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(a) input HDR image tone-mapped with a simple
gamma curve (details are compressed)

(b) our pyramid-based tone mapping, set to pre-
serve details without increasing them

(c) our pyramid-based tone mapping, set to
strongly enhance the contrast of details

Figure 1: We demonstrate edge-aware image filters based on the manipulation of Laplacian pyramids. Our approach produces high-quality
results, without degrading edges or introducing halos, even at extreme settings. Our approach builds upon standard image pyramids and
enables a broad range of effects via simple point-wise nonlinearities (shown in corners). For an example image (a), we show results of
tone mapping using our method, creating a natural rendition (b) and a more exaggerated look that enhances details as well (c). Laplacian
pyramids have previously been considered unsuitable for such tasks, but our approach shows otherwise.

Abstract

The Laplacian pyramid is ubiquitous for decomposing images into
multiple scales and is widely used for image analysis. However,
because it is constructed with spatially invariant Gaussian kernels,
the Laplacian pyramid is widely believed to be ill-suited for repre-
senting edges, as well as for edge-aware operations such as edge-
preserving smoothing and tone mapping. To tackle these tasks,
a wealth of alternative techniques and representations have been
proposed, e.g., anisotropic diffusion, neighborhood filtering, and
specialized wavelet bases. While these methods have demonstrated
successful results, they come at the price of additional complex-
ity, often accompanied by higher computational cost or the need to
post-process the generated results. In this paper, we show state-of-
the-art edge-aware processing using standard Laplacian pyramids.
We characterize edges with a simple threshold on pixel values that
allows us to differentiate large-scale edges from small-scale de-
tails. Building upon this result, we propose a set of image filters to
achieve edge-preserving smoothing, detail enhancement, tone map-
ping, and inverse tone mapping. The advantage of our approach
is its simplicity and flexibility, relying only on simple point-wise
nonlinearities and small Gaussian convolutions; no optimization or
post-processing is required. As we demonstrate, our method pro-
duces consistently high-quality results, without degrading edges or
introducing halos.
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1 Introduction

Laplacian pyramids have been used to analyze images at multiple
scales for a broad range of applications such as compression [Burt
and Adelson 1983], texture synthesis [Heeger and Bergen 1995],
and harmonization [Sunkavalli et al. 2010]. However, these pyra-
mids are commonly regarded as a poor choice for applications in
which image edges play an important role, e.g., edge-preserving
smoothing or tone mapping. The isotropic, spatially invariant,
smooth Gaussian kernels on which the pyramids are built are con-
sidered almost antithetical to edge discontinuities, which are pre-
cisely located and anisotropic by nature. Further, the decimation
of the levels, i.e., the successive reduction by factor 2 of the reso-
lution, is often criticized for introducing aliasing artifacts, leading
some researchers, e.g., Li et al. [2005], to recommend its omission.
These arguments are often cited as a motivation for more sophis-
ticated schemes such as anisotropic diffusion [Perona and Malik
1990; Aubert and Kornprobst 2002], neighborhood filters [Tomasi
and Manduchi 1998; Kass and Solomon 2010], edge-preserving op-
timization [Bhat et al. 2010; Farbman et al. 2008], and edge-aware
wavelets [Fattal 2009].

While Laplacian pyramids can be implemented using simple image
resizing routines, other methods rely on more sophisticated tech-
niques. For instance, the bilateral filter relies on a spatially varying
kernel [Tomasi and Manduchi 1998], optimization-based methods,
such as [Fattal et al. 2002; Farbman et al. 2008; Subr et al. 2009;
Bhat et al. 2010], minimize a spatially inhomogeneous energy, and
other approaches build dedicated basis functions for each new im-
age, e.g., [Szeliski 2006; Fattal 2009; Fattal et al. 2009]. This addi-
tional level of sophistication is also often associated with practical
shortcomings. The parameters of anisotropic diffusion are difficult
to set because of the iterative nature of the process, neighborhood
filters tend to over-sharpen edges [Buades et al. 2006], and meth-
ods based on optimization do not scale well due to the algorithmic
complexity of the solvers. While some of these shortcomings can
be alleviated in post-processing, e.g., bilateral filtered edges can be
smoothed [Durand and Dorsey 2002; Bae et al. 2006; Kass and
Solomon 2010], this induces additional computation and parameter
setting, and a method producing good results directly is preferable.



In this paper, we demonstrate that state-of-the-art edge-aware filters
can be achieved with standard Laplacian pyramids. We formulate
our approach as the construction of the Laplacian pyramid of the
filtered output. For each output pyramid coefficient, we render
a filtered version of the full-resolution image, processed to have
the desired properties according to the corresponding local image
value at the same scale, build a new Laplacian pyramid from the
filtered image, and then copy the corresponding coefficient to the
output pyramid. The advantage of this approach is that while it
may be nontrivial to produce an image with the desired property
everywhere, it is often easier to obtain the property locally. For
instance, global detail enhancement typically requires a nonlinear
image decomposition, e.g., [Fattal et al. 2007; Farbman et al. 2008;
Subr et al. 2009], but enhancing details in the vicinity of a pixel can
be done with a simple S-shaped contrast curve centered on the pixel
intensity. This local transformation only achieves the desired effect
in the neighborhood of a pixel, but is sufficient to estimate the fine-
scale Laplacian coefficient of the output. We repeat this process for
each coefficient independently and collapse the pyramid to produce
the final output.

We motivate this approach by analyzing its effect on step edges and
show that edges can be differentiated from small-scale details with
a simple threshold on color differences. We propose an algorithm
that has a O(N logN) complexity for an image with N pixels. While
our algorithm is not as fast as other techniques, it can achieve vi-
sually compelling results hard to obtain with previous work. We
demonstrate our approach by implementing a series of edge-aware
filters such as edge-preserving smoothing, detail enhancement, tone
mapping, and inverse tone mapping. We provide numerous results,
including large-amplitude image transformations. None of them
exhibit halos, thereby showing that high-quality halo-free results
can be indeed obtained using only the Laplacian pyramid, which
was previously thought impossible.

Contributions The main contribution of this work is a flexible
approach to achieve edge-aware image processing through sim-
ple point-wise manipulation of Laplacian pyramids. Our approach
builds upon a new understanding of how image edges are repre-
sented in Laplacian pyramids and how to manipulate them in a local
fashion. Based on this, we design a set of edge-aware filters that
produce high-quality halo-free results.

2 Related Work

Edge-aware Image Processing Edge-aware image manipula-
tion has already received a great deal of attention and we refer to
books and surveys for an in-depth presentation [Aubert and Korn-
probst 2002; Kimmel 2003; Paris et al. 2009]. Recently, several
methods have demonstrated satisfying results with good perfor-
mance, e.g., [Chen et al. 2007; Farbman et al. 2008; Fattal 2009;
Subr et al. 2009; Criminisi et al. 2010; He et al. 2010; Kass and
Solomon 2010]. Our practical contribution is to provide filters
that consistently achieve results at least as good, have easy-to-
set parameters, can be implemented with only basic image resiz-
ing routines, are non-iterative, and do not rely on optimization
or post-processing. In particular, unlike gradient-domain meth-
ods, e.g., [Fattal et al. 2002], we do not need to solve the Poisson
equation which may introduce artifacts with non-integrable gradi-
ent fields. From a conceptual standpoint, our approach is based on
image pyramids and is inherently multiscale, which differentiates
it from methods that are expressed as a two-scale decomposition,
e.g., [Chen et al. 2007; Subr et al. 2009; He et al. 2010].

Pyramid-based Edge-aware Filtering As described earlier,
pyramids are not the typical representation of choice for filtering
an image in an edge-preserving way, and only a few techniques

along these lines have been proposed. A first approach is to directly
rescale the coefficients of a Laplacian pyramid, however, this typi-
cally produces halos [Li et al. 2005]. While halos may be tolerable
in the context of medical imaging, e.g., [Vuylsteke and Schoeters ;
Dippel et al. 2002], they are unacceptable in photography.

Fattal et al. [2002] avoid halos by using a Gaussian pyramid to
compute scaling factors applied to the image gradients. They re-
construct the final image by solving the Poisson equation. In com-
parison, our approach directly manipulates the Laplacian pyramid
of the image and does not require global optimization. Fattal et
al. [2007] use a multi-scale image decomposition to combine sev-
eral images for detail enhancement. Their decomposition is based
on repeated applications of the bilateral filter. Their approach is
akin to building a Laplacian pyramid but without decimating the
levels and with a spatially varying kernel instead of a Gaussian
kernel. However, their study is significantly different from ours be-
cause it focuses on multi-image combination and speed. In a similar
spirit, Farbman et al. [2008] compute a multi-scale edge-preserving
decomposition with a least-squares scheme instead of bilateral fil-
tering. This work also differs from ours since its main concern is
the definition and application of a new optimization-based filter. In
the context of tone mapping, Mantiuk et al. [2006] model human
perception with a Gaussian pyramid. The final image is the result
of an optimization process, which departs from our goal of working
only with pyramids.

Fattal [2009] describes wavelet bases that are specific to each im-
age. He takes edges explicitly into account to define the basis
functions, thereby reducing the correlation between pyramid lev-
els. From a conceptual point of view, our work and Fattal’s are
complementary. Whereas he designed pyramids in which edges do
not generate correlated coefficients, we seek to better understand
this correlation to preserve it during filtering.

Li et al. [2005] demonstrate a tone-mapping operator based on a
generic set of spatially-invariant wavelets, countering the popular
belief that such wavelets are not appropriate for edge-aware pro-
cessing. Their method relies on a corrective scheme to preserve
the spatial and intra-scale correlation between coefficients, and they
also advocate computing each level of the pyramid at full resolution
to prevent aliasing. However, when applied to Laplacian pyramids,
strong corrections are required to avoid halos, which prevents a
large increase of the local contrast. In comparison, in this work,
we show that Laplacian pyramids can produce a wide range of
edge-aware effects, including extreme detail amplification, without
introducing halos.

Gaussian pyramids are closely related to the concept of Gaussian
scale-space defined by filtering an image with a series of Gaussian
kernels of increasing size. While these approaches are also con-
cerned with the correlation between scales created by edges, they
are used mostly for purposes of analysis, e.g., [Witkin 1983; Witkin
et al. 1987].

Background on Gaussian and Laplacian Pyramids Our ap-
proach is based on standard image pyramids, whose construction
we summarize briefly. For more detail, see [Burt and Adelson
1983]. Given an image I, its Gaussian pyramid is a set of images
{G`} called levels, representing progressively lower resolution ver-
sions of the image, in which high-frequency details progressively
disappear. In the Gaussian pyramid, the bottom-most level is the
original image, G0 = I, and G`+1 = downsample(G`) is a low-
pass version of G` with half the width and height. The filtering
and decimation process is iterated n times, typically until the level
Gn has only a few pixels. The Laplacian pyramid is a closely
related construct, whose levels {L`} represent details at different
spatial scales, decomposing the image into roughly separate fre-



quency bands. Levels of the Laplacian pyramid are defined by the
details that distinguish successive levels of the Gaussian pyramid,
L` = G`−upsample(G`+1), where upsample(·) is an operator that
doubles the image size in each dimension using a smooth kernel.
The top-most level of the Laplacian pyramid, also called the resid-
ual, is defined as Ln = Gn and corresponds to a tiny version of the
image. A Laplacian pyramid can be collapsed to reconstruct the
original image by recursively applying G` = L`+upsample(G`+1)
until G0 = I is recovered.

3 Dealing with Edges in Laplacian Pyramids

The goal of edge-aware processing is to modify an input signal
I to create an output I′, such that the large discontinuities of I,
i.e., its edges, remain in place, and such that their profiles retain
the same overall shape. For example, the amplitude of significant
edges may be increased or reduced, but the edge transitions should
not become smoother or sharper. The ability to process images
in this edge-aware fashion is particularly important for techniques
that manipulate the image in a spatially-varying way, such as im-
age enhancement or tone mapping. Failure to account for edges in
these applications leads to distracting visual artifacts such as halos,
shifted edges, or reversals of gradients. In the following discussion,
for the sake of illustration, we focus on the case where we seek to
reduce the edge amplitude—the argument when increasing the edge
amplitude is symmetric.

In this work, we characterize edges by the magnitude of the cor-
responding discontinuity in a color space that depends on the ap-
plication; we assume that variations due to edges are larger than
those produced by texture. This model is similar to many exist-
ing edge-aware filtering techniques, e.g., [Aubert and Kornprobst
2002; Paris et al. 2009]; we will discuss later the influence that
this assumption has on our results. Because of this difference in
magnitude, Laplacian coefficients representing an edge also tend to
be larger than those due to texture. A naive approach to decrease
the edge amplitude while preserving the texture is to truncate these
large coefficients. While this creates an edge of smaller amplitude,
it ignores the actual “shape” of these large coefficients and assigns
the same lower value to all of them. This produces an overly smooth
edge, as shown in Figure 2.

Intuitively, a better solution is to scale down the coefficients that
correspond to edges, to preserve their profile, and keep the other
coefficients unchanged, so that only the edges are altered. However,
it is unclear how to separate these two kinds of coefficients since
edges with different profiles generate different coefficients across
scales. On the other hand, according to our model, edges are easy
to identify in image space; a threshold on color differences suffices
to differentiate edges from variations due to texture. This is a key
aspect of our approach: we generate new pyramid coefficients by
working primarily on the input image itself, rather than altering the
pyramid coefficients directly.

The overall design of our algorithm derives from this insight: we
build an approximation of the desired output image specific to each
pyramid coefficient. This is a major difference with the existing
literature. Whereas previous techniques are formulated in terms of
optimization, e.g., [Farbman et al. 2008], PDEs, e.g., [Perona and
Malik 1990], or local averaging, e.g., [Tomasi and Manduchi 1998],
we express our filter through the computation of these local image
approximations together with standard image pyramid manipula-
tions. In practice, we use locally-processed versions of the input
to recompute values for each pyramid coefficient, and combine all
of these new coefficient values into the final result. For each coef-
ficient at location (x,y) and level `, we first determine the region
in the input image on which this coefficient depends. To reduce
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Figure 2: Range compression applied to a step edge with fine de-
tails (a). The different versions of the edge are offset vertically so
that their profiles are clearly visible. Truncating the Laplacian co-
efficients smooths the edge (red), an issue which Li et al. [2005]
have identified as a source of artifacts in tone mapping. In compar-
ison, our approach (blue) preserves the edge sharpness and very
closely reproduces the desired result (black). Observing the shape
of the first two levels (b,c) shows that clipping the coefficients signif-
icantly alters the shape of the signal (red vs. orange). The truncated
coefficients form wider lobes whereas our approach produces pro-
files nearly identical to the input (blue vs. orange).
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Figure 3: Simple view of our range compression approach, which is
based on thresholding and local processing. For a step-like signal
similar to the one in Figure 2, our method effectively builds two
Laplacian pyramids, corresponding to clipping the input based on
the signal value to the left and right of the step edge, then merging
their coefficients as indicated by the color coding.

the amplitude of edges, for example, we clamp all the pixels values
in that region so that the difference to the average value does not
exceed a user-provided threshold. This processed image has the
desired property that edges are now limited in amplitude, to at most
twice the threshold. This also has the side effect of flattening the de-
tails across the edge. As we discuss below, these details are not lost,
they are actually captured by pyramid coefficients centered on the
other side of the edge as illustrated in Figure 3. Then, we compute
the Laplacian pyramid of this processed image to create coefficients
that capture this property. In particular, this gives us the value of
the coefficient (x,y, `) that we seek. Another way of interpreting
our method is that we locally filter the image, e.g., through a local
contrast decrease, and then determine the corresponding coefficient
in the Laplacian pyramid. We repeat this process, such that each
coefficient in the pyramid is computed.

Detail Preservation As mentioned earlier, a reasonable concern
at this point is that the clamped image has lost details in the thresh-
olded regions, which in turn could induce a loss in the final output.



However, the loss of details does not transfer to our final result.
Intuitively, the clamped details are on “the other side of the edge”
and are represented by other coefficients. Applying this scheme to
all pyramid coefficients accurately represents the texture on each
side of the edge, while capturing the reduction in edge amplitude
(Fig. 3). Further, clamping affects only half of the edge and, by
combining coefficients on “both sides of the edge”, our approach
reconstructs an edge profile that closely resembles the input image,
i.e., the output profiles do not suffer from over-smoothing. Ex-
amining the pyramid coefficients reveals that our scheme fulfills
our initial objective, that is, that the edge coefficients are scaled
down while the other coefficients representing the texture are pre-
served (Fig. 2).

4 Local Laplacian Filtering

We now formalize the intuition gained in the previous section and
introduce Local Laplacian Filtering, our new method for edge-
aware image processing based on the Laplacian pyramid. A visual
overview is given in Figure 4 and the pseudo-code is provided in
Algorithm 1.

In Local Laplacian Filtering an input image is processed by con-
structing the Laplacian pyramid {L[I′]} of the output, one coeffi-
cient at a time. For each coefficient (x,y, `), we generate an inter-
mediate image Ĩ by applying a point-wise monotonic remapping
function rg,σ (·) to the original full-resolution image. This remap-
ping function, whose design we discuss later, depends on the local
image value from the Gaussian pyramid g = G`(x,y) and the user
parameter σ which is used to distinguish edges from details. We
compute the pyramid for the intermediate image {L[Ĩ]} and copy
the corresponding coefficient to the output {L[I′]}. After all coeffi-
cients of the output pyramid have been computed, we collapse the
output pyramid to get the final result.

A direct implementation of this algorithm yields a complexity in
O(N2) with N being the number of pixels in the image, since each
coefficient entails the construction of another pyramid with O(N)
pixels. However, this cost can be reduced in a straightforward way
by processing only the sub-pyramid needed to evaluate L`[Ĩ](x,y),
illustrated in Figure 4. The base of this sub-pyramid lies within a
K ×K sub-region R of the input image I, where K = O(2`); for
Laplacian pyramids built using a standard 5-tap interpolation filter,
it can be shown that K = 3(2`+2−1). Put together with the fact that
level ` contains O(N/2`) coefficients, each level requires the ma-
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Remapped
Sub-image

Gaussian
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Intermediate
Laplacian
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Output
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g
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Figure 4: Overview of the basic idea of our approach. For each
pixel in the Gaussian pyramid of the input (red dot), we look up
its value g. Based on g, we remap the input image using a point-
wise function, build a Laplacian pyramid from this intermediate
result, then copy the appropriate pixel into the output Laplacian
pyramid. This process is repeated for each pixel over all scales
until the output pyramid is filled, which is then collapsed to give
the final result. For more efficient computation, only parts of the
intermediate pyramid need to be generated.

nipulation of O(N) coefficients in total. Since there are O(logN)
levels in the pyramid, the overall complexity of our algorithm is
O(N logN). Later we will see that some applications only require a
fixed number of levels to be processed or limit the depth of the sub-
pyramids to a fixed value, reducing the complexity of our algorithm
further.

Remapping Function for Gray-scale Images We assume the
user has provided a parameter σ such that intensity variations
smaller than σ should be considered fine-scale details and larger
variations are edges. As a center point for this function we use
g = G`(x,y), which represents the image intensity at the location
and scale where we compute the output pyramid coefficient. In-
tuitively, pixels closer than σ to g should be processed as details
and those farther than σ away should be processed as edges. We
differentiate their treatment by defining two functions rd and re,
such that r(i) = rd(i) if |i−g| ≤ σ and r(i) = re(i) otherwise. Since
we require r to be monotonically increasing, rd and re must have
this property as well. Furthermore, to avoid the creation of spurious
discontinuities, we constrain rd and re to be continuous by requiring
that rd(g±σ) = re(g±σ).

The function rd modifies the fine-scale details by altering the oscil-
lations around the value g. In our applications we process positive
and negative details symmetrically, letting us write:

rd(i,g,σ) = g+ sign(i−g)σ fd(|i−g|/σ) (1)

where fd is a smooth function mapping from [0,1] to [0,1] that
controls how details are modified. The advantage of this formu-
lation is that it depends only on the amplitude of the detail |i− g|
relative to the parameter σ , i.e., |i− g|/σ = 1 corresponds to a de-
tail of maximum amplitude according to the user-defined parameter.
Analogously, re is a function that modifies the amplitude of edges
that we again formulate in a symmetric way:

re(i,g,σ) = g+ sign(i−g)
(

fe(|i−g|−σ)+σ
)

(2)

where fe is a smooth non-negative function defined over [0,∞). In
this formulation, re depends only on the amplitude above the user
threshold σ , i.e., |i−g|−σ . The function fe controls how the edge
amplitude is modified since an edge of amplitude σ +a becomes an
edge with amplitude σ + fe(a). For our previous 1D range compres-
sion example, clipping edges corresponds to fe = 0, which limits
the amplitude of all edges to σ . Useful specific choices for rd and
re are described in the next section and are illustrated in Figure 5.

Algorithm 1 O(N logN) version of Local Laplacian Filtering
input: image I, parameter σ , remapping function r
output: image I′

1: compute input Gaussian pyramid {G[I]}
2: for all coefficients at position (x,y) and level ` do
3: g← G`(x,y)
4: determine sub-region R of I needed to evaluate L`(x,y)
5: create temporary buffer R̃ of the same size
6: for all pixels (u,v) of R do
7: apply remapping function: R̃(u,v)← r(R(u,v),g,σ)
8: end for
9: compute sub-pyramid {L[R̃]}
10: update output pyramid: L`[I′](x,y)← L`[R̃](x,y)

11: end for
12: collapse output pyramid: I′← collapse({L`[I′]})
Our algorithm considers the pyramid coefficients one by one
(Step 2). Each of them is computed using the pixels from the finest
resolution (Step 4) by applying the remapping function to them
(Step 7) and building a Laplacian pyramid of the remapped data
(Step 9). We copy the relevant coefficient into the output pyramid
(Step 10) and once all the coefficients have been computed, we col-
lapse pyramid the get the final result (Step 12).
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Figure 5: Family of point-wise functions for edge-aware manipulation described in Secs. 5.2 and 5.3. The parameters α and β let us control
how detail and tone are processed respectively. To compute a given Laplacian coefficient in the output, we filter the original image point-wise
using a nonlinear function r(i) of the form shown. This remapping function is parametrized by the Gaussian pyramid coefficient g, describing
the local image content, and a threshold σ used to distinguish fine details (red) from larger edges (blue).

(a) input (b) reduced details (α = 4) (c) increased details (all
levels, α = 0.25)

(d) increased details (lowest 2
levels, α = 0.25)

(e) increased details (level 3
and higher, α = 0.25)

Figure 6: Smoothing and enhancement of detail, while preserving edges (σ = 0.3). Processing only a subset of the levels controls the
frequency of the details that are manipulated (c,d,e). The images have been cropped to make the flower bigger and its details more visible.

The advantage of the functional forms defined in Equations 1 and 2
is that they ensure that r is continuous and increasing, and the de-
sign of a specific filter boils down to defining the two point-wise
functions fd and fe that each have clear roles: fd controls the ampli-
fication or attenuation of details while fe controls the amplification
or attenuation of edges.

Extension to Color Images To handle color, it is possible to
treat only the luminance channel and reintroduce chrominance after
image processing (Sec. 5.3). However, our approach extends natu-
rally to color images as well, letting us deal directly with 3D vectors
representing, e.g., the RGB or CIE-Lab channels. Algorithm 1 still
applies, and we need only to update rd and re, using bold typeface
to indicate vectors:

rd(i,g,σ) = g+unit(i−g)σ fd(‖i−g‖/σ) (3a)

re(i,g,σ) = g+unit(i−g)
[

fe(‖i−g‖−σ)+σ
]

(3b)

with unit(v) = v/‖v‖ if v 6= 0 and 0 otherwise. These equations
define details as colors within a ball of radius σ centered at g and
edges as the colors outside it. They also do not change the roles
of fd and fe, letting the same 1D functions that modify detail and
edges in the gray-scale case be applied to generate similar effects
in color. For images whose color channels are all equal, these for-
mulas reduce to the gray-scale formulas of Eq. 1 and 2.

5 Applications and Results

We now demonstrate how to realize practical image processing ap-
plications using our approach and discuss implementation details.
First we address edge-preserving smoothing and detail enhance-
ment, followed by tone mapping and related tools. We validate
our method with images used previously in the literature [Fattal
et al. 2002; Durand and Dorsey 2002; Paris et al. 2009; Farbman
et al. 2008; Fattal 2009] and demonstrate that our method produces
artifact-free results.

(a) σ = 0.2 (b) σ = 0.5

Figure 7: Effect of the σ parameter for detail enhancement
(α = 0.25). Same input as Figure 6.

5.1 Implementation

We use the pyramids defined by Burt and Adelson [1983], based
on 5× 5 kernels. On a 2.26GHz Intel Xeon CPU, we process a
one-megapixel image in about a minute using a single thread. This
can be halved by limiting the depth of the intermediate pyramid to
at most 5 levels, by applying the remapping to level max(0, `− 3)
rather than always starting at the full-resolution image. This
amounts to applying the remapping to a downsampled version of
the image when processing coarse pyramid levels. The resulting
images are visually indistinguishable from the full-pyramid process
with a PSNR on the order of 30 to 40dB. While this performance
is slower than previous work, our algorithm is highly data parallel
and can easily exploit a multi-core architecture. Using OpenMP, we
obtain a 8× speed-up on an 8-core machine, bringing the running
time down to 4 seconds.



(a) input (b) luminance only (c) RGB channels

(d) close-up (e) close-up (f) close-up

Figure 8: Filtering only the luminance (b) preserves the original
colors in (a), while filtering the RGB channels (c) also modifies the
color contrast (α = 0.25, β = 1, σ = 0.4).

5.2 Detail Manipulation

To modify the details of an image, we define an S-shaped point-
wise function as is classically used for the local manipulation of
contrast. For this purpose, we use a power curve fd(∆) = ∆α , where
α > 0 is a user-defined parameter. Values larger than 1 smooth
the details out, while values smaller than 1 increase their contrast
(Figs. 5 and 6). To restrict our attention to the details of an image,
we set the edge-modifying function to the identity fe(a) = a.

In the context of detail manipulation, the parameter σ controls how
at what magnitude signal variations should be considered edges and
therefore be preserved. Large values allow the filter to alter larger
portions of the signal and yield larger visual changes (Fig. 7). In
its basic form detail manipulation is applied at all scales, but one
can also control which scales are affected by limiting processing to
a subset of the pyramid levels (Figs. 6c,d,e). While this control is
discrete, the changes are gradual, and one can interpolate between
the results from two subsets of levels if continuous control is de-
sired. Our results from Figures 6 and 7 are comparable to results
of Farbman et al. [2008], however, we do not require the complex
machinery of a multi-resolution preconditioned conjugate gradient
solver. Note that our particular extension to color images allows us
to boost the color contrast as well (Figs. 6, 7, and 8).

Reducing Noise Amplification As in other techniques for tex-
ture enhancement, increasing the contrast of the details may make
noise and artifacts from lossy image compression more visible. We
mitigate this issue by limiting the smallest ∆ amplified. In our im-
plementation, when α < 1, we compute fd(∆) = τ ∆α + (1− τ)∆
where τ is a smooth step function equal to 0 if ∆ is less than 1%
of the maximum intensity, 1 if it is more than 2%, with a smooth
transition in between. All the results in this paper and supplemental
material are computed with this function.

5.3 Tone Manipulation

Our approach can also be used for reducing the intensity range of
a HDR image, according to the standard tone mapping strategy of
compressing the large-scale variations while preserving (or enhanc-
ing) the details [Tumblin and Turk 1999]. In our framework, we
manipulate large-scale variations by defining a point-wise function
modifying the edge amplitude, fe(a) = βa, where β ≥ 0 is a user-
defined parameter (Fig. 5).

In our implementation of tone manipulation we process the im-
age intensity channel only and keep the color unchanged [Du-

(a) β = 0
σ = log(2.5)

(b) β = 0
σ = log(30)

(c) β = 0.75
σ = log(2.5)

Figure 9: β and σ have similar effects on tone mapping results,
they control the balance between global and local contrast. α is set
to 1 in all three images.

rand and Dorsey 2002]. We compute an intensity image Ii =
1
61 (20Ir+40Ig+Ib) and color ratios (ρr,ρg,ρb)=

1
Ii
(Ir, Ig, Ib) where

Ir, Ig, and Ib are the RGB channels. We apply our filter on the
log intensities log(Ii) [Tumblin and Turk 1999], using the natural
logarithm. For tone mapping, we set our filter with α ≤ 1 so that
details are preserved or enhanced, and β < 1 so that edges are com-
pressed. This produces new values log(I′i ), which we must then
map to the displayable range of [0,1]. We remap the result log(I′i )
by first offsetting its values to make its maximum 0, then scaling
them so that they cover a user-defined range [Durand and Dorsey
2002; Li et al. 2005]. In our implementation, we estimate a robust
maximum and minimum with the 99.5th and 0.5th percentiles, and
we set the scale factor so that the output dynamic range is 100 : 1 for
the linear intensities. Finally, we multiply the intensity by the color
ratios (ρr,ρg,ρb) to obtain the output RGB channels, then gamma
correct with an exponent of 1/2.2 for display. We found that fixing
the output dynamic range makes it easy to achieve a consistent look
but also constrains the system. As a result, the σ and β parame-
ters have similar effects, both controlling the balance between local
and global contrast in the rendered image (Fig. 9). From a practi-
cal standpoint, we advise keeping σ fixed and varying the slope β

between 0, where the local contrast is responsible for most of the
dynamic range, and 1, where the global contrast dominates. Unless
otherwise specified, we use σ = log(2.5), which gave consistently
good results in our experiments. Since we work in the log domain,
this value corresponds to a ratio between pixel intensities. It does
not depend on the dynamic range of the scene, and assumes only
that the input HDR image measures radiance up to scale.

Our tone mapping operator builds upon standard elements from pre-
vious work that could be substituted for others. For instance, one
could instead use a sigmoid to remap the intensities to the display
range [Reinhard et al. 2002] or use a different color management
method, e.g., [Mantiuk et al. 2009]. Also, we did not apply any ad-
ditional “beautifying curve” or increased saturation as is commonly
done in photo editing software. Our approach produces a clean
output image that can be post-processed in this way if desired.

Range compression is a good test case to demonstrate the abilities
of our pyramid-based filters because of the large modification in-
volved. For high compression, even subtle inaccuracies can become
visible, especially at high-contrast edges. In our experiments, we
did not observe aliasing or over-sharpening artifacts even on cases
where other methods suffer from them (Figs. 10 and 11). We also



(a) edge-aware wavelets (b) close-up

(c) our result (d) close-up

Figure 10: The extreme contrast near the light bulb is particularly
challenging. Images (a) and (b) are reproduced from [Fattal 2009].
The edge-aware wavelets suffer from aliasing and generate an ir-
regular edge (b). In comparison, our approach (d) produces a clean
edge. We set our method to approximately achieve the same level of
details (σ = log(3.5), α = 0.5, β = 0).

stress-tested our operator by producing results with a low global
contrast (β = 0) and high local details (α = 0.25). In general, the
results produced by our method did not exhibit any particular prob-
lems (Fig. 16). We compare exaggerated renditions of our method
with Farbman et al. [2008] and Li et al. [2005]. Our method pro-
duces consistent results without halos, whereas the other methods
either create halos or fail to exaggerate detail (Fig. 14).

One typical difficulty we encountered is that sometimes the sky
interacts with other elements to form high-frequency textures that
undesirably get amplified by our detail-enhancing filter (Figs. 8b
and 12). Such “misinterpretation” is common to all low-level filters
without semantic understanding of the scene, and typically requires
user feedback to correct [Lischinski et al. 2006].

We also experimented with inverse tone mapping, using slope val-
ues β larger than 1 to increase the dynamic range of a normal image.
Since we operate on log intensities, roughly speaking the linear dy-
namic range gets exponentiated by β . Applying our tone-mapping
operator on these range-expanded results gives images close to the
originals, typically with a PSNR between 25 and 30dB for β = 2.5.
This shows that our inverse tone mapping preserves the image con-
tent well. While a full-scale study on an HDR monitor is beyond the
scope of our paper, we believe that our simple approach can com-
plement other relevant techniques, e.g., Masia et al. [2009]. Sample
HDR results are provided in supplemental material.

5.4 Discussion

While our method can fail in the presence of excessive noise or
when extreme parameter settings are used (e.g., the lenna picture
in supplemental material has a high level of noise), we found that
our filters are very robust and behave well over a broad range of
settings. Figure 15 shows a variety of parameters values applied
to the same image and the results are consistently satisfying, high-
quality, and halo-free; many more such examples are provided in

(a) uncorrected bilat. filter (b) close-up

(c) our result (d) close-up

Figure 11: The bilateral filter sometimes over-sharpens edges,
which can leads to artifacts (b). We used code provided by [Paris
and Durand] and multiplied the detail layer by 2.5 to generate these
results. Although such artifacts can be fixed in post-processing,
this introduces more complexity to the system and requires new pa-
rameters. Our approach produces clean edges directly (d). We
set our method to achieve approximately the same visual result
(σ = log(2.5), α = 0.5, β = 0).

supplemental material. While the goal of edge-aware processing
can be ill-defined, the results that we obtain shows that our ap-
proach allows us to realize many edge-aware effects with intuitive
parameters and a simple implementation. The current shortcoming
of our approach is its running time. We can mitigate this issue
thanks to the multi-scale nature of our algorithm, allowing us to
generate quick previews that are faithful to the full resolution re-
sults (Fig. 13). Furthermore, the algorithm is highly parallelizable
and should lend itself to a fast GPU implementation. Beyond these
practical aspects, our main contribution is a better characterization
of the multi-scale properties of images. Many problems related to
photo editing are grounded in these properties of images and we
believe that a better understanding can have benefits beyond the
applications demonstrated in this paper.

6 Conclusion

Link to Recent Work We first presented this work at the ACM
SIGGRAPH conference in 2011. The main difference with our
original article is Section 3 that now focuses on qualitative prop-
erties of edges. A formal discussion of these properties can be
found in [Paris et al. 2011]. Since then, we also extended this work
with a fast algorithm that makes Local Laplacian Filters practical,
an analysis that shows their relationship to the Bilateral Filter, an



(a) Li et al. 2005 (detailed rendi-
tion using parameters suggested
by the authors)

(b) Farbman et al. 2008 (detailed
rendition using parameters sug-
gested by the authors)

(c) Farbman et al. 2008 (exagger-
ated rendition using parameters
suggested by the authors)

(c) our result with exaggerated
details (α = 0.25, β = 0)
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Figure 14: We compare exaggerated, tone-mapped renditions of an HDR image. The wavelet-based method by Li et al. [2005] is best suited
for neutral renditions and generates halos when one increases the level of detail (a). The multi-scale method by Farbman et al. [2008]
performs better and produces satisfying results for intermediate levels of detail (b), but halos and edge artifacts sometimes appear for a
larger increase, as in this image for instance; see the edge of the white square on the blue book cover and the edge of the open book (c). In
comparison, our approach achieves highly detailed renditions without artifacts (d). These results as well as many others may be better seen
in the supplemental material.

application to the transfer of gradient histograms applied to pho-
tographic style transfer, and additional comparisons with existing
techniques such as the Guided Filter [He et al. 2010]. These results
are described in [Aubry et al. 2011].

Although Local Laplacian Filters can reduce image details, Xu et
al. [2011; 2012] have shown that they do not fully remove them
and have proposed filters that completely suppress details for ap-
plications such as cartoon rendering and mosaic texture removal.
By addressing the extreme detail removal problem, this work is
complementary to Local Laplacian Filters that perform well at ex-
treme detail increase. Hadwiger et al. [2012] have introduced a
dedicated data structure to process very large images efficiently and
have demonstrated its application to Local Laplacian Filtering.

Closing Note We have presented a new technique for edge-aware
image processing based solely on the Laplacian pyramid. It is con-
ceptually simple, allows for a wide range of edge-aware filters, and
consistently produces artifact-free images. We demonstrate high-
quality results over a large variety of images and parameter settings,
confirming the method’s robustness. Our results open new per-
spectives on multi-scale image analysis and editing since Laplacian

pyramids were previously considered as ill-suited for manipulating
edges. Given the wide use of pyramids and the need for edge-aware
processing, we believe our new insights can have a broad impact in
the domain of image editing and its related applications.
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Figure 15: Our filter to enhance and reduce details covers a large space of possible outputs without creating halos.

Figure 16: We stressed our approach by applying a strong range compression coupled with a large detail increase (α = 0.25, β = 0,
σ = log(2.5)). The results are dominated by local contrast and are reminiscent of the popular, exaggerated “HDR look” but without the
unsightly halos associated with it. In terms of image quality, our results remain artifact-free in most cases. We explore further parameter
variations in the supplemental material.


