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Figure 1: We describe a lightweight color-based motion capture system that uses one or two commodity webcams and a color
shirt to track the upper body. Our system can be used in a variety of natural lighting environments such as this squash court, a
basketball court or outdoors.

Abstract

Motion capture systems have been widely used for high quality content creation and virtual reality but are rarely
used in consumer applications due to their price and setup cost. In this paper, we propose a motion capture system
built from commodity components that can be deployed in a matter of minutes.Our approach uses one or more
webcams and a color shirt to track the upper-body at interactive rates. We describe a robust color calibration sys-
tem that enables our color-based tracking to work against cluttered backgrounds and under multiple illuminants.
We demonstrate our system in several real-world indoor and outdoor settings.

1. Introduction

Motion capture data has revolutionized feature films and
video games. However, the price and complexity of existing
motion capture systems have restricted their use to research
universities and well-funded movie and game studios. Typi-
cally, mocap systems are setup in a dedicated room and are
difficult and time-consuming to relocate. In this paper, we
propose a simple mocap system consisting of a laptop and
one or more webcams. The system can be setup and cali-
brated within minutes. It can be moved into an office, a gym
or outdoors to capture motions in their natural environments.

Our system uses a robust color calibration technique and a
database-driven pose estimation algorithm to track a multi-
colored object. Color-based tracking has been used before
for garment capture [SSK∗05] and hand-tracking [WP09].
However these techniques are typically limited to studio set-
tings due to their sensitivity to the lighting environment.

Working outside a carefully controlled setting raises two
major issues. The color of the incident light may change,
thereby altering the apparent color of the garment in non-
trivial ways. One may also have to work in dimly lit scenes
that require slower shutter speeds. However, longer expo-
sure times increase motion blur, which perturbs tracking. We
contribute a method that continuously compensates for light
color variations and is robust to motion blur. We demonstrate
in the results section that this enables our system to track ac-
tivities in real-world settings that are challenging for existing
garment-based techniques.

Our tracking approach is complementary to more sophis-
ticated setups such as those that use infrared cameras and
markers. Without achieving the same accuracy, our system
is sufficiently precise to perform tasks such as motion anal-
ysis and contact detection, which makes it usable for aug-
mented reality and human-computer interaction. Its low cost
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and ease of deployment make it affordable to the masses and
we believe that it can help spread mocap as an input de-
vice for games and virtual reality applications. Furthermore,
since our system enables tracking at interactive rates, it en-
ables instant feedback for previsualization purposes.

2. Related work

A variety of motion capture technologies have been intro-
duced in the last two decades. We refer to the survey of
Welch and Foxlin [WF02] for a comprehensive overview.
In this section, we focus on the approaches most related to
ours.

White et al. [WCF07] and Scholz et al. [SSK∗05] propose
methods to track garments in motion using high-frequency
color patterns. To handle occlusions, White uses many cam-
eras and Scholz relies on user intervention. In comparison,
we use low-frequency patterns that are less likely to be fully
occluded, which allows our method to work automatically
from only one or a few cameras. We share this property with
the technique of Wang and Popović [WP09] for tracking
hands in an office environment. In comparison, we aim for a
broader range of conditions such as outdoors, sport centers,
and casual living rooms. The main challenge stemming from
these environments is their uncontrolled lighting, which is
often dim and non-uniform in intensity and color. Our ap-
proach explicitly addresses these difficulties and is able to
produce accurate estimates whereas Wang and Popović of-
ten yield gross errors under such conditions as shown in the
result section.

Recent wearable systems have enabled motion capture in
almost any environment, e.g. [MJKM04, VAV ∗07]. How-
ever, they do not provide the absolute position of the sub-
ject and require off-line processing of the data. Our approach
proposes a complementary trade-off. While the subject has
to remain within the visible range of the cameras, we provide
absolute tracking and interactive feedback.

The accuracy of markerless motion capture systems typi-
cally depend on the number of cameras used. Monocular or
stereo systems are portable but less accurate and limited by
the complexity of the motion [MHK06].

Commercial systems such as Microsoft Kinect [SFC∗11]
and iMocap [iMo07] also aim for on-site and easy-to-deploy
capture. The Kinect active illumination system is limited to
indoor use and subject to the occlusion limitations of a single
viewpoint, while iMocap is marker-based which probably
requires a careful setup. Beyond these differences, our work
and these methods share the same motivations of developing
mocap for interactive applications such as games [IWZL09],
augmented reality, and on-site previsualization.

Our work is also related to image analysis techniques that
rely on colors. Comaniciu et al. [CRM03] track an object
in image space by locally searching for a specific color his-
togram. In comparison, we locate the shirt without assuming

a specific histogram, which make our approach robust to illu-
mination changes. Furthermore, our algorithm is sufficiently
fast to perform a global search. It does not rely on tem-
poral smoothness and can handle large motions. Dynamic
color models have been proposed to cope with illumination
changes, e.g. [MRG99, KMB07, SS07]. The strong occlu-
sions that appear with our shirt would be challenging for
these models because one or several color patches can disap-
pear for long periods of time. In comparison, we update the
white balance using the a priori knowledge of the shirt color.
We can do so even if only a subset of the patches is visi-
ble, which makes the process robust to occlusions. Generic
approaches have been proposed for estimating the white bal-
ance, e.g. [GRB∗08], but these are too slow to be used in our
context. Our algorithm is more efficient with the help of a
color shirt as a reference.

3. Overview

We propose a system for upper body motion capture that
uses one or more cameras and a color shirt. Our system is
designed with low cost and fast setup in mind. The cameras
are USB webcams that generate 640×480 frames at 30 Hz.
They are geometrically calibrated using a standard computer
vision technique [Zha00] and color calibrated by scribbling
on a single frame from each camera. The entire setup time
typically takes less than five minutes.

Our processing pipeline consists of several steps. First,
we locate and crop the multi-colored shirt from the frame
by searching for an image region with the appropriate color
histogram (§4). Our histogram search technique allows us
to pick out the shirt with only a coarse background subtrac-
tion and white balance estimate. Once the object has been
located, we perform a robust pose estimation process that it-
eratively refines both the color and pose estimate of the shirt
region (§5).

We demonstrate the robustness of our system under
changing illumination and a dynamic background (§6). Pro-
cessing is performed at interactive rates on a laptop con-
nected to two webcams, making our system a portable and
inexpensive approach to motion capture suitable for virtual
and augmented reality.

4. Histogram search

Our first task is to locate the multi-colored shirt. The shirt
is composed of 20 patches colored with a set of 10 distinct
colors, each of which appears twice. Our shirt is distinctive
from real-world objects in that it is particularly colorful, and
we take advantage of this property to locate it. Our procedure
is robust enough to cope with a dynamic background and
inaccurate white balance. It is discriminative enough to start
from scratch at each frame, thereby avoiding any assumption
of temporal coherence.

To locate the shirt, we analyze the local distribution of
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chrominance values in the image. We define the chromi-
nance of an(r,g,b) pixel as its normalized counterpart
(r,g,b)/(r + g+ b). We defineh(x,y,s) as the normalized
chrominance histogram of thes×s region centered at(x,y).
In practice, we sample histograms with 100 bins. Colorful
regions likely to contain our shirt correspond to more uni-
form histograms whereas other areas tend to be dominated
by only a few colors, which produces peaky histograms (Fig.
2). We estimate the uniformity of a histogram by summing
its bins while limiting the contribution of the peaks. That
is, we computeu(h) = ∑i min(hi ,τ), settingτ = 0.1. With
this metric, a single-peak histogram hasu ≈ τ and a uni-
form oneu ≈ 1. Other metrics such as histogram entropy
perform similarly. The colorful shirt region registers a par-
ticularly high value ofu. However, choosing the pixel and
scale(x′,y′,s′) corresponding to the maximum uniformity
umax=maxu(x,y,s) proved to be unreliable. Instead, we use
a weighted average favoring the largest values:

(x′,y′,s′) =
1

∑x,y,sw(x,y,s) ∑
x,y,s

(x,y,s) w(x,y,s)

where w(x,y,s) = exp
(

− [u(h(x,y,s))−umax]
2

u2
σ

)

and uσ =

1
10umax.

The shirt usually occupies a significant portion of the
screen, and we do not require precise localization. This al-
lows us to sample histograms at every sixth pixel and search
over six discrete scales. We build an integral histogram to
accelerate histogram evaluation [Por05].

While the histogram search process does not require back-
ground subtraction, it can be accelerated by additionally re-
stricting the processing to a roughly segmented foreground
region. In practice, we use background subtraction [SG99]
for both the histogram search and to suppress background
pixels in the color classification (§5).

(b)

(b)

(a)

(a)

(c)

u = 0.30
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histogram u = 0.44

More
uniform
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Uniformity heat map

Figure 2: The colorful shirt has a more uniform chromatic-
ity histogram (b) with many non-zero entries whereas most
other regions have a peakier histogram (a) dominated by
one or two colors. We visualize our uniformity measure
u(h(x,y,s)) with scale s= 80as a heat map.

5. Color and pose estimation

After the shirt has been located, we perform color classifi-
cation on the shirt region and estimate the 3-D pose. In our
context, the former is particularly challenging because light-
ing may change in color and intensity. For instance, a yel-
low patch may appear bright orange in one frame and dark
brown in another (Fig.3). In this section, we describe a con-
tinuous color classification process that adapts to changing
lighting and variations in shading. First, we describe the of-
fline process of modeling the shirt colors. The online com-
ponent estimates an approximate color classification and 3D
pose before refining both to obtain the final pose. In addition
to the final pose, we compute an estimate of the current il-
lumination as a white balance matrix and maintain a list of
reference illuminationsthat we use to recover from abrupt
lighting changes.

Figure 3: The measured values of the color patches can shift
considerably from frame to frame. Each row shows the mea-
sured value of two identically colored patches in two frames
from the same capture session.

5.1. Color model and initialization

We model each of thek= 10 distinct shirt colors as a Gaus-
sianN(µk,Σk) in RGB space. We build this model ahead of
time by manually labeling five white-balanced images of our
shirt (Fig.5).

At the beginning of a capture session, we estimate the il-
lumination by asking the user to manually label an image of
the shirt taken in the current environment by coarsely scrib-
bling on each of the visible patches. We solve for a 3× 3
white balance matrixW that maps the mean patch colorsµ′k
from the reference image to the mean colorsµk of the Gaus-

sian color model, that is,W = argminW ∑k‖Wµk−µ′k‖
2
.

The white balance matrixW is used to bootstrap our color
and pose tracking, and we also use it to initialize our list of
reference illuminations.

5.2. Online analysis

The online analysis takes as input the colorful cropped re-
gion corresponding to the shirt (§4). We roughly classify
the colors of this region using our color model and white
balance estimate. The classified result is used to estimate the
pose from a database. Next, we use the pose estimate to re-
fine our color classification, which is used in turn to refine
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Figure 4: After cropping the image to the shirt region, we white balance and classify the image colors. The classified image is
used to estimate the upper-body pose by querying a precomputed pose database. We take the pose estimate to be a weighted
blend of these nearest neighbors in the database. The estimated pose can be used to refine our color classification, which is
converted into a set of patch centroids. These centroids drive the inverse kinematics (IK) process to refine our pose. Lastly, the
final pose is used to estimate the white balance matrix for the next frame.
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Figure 5: Ahead of time, we build a color model of our shirt
by scribbling on 5 white-balanced images. We model each
color with a Gaussian distribution in RGB space.

the pose. Lastly, we update our current estimate of the white
balance of the image (Fig.4).

Step 1: Color classification We white balance the image
pixelsIxy using a 3×3 matrixW. In general,W is estimated
from the previous frame, which we will explain in Step 5.
For the first frame in a sequence, we use the user-labeled
initialization (§5.1). After white balancing, we classify the
colors according to the Gaussian color models{(µk,Σk)}k.
We produce an id maprxy defined by:

rxy =

{

argmink‖WIxy−µk‖Σk if ‖WIxy−µk‖Σk < T

background otherwise

where‖ · ‖Σ is the Mahalanobis distance with covarianceΣ,
that is:‖X‖Σ =

√
X Σ−1X , andT is a threshold that controls

the tolerance of the classifier. We found thatT = 3 performs
well in practice, that is, we consider that a pixel belongs to
a Gaussian if it is closer than three standard deviations to its
mean. In addition we use a background subtraction mask to
suppress false-positives in the classification.

Most of the time, the above white balance and classifica-
tion approach suffices. However, during a sudden change of
illumination our white balance estimate from the previous

frame may no longer be valid. We detect this case when less
than 40% of the supposedly foreground pixels are classified.
To overcome these situations, we maintain a list of previ-
ously encountered reference illuminations expressed as a set
of white balance matricesW ∈ W. When we detect a poor
classification, we search among these reference matricesW
for the one that best matches the current illumination. That
is, we re-classify the image with each matrix and keep the
one that classifies the most foreground pixels.

Step 2: Pose estimationOnce the colors have been cor-
rectly identified as color ids, we can estimate the pose with
a data-driven approach [WP09]. We precompute a database
of 80,000 upper-body poses that are selected by uniformly
sampling a large database spanning a variety of upper-
body configurations and 3-D orientations. The poses of the
database were taken from linear blends of generic action
poses from the Poser 7 software and do not include any
squash or basketball-specific sequences. We rasterize each
pose as a tiny id mapr i . At run time, we search our database
for the ten nearest neighborsr̄ i of our classified shirt region,
resized as a tiny 40×40 id map. We take our pose estimate
to be a weighted blend of the poses corresponding to these
neighborsqi and rasterize the blended poseqb to obtain an
id maprb. This id map is used in Step 3 to refine the classi-
fication and Step 4 to compute inverse kinematics (IK) con-
straints.

The blended poseqb expresses an approximate configu-
ration of the upper body, but does not account for the global
pose. To obtain the global position and orientation of the
subject, we associate 2D projection constraints to the cen-
troid of each color patch of the rasterized id maprb and
transform these constraints to the original query image space
of each image. We solve a 6-DOF inverse kinematics prob-
lem to obtain the global position and orientation that best
matches the projection constraints from both cameras.
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Step 3: Color classification refinementOur initial color
classification (Step 1) relies on a global white balance. We
further improve this classification by leveraging the raster-
ized pose estimaterb computed in Step 2. This makes our
approach robust to local variations of illumination.

We use the id map of the blended poserb as a prior in our
classification. We analyze the image pixels by taking into
account their measured colorIxy as before and also the id
predicted by the rasterized 3-D poserb. To express this new
prior, we introducedxy(r ,k), the minimum distance between
(x,y) and a pixel(u,v) of the rasterized predicted prior with
color idk:

dxy(r ,k) = min
(u,v)∈Sk

‖(u,v)− (x,y)‖

with Sk = {(u,v) | ruv = k}

With this distance, we define the refined id mapr̂ :

r̂xy =























argmin
k

‖WIxy−µk‖Σk +C d(rb,k)

if ‖WIxy−µk‖Σk +C d(rb,k)< T

background otherwise

We set the influence of the prior termC to 6/swheres is the
scale of the cropped shirt region. The classifier thresholdT
is set to five.

We compared the strength of our pose-assisted color clas-
sifier with the Gaussian color classifier by varying the classi-
fication thresholds and plotting correct classification versus
incorrect classifications (Fig.6). This additional information
significantly improves the accuracy of our classification by
removing impossible or highly improbable color classifica-
tion given the pose estimate.
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Figure 6: Our pose-assisted classifier classifies more cor-
rect pixels at a lower false-positive rate than the baseline
Gaussian classifier discussed in Step 1.

Step 4: Pose refinement with inverse kinematicsWe ex-
tract point constraints from the newly computed id mapr̂ to
refine our initial pose estimateqb using inverse kinematics
(IK). We also take into account the poseqh at the previous
frame.

Image centroids Nearest neighbor
centroids

Constraints IK result

Figure 7: For each camera, we compute the centroids of the
color-classified id map̂r i and correspond them to centroids
of the blended nearest neighbor to establish inverse kinemat-
ics constraints.

For each camerai, we compute the centroidscki of each
patchk in our color-classified id map̂r i . We also render the
pose estimateqb as an id map and establish correspondences
between the rendered centroids of our estimate and the im-
age centroids. We seek a new poseq⋆ such that the centroids
c⋆i of its id mapr⋆i coincide with the image centroidscki

(See7). We also wantq⋆ to be close to our initial guessqb

and to the previous poseqh. We formulate these goals as an
energy:

q⋆ = argmin
q

∑
i,k

‖c⋆i(q)−cki‖2
Σc
+‖q−qb‖2

Σb
+‖q−qh‖2

Σp

where the covariances matricesΣc, Σb, andΣh are trained
off-line on ground-truth data similarly to Wang and
Popovíc [WP09]. That is, for each term in the above equa-
tion, we replaceq by the ground-truth pose andqh by the
ground-truth pose at the previous frame, and compute the
covariance of each term over the ground-truth sequence.

Step 5: Estimating the white balance for the next frame
As a last step, we refine our current estimate of the white
balance matrixW and optionally cache it for later use in case
of a sudden illumination change (Step 1). We create an id
map from our final poseq⋆ and compute a refinedW⋆ matrix
using the same technique as in Section5.1. We useW⋆ as
initial guess for the next frame. We also addW⋆ to the set
W of reference illuminations if the minimum difference to
each existing transformation in the set is greater then 0.5,
that is, if: minW∈W ‖W⋆ −W‖F > 0.5 where‖ · ‖F is the
Frobenius norm.

6. Results

We evaluated our two-camera system in several real-world
indoor and outdoor environments for a variety of activities
and lighting conditions. We captured footage in a dimly lit
indoor basketball court, through a glass panel of a squash
court, at a typical office setting, and outdoors (Fig.8). In
each case, we were able to setup our system within minutes
and capture without the use of additional lights or equip-
ment.

To stress test our white balance and color classifica-
tion process, we captured a sequence in the presence of
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Figure 8: We demonstrate motion capture in a basketball
court, inside and outside of a squash court, at the office, out-
doors and while using another (Vicon) motion capture sys-
tem. The skeleton overlay is more visible in the accompany-
ing video.

a mixture of several fluorescent ceiling lights and a tung-
sten floor lamp. As the subject walked around this scene,
the color and intensity of the incident lighting on the shirt
varied significantly depending on his proximity to the floor
lamp. Despite this, our system robustly classifies the patches
of the shirt, even in the event when the tungsten lamp is
suddenly turned off. Unlike other garment tracking tech-
niques [SSK∗05, WCF07, WP09], our method dynamically
white-balances the images, which makes it robust to these
lighting variations. We show in the companion video that
this procedure is critical to the success of our approach.

Our system runs at interactive rates. On an Intel 2.4 GHz
Core 2 Quad core processor, our Java implementation pro-
cesses each frame in 120 ms, split roughly evenly between
histogram search, pose estimation, color classification, and
IK.

We evaluated the accuracy of our system by simultane-
ously capturing a sequence containing a variety of move-
ments with a 16 camera Vicon motion capture system and
our two-camera system. We applied a standard correction
step to the Vicon data to fill gaps, smooth trajectories, and
manually correct marker mislabelings due to occlusions.
We also compared our results to the method of Wang and
Popovíc [WP09], which we adapted to handle the upper
body, but which lacks the pose prior and white balancing
steps of our approach. The data from our method and from
the Wang and Popović approach are left unprocessed to
avoid any bias. On simple sequences without occlusions,
both methods perform well. However on faster motions and
in presence of occlusions, our algorithm can be twice as ac-
curate (Fig.9). On average, the Wang and Popović method
RMS error is 5.1 cm and ours is 4.0 cm, that is, about 20%
better. Because RMS is often an insufficient measure of vi-
sual quality [Ari06], we provide the plot of the shoulder
joint angle that confirms that our method is closer to the
ground-truth data (Fig.10), as well as a video of the corre-
sponding captured motions. A visual comparison shows that
our approach faithfully reproduces the ground truth motion
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Figure 9: We compare the accuracy (RMS of all mesh ver-
tices) between a simple system without pose prior nor adap-
tive white balance akin to [WP09] and our approach. In ab-
sence of occlusion, both methods perform equivalently but
on more complex sequences with faster motion and occlu-
sions, our approach can be nearly twice more precise. On
average, our method performs 20% better.

whereas the Wang and Popović technique exhibits signifi-
cant jittering. We also compared the two methods on a jump-
ing jacks sequence in which the arms are moving quickly.
Whereas the Wang and Popović technique loses track of the
arms because of the motion blur, our method correctly han-
dles this sequence (Fig.11and companion video).
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Figure 10: We plot the angle of a shoulder joint for ground-
truth data captured with a Vicon system, our method, and
our method without the pose prior or white balance steps
(akin to [WP09]). Our results are globally closer to the
ground truth and less jittery than those of the simple method.
This is better seen in the companion video.We demonstrate possible uses of our approach on two
sample applications (Fig.12 and companion video). The
“squash analysis” software tracks a squash player; it enables
replay from arbitrary viewpoints and provides statistics on
the player’s motion such as the speed and acceleration of the
arm. The “goalkeeper” game sends balls at the player who
has to block them. This game is interactive and players move
according to what they see on the control screen. These two
proof-of-concept applications demonstrate that our approach
is usable for a variety of tasks, it is sufficiently accurate to
provide useful statistics to an athlete and is effective as a
virtual reality input device.

Discussion As with all camera-based methods, our ap-
proach requires a line of sight to the subject. In the squash
scenes, both cameras are placed behind the players, leading
to several moments where an arm is occluded by the body for
one of the cameras. Likewise, the basketball sequences in-
clude frames where the ball occludes the body. During these
momentary occlusions, or when the subject exits the cam-
era view frustum our approach is less accurate, but we are
always able to recover (Fig.13). We have also experimented
with using the Kalman filter for IK, which copes with occlu-
sions better for slow movements. However, because it also
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Figure 11: Despite the significant motion blur in this frame,
we are still able to estimate the patch centroids and the
upper-body pose.

squash 
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goalkeeper
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Figure 12: We demonstrate possible applications of our ap-
proach on two proof-of-concept applications: a motion ana-
lytics tool for sports and a game. See the text and the com-
panion video for detail.

degrades faster motion and is computationally more expen-
sive, we chose not to use the Kalman filter.

While we have tested our system on several users, our
database assumes a generic upper body shape of the sub-
ject. Subjects that differ significantly from the torso shape
used are tracked less well. We hope to explore generating a
variety of database reflecting different body shapes in future
work.

Our estimateStereo pair Ground truth

Figure 13: In this frame, the right arm is occluded by the
body in the second camera. Our estimate is less accurate
during this occlusion due to depth ambiguity.

We can localize the shirt even with several color objects
in the background, such as in the Vicon studio scene. In both
the basketball and squash scenes, we show interaction with
another subject and a dynamic background. Our system han-
dles motion blur well (Fig.11), although in very dark en-

vironments the color classification can be overwhelmed by
camera noise.

7. Conclusion

We have demonstrated a lightweight practical motion cap-
ture system consisting of one or more cameras and a color
shirt. The system is portable enough to be carried in a gym
bag and typically takes less than five minutes to setup. Our
robust color and pose estimation algorithm allows our sys-
tem to be used in a variety of natural lighting environments
such as an indoor basketball court and an outdoor courtyard.
While we use background subtraction, we do not rely on it
and can handle cluttered or dynamic backgrounds.

Finally our system runs at interactive rates, making it suit-
able for use in virtual or augmented reality applications. We
hope that our low-cost and portable system will spur the
development of novel interactive motion-based interfaces
and provide an inexpensive motion capture solution for the
masses.
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