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(a) input with mixed lighting (daylight + neon un-
der the cabinets + low-energy bulbs on ceiling) ex-
hibits unsightly color casts everywhere

(b) naive single-light white balance makes the ceil-
ing white, but other color casts remain

(c) user indicates regions that are neutral (white
strokes) or correct after the single-light white bal-
ance (grey strokes)

(d) the image is improved, but color variations can
still be observed, e.g., on the wooden cabinet

(e) user adds marks to specify uniform color, e.g.,
the cabinet and the wall

(f) our final output with no color casts

Figure 1: In this photo, the ambient lighting, the cabinet light, and the ceiling lights all have different colors, which produces unpleasant
color casts (a). In such situations, the single-light white balance tool provided in all photo editing software only improves a portion of the
image, but the result is not satisfying (b). We address this issue by letting users make annotations on the photo. First, they mark objects of
neutral color (i.e., white or gray), and regions that look fine after the standard white balance (c). This improves the result, but undesirable
color variations are still visible, e.g., on the cabinetry and on the wall (d). Users can indicate that these elements should have a constant
color (e), which yields a result free of color cast (f).

Abstract

Proper white balance is essential in photographs to eliminate color
casts due to illumination. The single-light case is hard to solve
automatically but relatively easy for humans. Unfortunately, many
scenes contain multiple light sources such as an indoor scene with
a window, or when a flash is used in a tungsten-lit room. The light
color can then vary on a per-pixel basis and the problem becomes
challenging at best, even with advanced image editing tools.

We propose a solution to the ill-posed mixed light white balance
problem, based on user guidance. Users scribble on a few regions
that should have the same color, indicate one or more regions of
neutral color , and select regions where the current color looks cor-
rect. We first expand the provided scribble groups to more regions
using pixel similarity and a robust voting scheme. We formulate
the spatially varying white balance problem as a sparse data inter-
polation problem in which the user scribbles and their extensions
form constraints. We demonstrate that our approach can produce
satisfying results on a variety of scenes with intuitive scribbles and
without any knowledge about the lights.

Keywords: white balance, mixed lighting

Links: DL PDF

1 Introduction

White balance correction is a critical photography step, where the
goal is ”to compensate for different colour temperatures of scene
illuminants” [Jacobson 2000]. For example, tungsten lights cause
images to have a yellowish cast. Proper white balance compensates
for this color cast and yields photos where objects have their natu-
ral colors, as if taken under a neutral light [Hedgecoe 2009]. When
all the lights have the same color, this problem is easy to solve for
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a photographer who often indicates a white or gray object in the
image, from which it is straightforward to recover the illuminant
color. Unfortunately, many scenes exhibit a combination of illumi-
nants such as artificially-lit indoor scenes with additional light from
a window (Fig. 1) or from a flash. Adjusting the white balance is
then a challenging task, even for skilled users. Each point can be lit
by the mixture of several light sources, depending on their relative
distances and orientations. Worse, modern low-consumption fluo-
rescent and LED lights vary widely in their color temperature, and
rooms with multiple bulbs exhibit a plethora of color casts (Fig. 1).

A few automatic techniques have been proposed, but the severely
ill-posed nature of the problem restricts them to specific scenarios.
For instance, Ebner [2004; 2009] produces perceptual renderings
that are often not ideal from a photography perspective. Hsu et
al. [2008] can handle only two light colors, need to know their exact
values a priori, and cannot treat scenes with “a strong foreground-
background separation.” Riess et al. [2011] assume that photos can
be decomposed into regions where a single illuminant dominates.

We introduce a user-guided approach to produce high-quality white
balanced images for a broad range of photos with multiple light
sources. We carefully designed a set of scribbles that are easy for
humans to specify, such as, neutral-color objects, regions of con-
stant color, and places where the color looks correct. From our
experience, it is difficult for a human to estimate quantities related
to illumination. Therefore, as a general guideline, our scribbles are
related to reflectance properties, rather than illumination. For in-
stance, the local light color on a textured material, such as fur or
fabric, varies in nontrivial ways that cannot be easily understood by
a human observer and described with scribbles. In comparison, the
same observer can easily recognize and indicate regions where the
fur has the same color. Similarly, human observers have no prob-
lem recognizing that a wall lit by a complex mixture of lights has
a constant color. These situations are common in photographs and
easy to identify. Our surroundings are full of constant-color objects
such as walls and man-made objects – and our method is robust
enough to also leverage textured materials, such as fur and fabric.

We formulate our method as an optimization problem that seeks to
retrieve the color of the light mixture at each pixel under the con-
straints provided by the scribbles. We show that for canonical light-
reflectance configurations, the white balance solution lies in the null
space of the Matting Laplacian [Levin et al. 2006] , which motivates
our use of this energy for regularization. We further identify points
with similar patterns in the scene and constrain them to have the
same reflectance. This scribble extension strategy allows users to
achieve satisfying results with only a small number of scribbles. We
demonstrate that our approach yields good results on a wide range
of scenes; it can handle two or more light sources; and it does not
require knowledge of the absolute values of lights or reflectances,
since such knowledge is typically not easy to obtain. In practice,
we show that it also copes with light mixtures and materials, be-
yond the theoretically studied base cases.

In summary, we introduce the following contributions:
B A practical algorithm to white balance scenes illuminated by a
mixture of light sources, with no assumption on their number, color
or configuration.
B Our user-assisted scribbles only deal with what humans identify
most easily, reflectance properties.
B Our automatic extension of constraints reduces the number of
user scribbles needed.
B We show that the null space of the Matting Laplacian spans the
white-balance solution for canonical local configurations.

Table 1: Table of Notation

CI
c , Input chromaticity, Ic / (Ir + Ig + Ib)

CO
c , Output chromaticity, Oc / (Or +Og +Ob)

CR
c , Reflectance chromaticity, Rc / (Rr +Rg +Rb)

Wc , Correction factors, Ic / Oc

c 2 {r, g, b}

2 Related work

The single-light case is well addressed with automatic methods,
e.g. [Finlayson et al. 2006; Gehler et al. 2008], and photo editing
tools. When used in cases where the lighting is mixed, they have to
make compromises and residual color casts remain.

A few techniques deal with light mixtures. Ebner [2009], Riess et
al. [2011], Bleier et al. [2011], and Gijsenij et al. [2011] assume
that, locally, a single light dominates. This might approximate hu-
man perception, but from a photography perspective, the results
have faded colors and retain local color casts Ebner [2009].

Hsu et al. [2008] focus on the two-light scenario and further assume
that the light colors are known. In contrast, we do not seek a fully
automatic technique and strive for an approach that handles an as-
wide-as-possible range of scenes. Furthermore, our experience with
their system shows that their voting stage is sensitive to the initial
choice of the lights’ RGB values, which is not always trivial to
specify for scenes taken outside a controlled environment. Finally,
as their paper mentions in Section 8, “scenes that exhibit a strong
foreground-background separation may also cause problems.” This
is because they need to observe a given reflectance under a number
of different mixtures.

Lischinski et al. [2006] describe a scribble interface to perform lo-
cal edits. This approach can be used to correct a color cast that is
well localized in the scene, but it can be tedious in scenes where the
light mixture occurs everywhere. Further, this tool requires the user
to specify the absolute correction to be applied, which is nontrivial
in our case. Determining the local color of the illumination in a
complex colorful scene is challenging even for a human observer.
In comparison, we make sure that our scribbles only deal with rel-
ative characteristics of the scene reflectance, which is significantly
easier than determining the absolute color of the local illumination.

Carroll et al. [2011] use a scribble interface to edit the color of inter-
reflections. While related, our approach deals with effects that are
more global and affect large portions of the image, whereas inter-
reflections have a limited spatial extent. Further, their technique
relies on scribbles that describe properties of the illumination, such
as the fact that a light source does not affect a designated area. Since
in our context light sources have a global impact, such information
would be particularly challenging.

Bousseau et al. [2009] and Shen et al. [2011] compute intrinsic im-
ages, i.e. they separate an object’s reflectance from the illumination
reaching it. While related to white balance, intrinsic images are
also significantly different because they often assume a monochro-
matic or nearly monochromatic illumination; the main challenge
being the estimation of the light intensity at each point. In compar-
ison, we focus on colored illumination and, as we shall see, seek to
leave lighting intensity untouched, without estimating it. Further,
the technique of Bousseau et al. [2009] requires scribbles about ab-
solute and relative properties of the illumination such as “this point
is fully lit” or “the illumination in this region is smooth.” Since
we are dealing with complex multi-source illumination, we cannot
expect that users will be able to specify this, and argue that such
information is hard to specify for novices and experts alike.



3 Mixed lighting white balance

Our approach starts with the standard workflow used for single-
light white balance, but then introduces a set of scribbles to address
the much more challenging problem of mixed white balance. First,
the user globally adjusts the image to get an approximate result.
This step is the same as the standard single-light white balance,
and can be achieved with existing tools such as clicking on a white
patch or adjusting the global color temperature. Then, we provide
three brushes to annotate the image. Neutral color scribbles in-
dicate objects that are white or gray. Same color scribbles show
regions of constant reflectance or texture, but where the actual re-
flectance need not be specified. Finally, Correct color scribbles
indicate areas that look correct in the current view. We designed
these scribbles such that they are related to reflectance only, and do
not require users to specify absolute values. We avoided scribbles
related to lighting, because, in our experience, precise illumination
properties are elusive for humans, especially on complex materials.
After the user has marked the image with these scribbles, we solve
a linear optimization problem that estimates the spatially varying
RGB gain factors that explain the formation of the observed image
with mixed lighting. We render the white-balanced image by apply-
ing the inverses of these factors. If needed, users can iterate and add
more scribbles to refine the result. Figure 1 illustrates this process.

We first present our image formation model. We explain how we
formulate the white-balance problem as a least-squares optimiza-
tion based on the Matting Laplacian, and motivate this approach by
analyzing the null space of this energy. Finally, we express scrib-
bles as constraints in the optimization and show how we can extend
these scribbles to find additional constraints.

3.1 Image formation model and problem statement

The input of the algorithm is an image (Ir, Ig, Ib) that rep-
resents a scene with reflectance (Rr, Rg, Rb) lit by n` lights
{(Lir, Lig, Lib)}. We name �i the attenuation of the i-th light due
to factors such as light travel and foreshortening. Further, we as-
sume Lambertian materials and no inter-reflections. Using this no-
tation, we model the observed image at a pixel p by:

8c 2 {r, g, b}, Ic(p) = Rc(p)

 
nX̀

i=1

�i(p)Lic

!
(1)

In this equation, we only observe (Ir, Ig, Ib), everything else is
unknown. Our objective is to produce a white-balanced image
(Or, Og, Ob). Intuitively, we aim for rendering the scene as if each
light had a neutral color, i.e., (Lir, Lig, Lib) = (`i, `i, `i) for some
positive scalar `i. That is, we seek:

8c 2 {r, g, b}, Oc(p) = Rc(p)

 
nX̀

i=1

�i(p)`i

!
(2)

However, this problem is severely under-constrained since we do
not know the number of lights n`, their colors Li, the corresponding
spatially varying attenuation factors �i, and the spatially-varying
scene reflectances R. Further, it is unclear what the `i values should
be. In practice, this problem is intractable without additional hy-
potheses.

In this work, in addition to the “neutral light color” goal (Eq. 2), we
also seek to preserve image intensities, i.e., we also aim for:

Or +Og +Ob = Ir + Ig + Ib (3)

For the sake of clarity, we use a simple model of intensity repre-
sented by the sum of RGB channels. Optionally we could weight
each channel according to its perceptual importance, which would
not affect the rest of our formulation. Intensity preservation, as

defined in Equation 3, has an intuitive interpretation in the photog-
raphy context. Our approach alters only the chromaticity values.
Everything related to intensities remains unchanged, e.g., our op-
erator is orthogonal to tonal adjustments such as brightness and
contrast. For the rest of the paper, we define the chromaticity
of a pixel as its RGB channels divided by its intensity, that is,
CI

c = Ic / (Ir + Ig + Ib) for c 2 {r, g, b}.

Our strategy to produce the white-balanced image (Or, Og, Ob) is
not to estimate all the unknown quantities in Equations 1 and 2.
Instead, we seek (Wr,Wg,Wb) factors such that at a pixel p:

8c 2 {r, g, b}, Ic(p) = Wc(p) Oc(p) (4)

This formulation drastically reduces the number of unknowns.
Moreover, we show in the next section that in a number of cases,
the W factors can be expressed as an affine combination of the ob-
served chromaticity values (CI

r , C
I
g , C

I
b ), which is the key of our

approach based on the Matting Laplacian.

As we shall see later, it is useful to express W as a function of CI .
First, we use Equation 2 to get:

P
c Oc = (

P
c Rc)(

P
i �i`i).

Dividing Equation 2 by this result, we obtain CO = CR since
the light term

P
i �i`i cancels out. Then dividing Equation 4 by

Equation 3, we get

CI
c = Wc C

O
c = Wc C

R
c (5)

3.2 Standard scenarios and the Matting Laplacian

We study a number of standard cases under our model. We show
that in all these cases, the W factors are an affine combination of the
input chromaticities. We then use this result to adapt the Matting
Laplacian introduced by Levin et al. [2006] in the context of image
matting to the problem of white balance under mixed lighting.

3.2.1 Case studies

We now study a few standard cases in increasing order of complex-
ity. We start with the single-light and single-reflectance scenarios,
and then discuss the more complex case with two reflectance values
lit by a 2D illumination.

Single-color illumination. Using the von Kries hypothesis
[Chong et al. 2007], the effect of a single-color illumination can
be modeled by globally scaling the RGB channels. That is, the W
factors are constant over the image, which can be seen as a special
case of an affine combination with zero coefficients affecting the
chromaticity channels.

Monochromatic scenes. In the case where the reflectance R is
constant over the scene, Equation 5 gives Wc = CI

c /CR
c . Since

CR is constant, it means that W is proportional to CI , which is a
special case of affine combination.

Duochromatic scenes under 2D illumination. In the appendix,
we show that under some reasonable assumptions, the previous re-
sult extends to scenes with two reflectances lit by an illumination
that lies on 2D subspaces of the RGB cube. In this case, W can
be expressed as an affine combination of (CI

r , C
I
g , C

I
b ) in which all

the coefficients are nonzero. This case illustrates that it is benefi-
cial to consider all the channels at the same time and allow cross-
talk, e.g., the red channel CI

r is useful to estimate the blue factor
Wb. Intuitively, the two reflectance values cannot induce arbitrary
variations, and we build an affine combination that recovers the W
factors while being insensitive to these variations.



Discussion. These results show the strong relationship between
the observed values (CI

r , C
I
g , C

I
b ) and the unknown (Wr,Wg,Wb)

factors that we seek. We use this link to guide the interpolation of
a sparse set of user-specified constraints and obtain meaningful re-
sults over the entire image. In the next section, we explain how this
affine relationship is related to the null space of the Matting Lapla-
cian, and build upon this result to formulate our approach as a stan-
dard least-squares problem. Our least-squares approach is robust to
other cases, as visible from our examples. Local windows that do
not satisfy this model generate a higher residual but do not make
the algorithm fail. As long as most windows satisfy these cases or
are close to them, our approach produces satisfying outputs. Users
can also add scribbles to constrain the solution.

3.2.2 Link with the null space of the Matting Laplacian

First, we summarize the properties and formulation of the Matting
Laplacian, and then we explain how to adapt it to white balance.

Background on the Matting Laplacian. Levin et al. [2006] in-
troduced the Matting Laplacian in the context of matting, i.e., to
extract a foreground element from its surrounding background.
They argued that the alpha values that represent the foreground-
background mixture at each pixel should locally be an affine com-
bination of the RGB channels. And they showed that this can be
modeled with a least-squares functional based on a matrix M that
they call the Matting Laplacian. M is a np ⇥ np matrix, with np
the number of pixels in the image. Its Mij coefficient is:

X

k such that
(i,j)2wk

✓
�ij �

1

|wk|

✓
1 + (Ii � µk)

✓
⌃k +

✏

|wk|
Id

◆�1

(Ij � µk)

◆◆
(6)

where i, j, and k refer to pixels, Ii is a vector containing the RGB
components at pixel i, �ij is the Kronecker symbol , wk is a window
centered on pixel k, µk and ⌃k are the mean vector and covariance
matrix of the pixels within wk, Id is the 3⇥ 3 identity matrix, and
✏ is a parameter controlling the smoothness of the result. Levin et
al. showed that one can impose, in a least-squares sense, that the
alpha values within each wk are an affine combination of the RGB
channels by minimizing the quadratic form x

T
Mx where x is a

np-dimensional vector containing all the alpha values.

Null space of the Matting Laplacian. We have shown that for a
number of standard cases, the W factors are an affine combination
of the chromaticities (CI

r , C
I
g , C

I
b ). By definition of the Matting

Laplacian, this means that if we build M using the chromaticity val-
ues of the input image instead of the RGB channels, the W factors
are in its null space. That is, WT

c MWc = 0 for all c in {r, g, b},
where Wc is a large vector containing all the Wc factors of the im-
age. This is a critical result for our task. While several other options
exist to interpolate user scribbles, e.g. [Lischinski et al. 2006; Chen
et al. 2007; An and Pellacini 2008], using the Matting Laplacian,
constructed with the chromaticity values, ensures that we produce
the correct result in the cases that we studied. In the next section,
we build upon this result to design our energy function.

3.3 Mixed lighting white balance as optimization

We model white balance as a least-squares optimization. We build
the energy, term by term, with the Matting Laplacian first, and then
the user scribbles.

Affine combination of the chromaticities. We have shown that
in a number of standard cases, the W factors are an affine com-
bination of the chromaticity values, which can be expressed as
W

T
c MWc = 0 for all c in {r, g, b}. However, on real-world

images, there may be windows that do not fall in one of these stan-
dard scenarios. For instance, three or more different reflectances or
lights can appear in some windows. We cope with these cases by
modeling the affine-combination constraint in a least-squares sense.
With the Matting Laplacian, this amounts to a quadratic term:

EM =
X

c2{r,g,b}

W

T
c MWc (7)

We use two settings to prevent the system from returning a trivial
solution when the users have specified only neutral color scribbles.
If the regularization is too weak, and only neutral colors have been
indicated, the image can be interpreted as an uniformly white scene
illuminated by many different light sources. To prevent this triv-
ial solution, we use a strong regularization with ✏ = 10�2. When
other scribbles are provided, the white-scene interpretation does not
hold anymore and we relax the system with ✏ = 10�4 so that it
better respects edges. Intuitively, the Matting Laplacian regulariza-
tion factor controls the smoothness prior of our interpolation en-
ergy. In practice, we have found that values between ✏ = 10�4 and
✏ = 10�6 work fine for our application.

Neutral color. Users can indicate pixels that have a neutral color.
These are usually the first scribbles made by users. For these pixels,
the RGB channels should be equal, and using Equation 3, we obtain
Or = Og = Ob = 1

3

P
I . With Equation 4, this gives 1

3Wc =

Ic /
P

I = CI
c , which we translate into a least-squares energy:

En =
X

p2Sn

X

c2{r,g,b}

✓
1
3
Wc(p)� CI

c(p)

◆2

(8)

where, Sn is the set of pixels covered by the scribbles indicating a
neutral reflectance.

Correct color. Users can also specify that the chromaticity ĈR

currently visible in a region is correct: CO should be equal to ĈR.
Equation 5 leads to ĈR

c Wc = CI
c and the corresponding energy:

Ec =
X

p2Sc

X

c2{r,g,b}

⇣
ĈR

c Wc(p)� CI
c(p)

⌘2
(9)

Same color. Users can also mark regions that have the same chro-
maticity. They need not provide the common chromaticity, they
only mark pixels that share it. The pixels p covering a scribble Ss
share the same (C̄R

r ,C̄R
g ,C̄R

b ) values. Using Equation 5 and sum-
ming over all the pixels, we get:

8c 2 {r, g, b}, C̄R
c

 
X

p2Ss

Wc(p)

!
=
X

p2Ss

CI
c (p) (10)

which leads to a linear relationship between 1/C̄R
c and the Wc fac-

tors under the scribble:
1

C̄R
c

=

P
p2Ss

Wc(p)P
p2Ss

CI
c (p)

(11)

Expressing 1/C̄R
c for a single pixel q gives: Wc(q)/C

I
c (q). Since

C̄R
c is constant, we have:

Wc(q)
CI

c (q)
=

P
p2Ss

Wc(p)P
p2Ss

CI
c (p)

(12a)

Wc(q)
X

p2Ss

CI
c (p) = CI

c (q)
X

p2Ss

Wc(p) (12b)

Equation (12b) avoids division and leads to a numerically more sta-
ble scheme. We turn it into a least-squares term Es:
X

q2Ss

X

c2{r,g,b}

 
Wc(q)

⇣X

p2Ss

CI
c (p)

⌘
� CI

c (q)
⇣X

p2Ss

Wc(p)
⌘!2

(13)

We add one such term for each scribble made by users.



(a) input (b) user scribbles (c) output, no extensions (d) extended scribbles (e) output, with extensions

Figure 2: Starting from an image under mixed lighting (a), using only the user-provided scribbles (b) does not fully remove the undesirable
color cast (c). With the same user input and using our extension algorithm (d), we obtain a visually pleasing result with no color cast (e).
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Figure 3: We speed up our algorithm by subsampling the con-
straints defined by the scribbles. We produce similar results with
full-resolution scribbles and with their downsampled counterparts.
We use the same input as in Figure 2.

Extending the scribbles. Our goal is to minimize the amount of
user’s input that will lead to a satisfying output. We use a simi-
lar strategy to Shen et al. [2008] and detect points that are likely
to have the same reflectance as the pixels covered by a scribble and
aggregate these points to this scribble. This automatically adds con-
straints into our system. This helps propagate scribble information
more efficiently, and makes it possible to create satisfying results
with only a small number of scribbles as shown in Figure 2.

We compare pixels using the Euclidean distance in chromaticity
space. Using this metric, our goal is to find unmarked pixels that
unambiguously relate to a scribble. For each unmarked pixel p and
each scribble S, we robustly estimate how related they are by aver-
aging the distance between p and its 10 nearest neighbors in S. We
assign a pixel to the most similar scribble S1 if two conditions are
satisfied. First, the distance s1 has to be below a threshold ts. That
is, a pixel is added to a scribble only if it is closely related to it.
Second, we check that the ratio s2/(s1 + s2) is above a threshold
tr, where s2 is the second best choice. This ensures that we make
only unambiguous assignments for which the second best choice
is significantly worse than the best one. In practice, we always use
ts = 0.01 and tr = 0.8 (with color channel values between 0 and 1).

Subsampling the same-color scribbles. The same-color scrib-
bles create off-diagonal terms in the linear system. If we use all the
pixels covered by these scribbles to define our energy, the corre-
sponding linear system would be dense and slow to solve. Instead,
we overlay a grid on the image and select a single pixel for each grid
cell. Although a random selection achieves satisfying outputs, we
found that we can improve the results by selecting pixels in smooth
areas. The rationale is that if the signal varies quickly near a pixel,
it may be on an edge or a corner where the W factors may also be
discontinuous. In practice, we estimate the local amount of varia-
tion as the variance of I in a 3 ⇥ 3 window centered on the pixel,
and we use 10⇥ 10 grid cells. To further improve the robustness of
our automatic scribbles extension, we do not pick a representative
point in a grid cell, if the number of similar pixels in it, as defined
in the previous section, is less than 30% of all the points in the cell.
Figure 3 shows the effects of subsampling.

In addition, we also discard samples where the image is dark be-
cause the signal-to-noise ratio in these regions is poor and the sig-
nal is unreliable. In practice, we discard pixels for which I < td
with td = 0.01. Later on, we fill in missing data in those regions,
using interpolation from the nearest image pixels, whose W factor
is reliable, i.e., Iq > td.

Putting it together. We get the final result by minimizing a least-
squares energy that comprises all the terms that we have defined,
that is, EM that seeks to represent the W as an affine combination
of the chromaticity channels, En, Ec, and Es that model the users’
scribbles. We weight each term to get the energy:

E = wMEM + wnEn + wcEc + wsEs (14)

In practice, we use the following weights in all our results:
wM = 1, wn = 103, wc = 103, and ws = 102.

4 Results

We demonstrate our approach on a variety of scenes, and compare
to previous work, when possible. Our prototype is implemented
in Matlab. We use the standard “backslash” function to minimize
Equation 14. As long as no same-color strokes are specified (Sec-
tion 3.3), the solver is interactive. When these strokes are present,
they add off-diagonal terms and the solver can take up to 1 minute
per channel for a 900⇥ 900 image. For larger resolutions, we first
downsample the image, solve for the W factors, and upsample them
using Joint Bilateral Upsampling [Kopf et al. 2007].

The kitchen in Figures 1 and 6 is a common case of an interior
scene with multiple light chromaticities, which our technique can
tackle. In contrast, existing tools cannot remove the color cast in
many regions. Single-light white balance only improves part of the
scene and produces strong color casts everywhere else (Fig. 1b).
The method of Hsu et al. [2008] (Fig. 6c) shows its limitations
on this photo because there are three light sources, all of a dif-
ferent color, and they only handle two. Even though it was not
designed specifically for this task, we can use the chromaticity of
the shading obtained by Bousseau et al. [2009] for white balance
correction. However, in scenes such as the kitchen, this produces
an overall desaturated result (Fig. 6b). This is probably because
their method was designed for intrinsic images, not white balance,
and their equations are derived for the case of monochromatic lights
only. They explain that the use of the equations on a per-channel
basis is only a heuristic. Furthermore, their method cannot handle
well black-and-white reflectance variations such as the books in the
lower-left of Fig. 6(b), which leads to blue color artifacts there.

Figures 10 and 8 show that, in the two-light scenario, our approach
performs as well as the method by Hsu et al. [2008], and better than
that of Ebner [2009]. The main difference with the former is that
our approach does not assume the light colors to be known a priori
and relies on user input. Moreover, as previously discussed, and
unlike the technique of Hsu et al., our approach can also cope with
more than two lights.



(a) input (b) ground truth (c) single-light white balance (d) result of Hsu et al.

(e) scribbles of Bousseau et al. (f) result of Bousseau et al. (g) our scribbles (h) our result

Figure 4: Ground truth comparison against existing approaches. We captured two photos with a white light at different positions. We applied
different color filters to each image and combined them to get the input image (a). The ground-truth version is a direct combination of the
photos taken under the white light (b). Compensating for the color of one of the lights only does not yield a satisfying result (c). Because the
areas lit by each light are mostly disconnected, the Pooh for the red light and the wall for the yellow light, the automatic technique of Hsu et
al. [2008] does not produce a good result (d). The technique by Bousseau et al. [2009] relies on scribbles made users (kindly provided by
A. Bousseau) (e) and works better, but the colors are desaturated (f). In comparison, our approach uses a number of scribbles on the same
order as Bousseau et al. and renders a satisfying result (h) close the ground truth.
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(a) Scribbles error evaluation

Figure 5: We evaluated the effect of our scribbles on the semi-synthetic image (Fig. 4). The use of neutral scribbles alone fixes the gray floor
and the white wall, but extrapolates wrong colors elsewhere. By adding correct-color scribbles to fix a few of the natural looking colors,
produced by the single-light white balance stage, we get better looking regions. Finally, we introduce a couple of same-color scribbles to
propagate correct color information to other parts of the image. The solution produced by our system is free of color casts, visually (Fig. 4h)
and numerically closer to the ground truth, compared to the methods of [Bousseau et al. 2009] and [Hsu et al. 2008].



Figure 11 shows that our approach can deal with complex materi-
als, such as fur. A few, easy to specify, same-color scribbles are
enough for our system to produce a result that is free of color casts
(Fig. 11e). For comparison, the system of Hsu et al. [2008] strug-
gles to estimate the two light mixtures because of the complex ap-
pearance of the fur (Fig. 11c).

(a) scribbles of Bousseau et al. (b) result of Bousseau et al.

(c) result of Hsu et al. (d) our result

Figure 6: Comparison with other techniques on the same input as
Figure 1. Bousseau et al. [2009] produce results with desaturated
colors (b), e.g., the cabinetry. The two-light technique of Hsu et
al. [2008] does not fully remove color casts on the left wall and
on the dishwasher because there are three different lights (c). In
contrast, our approach produces a satisfying output (d).

4.1 Evaluation using ground-truth data

We use the ground-truth data provided by Hsu et al. [2008] to evalu-
ate the performance of our approach by comparing it to their results
(reproduced from their article), and to the results of Bousseau et
al. [2009] (kindly provided by A. Bousseau). Our result (Fig. 9c) is
numerically and visually closer to the ground-truth image (Fig. 9e).
We provide more details in the supplemental material.

Energy evaluation. Figure 7 evaluates how well our energy mod-
els the W factors for various ground-truth mixed lighting condi-
tions. We show comparisons to the all-purpose interpolation energy
proposed by Lischinski et al. [2006], and to the KNN Matting en-
ergy [Chen et al. 2012], which improves the clustering Laplacian
based on the nonlocal principle [Lee and Wu 2011]. We used 10
pairs of input/ground truth images, and for each one of them we
randomly placed a small set of known-white-balance constraints
through the entire image; approximately 0.001% of all pixels in an
image were constrained (every 300⇥300 pixels on average). Using
the same constraints, we optimized the three energies to interpolate
the missing values. We repeated this step 10 times for each of the
10 data sets, and report the mean relative per pixel error for the W
factors. The plot shows that for the problem of white balance our
energy performs consistently better than both the all-purpose en-
ergy and the clustering Laplacian energy (visual results are in the
supplemental material). We also tested the clustering Laplacian en-
ergy computed using the chrominance channels and observed only
a minor improvement. On average, the Matting Laplacian still per-
formed 2.5⇥ better. The general-purpose energy and clustering
Laplacian rely on appearance similarity to interpolate the missing
data. While this performs well for some applications, e.g., [Chen
et al. 2012] achieves state-of-the-art matting results, our experiment
suggests that the affine model of the Matting Laplacian is better
suited to the white balance problem.
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(lower is better)

our energy

interpolation energy of Lischinski et al. [2006]
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clustering Laplacian energy of Chen et al. [2012]    

Figure 7: We compare our energy to the all-purpose interpolation
energy proposed by Lischinski et al. [2006], and to the clustering
Laplacian energy by Chen et al. [2012]. With a sparse set of con-
straints, our energy interpolates missing values that are closer to
the ground truth light mixtures. This corresponds to visually better
white balanced results (see the supplemental material).

Scribble impact. In Figure 5, we evaluate the impact of our scrib-
bles on an image with ground truth (Fig. 4). The neutral-color
scribbles quickly improve the overall result. Then, correct-color
scribbles help identify a few regions that look good after the single-
light white balance stage. Finally, the same-color scribbles help
propagate this information to other areas through the scribbles ex-
tension mechanism. To isolate the effect of the white wall in the
background, we also plot the energy restricted to the color pixels
as determined by the ground-truth data. The initial gain from the
neutral-color scribbles is lower, but the trend remains the same. We
provide another such analysis in the supplemental material.

User-independent evaluation of our model. Scribble-based
techniques are hard to evaluate because they depend on a user’s
decisions. It makes it difficult to get a sense of their convergence or
the amount of user annotations that are fundamentally needed. We
propose a new methodology to evaluate scribble-based approaches
independent of human input and based on ground truth data. Ide-
ally, we would like to know how a method performs with the best
possible user input. To make things tractable, however, we propose
an approximation based on a set of tentative scribbles obtained from
an image segmentation, and a greedy strategy. By definition, this
does not inform us on how easy it would be for a user to choose
these scribbles, but it provides strong information about the ade-
quacy and conciseness of the mathematical formulation, and a ref-
erence to evaluate human performance.

First, we segment the input image using Quick Shift [Vedaldi and
Soatto 2008], and pick the scribble in each segmented region to be
as long as possible by fitting an ellipse to the segmented region, and
finding its maximal axis. Each segmented region is then assigned
a chromaticity value equal to the mean chromaticity of the pixels
composing it. By comparing to ground truth, and simple threshold-
ing, segments can be determined to be “neutral” or “correct” in the
single-light white balance image. Further, pairs of segments can
be deemed to be “same color”. This segmentation and assignment
gives us our set of potential scribbles.

For each potential scribble, we evaluate the error, the CIE Lab L2-
norm, of the image, compared to ground truth, if we applied that
scribble. We then greedily apply the scribble that decreases the
error most. Then we iterate, currently using a brute-force evaluation
of all possible scribbles at each iteration.

The green curve in Figure 5 plots the error of the greedy evaluation.
Even though it is greedy, and not optimal, it is lower than any cur-
rent approach. In particular, these greedily-chosen scribbles, based
on full ground truth knowledge, show that our user did not make
optimal choices, but got close with additional scribbles.



4.2 Discussion and limitations

Since our approach is user-driven, the quality of the result depends
on the amount of interaction that the user performs. We found that
simple scenes require only a few scribbles, e.g., 9 in Figure 2, and
more complex scenes may need up to 50 scribbles (Figure 1). Al-
though it is difficult to quantify, our scribbles are relatively easy to
use. Qualities such as “this is a white wall” and “this region has a
uniform color” are easy to determine for users.

The usefulness of the “correct single white balance” strokes de-
pends on the choice of the white balance settings. However, such
strokes could be extended to allow the user to explore multiple op-
tions for single white balance and use constraints from these multi-
ple versions.

We designed our algorithm using linear RGB values, which can
be easily obtained from the RAW image files produced by DSLR
cameras. Although JPEG files produced by cameras are processed
to make them more appealing, e.g., to increase their contrast and
saturation, we found that our approach is robust enough to handle
them. For instance, Figure 12 shows a sample result on a JPEG
photo for which we assumed a standard gamma of 2.2.

Our current implementation uses a vanilla solver. The first few
strokes result in interactive feedback, but later passes take about
a minute per color channel. A multi-grid solver would dramatically
reduce this cost.

Our user-driven approach to the many-lights white balance prob-
lem relies on the subjective judgement of the users. This provides
important constraints for our interpolation scheme, which tends to
produce results that are plausible or pleasing, but not necessarily
physically accurate. For example, in Figure 8, the ground-truth left
and right pages have slightly different reflectances, which the user
did not know, which leads to numerical error.

5 Conclusions

We present a practical method for high-quality white balancing in
scenes with complex lighting based on user-provided scribbles. It
relies on what is most intuitive to humans, reflectance properties.
Our contributions are a new formulation of the white-balance prob-
lem based on intensity preservation, a study that shows that im-
portant canonical local configurations are in the null space of the
Matting Laplacian, an interpolation energy that performs better for
white balance than generic approaches and strategy to extend con-
straints and reduce the required user interaction.
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Appendix: Duochromatic scenes under 2D lighting. We show
that the W factors of scenes made of two reflectance values R1 and
R2 lit by a combination of two lights L1 and L2 can be expressed as
an affine combination of the input chromaticities. We also assume
that the observed intensities are not affected by the lights, only the

chromaticities vary. That is,
P

L1R1 =
P

L2R1 and
P

L1R2 =P
L2R2. We name these two quantities i1 and i2. We show that

the Wr factor is an affine combination of the (CI
r , C

I
g , C

I
b ) triplet;

similar results can be derived for Wg and Wb. From Equation 1, we
have:

Ir =

(
(�1L1r + �2L2r)R1r if in R1 region
(�1L1r + �2L2r)R2r if in R2 region

(15)

where �1 and �2 are the spatially varying intensities of the lights
L1 and L2. We seek affine coefficients (ar, ag, ab) and b indepen-
dent of �1 and �2 such that Wr =

P
c2{r,g,b} acC

I
c + b. We first

derive useful relationships in the R1 region, similar formulas can
be obtained with R2. We divide Equation 15 by

P
I , and name

↵ = �1/(�1 + �2) and k1 =
P

c R1c / i1 to get:

CI
r =

(�1L1r + �2L2r)R1rP
c(�1L1c + �2L2c)R1c

=
(�1L1r + �2L2r)R1r

(�1 + �2)i1
(16a)

=
�
↵L1r + (1� ↵)L2r

� P
c R1c

i1

R1rP
c R1c

(16b)

= k1
�
↵L1r + (1� ↵)L2r

�
CR1

r (16c)

Using Equation 4, we have Wr = k1
�
↵L1r + (1 � ↵)L2r

�
. We

first show the result for ↵ = 0 and ↵ = 1 and use superposition to
extend it to other ↵ values. That is, we seek (ar, ag, ab) and b such
that Wr =

P
c2{r,g,b} acC

I
c + b for ↵ = 0 and ↵ = 1 in both R1

regions and R2 regions. Using a matrix formulation, this gives:
0

B@

k1 L1r C
R1
r k1 L1g C

R1
g k1 L1b C

R1
b 1

k1 L2r C
R1
r k1 L2g C

R1
g k1 L2b C

R1
b 1

k2 L1r C
R2
r k2 L1g C

R2
g k2 L1b C

R2
b 1

k2 L2r C
R2
r k2 L2g C

R2
g k2 L2b C

R2
b 1

1

CA

0

B@
ar

ag

ab

b

1

CA=

0

B@
k1L1r

k1L2r

k2L1r

k2L2r

1

CA

(17)
Since the matrix is square, the system is either well-posed or under-
constrained, which guarantees that there is at least one solution.
Further, because the values of CI and W for an arbitrary ↵ are a
linear interpolation of the values at ↵ = 0 and ↵ = 1, this ensures
that a solution of Equation 17 is valid for any ↵ value.

Discussion. The assumption
P

L1R1 =
P

L2R1 andP
L1R2 =

P
L2R2 may not always be satisfied. Nevertheless,

since we freely scale up and down L1 and L2, as long as we ap-
ply the inverse scale factors to �1 and �2, we can use these de-
grees of freedom to minimize the differences between

P
L1R1 andP

L2R1, and
P

L1R2 and
P

L2R2.


