
EUROGRAPHICS 2012 / P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

SimpleFlow:
A Non-iterative, Sublinear Optical Flow Algorithm

Michael Tao1, Jiamin Bai1, Pushmeet Kohli2, and Sylvain Paris3

1Berkeley 2Microsoft 3Adobe

Figure 1: The figure shows a pair of 4K video frames (a,b) and the corresponding optical flow result (d). Our new SimpleFlow
algorithm computes the optical flow using only local operations that can be efficiently implemented on parallel architectures
such as GPUs. Further, it concentrates computation where motion actually occurs, in black in (c), and uses linearly interpolation
to estimate the flow in other regions, in gray in (c). This enables the computation of accurate optical maps in a reasonable
amount of time (d). We show that this strategy makes the running time grow sublinearly with the frame resolution (e). This
enables the processing of high-definition videos up to the 4K movie resolution in which each frame has 9 megapixels.

Abstract
Optical flow is a critical component of video editing applications, e.g. for tasks such as object tracking, segmen-
tation, and selection. In this paper, we propose an optical flow algorithm called SimpleFlow whose running times
increase sublinearly in the number of pixels. Central to our approach is a probabilistic representation of the mo-
tion flow that is computed using only local evidence and without resorting to global optimization. To estimate
the flow in image regions where the motion is smooth, we use a sparse set of samples only, thereby avoiding the
expensive computation inherent in traditional dense algorithms. We show that our results can be used as is for
a variety of video editing tasks. For applications where accuracy is paramount, we use our result to bootstrap a
global optimization. This significantly reduces the running times of such methods without sacrificing accuracy. We
also demonstrate that the SimpleFlow algorithm can process HD and 4K footage in reasonable times.

1. Introduction

Optical flow describes the motion in a video, i.e. it describes
how each point in the scene moves from a frame to the

next [BSL∗07]. It is an essential component for video ap-
plications, e.g. [GGC∗08, KBVF10]. Several aspects make
this problem particularly challenging. (1) Occlusions: points

c© 2011 The Author(s)
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



M. Tao et al. / SimpleFlow

(a) Frame Ft (b) Without p smoothing (c) With p smoothing (d) With vector smoothing

(e) Our result alone (f) Sun et al. bootstrapped with
our result

(g) Lucas and Kanade (h) Ground truth

Figure 2: With initiate frame, Ft (a), without smoothing, vectors flows are noisy (b). Using a simple bilateral filter on p produces
smoother flows (c). By applying a weighted filter on the flow vectors, we achieve a subpixel flow (d). Using a coarse-to-fine
approach and subpixel refinement yields our results (e). When accuracy is paramount, one can further improve the result by
using our result to initialize a more computationally intensive method (f). Although our method is related in spirit to the seminal
work by Lucas and Kanade [LK81] (g), it produces significantly better results (e) that are closer to the ground truth flow (h).

can appear or disappear between two frames. (2) Aperture
problem: in regions of uniform appearance, local cues do not
provide any information about the motion, and only partial
flow information can be recovered along one-dimensional
structures.

Traditional methods for optical flow operate by matching
pixels from one frame to the next based on their color. How-
ever, since there are usually many pixels of the same color in
a frame, this is not a discriminative feature and thus leads to
erroneous results. To increase the discriminative power, one
can match blocks or group of pixels [LK81,HS81]. However,
determining the size of the blocks is challenging because not
all points within a block have the same displacement vector
from one frame to the next.

The above-mentioned challenges associated with comput-
ing the optical flow are traditionally addressed by propagat-
ing local evidences for particular flow values across the im-
age so that ambiguous regions get resolved due to nearby
corners and textured areas. This strategy is generally imple-
mented by defining a Markov Random Field (MRF) over
the entire image. While the MRF formulation is princi-
pled and produces accurate results, finding the Maximum
a Posterior (MAP) solution of the MRF is an extremely
challenging problem which is computationally expensive to
solve [GHN∗10, RB05, LRR08].

Computing the MAP solution of the MRF involves min-
imizing an energy function defined over the flow variables
which is an NP-hard problem. Many algorithms such as

Graph Cuts [BVZ01], Loopy Belief Propagation [Pea86],
and Tree Re-weighted message passing [Kol06, WJW05]
have been proposed in the literature for computing good ap-
proximate solutions. The runtime complexity of these algo-
rithms is super-linear in the number of pixels as well as in
the number of labels each pixel can take, which makes them
computationally prohibitive in practice.

Recently, efficient methods have been proposed such
as [WPB10, BWKS06, GZG∗10, SBK10]. These techniques
rely on local operations performed on the GPU. To propagate
information across the image domain, these schemes are it-
erative. While this may not be an issue with low-resolution
footage, it can be a serious handicap when processing high-
definition videos because many iterations are required to
reach distant points. Although multiscale schemes can be
used to mitigate this aspect, e.g. [BAKJH92, MP98], with
high-resolution datasets such as 1080p footage (2 megapix-
els per frame) or 4K movies (9 megapixels), processing ev-
ery pixel becomes a costly operation. Said more formally,
the running times of these approaches grow linearly or su-
perlinearly with resolution, and even optimized implemen-
tations eventually become slow because of the sheer number
of pixels to process.

Rhemann et al. [RHB∗11] have recently shown how edge-
preserving filtering can be used for disparity estimation. This
method can be extended to optical flow and is related our ap-
proach. However, there are also some key differences. This
method [RHB∗11] is slow, requiring more than a minute per
frame at DVD resolution (640× 480 ≈ 0.3 megapixel) and,

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

as we shall see, its running times grow superlinearly with
resolution, making it ill-suited for HD footage with resolu-
tion possibly up to 9 megapixels per frame (Fig. 1).

We address these challenges with our SimpleFlow algo-
rithm that is iteration-free and computes only a sparse set of
samples in regions with a uniform motion. It runs in a classi-
cal multiscale fashion and at each scale, pixels are processed
independently and only once. This makes our scheme highly
data-parallel. This strategy ensures a linear complexity with
respect to the number of pixels. Furthermore, when we up-
sample the data in the multiscale pyramid, we can afford to
interpolate some of the flow vectors from their neighbors in-
stead of analyzing the frame data. While strictly speaking
our algorithm’s complexity remains linear because we still
assign a flow vector to each pixel, in practice, running times
grow sublinearly because interpolation is virtually free.

The design of our method is based on a probabilistic
representation of the motion at each pixel. We express the
classical color invariance assumption with probabilities de-
rived from pixel-wise color differences. The key aspect of
our approach is that we manipulate these probabilities in-
stead of flow vectors [RW97]. With this representation, the
smoothness of the flow field is represented by locally aver-
aging probabilities and accounting for edges is achieved us-
ing an edge-aware scheme such as the bilateral filter [TM98,
PKTD09] that can be efficiently computed [PD09, Por08,
YTA09]. Since our approach is based on weighted local
color differences, it is related to the seminal work by Lu-
cas and Kanade [LK81] and to the techniques that rely on
pixel weighting, e.g. [XCS∗06,YK06,Ren97]. However, un-
like our method, these techniques perform costly per-pixel
computation, which hampers their scalability.

While our algorithm is sufficient to achieve a reasonably
accurate estimate of the motion usable for simple tasks, we
can also use it to bootstrap a standard optimization-based
method. This achieves state-of-the-art accuracy similar to
the original optimization technique at a fraction of the cost.
We demonstrate that our approach is suitable for video edit-
ing tasks such as recoloring and tracking.

Notation We consider two successive frames Ft and Ft+1.
We use (x,y) for pixel positions and (u,v) for flow vectors,
that is, we seek to estimate u and v at each pixel such that
the scene point at (x,y) in Ft is visible at (x + u,y+ v) in
Ft+1. Although strictly speaking, u and v depend on (x,y);
for the sake of clarity, we will use the notation (u,v) instead
of

(
u(x,y),v(x,y)

)
when possible. We use Ft(x,y) to denote

the RGB color of the (x,y) pixel in Ft .

2. A Single-scale Algorithm

For sake of clarity, we first describe a version of our algo-
rithm that operates at a single scale.

A simple likelihood model We follow the classical
constant-color assumption, that is, we seek flow vectors
(u,v) such that Ft(x,y) and Ft+1(x+u,y+v) are similar. We
model this requirement by a simple energy term:

e(x,y,u,v) = ‖Ft(x,y)−Ft+1(x+u,y+ v)‖2 (1)

that corresponds to the likelihood probability p ∝
exp(−e) [RW97]. This term is simple to compute, it is
the square difference between two RGB vectors. Further,
it captures nontrivial information about the local structure
of the video such as the fact that edges suffer from a one-
dimensional ambiguity. p also naturally represents the relia-
bility of the information that it embeds; for instance, if p is
nearly uniform, it provides only a weak evidence about the
flow whereas peaked distributions indicate reliable data. Be-
cause it is a point-wise computation, p often provides noisy
and ambiguous information but combining cues across pix-
els yields a rich representation of the flow.

Local validity as smoothness prior We also assume that
the flow is locally smooth. However, we do not rely on a
pairwise term such as ‖(u1,v1)− (u2,v2)‖2 as often used in
the literature [BSL∗07]. The drawback with such pairwise
terms is that they link the flow estimates at several pixels,
generating dependencies between unknowns that make the
optimization problem harder to solve. Instead, we require
that a flow vector (u0,v0) at a pixel (x0,y0) is a good ex-
planation of the motion at (x0,y0) as well as other pixels
in a neighborhood N0. A simple way to express this as-
sumption is (u0,v0) = argmax(u,v)∈Ω ∏(x,y)∈N0

p(x,y,u,v)
where Ω is the set of possible (u,v) vectors that we con-
sider. By pooling information from all the pixels in N0,
this yields a smoother and cleaner estimate of the flow
(Fig. 2 (c)). We can better understand this behavior in the
negative log-likelihood (or energy cost) domain where we
try to find the lowest cost flow vector for the pixel (x0,y0):
(u0,v0) = argmin(u,v)∈Ω ∑(x,y)∈N0

e(x,y,u,v). Our smooth-
ness prior amounts to smoothing the likelihood term instead
of adding a pairwise term. As a consequence, finding a min-
imizer remains simple since there is no interaction between
the unknowns, the solution at a pixel does not depend on the
solution at its neighbors.

Smoothing with a box filter would not differentiate be-
tween pixels within N0, e.g. it would ignore edges. We add
weights to account for how pixels relate to each other. In this
paper, we apply two weighting functions, wd for the distance
between pixels and wc for the color difference. We propose
the following log-likelihood:

E(x0,y0,u,v) = ∑(x,y)∈N0
wd wc e(x,y,u,v) (2)

with wd = exp
(
−‖(x0,y0)− (x,y)‖2/2σd

)
and wc = exp

(
−‖Ft(x0,y0)−Ft(x,y)‖2/2σc

)
As shown in Figure 2 (d), adding weights improves the re-
sults. Further, the weights correspond to the bilateral filter

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

(a) Frame 1 (b) Frame 2 (c) With speed optimiza-
tion

(d) Without speed opti-
mzation

(e) 128x77 optimization

(f) 256x144 optimization (g) 512x288 optimization (h) 1024x546 optimization (i) 2048x1152 optimiza-
tion

(j) 4096x2304 optimiza-
tion

Figure 3: Our sublinear scheme runs a full flow estimation only at a few key pixels at each scale. In this 4K HD example
(4096× 2304), we use six scales (e,f,g,h,i,j,k). Black indicates where we run a full estimation. Brighter shades correspond to
regions where we estimate the flow with linear interpolation on 2×2, 4×4, 16×16, 32×32, and 64×64 windows respectively.
As illustrated on this example, our scheme concentrates most of the computation in discontinuous areas, thereby drastically
reducing the required computational effort (c) and produces similar results compared to using no optimization (d) (Fig. 4).

weights [PKTD09], which makes it possible to compute E
with optimized schemes, e.g. [PD09, CPD07, AGDL09,
ABD10, Por08, YTA09].

Detecting occlusions To detect occlusions, we compare the
forward flow (uf,vf) from t to t + 1, and the backward flow
(ub,vb) from t + 1 to t. Ideally, one should be the opposite
of the other. One can either test the equality to get a binary
detector or compute the difference ‖(uf,vf)− (−ub,−vb)‖
for a continuous estimator. When the computed difference is
high, we mark the pixel as occluded between the frames.

Practical implementation For each pixel (x0,y0), our pro-
totype implementation computes e on n× n windows cen-
tered on (x0,y0), i.e., we compute the color difference be-
tween Ft(x0,y0) and every pixel in a n× n window in Ft+1.
This produces a n2-dimensional vector e at each pixel. Then,
we compute E by applying a bilateral filter on these e vec-
tors using the frame data Ft to define the color weights wc.
This is known as a cross- or joint-bilateral filtering [ED04,
PAH∗04] and can be sped up with optimized data structures,
e.g. [PD09,CPD07,AGDL09,ABD10]. Finally, we estimate
the flow as the (u0,v0) vector that minimizes E. This pro-
duces values that are integers; to get a subpixel estimate, we
fit a parabola to the 3× 3 pixels centered at (u0,v0) and ex-
tract its minimum. We found it useful to further regularize
the result by applying a bilateral filter on the flow vectors.
For this operation, we discard the occluded pixels, and use
the weights wd and wc with an additional weight wr that rep-
resents how reliable is our flow estimate at (x,y):

wr(x,y) = mean
(u,v)∈Ω

e(x,y,u,v)− min
(u,v)∈Ω

e(x,y,u,v)

Discussion This scheme is not efficient because we need to
consider large n×n windows to be able to recover large mo-
tions. We address this issue in the next section with a mul-
tiscale approach. Representing the motion by the likelihood
p is related to the work of Rosenberg and Werman [RW97].
While they already underscore the usefulness and richness of
this probability distribution, they use it for tracking discrete
points. In comparison, we focus on dense flow field and use
these probabilities in conjunction with edge-aware filtering
and multiscale processing. Although we use the bilateral fil-
ter to aggregate local evidences about the flow, we believe
that other edge-aware schemes would perform equivalently.
We see the exploration of other options as a possible direc-
tion for future work.

3. A Multiscale Sublinear Algorithm

This section describes how we make our simple algorithm
faster using an adaptive multi-scale strategy. First, we show
how to structure the algorithm described in the previous sec-
tion in a multi-scale fashion. We then describe how to make
it efficient to that its running times grow sublinearly with
respect to the frame resolution of the video.

3.1. Multiscale Flow Estimation

We construct an image pyramid for each image frame in
which each level is twice coarser than the previous one, i.e.
the `-th level has a resolution 2` times lower than the original
frame. At the coarsest level of the pyramid, we estimate the
flow using the scheme described in Section 2. We now ex-
plain how to compute the flow at level ` assuming the flow
at `+1 is known.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

We generate an initial estimate (ū`, v̄`) of the flow by
upsampling the flow from the previous level (u`+1,v`+1)
using joint-bilateral upsampling [KCLU07], followed by a
multiplication by 2 to account for the change in resolu-
tion. We then follow our standard flow computation pro-
cess described in Section 2 with the only change that now
we aggregate probabilities in a neighborhood N̄ centered
on (x0 + ū,y0 + v̄). For the flow vector at (x0,y0), we select
(u0,v0) that minimizes the log-likelihood E(x0,y0,u,v).

3.2. An Efficient Scheme

The pyramid scheme described in the previous section is a
standard multiscale approach, and has a linear complexity
with respect to the number of pixels. We now describe our
adaptive multi-scale strategy which tries to isolate image
regions where the flow changes slowly. For pixels in such
regions, we replace the computationally expensive energy
minimization operation by a simple interpolation operation.
Although this is not strictly speaking a sublinear scheme
since we still process each pixel, it behaves so in practice
because interpolation has a negligible cost.

For each layer, we estimate a flow irregularity map
where the flow is smooth and where it varies more. At
each pixel (x0,y0), we compute the irregularity value as
max(x,y)∈N0

‖
(
u(x,y),v(x,y)

)
−
(
u(x0,y0),v(x0,y0)

)
‖. Dur-

ing upscaling, if this value is above a threshold τ, we run
the full pipeline on the corresponding upscaled pixels. Oth-
erwise, we compute the flow at the corners of the patch,
and find the flows at other pixel using bilinear interpola-
tion. We recursively find smooth flow regions as we upscale,
which effectively yields constant time computation to up-
sample these areas. We found that this bilinear scheme is
fast and works well. But when more accuracy is desirable,
one could trade-off estimating the flow at more points and
fitting a higher-order function to them. Evaluating this op-
tion is kept as future work.

4. Results

We conducted several experiments to evaluate the perfor-
mance of our method and its components. The data used for
the experiments comprises of a number of image pairs, in-
cluding some from the Middlebury optical flow benchmark.
The values used for the different parameters of the algorithm
were: σc = 0.08, σd = 5.5, τ = 0.25, N a 11× 11 window
and Ω a 20×20 window.

Accuracy To evaluate our accuracy, we submitted to the
Middlebury optical flow benchmark proposed by Baker et
al. [BSL∗07]. Figure 6 shows that our algorithm performs
as one of the most accurate algorithms, ranking 10th over-
all for average end point error and 6th for angle error. We
used the method of Sun et al. [SRB10] to refine our results.
For example, on Urban3 of the Middlebury dataset, our al-
gorithm computes the initialization, saving computational

Figure 4: Log-log plot of the running times with respect
to the video size. Here shows how our algorithm exploits
parallelized architecture such as the GPU. Our sublinear
method performs better on the GPU and most importantly
yields running times that grow as N0.78 (in blue).

Figure 5: Log-log plot of the running times with respect
to the video size. Comparative to other algorithms, our run-
ning times grow sublinearly relative to number pixels while
others compute at nonlinear rates. We recorded timings for
Rhemann et al. [RHB∗11], Sun et al. [SRB10], and Brox et
al. [BBM09] because they took too long to complete at 4K
resolutions.

time by a factor of around 43× (1.7 seconds versus 73.8
seconds, using our hardware). Because the convergence is
nearly the same across all examples and the penalty in ac-
curacy is marginal (Fig. 6 and 8), our algorithm provides a
significant benefit in computational efficiency, allowing the
main part of the algorithm to have a sublinear computational
cost in practice. Iterations of the refining algorithms after the
first initial guess require the same time as a normal run. We
only use this refinement strategy for our Middlebury exam-
ples. As we show in the next section, we found that the re-
sults produced by our algorithm alone are sufficient in prac-
tice for a number of applications.

Running Time We also verified that our complete scheme
actually behaves sublinearly. Figure 4 shows a plot of its

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

Figure 6: Bootstrapping the Sun et al. algorithm with our result achieves high accuracy results while reducing computation
time. Our algorithm ranks as one of the highest in the Middlebury evaluation and the error difference among the top algorithms
are marginal as seen in their metrics.

(a) Frame 1 (b) Frame 2

(c) Frame 1: Cloth Tracking (d) Frame 2: Cloth Tracking

(e) Frame 1: Texture Mapping (f) Frame 2: Texture Mapping

Figure 7: The figure shows the results of cloth tracking in
a full HD 720 video. We use the tracks to warp an overlaid
texture.

running time for various resolutions obtained by using the
same video pair frames from 4K (4096× 2304) and down-
scaling the frames by factors of 2. In this log-log plot, the
slope of the curve indicates the complexity of the algorithm.
We measure of slope of 0.78 which means that empirically,
our running times grow as N0.78 with N the number of pix-
els in a frame. The degree of sublinearity depends on the
actual video being processed, the more it contains regions
with smooth flow, the better it behaves. We give statistics
about more videos in supplemental material. In the worst
case with an extremely irregular flow, our algorithm would
behave linearly, which is still acceptable. However, we never
experienced such pathological case in practice. Typical run-
ning time for the Middlebury examples was 1.6 seconds

with a resolution of 584× 388. We compare our results
with two recent works on optical flow proposed by Sun et
al. [SRB10] and Brox et al. [BBM09] (Fig. 5). The com-
parison shows how our algorithm significantly reduces the
computation time, making the processing of 4K footage rea-
sonable whereas it is prohibitively expensive with other ap-
proaches. The large performance increase is due to the fact
that we process our each pixel independently, which enables
the effective use of parallel architectures. Full analysis on
our architecture performance scaling with threads and GPU
use is provided in supplementary material. The scalability
of our algorithm makes it a premium choice for processing
very high resolution footage as used in the movie industry.

Limitations While our evaluation shows that our algorithm
performs well in general, our choice to forgo global opti-
mization can make it difficult to handle scenes with repeated
patterns. Because our method only considers local neighbor-
hoods, it may not be able differentiate between repetitions
of the pattern whereas a global technique might be able to
gather evidence from a larger support to resolve the ambi-
guity. However, we only observed this issue on the synthetic
urban scenes of the Middlebury benchmark. The other fail-
ure case that we observe is due to fast motion. Our method is
unable to cope with objects moving fast that appear far apart
in the two and which appearance changes a lot (Fig. 10).
Also, our algorithm may miss small objects in the middle of
regions with uniform regions in which we resort to interpo-
lation instead of flow estimation.

4.1. Demo Applications

To demonstrate that our results can be used to edit videos,
we implemented a couple of standard video editing tasks
such as object recoloring and tracking using the optical flow
computed using the SimpleFlow algorithm. We do not claim
these applications as contributions of this work. We ac-
knowledge that one could add more sophistication to them,
for instance to deal with occlusions but this is beyond the
scope of this paper. These applications are only provided as

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

(a) First frame (b) First frame (c) First frame

(d) Our result: RMSE 0.27 (e) Our result: RMSE 0.30 (f) Our result: RMSE 0.31

(g) Sun et al. bootstrapped with
our result: RMSE 0.09

(h) Sun et al. bootstrapped with
our result: RMSE 0.16

(i) Sun et al. bootstrapped with
our result: RMSE 0.13

(j) Sun et al. alone: RMSE 0.10 (k) Sun et al. alone: RMSE 0.19 (l) Sun et al. alone: RMSE 0.21

(m) Rhemann et al.: RMSE 0.08 (n) Rhemann et al.: RMSE 0.15 (o) Rhemann et al.: RMSE 0.16

Figure 8: Results on datasets from the Middlebury benchmark [BSL∗07]. Our algorithm achieves results that are good enough
for graphics applications as demonstrated in the companion video. If more accuracy is needed, one can use our results to
bootstrap a global optimization method such as the one by Sun et al. [SRB10]. This produces better results while saving a
significant amount of time compared to running a global optimization using a naive initialization. These results are similar to
the output of the algorithm by Rhemann et al. [RHB∗11] that also uses local operations while being a lot faster because we
linearly interpolate the flow where it is smooth, whereas Rhemann’s technique runs a full estimation at each pixel.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

(a) Frame 1 (b) Frame 2 (c) Frame 1: Recolored (d) Frame 2: Recolored

(e) Frame 1: Tracking (f) Frame 2: Tracking (g) Frame 1: Object Placement (h) Frame 2: Object Placement

Figure 9: The figure shows the results of some typical editing operations performed using the optical flow obtained from
SimpleFlow in full HD 720P videos. The first row is an application for recoloring. We show two different frames (a,b). We
selected the shirt to be recolored and propagation occurs throughout the video. The results are seamless and produce high
quality results (c,d). With a similar approach, we use our dense vector field for tracking (c,d). Editing applications such as
dynamic object placement use these fields to generate objects following the tracked object (e,f).

(a) Frame 1 (b) Frame 2 (c) Our Result (d) Lucas and Kanade

Figure 10: Failure case. These two frames exhibit a large displacement (a,b). While our method produces acceptable results on
the background and the dog body, it does not capture the fast-moving legs (c). In comparison, the Lucas-Kanade method [LK81]
completely fails (d). Because of its very local nature, it is unable to handle the large motion in this sequence. Note that we used
the same color code in (c) and (d).

a demonstration of what one can build using our optical flow
method. The recoloring and tracking results obtained by our
algorithm are shown in Figure 9.

Recoloring We allow users to change the color of an ob-
ject. First, they select a region to recolor. In this selection,
we select the central part and expand it using simple color
similarity. We then compute the average flow in this region
and use it to advect the selection to the next frame where we
repeat the same process. Selection expansion and advection
are done using a bilateral filter scheme that accounts for the
color and similarities.

Tracking and Dynamic Object Placement This applica-
tion essentially uses the same mechanism as the recoloring.
To place an object near the subject, we simply use these flow
vectors to compute where the object should move about the
subject.

Cloth texturing We use our optical flow to advect a grid
of anchor points at the surface of deforming piece of cloth.
The motion of each point is estimated by averaging the flow
vectors in a small neighborhood. This produces a dense grid
which we use to add a texture on top of the garment. The
results obtained by our algorithm are shown in Figure 7.

5. Discussion and Conclusion

We presented a simple method for optical flow with running
times that grow sublinearly with video resolution. A key
property of our approach is that we do not resort to global
optimization to propagate local information across the im-
age. Instead, we average local probability distributions com-
puted from standard color differences. The fact that we re-
cover an accurate flow field from such simple cues suggests
that they contain actually more information about the scene
than what their simplicity suggests at first. The local aspect
of our scheme is also the key component that enables sublin-
ear computation. We believe that this property is critical to
be able process high-resolution footage such as HD videos
and movie sequences in their original format.

References

[ABD10] ADAMS A., BAEK J., DAVIS A.: Fast high-
dimensional filtering using the permutohedral lattice. Computer
Graphics Forum (2010). Proceedings of the Eurographics con-
ference. 4

[AGDL09] ADAMS A., GELFAND N., DOLSON J., LEVOY M.:
Gaussian KD-trees for fast high-dimensional filtering. ACM

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Tao et al. / SimpleFlow

Transactions on Graphics 28, 3 (2009). Proceedings of the ACM
SIGGRAPH conference. 4

[BAKJH92] BERGEN J. R., ANANDAN P., KEITH J. HANNA
R. H.: Hierarchical model-based motion estimation. In Proceed-
ings of the European Conference on Computer Vision (1992). 2

[BBM09] BROX T., BREGLER C., MALIK J.: Large displace-
ment optical flow. IEEE Conference on Computer Vision and
Pattern Recongition (2009). 5, 6

[BSL∗07] BAKER S., SCHARSTEIN D., LEWIS J., ROTH S.,
BLACK M., SZELISKI R.: A database and evaluation method-
ology for optical flow. In Proceedings of the International Con-
ference on Computer Vision (2007). 1, 3, 5, 7

[BVZ01] BOYKOV Y., VEKSLER O., ZABIH R.: Fast approxi-
mate energy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2001). 2

[BWKS06] BRUHN A., WEICKERT J., KOHLBERGER T.,
SCHNÖRR C.: A multigrid platform for real-time motion com-
putation with discontinuity-preserving variational methods. In-
ternational Journal of Computer Vision 70, 3 (2006). 2

[CPD07] CHEN J., PARIS S., DURAND F.: Real-time edge-aware
image processing with the bilateral grid. ACM Transactions on
Graphics 26, 3 (2007). Proceedings of the ACM SIGGRAPH
conference. 4

[ED04] EISEMANN E., DURAND F.: Flash photography enhance-
ment via intrinsic relighting. ACM Transactions on Graphics 23,
3 (2004). Proceedings of the ACM SIGGRAPH conference. 4

[GGC∗08] GOLDMAN D. B., GONTERMAN C., CURLESS B.,
SALESIN D., SEITZ S. M.: Video object annotation, navigation,
and composition. In Proceedings of ACM symposuim on User
Interface Software and Technology (2008). 1

[GHN∗10] GLOCKER B., HEIBEL H., NAVAB N., KOHLI P.,
ROTHER C.: Triangleflow: Optical flow with triangulation-based
higher-order likelihoods. In Proceedings of the European Con-
ference on Computer Vision (2010). 2

[GZG∗10] GWOSDEK P., ZIMMER H., GREWENIG S., BRUHN
A., WEICKERT J.: A highly efficient GPU implementation for
variational optic flow based on the Euler-Lagrange framework.
In Proceedings of the Workshop for Computer Vision with GPUs
(2010). 2

[HS81] HORN B. K., SCHUNCK B. G.: Determining optical flow.
Artificial Intelligence 17 (1981). 2

[KBVF10] KUETTEL D., BREITENSTEIN M. D., VAN GOOL L.,
FERRARI V.: What’s going on? Discovering spatio-temporal de-
pendencies in dynamic scenes. In Proceedings of the conference
on Computer Vision and Pattern Recognition (2010), IEEE. 1

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D., UYTTEN-
DAELE M.: Joint bilateral upsampling. ACM Transactions on
Graphics 26, 3 (2007). Proceedings of the ACM SIGGRAPH
conference. 5

[Kol06] KOLMOGOROV V.: Convergent tree-reweighted message
passing for energy minimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28, 10 (2006), 1568–1583. 2

[LK81] LUCAS B. D., KANADE T.: An iterative image registra-
tion technique with an application to stereo vision. In Proceed-
ings of Imaging Understanding Workshop (1981). 2, 3, 8

[LRR08] LEMPITSKY V., ROTH S., ROTHER C.: Fusionflow:
discrete-continuous optimization for optical flow estimation. In
IEEE Conference on Computer Vision and Pattern Recongition
(2008). 2

[MP98] MÉNIN E., PÉREZ P.: A multigrid approach for hierar-
chical motion estimation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (1998). 2

[PAH∗04] PETSCHNIGG G., AGRAWALA M., HOPPE H.,
SZELISKI R., COHEN M., TOYAMA K.: Digital photogra-
phy with flash and no-flash image pairs. ACM Transactions
on Graphics 23, 3 (July 2004). Proceedings of the ACM SIG-
GRAPH conference. 4

[PD09] PARIS S., DURAND F.: A fast approximation of the bi-
lateral filter using a signal processing approach. International
Journal of Computer Vision (2009). 3, 4

[Pea86] PEARL J.: Fusion, propagation, and structuring in belief
networks. Artificial Intelligence 29, 3 (1986), 241–288. 2

[PKTD09] PARIS S., KORNPROBST P., TUMBLIN J., DURAND
F.: Bilateral filtering: Theory and applications. Foundations and
Trends in Computer Graphics and Vision, 2009. 3, 4

[Por08] PORIKLI F.: Constant time O(1) bilateral filtering. In
Proceedings of the conference on Computer Vision and Pattern
Recognition (2008). 3, 4

[RB05] ROTH S., BLACK M.: Fields of experts: a framework for
learning image priors. In IEEE Conference on Computer Vision
and Pattern Recongition (2005). 2

[Ren97] REN X.: Local grouping for optical flow. In Proceedings
of the conference on Computer Vision and Pattern Recognition
(1997). 3

[RHB∗11] RHEMANN C., HOSNI A., BLEYER M., ROTHER C.,
GELAUTZ M.: Fast cost-volume filtering for visual correspon-
dence and beyond. In Proceedings of the conference on Com-
puter Vision and Pattern Recognition (2011). 2, 5, 7

[RW97] ROSENBERG Y., WERMAN M.: Representing local mo-
tion as a probability distribution matrix applied to object track-
ing. In Proceedings of the conference on Computer Vision and
Pattern Recognition (1997). 3, 4

[SBK10] SUNDARAM N., BROX T., KEUTZER K.: Dense point
trajectories by gpu-accelerated large displacement optical flow.
European Conference on Computer Vision (2010). 2

[SRB10] SUN D., ROTH S., BLACK M.: Secrets of optical flow
estimation and their principles. In IEEE Conference on Computer
Vision and Pattern Recongition (2010). 5, 6, 7

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In Proceedings of the IEEE International Con-
ference on Computer Vision (1998). 3

[WJW05] WAINWRIGHT M., JAAKKOLA T., WILLSKY A.:
MAP estimation via agreement on trees: message-passing and
linear programming. IEEE Transactions on Information Theory
51, 11 (2005). 2

[WPB10] WERLBERGER M., POCK T., BISCHOF H.: Motion es-
timation with non-local total variation regularization. In Proceed-
ings of the conference on Computer Vision and Pattern Recogni-
tion (2010). 2

[XCS∗06] XIAO J., CHENG H., SAWHNEY H., RAO C., IS-
NARDI M.: Bilateral filtering-based optical flow estimation with
occlusion detection. In Proceedings of the European Conference
on Computer Vision (2006). 3

[YK06] YOON K.-J., KWEON I. S.: Adaptive support-weight ap-
proach for correspondence search. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28, 4 (2006). 3

[YTA09] YANG Q., TAN K.-H., AHUJA N.: Real-time O(1) bi-
lateral filtering. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2009). 3, 4

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.


