACM Transactions on Graphics 29, 2
(Mar.), 18:1–18:20.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In Proceedings
of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference
Series, 517–526.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges for line drawing.
ACM Transactions on Graphics 26, 3 (July), 19:1–19:7.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., LEE, J. C.,
DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND FINKELSTEIN, A. 2002.
WYSIWYG NPR: Drawing strokes directly on 3D models. ACM Transactions on
Graphics 21, 3 (July), 755–762.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND FINKELSTEIN, A. 2003.
Coherent stylized silhouettes. ACM Transactions on Graphics 22, 3 (July), 856–
861.

KALNINS, R. D. 2004. Interactive stylization for stroke-based rendering of 3D ani-
mation. PhD thesis, Princeton University.

KIM, Y., YU, J., YU, X., AND LEE, S. 2008. Line-art illustration of dynamic and
specular surfaces. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia) 27,
5.

LEE, Y., MARKOSIAN, L., LEE, S., AND HUGHES, J. F. 2007. Line drawings via
abstracted shading. ACM Transactions on Graphics 26, 3 (July), 18:1–18:5.

SHESH, A., AND CHEN, B. 2008. Efficient and dynamic simplification of line draw-
ings. Computer Graphics Forum 27, 2, 537–545.

STROILA, M., EISEMANN, E., AND HART, J. 2008. Clip art rendering of smooth
isosurfaces. IEEE Trans. Vis. Comput. Graph. 14, 1, 135–145.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-time video abstrac-
tion. ACM Transactions on Graphics 25, 3 (July), 1221–1226.



Temporally Consistent Line Drawing

Temporally Consistent Parameterization

Space Time Surface

Time

(a) “peanut” shape

Temporally Consistent Line Drawing

Temporally Consistent Parameterization

Space Time Surface

Time

(b) torus (c) “multipod” shape

Figure 8: Even simple shapes can generate complex lines. The silhouette of a peanut folds in nontrivial ways (a), the inner and outer
silhouettes of a torus repeatedly merge and split (b), and the multipod generates many visibility events (c).

Figure 9: Four frames of a desk model, with lines only.

Figure 10: Four frames of a more complex example: the cactus scene.

Figure 11: Four frames of an additional example.


