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Abstract

Simultaneous Localization and Mapping (SLAM) is a fundamental capability in
mobile robots, and has been typically considered in the context of aiding mapping
and navigation tasks. In this thesis, we advocate for the use of SLAM as a super-
visory signal to further the perceptual capabilities in robots. Through the concept
of SLAM-supported object recognition, we develop the ability for robots equipped
with a single camera to be able to leverage their SLAM-awareness (via Monocu-
lar Visual-SLAM) to better inform object recognition within its immediate environ-
ment. Additionally, by maintaining a spatially-cognizant view of the world, we find
our SLAM-aware approach to be particularly amenable to few-shot object learning.
We show that a SLAM-aware, few-shot object learning strategy can be especially
advantageous to mobile robots, and is able to learn object detectors from a reduced
set of training examples.

Implicit to realizing modern visual-SLAM systems is its choice of map represen-
tation. It is imperative that the map representation is crucially utilized by multiple
components in the robot’s decision-making stack, while it is constantly optimized
as more measurements are available. Motivated by the need for a unified map
representation in vision-based mapping, navigation and planning, we develop an
iterative and high-performance mesh-reconstruction algorithm for stereo imagery. We
envision that in the future, these tunable mesh representations can potentially en-
able robots to quickly reconstruct their immediate surroundings while being able
to directly plan in them and maneuver at high-speeds.

While most visual-SLAM front-ends explicitly encode application-specific con-
straints for accurate and robust operation, we advocate for an automated solution
to developing these systems. By bootstrapping the robot’s ability to perform GPS-
aided SLAM, we develop a self-supervised visual-SLAM front-end capable of perform-
ing visual ego-motion, and vision-based loop-closure recognition in mobile robots.
We propose a novel, generative model solution that it is able to predict ego-motion
estimates from optical flow, while also allowing for the prediction of induced scene

5



flow conditioned on the ego-motion. Following a similar bootstrapped learning
strategy, we explore the ability to self-supervise place recognition in mobile robots
and cast it as a metric learning problem, with a GPS-aided SLAM solution pro-
viding the relevant supervision. Furthermore, we show that the newly learned
embedding can be particularly powerful in discriminating visual scene instances
from each other for the purpose of loop-closure detection. We envision that such
self-supervised solutions to vision-based task learning will have far-reaching impli-
cations in several domains, especially facilitating life-long learning in autonomous
systems.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Autonomous mobile robots have enjoyed wide attention recently, particularly in
the form of self-driving cars, unmanned aerial drones and autonomous underwater
vehicles. One of the reasons for their wide scale adoption has been attributed to
the success of powerful computer-vision algorithms that are able to reliably build
a geometric, and semantic description of the world it perceives.

While geometric and semantic scene understanding are two core competencies
that can mutually benefit each other, they have been predominantly treated as two
independent problems for the past few decades. Geometric scene understanding in
mobile robots, more popularly referred to as Simultaneous Localization and Mapping
(SLAM) (Bailey and Durrant-Whyte 2006; Durrant-Whyte and Bailey 2006; Thrun
and Leonard 2008), is a long-studied, fundamental capability that equip robots to
simultaneously build a geometric representation of its environment and localize itself
within that representation. While most autonomous systems could benefit from
the full-SLAM solution, most systems however only perform either localization or
mapping, assuming the other to be known or pre-specified. This is primarily due to
the challenges in developing long-term and robust SLAM solutions, both from an
algorithmic complexity and semantic data-association standpoint. Nevertheless,
we are interested in studying the limits of semantic scene understanding in mobile
robots that are spatially-cognizant of its immediate environment.

Semantic scene understanding algorithms in the computer vision literature are
evolving at an unprecedented pace today. Challenging datasets in object recog-
nition, semantic segmentation, pose estimation from a few years back are being
solved with considerably stronger accuracy year after year. This trend has pre-
dominantly been attributed to recent developments in Convolutional Neural Net-
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works (CNNs), more generally Deep Neural Networks, and their implementation
on modern computing architectures such as GPGPUs. Their success have espe-
cially been remarkable with continued performance gains year-over-year, consum-
ing ever-increasing datasets readily available on the internet for training purposes.
These methods have considerably altered the landscape of computer-vision today,
bringing contextual and semantically-rich scene understanding to seemingly daunt-
ing perceptual tasks.

Spatially-cognizant Scene Understanding This thesis focuses on endowing
robots with spatially-cognizant, otherwise referred to in this thesis as SLAM-aware,
perceptual models for improved scene understanding. More specifically, we inves-
tigate the task of object recognition in mobile robots while simultaneously main-
taining a strong geometric understanding of its environment via a full visual-SLAM
solution. This further leads us to consider the converse problem, “Can rich spatio-
temporally consistent semantic cues extracted from images, provide sufficiently re-
liable measurements to improve SLAM?”. We investigate this further in the con-
text of vision-based localization, where the task of identifying previously visited
scenes is recovered purely by extracting and matching relevant semantic cues from
sequential imagery captured on a mobile robot.

Following the need for strong geometric understanding in mobile robots, we
reconsider the map representation problem in autonomous mobile systems. Most
systems today typically convert the map reconstructions provided by the SLAM
component into more convenient, intermediate representations to afford tasks such
as motion planning, obstacle avoidance or high-level decision making. We motivate
the need for a unified representation for vision-based mapping in mobile robots,
that is potentially amenable for joint inference and control in a resource-aware man-
ner.

Life-long Learning With the unreasonable effectiveness of data in the deep-
learning era (Sun et al. 2017), most state-of-the-art solutions to semantic scene un-
derstanding from images require large amounts of training data and ever-increasing
training periods. Furthermore, amassing large amounts of labeled data for task-
specific solutions becomes increasingly tedious and expensive. Robots, on the other
hand, collect a rich set of cross-modal information across their various sensor streams.
This brings us to yet another interesting question: “What if we can take advantage
of the natural time-based synchronization to learn capabilities in one sensor by
transferring that knowledge from another domain or sensor?”. If this were feasi-
ble, then we would be required to collect data in an unsupervised manner, and be
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able to bootstrap task knowledge using a known, calibrated sensor and transfer the
task capability onto a newer un-calibrated sensor.

Strongly rooted to this thesis is the fundamental ability in robots to perform
vision-based SLAM. While model-based visual-SLAM algorithms have enabled
significant advances in mobile robot navigation, however, they are limited in their
ability to learn from new experiences and adapt to newer environments. We en-
vision robots to be able to learn from their previous experiences and continuously
tune their internal model representations in order to achieve improved task-performance
and model efficiency. We investigate the concept of self-supervised learning of vi-
sual SLAM front-ends in mobile robots, by bootstrapping an existing GPS-aided
SLAM solution as a supervisory signal.

1.1 Thesis Objective

The objective of this thesis is to extend the perceptual capabilities in autonomous
robots by making them spatially-cognizant of their environment via Simultaneous
Localization and Mapping (SLAM). This thesis addresses how mobile robots could
potentially leverage their inherent SLAM capabilities to better inform tasks such as
object recognition, and bootstrap the learning of vision-based localization tasks.

• As localization and mapping techniques become more powerful, we envision
that the spatial-awareness that SLAM solutions yield can be used effectively
for various robot-specific tasks. These methods can be particularly useful, as
they act as correspondence-engines, providing strong spatial data association
even across the robot’s long-term operation. By viewing SLAM as a sensor,
we consider the problem of semantic scene understanding in robots and in-
vestigate the benefits of developing a spatially-cognizant recognition system.
Conversely, as scene-semantics are spatially grounded within physical envi-
ronments that robots observe, we consider the potential of richer semantic
scene understanding and the role it may have in bolstering SLAM systems of
tomorrow.

• As robots leverage their SLAM capabilities in other tasks, it is critical to re-
evaluate the underlying map representation that is maintained for the pur-
pose of vision-based navigation. While many mapping systems are tailored
towards constructing high-fidelity maps, their utility in other sub-tasks such
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as motion planning and obstacle avoidance is questionable. We seek a uni-
fied and flexible map representation that can be directly estimated in SLAM sub-
components, while being readily usable in the context of motion planning in
mobile robots with little modification. Furthermore, we expect this common
representation to be especially amenable to planning feedback so that these
systems can perform in a resource-constrained and plan-aware setting.

• Autonomous systems today are typically configured with a growing set of
sensors that make calibration, monitoring and model maintenance of these
independent sensors especially tedious. With the rich set of cross-modal in-
formation that these sensors typically collect, we envision robots to be able
to self-supervise themselves in certain tasks by transferring or bootstrapping
these capabilities that leverage other complementary sensors. Additionally,
we show that this bootstrap mechanism can also take advantage of the rep-
resentations that are implicitly maintained in robots such as localization and
mapping (SLAM). In the future, we expect robots to able to build redundancy
in tasks using sensors that are newly introduced by bootstrapping existing
knowledge from previously modeled sensors.

We describe our contributions to these objectives in the following sections.

1.2 Contributions

• Monocular SLAM-Supported Object Recognition In Chapter 3, we develop
novel and powerful models for simultaneous semantic and geometric scene
understanding that considerably improve upon existing state-of-the-art tech-
niques. We introduce the notion of “SLAM-aware” object recognition (Pillai
and Leonard 2015) — a robot, spatially cognizant of its environment and lo-
cation, can outperform traditional frame-by-frame detection and recognition
techniques, by incorporating its knowledge of the object from various view-
points. Additionally, by maintaining a spatially-cognizant view of the world,
we find our SLAM-aware approach to be particularly amenable to few-shot
object learning. We show that a SLAM-aware, few-shot object learning strat-
egy can be especially advantageous to mobile robots, and is able to learn object
detectors from a reduced set of training examples.

• Map Representations for Vision-Based Navigation Inherent to the spatial
and semantic understanding is the choice of a map representation. We moti-
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vate the need for a unified representation for vision-based mapping and plan-
ning, and introduce a mesh-based stereo reconstruction algorithm that has
compelling properties geared towards mobile robots. In Chapter 4, we de-
velop a High-performance and Tunable Stereo Reconstruction algorithm that en-
able robots to quickly reconstruct their immediate surroundings and thereby
maneuver at high-speeds (Pillai et al. 2016). Our key contribution is an iter-
ative refinement step that approximates and refines the scene reconstruction
via a piece-wise planar mesh representation, while being dynamically tunable
in order to enable resource-aware computation in fast-maneuvering vehicles.
Furthermore, we emphasize that our approach can also be readily extended
to incorporate navigation plans for context-aware and robust obstacle avoid-
ance.

• Self-Supervised Ego-motion Learning in Robots Fundamental to any au-
tonomous system is its ability to leverage its multitude of sensors in order in-
fer, and act in its immediate environment. We address the concern of growing
sensor modalities in autonomous systems today, and the need for a general-
purpose framework that enables self-supervision in vision-based navigation
tasks such as visual ego-motion estimation and loop-closure identification.
In Chapter 5, we propose a self-supervised solution to visual ego-motion es-
timation for varied camera optics, including pinhole, fisheye, and catadioptric
lenses (Pillai and Leonard 2017a). We develop a generative model for opti-
cal flow prediction that can be utilized to perform outlier-rejection and scene
flow reasoning. Our proposed model is especially amenable to bootstrapped
ego-motion learning in robots where the supervision in ego-motion estimation
for a particular camera sensor can be obtained from the fusion of measure-
ments from other robot sensors such as GPS/INS, wheel encoders etc. We
expect our approach to be fairly general-purpose and transferable, while its
hyper-parameters to be easily fine-tuned for high performance accuracy and
robustness during operation.

• Self-Supervised Visual Place Recognition in Robots We envision the ca-
pability of robots to self-supervise computer vision tasks such as visual ego-
motion to be especially beneficial in the context of life-long perceptual learn-
ing in autonomous systems. In Chapter 6, we extend this capability to yet an-
other critical component of vision-based SLAM, loop-closure detection. The
task of visual loop-closure identification is cast as a similarity metric learning
problem, where the labels for positive and negative examples of loop-closures
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can be self-supervised by an existing navigation solution (GPS/SLAM) that
the robot uses. By leveraging the synchronization between sensors, we show
that we are able to transfer and learn a metric for image-image similarity in
an embedded space by sampling corresponding information from the navi-
gation solution space (Pillai and Leonard 2017b). Furthermore, we show that
the newly learned embedding can be particularly powerful in disambiguating
visual scenes from each other.

We envision that self-supervised solutions to task learning will have far-reaching
implications in several domains, especially in the context of life-long learning in
autonomous systems. Furthermore, we expect these techniques to seamlessly op-
erate under resource-constrained situations in the near future by leveraging exist-
ing solutions in model reduction and dynamic model architecture tuning. With
the availability of multiple sensors on these autonomous systems, we also foresee
bootstrapped task learning to potentially enable robots to learn from experience,
and use the new models learned from these experiences to encode redundancy
and fault-tolerance all within the same framework. In Chapter 7, we foresee some
of the implications of this thesis, and discuss some future research directions to
realize this vision (Fourie et al. 2017; Moll et al. 2017).
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Chapter 2

Background

Simultaneous Localization and Mapping, widely known as SLAM, is a funda-
mental capability in robots that allow them to map their immediate environment
while simultaneously being able to localize themselves within it. We briefly de-
scribe the different variants of SLAM relevant to this thesis.

2.1 SLAM Landscape

SLAM has traditionally been considered as the back-end optimization routine
for various robot navigation tasks. The SLAM problem (Bailey and Durrant-Whyte
2006; Durrant-Whyte and Bailey 2006; Thrun and Leonard 2008; Thrun et al. 2005)
is formulated in terms of a Bayes Net shown in Figure 2-1. We define X = {xi}, i ∈
0, . . . ,M as the robot’s trajectory through time, with xi as the vector representation
of the state or pose of the robot. The state of a robot is typically parameterized
in SE(2) or SE(3), and may also include other parameters to be estimated such
as instantaneous velocity and acceleration. The latent positions of landmarks are
maintained as L = {lj}, j ∈ {1, . . . , N}, with Z = {zk}, k ∈ {1, . . . , K} denoting
the noisy measurements to the landmarks detected. The robot’s motion estimate,
typically recovered from its wheel-encoders or Inertial-Measurement Unit (IMU),
are also incorporated as noisy measurements denoted by U = {ui}, i = {1, . . . ,M}.
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x0 x1 x2 . . . xM

z1 z2 z3 z4 . . . zK

u1 u2 . . . uM

l1 l2 . . . lN

Figure 2-1: SLAM as a Bayes Net I Bayes network representation of the SLAM problem. xi repre-
sents the state of the robot’s trajectory at time i, lj is the location of the landmark j, ui is the robot’s
odometry measurement at time i, and zk represents the kth landmark measurement. The figure
illustrates the conditional independence between variables, whose joint probability distribution is
given by Equation 2.1. The observed variables u, and z are drawn in a lighter gray shade, while the
latent variables x and l are drawn in white.

2.1.1 Full SLAM

In the full SLAM formulation, both the robot’s trajectory X and the landmarks
L are simultaneously estimated, given the robot’s odometry measurements U and
the set of landmark sightings L. The joint probability of all the latent variables
given all the associated measurements can be written as,

p(X,L | U,Z) ∝ p(x0)
M∏
i=1

p(xi | xi−1,ui)
K∏
k=1

p(zk | xik, ljk) (2.1)

∝
M∏
i=1

exp
(
−1

2
‖fu(xi−1,ui)− xi‖2∑

u

)
︸ ︷︷ ︸

Influence of odometry measurements

K∏
k=1

exp
(
−1

2
‖hk(xik, ljk)− zk‖2∑

k

)
︸ ︷︷ ︸

Influence of landmark measurements

(2.2)

where p(x0) is the prior on the initial state of the robot, p(xi | xi−1,ui) is the influ-
ence of the motion model on the state of the system, p(zk | xik, ljk) is the influence of
landmark measurements, while assuming appropriate data association (ik, jk) be-
tween landmark sightings zk. The measurements in the system U,Z are corrupted
by noise that is assumed to be Gaussian, with zero-mean and covariance

∑
u and∑

k respectively.

In order to recover an optimal estimate of the variables defined in the system,
we re-formulate the above equation 2.1 in an equivalent least-squares form. The
maximum a posteriori (MAP) position estimate of the robot’s trajectory and the land-
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marks detected can be then be defined as,

X∗,L∗ = arg max
X,L

p(X,L | U,Z) (2.3)

= arg max
X,L

{
log p(X,L | U,Z)

}
(2.4)

= arg min
X,L

{
− log p(X,L | U,Z)

}
(2.5)

= arg min
X,L

{
M∑
i=1

‖fu(xi−1,ui)− xi‖2∑
u︸ ︷︷ ︸

Odometry Measurement Factors

+
K∑
k=1

‖hk(xik, ljk)− zk‖2∑
k︸ ︷︷ ︸

Landmark Measurement Factors

}
(2.6)

where ‖v‖∑ = vT
∑−1 v is the squared Mahalonbis distance with covariance ma-

trix
∑

. For a detailed introduction to SLAM, we refer the reader to (Kaess et al.
2008; Thrun et al. 2005).

2.1.2 Pose SLAM

In some applications such as localization, it may not be necessary to maintain
and recover the set of landmarks and their associations into the future. This par-
ticular application leads to Pose SLAM (Konolige et al. 2010b;c; Lu and Milios
1997), where two subsequent set of landmarks are registered between each other
to identify a relative pose constraint between them. This effectively marginalizes
out all the landmarks in the scene, and instead considers the uncertainty indirectly
in the relative pose estimated. As the robot explores its immediate environment,
it may encounter previously visited locations that it can incorporate as additional
constraints into the overall SLAM objective. These loop-closure constraints are in-
troduced as relative pose constraints by registering the previously visited location
measurement with the current view of it. Figure 2-3 shows the graphical interpre-
tation of Pose SLAM obtained from connecting subsequent nodes in the odometry
chain (via odometry or control input measurements), and establishing edges be-
tween temporally distant nodes (via loop-closure detection). The MAP estimate of
the robot’s trajectory then reduces to,
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X∗ = arg max
X

p(X | U,Zc) (2.7)

= arg min
X

{
M∑
i=1

‖fu(xi−1,ui)− xi‖2∑
u︸ ︷︷ ︸

Odometry Measurement Factors

+
∑

(j,k)∈C

‖hc(xj,xk)− zjk‖2∑
c︸ ︷︷ ︸

Loop-Closure Constraint Factors

}
(2.8)

2.1.3 Data Association

Data association is one of the key components in a SLAM system (Bar-Shalom
et al. 1990). While a lot of care is taken in setting up the optimization objective, it is
critical to ensure that the measurements fed into the back-end optimization is not
erroneous. Data association can be evaluated in the same way as classical recogni-
tion related tasks: they need to achieve high-precision in the set of measurements
associated, while ensuring high-recall of the relevant measurements that can be
associated (Neira and Tardós 2001). We elaborate on the necessity of robust data
association in Section 2.3.

2.2 Factor Graphs for SLAM

x1 x2 x3

f1 f2 f3

Figure 2-2: Factor graph example I A factor graph is a bipartite graph that describes the factoriza-
tion of a joint probability distribution over latent random variables. The figure illustrates the condi-
tional independence constraints between variables, whose joint probability distribution can be writ-
ten as the product of them factors, given by f(x1, x2, x3) =

∏m
i=1 fi(Xi) = f1(x1, x3)f2(x2)f3(x2, x3).

Xi refers to the subset of variables that fi depends on.

A factor graph (Kschischang et al. 2001) is a bipartite graph that encodes how
a function of several variables factorizes into its a product of local functions. A
factor graph typically consists of nodes representing latent variables considered in
the estimation problem, and factors that represent the information between or on
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these variables.

f(x1, . . . , xn) =
m∏
i=1

fi(Xi) (2.9)

Intuitively, a factor graph encodes the conditional independence inherent in the
joint distribution over the set of variables considered. We consider the factor graph
representation to be especially elegant for formalizing and intuitively describing
the different applications of SLAM in this thesis.

Factor graphs were introduced by Kschischang et al. (2001) as a modern prob-
abilistic tool for factorization of and inference over arbitrary functions and prob-
ability distributions. These have recently been applied to SLAM (Dellaert 2012;
Dellaert et al. 2017; Kaess et al. 2011), where the joint probability distribution over
the relevant variables is factored as a product over measurement factors. Figure 2-3
illustrates the Pose-SLAM problem, reformulated in the form of a factor graph.

x0 x1 x2 x3 x4 xt−1 xt
u1 u2 u3 u4 ut

p0

c1,4

c1,4
c3,t−1

c3,t−1

Figure 2-3: Pose-Graph SLAM: Pose SLAM as a factor graphI A typical factor-graph formulation
of Pose SLAM, where the odometry factors are represented as ui and loop-closure factors are rep-
resented as cj,k. Factors are filled-in black nodes, and the latent variables are represented in white
circles. The prior p0 is also incorporated as a measurement factor in the far left.

2.2.1 Bundle Adjustment

In Bundle Adjustment (BA) (Hartley and Zisserman 2003; Triggs et al. 1999), the
variables xi represent the camera poses, while the factors represent the multi-view
constraints that are derived from multiple 2D projections of the same 3D landmark
point lj . Bundle Adjustment applications in robotics however, can leverage other
sensory measurements such as IMU, or wheel odometry to further improve the
overall estimate of the robot’s trajectory and the map. Figure 2-4 illustrates this
application of Bundle Adjustment in a factor graph while simultaneously includ-
ing odometry information typically measured in mobile robots. The 3D landmarks
lj may be sighted from various views along the robot’s trajectory, with 2D image-
based measurements referred to as mk. Equation 2.6 refers to the visual-SLAM
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formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X∗,L∗ = arg max
X,L

p(X,L | Zl) (2.10)

= arg min
X

K∑
k=1

‖hk(xik, ljk)− zk‖2∑
k

(2.11)

x0 x1 x2 x3 x4 xt−1 xt
u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
different timesteps are indicated as z.

One of the major difficulties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
affecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X∗,L∗ = arg max
X,L

p(X,L | U,Zl) (2.12)

= arg min
X,L

{
M∑
i=1

‖fu(xi−1,ui)− xi‖2∑
u︸ ︷︷ ︸

Odometry Measurement Factors

+
K∑
k=1

‖hk(xik, ljk)− zk‖2∑
k︸ ︷︷ ︸

Bundle Adjustment Problem

}
(2.13)
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2.2.2 GPS-aided Localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X∗ = arg max
X

p(X | U,Zg) (2.14)

= arg min
X

{
M∑
i=1

‖fu(xi−1,ui)− xi‖2∑
u︸ ︷︷ ︸

Odometry Measurement Factors

+
G∑
j=1

‖hg(xj)− zj‖2∑
g︸ ︷︷ ︸

GPS Measurement Priors

}
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt−1 xt
u1 u2 u3 u4 ut

p0 p3 pt−1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the different sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect
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robots to maximize the utility of these sensors they are equipped with, leverag-
ing all the cross-modal information to ensure accurate, robust and fault-tolerant
operation. As we observe the several variants of the SLAM objective described in
Section 2.1, a key observation is that these measurements are assumed to be as-
sociated to begin with. While the back-end may be able to provide some level of
robustness to false associations, it is still imperative that the measurements from
the variety of sensors are well-calibrated, and associated before they are incorpo-
rated into the overall optimization. This task is done by what we refer to as the
“front-end”. Thus, the front-end varies depending on the application-specific re-
quirements of the robot and the sensors it is equipped with.

In this thesis, we focus on Visual-SLAM front-ends that primarily use either
a single camera (also referred to as monocular SLAM (Davison et al. 2007)) or a
combination of monocular camera with robot sensors such as wheel encoders and
GPS. We shall now describe two key components of a vision-based SLAM pipeline:
(i) Visual Odometry (VO), and (ii) Vision-based Loop-Closure Recognition.

2.3.1 Visual Odometry

Visual Odometry (VO) (Nistér et al. 2004), otherwise known as visual ego-motion
estimation, is the process of determining the camera’s trajectory, typically parame-
terized in SE(3) from sequential images captured by a single or a set of cameras.

In VO, the main task is to recover the 6-DOF pose of the camera as it traverses
through a scene. The pose of the camera is typically represented as a rigid-body
transformation in SE(3), given by Tt,t−1 ∈ R4×4:

Tt,t−1 =

[
Rt,t−1 tt,t−1

0 1

]
(2.16)

where Rt,t−1 ∈ SO(3) is the orthonormal rotation matrix, and tt,t−1 ∈ R3×1 is the
translation vector. The camera’s pose at any point t can be recovered by compound-
ing the set of transformations, Tt,0 = Tt,t−1∗Tt−1,t−2∗· · ·∗T1,0 with the initial state T0

arbitrarily defined based on the application. Following the notation from (Cheese-
man et al. 1987), we use an equivalent notation to define compounding pose trans-
formations.

zt,0 = zt,t−1 ⊕ zt−1,t−2 ⊕ · · · ⊕ z1,0 (2.17)
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First, the relative transformations zt,t−1 (i.e. the pose at time t relative to the previ-
ous timestep t − 1) are computed from subsequent images It, It−1, and then com-
pounded in order to recover the full trajectory zt,0 (i.e. dead-reckoned). We shall now
discuss how these relative pose terms are recovered from subsequent images.

Recovering Pose Instead of associating individual landmark measurements
across multiple frames as done in Bundle Adjustment, the relative-pose measure-
ments are estimated from subsequent camera frames. This effectively marginalizes
out the landmarks, and indirectly encodes their uncertainty in the relative-pose
estimated between subsequent views (Nistér et al. 2004).

Feature Detection, Matching and Pose Estimation Visual Odometry estima-
tion can be broadly be classified in to two categories: feature-based and direct
methods. Feature-based methods, rely on recovering relative pose information by
detecting and tracking salient and repeatable features across the images. Direct-
methods, otherwise referred to as global methods, consider the image intensities
across all pixels in the image sequence to inform incremental pose recovery. While
both variants have their advantages, feature-based methods are known to be more
robust primarily because they have been well-studied in the past two to three decades.
In this thesis, we focus on the former and provide a brief introduction to feature-
based visual SLAM.

VO implementations can be broken down in to a few key steps: (i) Feature Detec-
tion, (ii) Feature Matching, (iii) Pose Estimation, and (iv) Pose Optimization (Optional).
In the feature detection stage, salient and repeatable features are detected in every
new image It and potentially matched with those detected in previous frames It−1.
The feature matching step involves describing these locally detected features with
feature descriptors such as SIFT, SURF, ORB, BRIEF etc (Bay et al. 2006; Calonder
et al. 2010; Lowe 1999; Rublee et al. 2011) and efficiently matching them with ap-
propriate distance metrics and indexing strategies. In some situations where the
relative motion is sufficiently small between subsequent image frames (i.e. high
camera frame-rate or slow camera motion), certain methods leverage sparse opti-
cal flow techniques such as multi-scale Lucas-Kanade Optical Flow (Birchfield 2007;
Lucas et al. 1981) to enable feature tracking. Once the feature correspondences
are established, the relative pose zt−1,t is recovered by two-view motion estima-
tion algorithms depending on the application and motion constraints the camera
may have (Fraundorfer et al. 2010; Longuet-Higgins 1987; Nistér et al. 2004; 2006;
Scaramuzza et al. 2009b; Wang et al. 2005). Once the frame-to-frame pose estimate
is recovered, they are compounded (Equation 2.17) to recover the full camera trajec-
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tory. Optionally, a pose optimization step can be performed to reduce the overall
error incurred in the pose-compounding procedure, and simultaneously reduce
the overall uncertainty in the camera’s trajectory. This optional step is referred to
as Bundle Adjustment, and generally varies based on the application-specific re-
quirements such as computational-constraints, or pose accuracy-requirements.

At various stages including feature matching, pose estimation, and pose opti-
mization, it is imperative that the feature correspondences established are accu-
rate and free of outliers. This is ensured via a model-guided consensus step (via
RANSAC (Fischler and Bolles 1981), MLESAC (Torr and Zisserman 2000), M-estimation (Torr
and Murray 1997) or other variants), where a constrained-model is repeatedly sam-
pled, hypothesized and tested to minimize an appropriate geometric objective (such
as the Sampson distance (Hartley and Zisserman 2003) in BA). Other solutions in-
corporate constraints such as structural scene priors (Guerrero et al. 2005; Wang
et al. 2005), camera/vehicle motion models (Nistér et al. 2006; Scaramuzza et al.
2009a;b), or external sensor measurements (such as GPS, IMUs etc) (Jones and
Soatto 2011; Konolige et al. 2010a; Mourikis and Roumeliotis 2007) to further im-
prove outlier-rejection, and bolster pose estimation.

For a more thorough introduction to Visual Odometry estimation, we refer the
reader to a two-part tutorial by Scaramuzza and Fraundorfer (2011) and Fraun-
dorfer and Scaramuzza (2012). For a detailed literature review in visual odometry
estimation, we refer the reader to Section 5.2 in Chapter 5

2.3.2 Vision-based Loop-Closure Recognition

Loop-closure recognition, also referred to as place recognition, uses visual cues
contained in images to identify previously visited scenes. This information is used
to incorporate constraints in the overall optimization in order to correct for the drift
incurred in the overall dead-reckoned visual odometry estimate. As previously de-
scribed in Section 2.1.2, the odometry estimates are maintained as edges within the
pose-graph, connecting subsequent nodes. As the pose-graph chain grows, the un-
certainty grows unbounded. Thus, intuitively, it can be valuable if we are able to
establish loop-constraints between temporally distant nodes in graph in order to re-
duce the overall uncertainty propagated in the pose-graph chain (as illustrated in
Figure 2-6). As the robot re-observes a previously observed landmark or scene, we
are able to incorporate an additional constraint between the current node xk, and
the matched previously observed node xj . This step in vision-based pose-graph
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SLAM provides a sufficiently large improvement in overall trajectory estimation
accuracy, and is an essential component in recovering globally consistent, and met-
rically accurate trajectory estimates for localization purposes. We illustrate this be-
havior in Figure 2-6.

x0 x1 x2 x3 x4
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x8

x9
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x0 x1 x2x2 x3 x4
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x6x7x8
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(a) Open-loop odometry with loop-closure proposal (b) Optimized trajectory with loop-closure constraints

Figure 2-6: Loop Closure Example I Dead-reckoned (open-loop) odometry chain typically drifts
over time, with the uncertainty growing unbounded. Adding loop-closure constraints to dead-
reckoned pose-graph chain provides useful information to recover the correct vehicle trajectory. (a)
In this illustration, the robot at x10 has identified that it has previously visited the same location at
x2, and establishes a loop-closure constraint (in red) between the corresponding nodes in the pose-
graph. (b) The resulting optimized pose-graph corrects for the drift incurred in the dead-reckoned
estimate, and shifts the pose-graph nodes to recover a more accurate robot trajectory. x2 and x10

physically overlap each other in this example, and only one of the nodes is shown.

Since we are interested in determining these loop-closure constraints from vi-
sion, identifying visual similarity in the form of semantic and geometry cues be-
comes extremely crucial. Visual similarity has been shown to be reliably computed
using global image descriptors (Oliva and Torralba 2006; Sünderhauf and Protzel
2011; Ulrich and Nourbakhsh 2000), via bag-of-visual-words-based descriptions
from local-descriptors (Cummins and Newman 2010; Fraundorfer et al. 2007; New-
man et al. 2006), or more recently via Convolutional Neural Networks-based (CNN)
descriptors (Chen et al. 2015b; 2017; Sunderhauf et al. 2015). We refer the reader
to Section 6.2 in Chapter 6 for a more detailed overview and literature review in
vision-based loop-closure recognition.

2.4 SLAM in this Thesis

In this thesis, we leverage two different variants of vision-based SLAM. In Chap-
ter 3, we consider the classical Visual-SLAM, where the full Bundle Adjustment
problem (Section 2.2.1) is solved (up to an unknown scale factor) to recover the
camera’s trajectory X∗, along with the scale-ambiguous map L∗. We take advan-
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tage of this optimized solution to better inform object-recognition in mobile robots.
In Chapters 5 and 6, we re-visit the capabilities of a vision-based pose-graph SLAM
front-end. We consider a camera rigidly mounted on a mobile robot, and recover
its trajectory as it traverses its environment for an extended period of time. In this
specialized case, we are only concerned with recovering the optimal robot trajec-
tory X∗ over its entire session lifetime. By leveraging known navigation-based sen-
sor fusion strategies such as GPS-aided SLAM (See Section 2.2.2), we are able to
self-supervise mobile robots in tasks such as visual odometry estimation (Chap-
ter 5) and vision-based loop-closure recognition (Chapter 6). The resulting models
learned from these core SLAM-aided navigational tasks enables us self-supervise
a vision-based pose-graph SLAM front-end that adapts to its operating environ-
ment, subsequently providing reliable measurements to a pose-graph SLAM back-
end (Section 2.1.2). For a thorough introduction to factor-graph SLAM and its vari-
ants typically used in robot perception, please refer to (Dellaert et al. 2017).
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Chapter 3

Monocular SLAM-Supported Object
Recognition

Geometric and semantic scene understanding have been long-studied in the
computer vision literature, however, they are still predominantly considered as two
separate problems. While these two problems can mutually benefit each other, it
still remains a fairly unexplored research problem to effectively utilize the strengths
from both these capabilities. Robots, on the other hand, need to be able to contex-
tualize all the relevant information available to them to make critical decisions they
are tasked with. This necessitates tight integration between spatial-awareness, or
its realization in mobile robots more commonly referred to as SLAM, and semantic-
understanding in the form of object and scene recognition. We envision that such
spatially-cognizant, scene-understanding capabilities can especially enable richer,
and contextual perception in mobile robots making them far more capable than
before.

3.1 Introduction

Object recognition is a vital component in a robot’s repertoire of skills. Tradi-
tional object recognition methods have focused on improving recognition perfor-
mance (Precision-Recall, or mean Average-Precision) on specific datasets (Evering-
ham et al. 2010; Russakovsky et al. 2015). While these datasets provide sufficient
variability in object categories and instances, the training data mostly consists of
images of arbitrarily picked scenes and/or objects. Robots, on the other hand, per-
ceive their environment as a continuous image stream, observing the same object
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Figure 3-1: Motivation for SLAM-Aware Object Recognition I One of the key motivations for
this work is the need for SLAM-awareness in perceptual tasks such as object detection and classi-
fication. Robots that are spatially-cognizant of the world (with the ability to implicitly perform
SLAM) can simultaneously take advantage of the maps they maintain to recover temporally consis-
tent object proposals. Furthermore, by leveraging their localization capabilities, they are able to use
robust view correspondence that SLAM provides for improved multi-view object classification and
occlusion-aware spatial reasoning.

several times, and from multiple viewpoints, as it constantly moves around in its
immediate environment. As a result, object detection and recognition can be fur-
ther bolstered if the robot were capable of simultaneously localizing itself and map-
ping its immediate environment - by integrating object detection evidences across
multiple views.

We refer to a “SLAM-aware” system as one that has access to the map of its
observable surroundings as it builds it incrementally and the location of its cam-
era at any point in time. This is in contrast to classical recognition systems that
are “SLAM-oblivious” - those that detect and recognize objects on a frame-by-frame
basis without being cognizant of the map of its environment, the location of its
camera, or the objects that may be situated within these maps. In this work, we
develop the ability for a SLAM-aware system to robustly recognize objects in its
environment, using an RGB camera as its only sensory input (Figure 3-2).

We make the following contributions towards this end: Using state-of-the-art
semi-dense map reconstruction techniques in monocular visual SLAM, we develop
the capability to propose spatially consistent, scale-ambiguous object candidates
within a 3D scene. Leveraging this object proposal method, we introduce the con-
cept of SLAM-aware object recognition, where we bolster classical, frame-based ob-
ject recognition in mobile robots by aggregating object evidences across multiple
viewpoints, facilitated by a SLAM-aware representation. We incorporate some of
the recent advancements in object classification methods, including Bag-of-Visual-
Words-based (BoVW) (Arandjelovic and Zisserman 2013; Delhumeau et al. 2013;
Jégou et al. 2010) and Convolutional Neural Network-based feature encoding (Gir-
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Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.
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3.2 Related Work

We discuss some of the recent developments in object proposals, recognition,
and the semi-dense monocular visual SLAM literature that has sparked the ideas
described in this work.

Sliding window techniques and DPM In traditional state-of-the-art object de-
tection, Histogram of Oriented Gradients (HOG) (Dalal and Triggs 2005) and Deformable-
Part-based-Models (DPM) proposed by Felzenszwalb et al. (2010) have become the
norm due to their success in recognition performance. These methods explicitly
model the shape of each object and its parts via oriented-edge templates, across
several scales. Despite its reduced dimensionality, the template model is scanned
over the entire image in a sliding-window fashion across multiple scales for each
object type that needs to be identified. This is a highly limiting factor in scalability,
as the run-time performance of the system is directly dependent on the number of
categories identifiable. While techniques have been proposed to scale such schemes
to larger object categories (Dean et al. 2013), they incur a drop in recognition per-
formance to trade-off for speed.

Dense sampling and feature encoding methods Recently, many of the state-
of-the-art techniques (Lazebnik et al. 2006; van de Sande et al. 2014) for generic
object classification have resorted to dense feature extraction. Features are densely
sampled on an image grid (Bosch et al. 2007), described, encoded and aggregated
over the image or a region to provide a rich description of the object contained in
it. The aggregated feature encodings lie as feature vectors in a high-dimensional
space, on which linear or kernel-based classification methods perform remarkably
well. Among the most popular encoding schemes include Bag-of-Visual-Words
(BoVW) (Csurka et al. 2004; Sivic and Zisserman 2003), and more recently Super-
Vectors (Zhou et al. 2010), VLAD (Jégou et al. 2010), and Fisher Vectors (Perronnin
et al. 2010b). In the case of BoVW, a histogram of occurrences of codes are built
using a vocabulary of finite size V ∈ RK×D. VLAD and Fisher Vectors, in contrast,
aggregate residuals using the vocabulary to estimate the first and second order
moment statistics in an attempt to reduce the loss of information introduced in the
vector-quantization (VQ) step in BoVW. Both VLAD and Fisher Vectors have been
shown to outperform traditional BoVW approaches (Chatfield et al. 2011; Jégou
et al. 2010; Perronnin et al. 2010b), and are used as a drop-in replacement to BoVW;
we do the same utilizing VLAD as it provides a good trade-off between descriptive-
ness and computation time.
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Object Proposals Recently, many of the state-of-the-art techniques in large-
scale object recognition systems have argued the need for a category-independent
object proposal method that provides candidate regions in images that may likely
contain objects. Variants of these include Constrained-Parametric Min-cuts (CPMC) (Car-
reira and Sminchisescu 2010), Selective Search (Uijlings et al. 2013), Edge Boxes (Zit-
nick and Dollár 2014), Binarized Normed Gradients (BING) (Cheng et al. 2014). The
object candidates proposed are category-independent, and achieve detection rates
(DR) of 95-99% at 0.7 intersection-over-union (IoU1) threshold, by generating about
1000-5000 candidate proposal windows (Hosang et al. 2014; Zitnick and Dollár
2014). This dramatically reduces the search space for existing sliding-window ap-
proaches that scan templates over the entire image, and across multiple scales; how-
ever, it still bodes a challenge to accurately classify irrelevant proposal windows
as background. For a thorough evaluation of the state-of-the-art object proposal
methods, and their performance, we refer the reader to Hosang et al. (2014).

Scalable Encoding with Object Proposals As previously addressed, sliding-
window techniques inherently suffer from the scalability issue, despite recent schemes
to speed-up such an approach. The BoVW approach handles this scalability issue
rather nicely since the histograms do not particularly encode spatial relations as
strongly. This however, inhibits BoVW approaches from localizing objects in an
image. The advent of category-independent object proposal methods has subse-
quently opened the door to bag-of-words-driven architectures, where object pro-
posal windows can now be described via existing feature encoding methods. van de
Sande et al. (2014) employ a novel box-encoding technique using integral histograms
to describe object proposal windows with a run-time independent of the window
size of object proposals supplied. They report results with an 18x speedup over
brute-force BoVW encoding (for 30,000 object proposals), enabling a new state-of-
the-art on the challenging 2010 PASCAL VOC detection task at that time.

Convolutional Neural Networks Recently, Convolutional Neural Network (CNN)
architectures have considerably changed the landscape of classical vision-based
tasks such as image classification (Chatfield et al. 2014; Krizhevsky et al. 2012;
Russakovsky et al. 2015; Szegedy et al. 2016; 2017), object recognition (Girshick
2015; Girshick et al. 2014a; Gupta et al. 2014; He et al. 2017; Redmon et al. 2016;
Ren et al.; 2015), semantic segmentation (Badrinarayanan et al. 2015; Long et al.
2015; Yu and Koltun 2015) etc. Their adoption in a wide variety of image-based

1Intersection-over-Union (IoU) is a common technique to evaluate the quality of candidate object
proposals with respect to ground truth. The intersection area of the ground truth bounding box and
that of the candidate is divided by the union of their areas.
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Figure 3-3: Object Recognition Landscape I The accelerated evolution of object recognition in the
recent years (Girshick 2015; He et al. 2017; Ren et al. 2015; van de Sande et al. 2014) has made it
practical for robots to deploy these state-of-the-art systems with real-time performance capabilities.

applications have clearly justified their powerful representational capacity and rich
spatial-semantic descriptive capability (Cao et al. 2016; Dosovitskiy et al. 2015;
Ronneberger et al. 2015). Strictly within the object recognition landscape, there has
been a sudden surge of advancements, leveraging these state-of-the-art CNN mod-
els with efficient object proposal, and encoding techniques (Girshick 2015; Girshick
et al. 2014b; Gupta et al. 2014; Liu et al. 2016; Redmon et al. 2016; Ren et al. 2015).
Some of these techniques (max-pooling, spatial pyramidal-pooling (Grauman and
Darrell 2005; Lazebnik et al. 2006), efficient object proposals (Lienhart and Maydt
2002; Viola and Jones 2004)) have been developed in various forms in prior work.
Their recent consideration in a joint framework, however, has enabled strong recog-
nition performance that was previously considered challenging. Other, more re-
cent works have built on top of CNN-based architectures to enable rich, contextual
scene understanding methods using map reconstructions (Song et al. 2017; Xiang
and Fox 2017) via RGB-D cameras. In this work, we limit ourselves to standard
RGB cameras, and illustrate similar semantic scene understanding capabilities by
leveraging state-of-the-art CNN-based object recognition methods coupled with
spatial-awareness through monocular Visual-SLAM techniques.

Multi-view Object Detection While classical object detection methods focus
on single-view-based recognition performance, some of these methods have been
extended to the multi-view case (Collet and Srinivasa 2010; Thomas et al. 2006),
by aggregating object evidence across disparate views. Lai et al. (2012) proposed
a multi-view-based approach for detecting and labeling objects in a 3D environ-
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Figure 3-4: Recognition in Unknown MapsI Various works have addressed the ability to combine
map or depth information with object detection in order to enable strong recognition performance.
However, most of these systems have been limited to RGB-D sensors, and have not proven the func-
tionality with a monocular (RGB) camera (Lai et al. 2012; Salas-Moreno et al. 2013; Song et al. 2017;
Xiang and Fox 2017).

ment reconstructed using an RGB-D sensor. They utilize the popular HOG-based
sliding-window detectors trained from object views in the RGB-D dataset (Lai et al.
2011; 2014) to assign class probabilities to pixels in each of the frames of the RGB-
D stream. Given co-registered image and depth, these probabilities are assigned
to voxels in a discretized reconstructed 3D scene, and further smoothed using a
Markov Random Field (MRF). Bao et al. (Bao and Savarese 2011; Bao et al. 2012)
proposed one of the first approaches to jointly estimate camera parameters, scene
points and object labels using both geometric and semantic attributes in the scene.
In their work, the authors demonstrate the improved object recognition perfor-
mance, and robustness by estimating the object semantics and SfM jointly. How-
ever, the run-time of 20 minutes per image-pair, and the limited object categories
identifiable makes the approach impractical for on-line robot operation. Other
works (Bo et al. 2011; Castle et al. 2010; Civera et al. 2011; Gupta et al. 2014; Salas-
Moreno et al. 2013) have also investigated object-based SLAM, SLAM-aware, and
3D object recognition architectures, however they have a few of glaring concerns:
either (i) the system cannot scale beyond a finite set of object instances (generally
limited to less than 10), or (ii) they require RGB-D input to support both detection
and pose estimation, or (iii) they require rich object information such as 3D mod-
els in its database to match against object instances in a brute-force manner. More
recently, Wong et al. (2014; 2015) consider the data-association problem in multi-
view detections, and cast the object label assignment as a Dirichlet Process Mixture
Model. However, in our case, the Visual SLAM solution produces pixel-level accu-
rate data associations across multiple views, rendering the data association prob-
lem simpler in practice.
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Figure 3-5: Outline of the SLAM-aware (VLAD-FLAIR) object recognition pipeline I Given an
input RGB image stream I, we first perform monocular visual-SLAM to recover the optimized cam-
era trajectory and sparse landmarks. The scene is reconstructed in a semi-dense fashion using the
optimized keyframes K = {I, ξ}, to recover the full mapM. We perform multi-scale density-based
segmentation on the reconstructed scene to obtain object proposalsO that are consistent across mul-
tiple views. On each of the images in the input RGB image stream I1:T , we compute Dense-SIFT
(R384) in the RGB colorspace and reduce it to Φ ∈ R80 via PCA. The features Φ are then used to effi-
ciently encode each of the projected object proposalsOj ∈ O (bounding boxes of proposals projected
on to the visible keyframes with known poses ξ1:TK

) using VLAD with FLAIR, to obtain Ψ1:TK
. The

resulting feature vector Ψ is used to predict the likelihood of target label/category p(Ψj
k | Y = y)

of the object contained in each of the object proposals Oj . The likelihoods for each object Oj ∈ O
are aggregated across each of the occlusion-free viewpoints ξ1:TK

to obtain robust object category
prediction.

3.3 Monocular SLAM Supported Object Recognition

Traditional object recognition systems detect and recognize objects on an indi-
vidual image basis, and do not maintain any spatial or temporal context between
views of the same scene. Contrary to classical per-frame object proposal method-
ologies, robots observe the same instances of objects in its environment several
times and from disparate viewpoints. Furthermore, robots can also actively con-
trol their motion through the world, which can enable active vision and directional
attention of objects in a scene (Bajcsy 1988). One of the key realizations stemming
from this work is the significance of spatial-awareness in perceptual tasks such as
object detection and classification. In this section, we introduce the algorithmic
components of our method, and further refer the reader to Figures 3-5 and 3-10
that illustrate the steps involved in our system. Algorithm 1 describes the key steps
involved in our proposed method.

3.3.1 Monocular Visual SLAM

Throughout this thesis, we advocate that various perceptual tasks such as object
recognition in mobile robots can benefit from being spatially cognizant of its envi-
ronment. By maintaining this spatial awareness simultaneously, we expect robots
to be able to contextually incorporate multiple observations of their world around
them before making critical scene understanding decisions. In this work, we utilize
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Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label ( ∀ Oj ∈ O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ξ1), . . . , (ITK
, ξTK

)})
1: M, K̂1:TK

←MonocularVisualSLAM(I1:T )

. 2. Multi-scale density based over-segmentation (Section 3.3.2)

. Oj ∈ O: 3D Object Proposals
2: O ←MultiViewObjectProposals(M)

. Φk: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe
3: Φ1:TK

← EncodeImage(I1:TK
)

. 3. Pooling and Classification for each proposal
4: for Oj ∈ O do

. BBjk = BB(projξk(Oj)): Bounding-box projection of object Oj in kth keyframe with pose ξk

. Ψj
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5: Ψj
k ← RoI Pooling(BBjk,Φk) ∀ k = {1, . . . , TK}

. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)
6: ŷjMLE ← EvidenceAggregation(Ψj

1:TK
)

7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T ) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ξ1), . . . , (ITK , ξTK )} are tuples of images Ik ∈ {I1, . . . , ITK}
and corresponding camera poses ξk ∈ {ξ1, . . . , ξTK}, sampled such that they grow
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Figure 3-6: Keyframe-based Visual-SLAM I Keyframe-based Bundle Adjustment (BA), where
some of the poses (namely x1, x2) are marginalized out to reduce the overall complexity of full BA
solution. The marginalized camera poses and their associated edges are rendered in a lighter color.

linearly in spatial coverage of the camera’s viewing frustum. New keyframes are
instantiated based on a set of criteria, typically based on the change in mutual-
information (relative 6-DOF pose transformation, or number of features tracked)
between the previously instantiated keyframe and the last frame tracked. As win-
dowed BA continues, only the relevant keyframe’s poses ξ1:TK (a subset of the orig-
inal set of poses ξ1:TK ⊆ x1:T with TK << T ) and their associated map points L

are optimized in an incremental manner allowing for real-time operation of large-
scale visual SLAM problems. This has allowed keyframe-based visual SLAM im-
plementations (Engel et al. 2014; Klein and Murray 2007; Konolige and Agrawal
2008; Mur-Artal et al. 2015; Strasdat et al. 2010; 2011) to truly scale to long oper-
ating times, as they are no longer bound linearly by time, but bound by the spatial
coverage of the camera as it traverses through an environment. In later sections, we
shall emphasize the value of keyframe-based sampling as they provide an elegant
solution to the reduced computational complexity of the underlying bundle adjust-
ment (BA) problem, while simultaneously providing informative views for efficient
object recognition.

Semi-dense Reconstruction As the optimized poses ξ̂ and sparse 3D landmarks
L̂ converge within the windowed BA optimization, they can be directly used to fur-
ther densify the 3D scene reconstruction. By sampling high-gradient regions in
each of the keyframe images, we perform dense epiploar disparity estimation be-
tween the optimized keyframes, that we shall refer to as K̂. Using the proposed
depth filter strategy (Forster et al. 2014), the relevant patch disparities are estimated
directly using the inverse-depth parametrization (Civera et al. 2012), and filtered in
a probabilistic and recursive manner. As more images are incrementally added to
the system, new keyframes are instantiated and added to the pose-graph optimiza-
tion and subsequent semi-dense reconstruction procedures.

Simultaneous Optimization and Map Densification Due to the incremental
and real-time nature of the algorithm, the bundle adjustment (BA) optimization is
only performed for a local window of keyframes that are contained within their co-
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Figure 3-7: Key-frame based Multi-View Semi-dense Reconstruction I Multi-view semi-dense
reconstruction using keyframes significantly reduces the computational complexity of the underly-
ing bundle adjustment (BA) problem, while simultaneously providing dense disparities and recon-
structions for crucial tasks such as recovering object proposals, and reasoning about occlusions.

visibility sub-graph. We define the covisibility graph as (Strasdat et al. 2011), where
each node or keyframe in the pose-graph is connected to other keyframes if they
share visibility of the same landmark points between them. Since more recent
keyframes are being updated and optimized as typically done in windowed bun-
dle adjustment, the semi-dense reconstruction is delayed until the keyframes are no
longer consumed in the windowed optimization (i.e. keyframes that are rendered
inactive). Nevertheless, the sparse optimization and semi-dense reconstruction is
performed simultaneously, resulting in a reconstruction that is qualitatively similar
to those produced by other semi-dense reconstruction methods (Engel et al. 2014).
In the following sections, we refer to this semi-dense reconstruction as the envi-
ronment mapM as it contains the subset of sparse landmarks L̂ optimized in the
windowed bundle adjustment procedure. Figures 3-7 and 3-8 illustrate the multi-
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Figure 3-8: Semi-dense Reconstruction I Semi-dense monocular reconstructions using keyframes
allows our SLAM-aware solution to simultaneously take advantage of 3D reconstructions to recover
temporally consistent object proposals, while providing valuable occlusion-aware reasoning during
multi-view object classification stage. The images are captured from the same vantage point as
the keyframe poses ξk, with some of the objects being occluded by other objects in the scene. By
developing occlusion-aware, multi-view recognition systems, we are able to reason beyond single-
views and maintain a spatially and semantically-cognizant world.

view, semi-dense disparity estimation and reconstruction of an indoor scene from
the UW-RGBD Dataset (v2) (Lai et al. 2014). We note that while other semi-dense
reconstruction implementations exist, they are typically based on direct-tracking
methods that are typically not robust to wide-baseline motions. We leverage the
resulting semi-dense reconstruction for subsequent object proposal generation in
the next section.
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Figure 3-9: Semi-dense Reconstruction of Indoor Scenes I Various indoor scenes from the UW
RGBD Dataset (v2) reconstructed using our semi-dense reconstruction approach. The red camera
frustums trace the camera’s trajectory within the scene and indicate the keyframes estimated in the
Visual SLAM optimization.
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Figure 3-10: SLAM-aware Object Recognition I An illustration of the multi-view object proposal
method and subsequent SLAM-aware object recognition. Given an input RGB image stream, a scale-
ambiguous semi-dense map is reconstructed (a) via the ORB-SLAM-based (Mur-Artal et al. 2015)
semi-dense mapping solution. The reconstruction retains edges that are consistent across multiple
views, and is employed in proposing objects directly from the reconstructed space. The resulting
reconstruction is (b) filtered and (c) partitioned into several segments using a multi-scale density-
based clustering approach that teases apart objects (while filtering out low-density regions) via the
semi-dense edge-map reconstruction. Each of the clustered regions are then (d) projected on to each
of individual frames in the original RGB image stream, and a bounded candidate region is proposed
for subsequent feature description, encoding and classification. (e) The probabilities for each of the
proposals per-frame are aggregated across multiple views to infer the most likely object label.

3.3.2 Multi-view Object Proposals

Most object proposal strategies use either superpixel-based or edge-based repre-
sentations to identify candidate proposal windows in a single image that may likely
contain objects. It is natural to think of object proposals from a spatio-temporal or
reconstructed 3D context, and a key realization is the added robustness that the
temporal component provides in rejecting spatially inconsistent edge observations
or candidate proposal regions. Recently, Engel et al. (2014) proposed a scale-drift
aware monocular visual SLAM solution called LSD-SLAM, where the scenes are re-
constructed in a semi-dense fashion, by fusing spatio-temporally consistent scene
edges. Despite being scale-ambivalent, the multi-view reconstructions can be es-
pecially advantageous in teasing apart objects from each other in the near-field ver-
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sus those in the far-field regions. We take advantage of this insight, and develop
an equivalent semi-dense visual-SLAM component that shall be a key enabler for
improved object recognition in mobile robots.

In order to retrieve object candidates that are spatio-temporally consistent, we
first perform a density-based clustering on the scale-ambiguous reconstruction us-
ing both spatial and edge color information. This is done repeatedly for 4 dif-
ferent density threshold values (each varied by a factor of 2), producing an over-
segmentation of points in the reconstructed scene that are used as seeds for multi-
view object candidate proposal. The spatial density segmentation eliminates any
spurious points or edges in the scene, and the resulting point cloud is sufficient for
object proposals. These object segments are subsequently projected onto each of
the camera views, and directly serve as object proposalsO for further classification.
We ignore (i) bounding-box projections of object proposals whose window size is
less than 20×20 pixels, (ii) occluded object proposals that do not satisfy the z-buffer
depth test (see Section 3.3.5), and (iii) overlapping candidates with an IoU threshold
of 0.5, to avoid redundant proposals. The filtered set of bounding box projections
of object proposals is subsequently considered as candidates for the classification
process downstream.

3.3.3 Encoding Object Proposals with VLAD and FLAIR

Given the object proposals computed using the reconstructed scale-ambiguous
map, we now direct our attention to describing these proposal regions.

Dense BoVW with VLAD Given an input image and candidate object propos-
als, we first densely sample the image, describing each of the samples with SIFT
across the RGB colorspace, ΦSIFT−RGB ∈ R384 i.e. Dense-SIFT (3 * 128-D). Features
are extracted with a step size of 4 pixels, and at 4 different pyramid scales with
a pyramid scale factor of

√
2. The resulting description is then reduced to a 80-

dimensional vector via PCA, called PCA-SIFT Φ ∈ R80. A vocabulary V ∈ RKv×80

of size Kv = 64 is created via k-means, using the descriptions extracted from a
shuffled subset of the training data, as done in classical bag-of-visual-words ap-
proaches. In classical BoVW, this vocabulary can be used to encode each of the
original SIFT+RGB descriptions in an image into a histogram of occurrences of
codewords, which in turn provides a compact description of the original image.
Recently, however, more descriptive encodings such as VLAD (Jégou et al. 2010)
and Fisher Vectors (Perronnin et al. 2010b) have been shown to outperform clas-
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Figure 3-11: VLAD feature extractionI Various steps involved in the feature extraction procedure.
Features that are densely sampled from the image are subsequently used to describe the multi-view
object proposals using FLAIR. Each proposal is described with multiple ([1x1], [2x2], [4x4]) spatial
levels/bins via quick table lookups in the integral VLAD histograms (through FLAIR). The resulting
histogram Ψ (after concatenation) is used to describe the object contained in the bounding box.

sical BoVW approaches (Chatfield et al. 2011; Jégou et al. 2010; Perronnin et al.
2010b). Consequently, we chose to describe the features using VLAD as it pro-
vides equally as strong performance with slightly reduced computation time as
compared to Fisher Vectors.

For each of the bounding boxes, the un-normalized VLAD Ψ ∈ RKvD description
is computed by aggregating the residuals of each of the descriptions Φ (enclosed
within the bounding box) from their vector-quantized centers in the vocabulary,
thereby determining its first order moment (Eq. 3.1).

vk =
∑

xi:NN(xi)=µk

xi − µk (3.1)

The description is then normalized using signed-square-rooting (SSR) or commonly
known as power normalization (Eq. 3.2) with α = 0.5, followed by L2 normaliza-
tion, for improved recognition performance as noted in (Arandjelovic and Zisser-
man 2013).

f(z) = sign(z)|z|α where 0 ≤ α ≤ 1 (3.2)

Additional descriptions for each bounding region are constructed for 3 different
spatial bin levels or subdivisions as noted in (Lazebnik et al. 2006) (1 × 1, 2 × 2

and 4×4, 21 total subdivisions S), and stacked together to obtain the feature vector
Ψ =

[
Ψ1×1,Ψ2×2,Ψ4×4

]
∈ RKvDS that appropriately describes the specific object

contained within the candidate object proposal/bounding box.

Efficient Feature Encoding with FLAIR While it may be efficient to describe a
few object proposals in the scene with these encoding methods, it can be highly
impractical to do so as the number of object proposals grows. To this end, van de
Sande et al. (2014) introduced FLAIR — an encoding mechanism that utilizes summed-
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area tables of histograms to enable fast descriptions for arbitrarily many boxes in
the image. By constructing integral histograms for each code in the codebook, the
histograms or descriptions for an arbitrary number of boxes B can be computed
independent of their area. As shown in (van de Sande et al. 2014), these descrip-
tions can also be extended to the VLAD encoding technique. Additionally, FLAIR
affords performing spatial pyramid binning rather naturally, with only requiring a
few additional table look-ups, while being independent of the area of B. We refer
the reader to Figure 3-11 for an illustration of the steps involved in describing these
candidate object proposals.

Multi-class histogram classification Given training examples, (Ψ1, y1), . . . , (Ψn, yn)

where Ψi ∈ RKvDS are the VLAD descriptions and yi ∈ {1, . . . , C} are the ground
truth target labels, we train a logistic regression model using Stochastic Gradient
Descent (SGD), given by:

E(w) =
1

n

n∑
i=1

L(yi, f(Ψi;w)) + αR(w) (3.3)

whereL(yi, f(Ψi;w)) = log
(

1+exp(−yiwTΨi)
)

is the logistic loss function,R(w) =
1
2

∑n
i=1w

Tw is the L2-regularization term that penalizes model complexity, and
α > 0 is a non-negative hyperparameter that adjusts the L2 regularization. A one-
versus-all strategy is taken to extend the classifiers to multi-class categorization. For
hard-negative mining, we follow (van de Sande et al. 2014) closely, bootstrapping
additional examples from wrongly classified negatives for 2 hard-negative mining
epochs.

We note that in the past few years since this original work, several recent meth-
ods leveraging CNN-based methods have outperformed hand-engineered feature
descriptors such as those described in this section. However, in the next section,
we show how our solution extends easily to incorporating these newer CNN-based
methods.

3.3.4 Encoding Object Proposals with CNN-based Methods

With the advent of Convolutional-Neural-Network techniques, there has been a
recent surge of image classification and object recognition (Girshick 2015; He et al.
2017; Redmon et al. 2016; Ren et al.; 2015) techniques that have significantly outper-
formed these classical Bag-of-Visual-Words (van de Sande et al. 2014) or Histogram-

52



Monocular vSLAM 
Reconstruction

Multi-View 
Object Proposals

Input RGB stream Object Evidence
AggregationCNN with RoI Pooling

Figure 3-12: Extensions to R-CNN I System architecture of our proposed SLAM-aware object
recognition pipeline with more recent Convolutional-Neural Networks. Most of the components
are essentially unchanged with the CNN handling the Region-of-Interest Pooling to recover the
features Ψj

1:TK
for classification and subsequent object evidence aggregation.

of-Gradients (Dalal and Triggs 2005; Felzenszwalb et al. 2010) based methods. Fig-
ure 3-3 shows the landscape and recent surge in object recognition methods based
on state-of-the-art CNN techniques. We show that our SLAM-aware recognition
pipeline is trivially extended to these recent CNN-based methods, whose superior
performance further bolsters overall recognition performance (See Figure 3-12).

Feed-forward Convolution and RoI Pooling In this work, we leverage the Fast
R-CNN (Girshick 2015) network, and shall illustrate how these region-proposals
fed CNN-methods are similar in spirit to the FLAIR box-encoding with BoVW or
VLAD descriptions. Given an image Ik, and bounding boxes of all object proposal
projections BB1:O

k onto that particular image with pose ξk, the R-CNN network first
processes the whole image with convolutions (conv) and max-pooling layers to pro-
duce a convolutional feature map. Then, for each of the proposal region-of-interest
(RoI), a pooling layer efficiently extracts a fixed-length vector from the convolu-
tional feature map. The fixed-length feature vectors are fed to a sequence of fully
connected layers (fc6, fc7) before they are classified via a soft-max classifier that
takes the activated outputs of the final fc7 layer. While the original Fast R-CNN im-
plementation also simultaneously regresses for the bounding-box positions given
the predicted class label, we find our vSLAM map-driven proposals to be suffi-
ciently accurate for bounding box prediction and avoid this additional regression
step.

RoI Pooling and FLAIR The RoI pooling layer uses max-pooling to convert
features inside a valid bounding box region into a fixed-size feature map. The RoI
pooling layer, similar to FLAIR box-encoding described in Section 3.3.3, pools the
grid-sampled feature descriptions based on the bounding box dimensions. A RoI
window is subdivided into an H ×W grid of sub-windows whose containing fea-
tures are pooled into, and finally max-pooled in order to recover a fixed-size feature
vector. In fact, the RoI pooling layer described in the Fast R-CNN architecture, is
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similar to the spatial-pyramid pooling (He et al. 2014; van de Sande et al. 2014) pre-
viously described (Figure 3-11) where only a single pyramid level is considered.

Model fine-tuning Most state-of-art object detectors including Fast-RCNN (Gir-
shick 2015) are trained on publicly available object detection datasets such as the
Pascal VOC07, 2010 (Everingham et al. 2010) and 2012 (Everingham et al.). While
these models and parameters are trained on sufficiently large datasets with special
considerations for avoiding over-fitting, they inevitably learn characteristics of the
original dataset that may not necessarily transfer to another data domain. This has
been evidenced through various works (Ganin and Lempitsky 2015; Glorot et al.
2011; Khosla et al. 2012; Oquab et al. 2014) under the umbrella term of domain-
adaptation. Typically, they require an additional model fine-tuning step on the lim-
ited, representative dataset in order to ensure strong model performance. We take
this approach, and further fine-tune the fully connected layers (fc6, fc7) in the Fast
R-CNN using the more representative UW-RGBD dataset (v2). All the pre-trained
weights (trained on Pascal VOC 2007) in the network except for the fc layers are kept
fixed during the model fine-tuning step.

3.3.5 Multi-view Object Recognition

In the case of cluttered environments, all the relevant objects may be visible
from only a subset of the views. Furthermore, classifying partially occluded views
of an object can potentially harm the overall recognition performance. While it is
desirable that partial views of objects are also usefully incorporated into the recog-
nition pipeline, in this work, we are interested in ensuring that the side-effects from
classifying partial-views are minimized.

Object Visibility We introduce a visibility set such that an object proposal’s ev-
idence is only aggregated over the subset of views, thereby ensuring that occluded
views are not accidentally mis-classified. This added advantage in spatially-aware
systems allows for contextually incorporating measurements, further bolstering
recognition performance. For each object proposal Oj ∈ O, we define a visibil-
ity set Vj that contains the subset of keyframes having an un-occluded view of the
proposal for classification purposes (Equation 3.4). First, we define BB(projξk(O

j))2

as the bounding-box projection of object Oj onto view ξk, via the image-projection
function projξk(·)

3. For brevity, we shall refer to BB(projξk(O
j)) as BBjk.

2BB: Refers to the min-max bounds of a 2D point set in the image.
3projξk(Oj): Refers to the 2D image-projection (onto the view ξk) of a set of 3D points in Oj
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Figure 3-13: Z-buffering for occlusion handling I The underlying semi-dense map reconstructed
provides occlusion handling capabilities via z-buffering. This is subsequently used in the object
evidence aggregation step in order to avoid mis-identifying object proposals when they are occluded
by other objects.

We determine the subset of visible keyframes Vj ⊆ K for each proposal Oj based
on two criteria (each keyframe is indexed by k):

Vj = {(Ik, ξk) | if 1
jk
v and 1

jk
d ∀ k ∈ {1, . . . , TK}} (3.4)

(i) Intersection-over-Union (Equation 3.5): The bounding-box projection, given by
BBjk has an Intersection-over-Union (IoU) measure of less than τocc with respect to
the bounding-box projection of every other object proposal BBmk ,∀m ∈ O \ Oj

1
jk
v =

1 if IoU(BBjk,BBmk ) < τocc ∀ m ∈ O \ Oj, and

0 otherwise
(3.5)

(ii) Z-buffer depth test (Equation 3.6): Only the object proposal and corresponding
bounding box with the least depth with respect to the view ξk is considered, while
the rest are ignored. This is otherwise referred to as z-buffer depth test, and is a stan-
dard procedure in modern graphics renderers for checking visibility of an object.

1
jk
d =

1 if d(projξk(O
j)) < d(projξk(O

m)) ∀ Om ∈ O \ Oj, and

0 otherwise
(3.6)

Occlusion-aware evidence aggregation Once the visibility sets are identified
for each of the object proposals, we can evaluate our detector only on the sub-
set of views that are identified to be occlusion-free. Subsequently, for each ob-
ject proposal Oj , the corresponding bounding-box proposalsBBj

k for the kth visible
keyframe are described using either FLAIR-VLAD or R-CNN, and denoted by Ψj

k.

Thus, for each of the object proposals Oj , we evaluate our detector only on each
of the keyframes in the visibility set Vj . Assuming a uniform prior over the C class
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Figure 3-14: Quasi-depth estimation in scale-ambiguous maps I During the object evidence ag-
gregation step, object proposalsOj ∈ O in the reconstructed scale-ambiguous mapM are projected
on to each of the keyframes K, in order to identify objects that may be potentially occluded in that
particular view. The median depths (scaled arbitrarily, but consistently across all proposals) of each
object proposal is displayed in white.

labels, and that the features Ψk are conditionally independent given the class label
y, the maximum-likelihood estimate (MLE) reduces to:

ŷjMLE = argmax
y∈{1,...,C}

∏
k∈Vj

p(Ψj
k | Y = y) (3.7)

= argmax
y∈{1,...,C}

∑
k∈Vj

log p(Ψj
k | Y = y) (3.8)

Thus, the resulting MLE class label of an object proposal Oj is simply the class that
corresponds to having the largest sum of log-likelihoods of the class conditional
probabilities, estimated for each of their |Vj| observable viewpoints. Again, we re-
mind the reader that we take advantage of the keyframe selection strategy to eval-
uate our detector only on an informative subset of the vantage points in the scene,
and further take leverage of the spatially-aware visibility checks to selectively eval-
uate occlusion-free object proposals. This property significantly reduces the com-
putational complexity of the overall recognition pipeline, while maintaining strong
recognition performance by aggregating object evidence across multiple views.

3.3.6 SLAM-aware, Few-shot Object Learning

One of the primary advantages of maintaining SLAM estimates (as keyframes,
and the corresponding scene points) is that they can act as a powerful correspondence-
engine for data association purposes. We leveraged this property earlier to bolster
recognition performance, via object evidence aggregation (Section 3.3.5). Recov-
ering data associations robustly between views can be challenging; however, they
can be particularly useful in recognition tasks such as few-shot visual object learn-
ing (Fe-Fei et al. 2003; Fei-Fei et al. 2006; Hariharan and Girshick 2016). In few-
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Figure 3-15: SLAM-oblivious vs. SLAM-aware object detection I Illustration of the recognition
capabilities of our proposed SLAM-aware object recognition system. Each of the object categories
are detected every frame, and their evidence is aggregated across the entire sequence through the
set of object hypothesis. In frame-based object recognition, predictions are made on an individual
image basis (shown in gray). In SLAM-aware recognition, the predictions are aggregated across all
frames in the image sequence to provide robust recognition performance. The green boxes indicate
correctly classified object labels, and the gray boxes indicate background object labels. Figure is best
viewed in electronic form.

shot recognition, the system is trained on considerably fewer training examples,
typically in the tens of samples per category. Despite the limited information pro-
vided, few-shot recognition solutions are still able to perform considerably well
with a relatively small penalty in overall accuracy. These solutions can be pow-
erful especially when they do not require exhaustive datasets with expensive and
tedious ground truth labeling. However, it can be especially difficult to learn from a
minimal set of examples without any strong model assumptions (Fe-Fei et al. 2003;
Fei-Fei et al. 2006).

Alternatively, data association can be particularly useful in such cases where the
same sets of objects may be visible from other viewpoints. Similar to how we lever-
aged SLAM knowledge to better inform object recognition, we show that the very
same SLAM-aware mechanism can be utilized to enable few-shot object learning.
By bootstrapping a minimal set of labels from each object category, the 3D bound-
ing volume of the labeled object can be estimated by back-projection, before it is
projected onto each of the keyframe views within the same SLAM session. Using
the same occlusion-handling procedure described earlier, we only consider pro-
jected bounding hulls where more than 80% of its area is un-occluded. With this
simple, yet powerful labeling strategy, we are able to train on a fraction of training
examples per SLAM session, avoiding the need for tedious ground truth labeling
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requirements. We refer to this approach as SLAM-aware, few-shot object learning
and present our findings in Section 3.4.2.

3.4 Experiments and Results

In this section, we evaluate the proposed SLAM-aware object recognition method.
In our experiments, we extensively evaluate our SLAM-aware recognition system
on the popular UW RGB-D Dataset (v2)(Lai et al. 2011; 2014). We compare against
the RGB-D based object recognition solutions proposed by Lai et al. (2012) and (Geor-
gakis et al. 2016), that utilize full map and camera location information for im-
proved recognition performance. The UW RGB-D dataset contains a total 51 object
categories, however, in order to maintain a fair comparison, we consider the same
set of 5 objects as noted in (Lai et al. 2012). With CNN-based methods setting the
state-of-the-art in object detection in the past few years (Girshick 2015; Redmon
et al. 2016; Ren et al.; 2015), we show that our proposed solution extends easily to
incorporate them.

3.4.1 SLAM-Aware Object Recognition Performance

We train and evaluate our system on the UW RGB-D Scene Dataset (Lai et al.
2011; 2014), providing mean-Average Precision (mAP) estimates (see Table 3.1) for
the object recognition task and compare against existing methods (Georgakis et al.
2016; Lai et al. 2012). We report our results for detectors trained using both VLAD-
FLAIR, and Fast R-CNN in Table 3.1. For visualization purposes, we only show
qualitative results using the Fast-RCNN detector. We split our experiments into
two categories:

(i) Single-View recognition performance: First, we evaluate the recognition per-
formance of our proposed system on each of the scenes in the UW-RGB-D Scene
Dataset on a per-frame basis, detecting and classifying objects that occur every 5
frames in each scene (as done in (Lai et al. 2012)). Each object category is trained
from images in the Object Dataset, that includes several viewpoints of object in-
stances with their corresponding mask, and category information. Using training
parameters identical to the previous experiment, we achieve a performance of 81.5
mAP (using VLAD-FLAIR, and 88.5 mAP using Fast-RCNN) as compared to the
detector performance of 61.7 mAP reported in Lai et al. (2012). Recognition is done
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Method View(s) Input Precision/Recall
Bowl Cap Cereal Box Coffee Mug Soda Can Background Overall

DetOnly Single RGB 46.9/90.7 54.1/90.5 76.1/90.7 42.7/74.1 51.6/87.4 98.8/93.9 61.7/87.9
Det3DMRF Multiple RGB-D 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8
HMP2D+3D Multiple RGB-D 97.0/89.1 82.7/99.0 96.2/99.3 81.0/92.6 97.7/98.0 95.8/95.0 90.9/95.6

(Georgakis et al. 2016) Single RGB-D 70.7/56.8 87.2/49.0 84.6/83.3 83.7/34.3 85.6/55.6 89.0/98.1 83.5/62.8
(Georgakis et al. 2016) Multiple RGB-D 92.7/89.8 96.9/81.0 87.4/97.8 88.4/87.0 86.7/84.2 97.3/98.0 91.6/89.6

Ours (VLAD-FLAIR) Single RGB 88.6/71.6 85.2/62.0 83.8/75.4 70.8/50.8 78.3/42.0 95.0/90.0 81.5/59.4
Ours (VLAD-FLAIR) Multiple RGB 88.7/70.2 99.4/72.0 95.6/84.3 80.1/64.1 89.1/75.6 96.6/96.8 89.8/72.0

Ours (Fast-RCNN) Single RGB 91.0/68.3 92.0/51.8 77.6/51.9 54.7/70.0 67.9/71.2 92.5/95.0 88.5/88.0
Ours (Fast-RCNN) Multiple RGB 93.4/71.6 99.1/33.2 100.0/82.4 72.0/83.9 82.9/81.1 92.2/96.6 91.1/90.7

Table 3.1: SLAM-aware object classification results on UW-RGBD Dataset I Object classifica-
tion results using the UW RGB-D Scene Dataset (Lai et al. 2011; 2014), providing mean-Average
Precision (mAP) estimates for both Single-View, and Multi-View object recognition approaches (us-
ing VLAD-FLAIR and Fast-RCNN as detectors). We compare against existing methods DetOnly,
Det3DMRF(Lai et al. 2012), HMP2D+3D (Lai et al. 2014) and (Georgakis et al. 2016) that use RGB-D
information instead of relying only on RGB images, in our case. Recognition for the single-view
approach is done on a per-frame basis, where prediction performance is averaged across all frames
across all scenes. For the multi-view approach, recognition is done on a per-scene basis, where pre-
diction performance is averaged across all scenes.

on a per-image basis, and averaged across all test images for reporting. Figure 3-
16 shows the recognition results of our system on a per-frame basis. We ignore
regions labeled as background in the figure for clarity and only report the correct
and incorrect predictions in green and red respectively.

Figure 3-16: Pitfalls of frame-based object detection I Illustration of per-frame detection results
provided by our object recognition system that is intentionally SLAM-oblivious (for comparison pur-
poses only). Object recognition evidence is not aggregated across all frames, and detections are
performed on a frame-by-frame basis. Only detections having corresponding ground truth labels
are shown. Figure is best viewed in electronic form.

(ii) Multi-View recognition performance: In this section, we investigate the perfor-
mance of a SLAM-aware object recognition system. We compare this to a SLAM-
oblivious object detector described previously, and evaluate using ground truth
provided. Using the poses ξ and reconstructed map M, multi-view object can-
didates are proposed and projected onto each of the images for each scene se-
quence. Using the candidates provided as input to the recognition system, the
system predicts the likelihood and corresponding category of an object (including
background) contained in a candidate bounding box. For each of the objects Oj ∈ O
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proposed, the summed log-likelihood is computed (as in Eqn. 3.8) to estimate the
most likely object category over all the keyframes for a particular scene sequence.
We achieve 89.8 mAP recognition performance on the 5 objects in each of the scenes
in (Lai et al. 2014) that was successfully reconstructed by the ORB-SLAM-based
semi-dense mapping system. Using Fast-RCNN, the recognition performance can
be further improved to 91.1 mAP. Figures 3-15 and 3-17 illustrate the capabilities
of the proposed system in providing robust recognition performance by taking ad-
vantage of the monocular visual SLAM-backend. Figure 3-19 illustrates the average
precision-recall performance on the UW RGB-D dataset, comparing the classical
frame-based and our SLAM-aware approach. As expected, with additional object
viewpoints, our proposed SLAM-aware solution predicts with improved precision
and recall. In comparison to that of HMP2D+3D (Lai et al. 2014), they achieve only
slightly higher overall recognition performance of 90.9 mAP, as their recognition
pipeline takes advantage of the RGB and depth input to improve overall scene re-
construction.

SLAM-aware Frame-based SLAM-aware Frame-based
(a) t = 1 (b) t = 2

SLAM-aware Frame-based SLAM-aware Frame-based
(c) t = 3 (d) t = 4

Figure 3-17: Handling occlusions and ambiguous object classification I Some views in the scene
may be ambiguous for the object detector, while some other views may be occluding based on the
scene. While most traditional solutions only depend on a single-view, it is imperative to understand
the semantics of the world in a spatially-aware manner. This allows our proposed SLAM-aware
method to reliably reason about objects that may be partially occluded (the cap and soda can are
occluded at t = 1), or reason about objects that may be hard to disambiguate for the detector from
certain views (e.g. the cup may be mis-identified as a bowl at t = 2).

Qualitative results Through qualitative examples (in Figure 3-18), we address
a few characteristic differences in frame-based and SLAM-aware recognition sys-
tems. In Scene 03, the frame-based method occasionally mis-identifies proposals
in the scene, while it classifies correctly at other times. In our SLAM-aware solu-
tion, these classifications are consistent both spatially and temporally. In one of the
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t=1

SLAM-aware Frame-based

t=2
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Scene 03
t=1

SLAM-aware Frame-based

t=2

SLAM-aware Frame-based
t=3

SLAM-aware Frame-based

t=4

SLAM-aware Frame-based

Scene 08

t=1

SLAM-aware Frame-based

t=2

SLAM-aware Frame-based
t=3

SLAM-aware Frame-based

t=4

SLAM-aware Frame-based

Scene 11

t=1

SLAM-aware Frame-based

t=2

SLAM-aware Frame-based
t=3

SLAM-aware Frame-based

t=4

SLAM-aware Frame-based

Scene 13

Figure 3-18: Qualitative results of SLAM-aware recognition with Fast-RCNN I More illustra-
tions of the superior performance of the SLAM-aware object recognition in scenarios of ambiguity
and occlusions.
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Figure 3-19: SLAM-aware recognition performance using Fast-RCNN I Performance compari-
son via precision-recall for the Frame-based vs. SLAM-aware object recognition. As expected, the
performance of our proposed SLAM-aware solution increases with more recognition evidence is
aggregated across multiple viewpoints.

frames at t = 3, the correctly classified bounding-box for the green bowl is eval-
uated to be a failure since the IoU metric is not satisfied. In Scene 08, however,
the green soda can is not recognized correctly by our method. This is since the
bounding-box is fairly loose around it, classifying most distant views to it as back-
ground (from other vantage points). This results in the most-likely label to be of
the background class, and thereby resulting in an incorrect classification. In Scene
11, some of the views of the coffee table are incorrectly identified (class:cereal box),
as a part of the bounding box includes a cereal box. This intermittent classification
in frame-based methods is easily identified and remedied in SLAM-aware systems
when the classification probabilities are aggregated in a sound manner. Finally,
in Scene 13, we show another example of the superior classification performance
of our SLAM-aware method against frame-based methods that may occasionally
identify false positives, and false negatives.

3.4.2 Few-shot Object Learning

We evaluate the proposed SLAM-aware, few-shot object learning with two sets
of experiments. In the first experiment, we randomize the few-shot object learning
procedure, where the training set is curated with only a randomly sub-sampled set
of ground truth examples. The resulting object detector learned from the reduced
training set is used to perform SLAM-supported recognition as described earlier.
We refer to this as Randomized few-shot object learning with SLAM-aware recognition.
In the second experiment, we leverage the strong correspondences that SLAM pro-
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vides to robustly propagate ground truth labels for objects in a scene. This allows
our approach to significantly improve recognition performance with even fewer
training examples. Coupled with the SLAM-supported evidence aggregation step,
we refer to this approach as SLAM-aware few-shot object learning with SLAM-aware
recognition.

For the few-shot experiments, training is performed using the ground truth la-
bels in all scenes from the UW-RGBD Dataset (v2), except for the held-out test scene.
In the SLAM-aware few-shot learning case, the training can afford to take advan-
tage of the full keyframe-based vSLAM solution to make strong data associations
for robust label propagation. In subsequent experiments, we use the pre-trained
Fast-RCNN model (Girshick 2015) (CaffeNet, vgg cnn m 1024) as the black-box ob-
ject classifier, and fine-tune the fully-connected layers (fc6, fc7, fc8) for our dataset.
The model parameters are estimated using grid-search with a cross-validation step,
and a train/test split of 70-30 to mitigate over-fitting. In Table 3.2, we compare
the detectors learned via our proposed SLAM-aware few-shot learning against the
randomized few-shot case, and clearly validate that a SLAM-aware system can be
beneficial in both training and testing/deployment purposes.

Randomized few-shot object learning with SLAM-aware recognition In the
randomized few-shot object learning, we investigate poorly trained/calibrated ob-
ject classifiers by deliberately limiting the amount of ground truth labels available
during model training. By only providing only a subset of the object views dur-
ing training, the randomized few-shot training is not able to capture the full extent
of an object’s variance in its feature space, thereby resulting in a poorly calibrated
object classifier. In such situations, certain views of an object may be identified
as more confident than others, potentially resulting in mis-classification of object
views with low classification scores.

The SLAM-aware view aggregation addresses this particular concern, where
certain confident views of an object can help disambiguate the object label in other
less-confident vantages. In Figure 3-20, we compare few-shot recognition perfor-
mance for 2, 5 and 10 training examples per category (referred to as 2-shot, 5-shot
and 10-shot respectively). As expected, considering more training examples tends
to improve overall recognition performance. Despite poorly calibrated classifiers
with randomized few-shot training, we notice that the SLAM-aware solution signif-
icantly bolsters recognition performance over the single-view, frame-based meth-
ods in all of the few-shot scenarios illustrated in Figure 3-21. Additionally, we
show that with an increasing fraction of keyframe views considered in the view-
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Figure 3-20: SLAM-aware recognition with randomized few-shot training I The figures illustrate
the performance results of our proposed SLAM-aware recognition solution when the detector is
trained on a few examples (Few-shot training). The performance of our SLAM-aware method con-
siderably outperforms frame-based methods, despite poorly trained classifiers in the 2, 5 and 10-
shot cases. Furthermore, our approach seamlessly provides improved accuracy with more views
considered for aggregation. Here, 10% views implies that only a tenth of the keyframes are used for
inferring the object label.
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Figure 3-21: Randomized few-shot training with increasing examples considered I We illustrate
the performance of our proposed SLAM-aware recognition solution when the detector is trained
on a randomized subset of the ground truth labels. Despite being trained on incomplete informa-
tion, the SLAM-supported recognition solution can considerably bolster recognition performance
by aggregating evidence across multiple-views. In the above experiments, we also investigate the
SLAM-aware solution where only a fraction of keyframe views are considered (10%, 30%) to in-
fer the object label. With increasing views considered, our proposed method is able to seamlessly
provide better recognition performance.

aggregation step, our approach is able to seamlessly provide better recognition per-
formance. In Figures 3-21 and 3-20, we notice a considerable bump in performance
with the first 10% of views considered for SLAM-aware view-aggregation, before
we observe diminishing returns with additional views.

SLAM-aware few-shot object learning with SLAM-aware recognition Given
limited labeled information, few-shot object learning can especially benefit from ad-
ditional constraints or assumptions as it allows to reason over the unlabeled data.
By leveraging accurate data associations between various keyframe views, a SLAM-
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Method Frame-based Recognition
mAP / Recall / F1-score

SLAM-aware Recognition
mAP / Recall / F1-score

2-shot (Randomized) 80.5 / 63.4 / 69.7 83.1 / 74.8 / 77.1
5-shot (Randomized) 76.0 / 72.6 / 73.7 81.6 / 80.9 / 80.5
10-shot (Randomized) 79.6 / 74.5 / 76.0 81.6 / 82.2 / 81.5
20-shot (Randomized) 85.9 / 80.5 / 82.2 91.0 / 89.8 / 90.2

1-shot (SLAM-aware) 85.3 / 85.2 / 82.6 87.9 / 87.0 / 84.3
2-shot (SLAM-aware) 87.4 / 87.6 / 86.3 89.6 / 89.0 / 87.3
4-shot (SLAM-aware) 89.6 / 89.3 / 89.2 90.6 / 90.8 / 90.5

Table 3.2: Comparison of SLAM-aware and randomized few-shot object learning I With signif-
icantly fewer examples, our SLAM-aware few-shot approach is able to achieve strong performance
compared to randomized few-shot training. Here, the Fast-RCNN detector is fine-tuned only on a
few examples (2, 5, 10, 20 samples per class). Additionally, the performance of our SLAM-aware
recognition (via multi-view aggregation) considerably outperforms frame-based methods, despite
poorly trained classifiers in the few-shot cases.

aware system can provide useful additional constraints to further propagate the
user-provided labels to unlabeled data. Furthermore, we expect SLAM-aware sys-
tems to be especially suited to this task of object learning, as they allow the prop-
agation of ground truth labels to considerably new vantage points that the object
classifier is uncertain about. The labeled ground truth bounding box allows us to
identify the most relevant object proposal within the 3D semi-dense reconstruction,
based on their intersection-over-union (IoU) measure. We pick the correspond-
ing 3D object proposal with the maximum IoU score, and subsequently project the
bounding volume onto each of the individual keyframe views recovered during
the keyframe-based Visual SLAM procedure. Similar to the view aggregation step,
we ensure that the projected bounding boxes are un-occluded after the z-buffer
check, with at least 80% of its original area visible. Subsequently, all bounding vol-
ume projections onto the TK keyframes are considered as ground-truth labels for
few-shot training purposes. After this step, training follows exactly as the original
training procedure described in Section 3.3.4.

As expected, our SLAM-aware few-shot training solution is able to propagate
the provided ground truth labels to more keyframe views, thereby aggregating
more labeled examples for training purposes. With considerably fewer training ex-
amples, we are able to achieve similar recognition performance compared to the
randomized few-shot case. Figure 3-22 illustrates the performance of detectors es-
timated via SLAM-aware few-shot learning. In Figure 3-23, we compare the one-
shot, 2-shot, and 4-shot detector and illustrate that we are able to achieve strong
recognition performance (89.6% mAP) for the SLAM-aware 4-shot trained case.
Additionally, the performance can be further bolstered to (90.6% mAP) with SLAM-
aware view aggregation step. Interestingly, we notice that the SLAM-aware, few-

65



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Frame-based vs. SLAM-aware Precision-Recall

Single view (Frame-based)
10% view (SLAM-aware)
30% views (SLAM-aware)
All views (SLAM-aware)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Frame-based vs. SLAM-aware Precision-Recall

Single view (Frame-based)
10% view (SLAM-aware)
30% views (SLAM-aware)
All views (SLAM-aware)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Frame-based vs. SLAM-aware Precision-Recall

Single view (Frame-based)
10% view (SLAM-aware)
30% views (SLAM-aware)
All views (SLAM-aware)

(a) 1-shot (b) 2-shot (b) 4-shot

Figure 3-22: SLAM-aware recognition with few-shot SLAM-aware training I The figures illus-
trate the performance results of our proposed SLAM-aware recognition solution when the detector
is trained on a few examples (Few-shot training). The performance of our SLAM-aware method
considerably outperforms frame-based methods, despite poorly trained classifiers in the 2, 5 and
10-shot cases. Furthermore, approach seamlessly provides improved accuracy with more views
considered for aggregation. Here, 10% views implies that only a tenth of the keyframes are used for
inferring the object label.
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Figure 3-23: SLAM-aware few-shot training with increasing examples considered I We illus-
trate the performance of our proposed SLAM-aware few-shot training solution. The SLAM-aware
few-shot training solution is able to achieve high precision-recall, with significantly fewer training
examples considered compared to the randomized few-shot training case.

shot learning approach also shows promising results even in the extreme one-shot
training case (Figure 3-22), achieve an mAP of 85.3% in the frame-based evaluation.

3.5 Discussion and Future Work

Our earlier contribution (Pillai and Leonard 2015) has inspired several recent
works in SLAM-supported recognition (Bogun et al. 2015; Tateno et al. 2016) and
semantic mapping (Dong et al. 2016; Sünderhauf et al. 2016). With the availability
of pre-trained CNN-based models, the semantic image understanding landscape
has considerably changed. Recognition models are getting considerably stronger to
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support object-based representations for SLAM (Bowman et al. 2017; Gálvez-López
et al. 2016), thereby opening avenues to truly scalable SLAM solutions that can
extend to hundreds of thousands of objects within a scene. We motivate this with
an illustration of object-based SLAM (Figures 3-24 and 3-25), where the landmarks
in the Visual SLAM formulation are maintained as semantically identifiable objects.

Figure 3-24: Recognition-Supported SLAM I We illustrate the concept of Object-based SLAM,
where the object recognition cues (object category and instance) are used to establish data-
associations across views in a typical Visual SLAM problem. Since the landmark sightings are
sparse (but semantically rich in description), the equivalent factor-graph formulation is consid-
erably smaller compared to its Visual-SLAM counterpart. The figure shows various sightings of
distinct objects and the corresponding vSLAM solution recovered from incorporating these object
instance-level semantic data associations. The solid red line indicates the visual-odometry solution,
while the camera frustums (also drawn in red) represent the incremental keyframe-based vSLAM
solution using these objects as landmarks.

Recognition-Supported SLAM One particularly interesting and recurring theme
in this thesis is the robustness of the visual SLAM solution to provide reliable
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Full Object-based Visual SLAM solution

Zoomed-in view 1 Zoomed-in view 2 Zoomed-in view 3

Figure 3-25: Optimized Visual-SLAM solution via Object-based SLAM I Optimized Visual-
SLAM solution while using objects as landmarks in the visual-SLAM formulation. The visual-
odometry solution (shown in solid red) drifts as expected over long durations, but provides useful
short-term, fine-grained resolution for pose estimation. The semantic detection of various objects
(artwork, dartboard, and signage) provide sparse and rich correspondence information between
temporally distant nodes in the pose-graph, thereby constraining the overall drift incurred.

3D landmarks L∗ (map reconstruction) and camera pose estimates X∗. As with
any SLAM system, the solutions to SLAM only get better if these optimization
back-ends are fed with reliable measurements whose data associations are con-
sistent. While vision-based front-end solutions have long existed to provide reli-
able measurements to the back-end, they still struggle with difficult problems such
as perceptual aliasing (different places having similar appearance can be ambigu-
ous), and appropriately identifying scene saliency (determining importance to cer-
tain landmarks over others). Furthermore, existing visual SLAM front-ends have
mostly been limited to extracting low-level semantics in the form of bag-of-visual-
words descriptions, and do not encode any high-level semantic description of the
scene that may be valuable for tackling the perceptual aliasing and saliency con-
cerns. We revisit this problem of recognition-supported SLAM in Chapter 6 in the
context of scene recognition and provide compelling results towards bolstering ex-
isting visual SLAM front-ends.
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3.6 Chapter Summary

In this chapter, we develop a SLAM-aware object-recognition system, that is
able to provide robust and scalable recognition performance as compared to clas-
sical SLAM-oblivious recognition methods. We leverage some of the recent ad-
vancements in semi-dense monocular SLAM to propose objects in the environment,
and incorporate efficient feature encoding techniques via VLAD-FLAIR and CNN-
based RoI pooling, to provide an improved object recognition solution. Addition-
ally, by maintaining a spatially-cognizant view of the world, we show that a SLAM-
aware, few-shot object learning strategy can be especially advantageous to mobile
robots that can learn quickly from a minimal set of experiences. With this effective
training strategy, we are able to train on a fraction of examples per SLAM session,
avoiding the need for tedious and expensive ground truth labeling requirements.
With considerably fewer training examples, we are able to achieve similar recog-
nition performance compared to the randomized few-shot case. Furthermore, we
notice that the SLAM-aware, few-shot learning approach also shows promising re-
sults even in the extreme one-shot training case. Through various experiments, we
show that our SLAM-aware monocular recognition solution is competitive with the
current state-of-the-art in the RGB-D object recognition literature. We believe that
robots equipped with such a monocular system will be able to robustly recognize
and accordingly act on objects in their environment, in spite of object clutter and
recognition ambiguity inherent from certain object viewpoint angles.
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Chapter 4

Map Representations for
Vision-Based Navigation

So far in this thesis, we have advocated for the ability to leverage SLAM as a
sensor to better inform tasks such as object recognition, that benefit from mobile
robots being spatially-cognizant. As robots take advantage of their inherent SLAM
capabilities, it is critical to revisit the problem of map representation. Depending
on the immediate task at hand, the robot may require geometric maps resolved
at various spatial resolutions. Most mapping components contained with Visual-
SLAM systems today are tailored towards constructing high-fidelity maps, without
much concern for how these representations are used elsewhere by the robot. This
leads to severe fragmentation in map representations, with certain modules main-
taining discrete voxel-based maps for planning and obstacle avoidance purposes,
while other Visual-SLAM modules maintaining larger point-based representations
that allow for continuous optimization over the landmarks and camera poses.

Ideally, we would like to minimize redundant map representations across sub-
systems, and seek a flexible map representation that can be directly estimated in SLAM
sub-components, while being readily usable in the context of motion planning in
mobile robots with little modification. Additionally, we expect this common repre-
sentation to be especially amenable to planning feedback so that these systems can
perform in a resource-constrained and plan-aware setting. With agile mobile robots
in context, we consider the mapping problem using stereo-vision, and propose a
potential solution towards enabling this tunable map representation goal.

Traditionally, stereo algorithms have focused their efforts on reconstruction qual-
ity and have largely avoided prioritizing for run time performance. Robots, on the
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other hand, require quick maneuverability and effective computation to observe its
immediate environment and perform tasks within it. In this chapter, we propose
a high-performance and tunable stereo disparity estimation method, with a peak
frame-rate of 120Hz (VGA resolution, on a single CPU-thread), that can potentially
enable robots to quickly reconstruct their immediate surroundings and maneuver
at high-speeds. Our key contribution is a disparity estimation algorithm that it-
eratively approximates the scene depth via a piece-wise planar mesh from stereo
imagery, with a fast depth validation step for semi-dense reconstruction. The mesh
is initially seeded with sparsely matched keypoints, and is recursively tessellated
and refined as needed (via a resampling stage), to provide the desired stereo dispar-
ity accuracy. The inherent simplicity and speed of our approach, with the ability
to tune it to a desired reconstruction quality and run-time performance makes it a
compelling solution for applications in high-speed vehicles.

4.1 Introduction

Stereo disparity estimation has been a classical and well-studied problem in
computer vision, with applications in several domains including large-scale 3D re-
construction, scene estimation and obstacle avoidance for autonomous driving and
flight etc. Most state-of-the-art methods (Žbontar and LeCun 2015) have focused
its efforts on improving the reconstruction quality on specific datasets (Geiger et al.
2012; Scharstein and Szeliski 2002), with the obvious trade-off of employing sophis-
ticated and computationally expensive techniques to achieve such results. Some re-
cent methods, including Semi-Global Matching (Hirschmüller 2005), and ELAS (Geiger
et al. 2011a), have recognized the necessity for practical stereo matching appli-
cations and their real-time requirements. However, none of the state-of-the-art
stereo methods today can provide meaningful scene reconstructions in real-time
(≥ 25Hz) except for a few FPGA or parallel-processor-based methods (Banz et al.
2010; Gehrig et al. 2009; Honegger et al. 2014). Other methods have achieved high-
speed performance by matching fixed disparities, fusing these measurements in
a push-broom fashion with a strongly-coupled state estimator (Barry and Tedrake
2015). Most robotics applications, on the other hand, require real-time performance
guarantees in order for the robots to make quick decisions and maneuver their im-
mediate environment in an agile fashion. Additionally, as requirements for scene
reconstruction vary across robotics applications, existing methods cannot be recon-
figured to various accuracy-speed operating regimes.
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In this work, we propose a high-performance, iterative stereo matching algo-
rithm, capable of providing semi-dense disparities at a peak frame-rate of 120Hz
(see Figure 4-2). An iterative stereo disparity hypothesis and refinement strategy is
proposed that provides a tunable iteration parameter to adjust the accuracy-versus-
speed trade-off requirement on-the-fly. Through experiments, we show the strong
reliability of disparity estimates provided by our system despite the low computa-
tional requirements. We provide several evaluation results comparing accuracies
against current stereo methods, and provide performance analysis for varied run-
time requirements. We validate the performance of our system on both publicly
available datasets, and commercially available stereo sensors for comparison. In
addition to single view disparity estimates, we show qualitative results of large-
scale stereo reconstructions registered via stereo visual odometry, illustrating the
consistent stereo disparities our approach provides on a per-frame basis.

4.2 Related Work

Classical stereo matching methods have mostly considered dense reconstruc-
tions, and are generally divided into two categories, local and global methods. The
naive approach to stereo matching involves finding corresponding pixels in the left
and right images that have similar color or intensity. Since the intrinsics and ex-
trinsics of the stereo cameras are known, the matching search space is limited to
the epipolar line with a pre-defined disparity level, assuming a maximum distance
observed.

Dense Methods As one may expect, the above formulation results in a noisy dis-
parity map, due to the high pixel-level ambiguity in matching. This is addressed
by matching fixed size windows instead, reducing the noise and inherent ambi-
guity in the stereo imagery. Additionally, the resulting disparity is smoothed, al-
lowing neighboring pixels to have similar disparities. Despite several advances
in adaptive-supports, slanted window matching and edge-preserving filtering ap-
proaches (Bleyer and Breiteneder 2013), local methods suffer from being unable to
estimate disparities at low-textured regions.

For the past decade, global methods have dominated stereo benchmarks (Geiger
et al. 2012; Scharstein and Szeliski 2002). They differ from local methods in that
their smoothness regularization assumptions are no longer limited to a fixed win-
dow size, but extend throughout the image. Typically, the disparity estimation is
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Figure 4-1: Map representations I Illustrated are the various state-of-the-art map representations
developed in the past decade. While these representations are powerful in structurally or geomet-
rically describing the scene, they each reconstruct the scene at a pre-specified density and do not
admit the ability to tune for scene reconstruction density on-the-fly. All the figures above are drawn
from recent works (Engel et al. 2014; Hornung et al. 2013; Mur-Artal et al. 2015; Newcombe et al.
2011; Ramos and Ott 2016; Zhang et al. 2015).

modeled as an energy minimization, given by:

E(D) =
∑
p∈Il

c(p, p− dp) + λ
∑
{p,q}∈N

s(dp, dq) (4.1)

where c(p, p − dp) is the pixel matching cost for a disparity level dp, s(dp, dq) is
the smoothness regularization or penalty enforced between pixels p and q that
are neighbors defined by N . The above energy minimization formulation allows
several optimization strategies to be employed including (i) graph-cuts (ii) belief-
propagation (iii) dynamic programming. For a more thorough description of state-
of-the-art stereo matching, we refer the reader to (Bleyer and Breiteneder 2013).

Sparse and Semi-Dense Methods Sparse stereo matching methods have been
prevalent in robotics applications primarily due to their low-computational com-
plexity (Schauwecker et al. 2012). These methods, including monocular keypoint-
based SLAM techniques, have been combined with tessellation or meshing tech-
niques to represent the scene as piece-wise planar (Concha and Civera 2015), mak-
ing it a fairly rich representation for navigation and scene reconstruction purposes
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with a significantly low memory footprint.

Recently, there has been an increased interest in semi-dense representations for
mapping, navigation (Engel et al. 2014; Mur-Artal and Tardos 2015; Ramalingam
et al. 2015; Veksler 2002) and object detection (Pillai and Leonard 2015). Quali-
tatively, these semi-dense methods can be a compelling middle-ground, between
dense stereo and sparse stereo matching methods, potentially paving the way to
newer representations for navigation and reconstruction. LSD-SLAM (Engel et al.
2014), has recently shown large-scale 3D reconstructions by fusing the depth esti-
mates for high-gradient pixels from short and wide-baseline frames in monocular
videos, without the use of any interest point matches. However, monocular meth-
ods suffer from the well-known scale-drift problem (corrected using an IMU), and
rely on the availability of several images to provide metrically accurate reconstruc-
tions. Recently, we proposed a semi-dense stereo reconstruction of high gradient
pixels using a Line-Sweep algorithm (Ramalingam et al. 2015), which uses cross-
ratio constraints on locally planar region. Our method relies on Delaunay trian-
gulation and support point re-sampling, leading to better accuracy and improved
computational performance. Furthermore, our method can reconstruct heavily oc-
cluding objects like poles, which will be challenging for Line-sweep.

Depth-priors and Plane-based Stereo Our work closely relates to that of ELAS (Geiger
et al. 2011a) that takes a generative approach, using tessellated support points from
sparse stereo matching as a depth prior to enable efficient sampling of disparities in
a dense fashion. Most recently, MeshStereo (Zhang et al. 2015) has been proposed,
where the global stereo model is designed for view interpolation via a similar 3D
triangular mesh. The authors model the difficult depth discontinuity problem as
a two-layer MRF, where the upper layer models the splitting of depth discontinu-
ities, while the lower layer regularizes the depths via a region-based optimization.
In this work, we take a discriminative approach to stereo matching, and continue
to maintain the piece-wise planar assumption while re-tessellating poorly recon-
structed regions in the interpolated disparity image that correspond to having a
high matching cost. Furthermore, we propose an iterative method that continues
to re-tessellate and approximate complex surfaces with more piece-wise planar re-
gions, with every additional iteration.

Similar to Patch-Match Stereo (Bleyer et al. 2011), our method implicitly com-
putes disparities with sub-pixel precision, without the need for an additional post-
processing step (Yang et al. 2007) that fits a parabolic curve within the cost volume.
As duly noted in (Bleyer and Breiteneder 2013), parabolic fitting leads to noisy sub-
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pixel estimation across heavily slanted surfaces. We do note that our approach is
reminiscent of plane-sweeping algorithms that include fronto-parallel and slanted
windows to their label space for improved disparity estimation along varied sur-
faces (Gallup et al. 2007), however, we draw candidate planes and disparities from
the tessellations constructed with sparse keypoint-based stereo matches that in turn
reduces the search space drastically.

High-speed Stereo Matching To the best of our knowledge, we are unaware of
any semi-dense stereo method that can compute disparities at speeds of ≥ 100Hz,
without the use of GPUs, FPGAs or other specialized-hardware. We consider dis-
parity estimation for the approximate piece-wise planar case, as this representa-
tion can be especially useful in robotics applications where obstacles are to be ob-
served and avoided in real-time. We propose an iterative stereo matching method,
that maintains a spatially-adaptive piece-wise planar representation, significantly
speeding up stereo disparity estimation by a factor of 32x compared to popular
stereo implementations (Hirschmüller 2005), while providing sufficiently accurate
disparity estimates.

4.3 High-Performance and Tunable Stereo Reconstruc-
tion

This section introduces the algorithmic components of our method (see Alg. 2).
We propose a tunable (and iterative) stereo algorithm that consists of four key steps:
(i) Depth prior construction from Delaunay triangulation of sparse key-point stereo
matches; (ii) Disparity interpolation using piece-wise planar constraint imposed by
the tessellation with known depths; (iii) Cost evaluation step that validates interpo-
lated disparities based on matching cost threshold; and (iv) Re-sampling stage that
establishes new support points from previously validated regions and via dense
epipolar search. The newly added support points are re-tessellated and interpo-
lated to hypothesize new candidate planes in an iterative process. Since we are
particularly interested in collision-prone obstacles and map structure in the imme-
diate environment, we focus on estimating the piece-wise planar reconstruction as
an approximation to the scene, and infer stereo disparities in a semi-dense fashion
from this underlying representation. Unless otherwise noted, we consider and per-
form all operations on only a subset of image pixels that have high image gradients
ΩI ⊂ Ω, and avoid reconstructing non-textured regions in this work.
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Figure 4-2: High-Performance and Tunable Stereo Reconstruction I The proposed high-
performance stereo matching method provides semi-dense reconstruction (E) of the scene, capable
of running at a peak frame-rate of 120Hz (8.2 ms, VGA resolution). Our approach maintains a piece-
wise planar representation that enables the computation of disparities (semi-densely, and densely)
for varied spatial densities over several iterations (B-2 iterations, C-1 iteration, D-4 iterations). Col-
ors illustrate the scene depths, with green indicating near-field and red indicating far-field regions.

4.3.1 Spatial Support via Sparse Stereo Matching

Many state-of-the-art stereo algorithms start by exhaustively computing a pixel-
level cost volume O(NPND), for all pixels (NP ) with a fixed number of disparities
ND (usually 128) considered. Instead, we employ a similar strategy to (Geiger et al.
2011a), and first construct a piece-wise planar scene depth estimate to quickly in-
form a coarse depth prior or mesh. First, a sparse set of support keypoints S =

{s1, . . . , sn} are detected via FAST features (Rosten and Drummond 2006) (sampled
from 12x10 spatial-bins), and matched along their epipolar lines as in (Schauwecker
et al. 2012) (see SparseStereo in Alg. 2). We define each support point sn = (un, vn, dn)T ,
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Algorithm 2 Iterative Stereo Reconstruction
Input: (Il, Ir,ΩI): Input gray-scale stereo images and high-gradient regions
Output: Df : Disparities at high-gradient regions (Semi-Dense)
Globals: Refer to Table 4.1 for description of variables

. Initialize final disparity and associated cost
1: Df ← [0][H×W ], Cf ← [thi][H×W ], szocc ← 32

. S: Set of N support points (Section 4.3.1)
2: S1 ← SparseStereo(Il, Ir)
. Tessellated mesh with estimated disparities

3: G(S1)← DelaunayTriangulation(S1)

4: for it = 1→ niters do
. Dense piece-wise planar disparity (Section 4.3.2)

5: Dit ← DisparityInterpolation(G(Sit))
. Cost evaluation given interpolated disparity (Section 4.3.3)

6: Cit ← CostEvaluation(Il, Ir, Dit)
. Refine disparities (Section 4.3.4)

7: Cg, Cb ← DisparityRefinement(Dit, Cit)
. Prepare for next iteration, if not last iteration

8: if it 6= niters then
. Re-sample regions with high matching cost (Section 4.3.5)

9: Sit+1 ← SupportResampling(Cg, Cb, Sit)
. Tessellated mesh with estimated disparities

10: G(Sit+1)← DelaunayTriangulation(Sit+1)
. Decrease occupancy grid size by factor of 2

11: szocc = max(1, szocc/2)

12: end if
13: end for

similar to (Geiger et al. 2011a), as the concatenation of their image coordinates
(un, vn) ∈ N2, and their corresponding disparity dn ∈ N. Using these support
points as vertices with known depths, a piece-wise planar mesh is constructed via
Delaunay-Triangulation. (see Figure 4-3, DelaunayTriangulation in Alg. 2).

4.3.2 Mesh Triangulation and Disparity Interpolation

We refer to the planar regions in the delaunay triangulation as candidate planes,
as they are constructed from the sparse set of support points whose disparities are
estimated via epipolar search. These candidate planes provide a strong measure of
an underlying surface, and can be used to quickly verify the hypothesized planes.
Inspired by previous work on candidate-plane validation (Bleyer et al. 2011), we
leverage this efficient verification step to iteratively hypothesize candidate regions
in the disparity image, thereby limiting the effective disparity search space to fewer
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Name Scope Description

Il, Ir L Input gray-scale stereo images
H,W G Dimensions of input image Il
Ω,ΩI G Set of all pixels in image, and subset of high-gradient pixels
S L Sparse support pixels with valid depths
G(S) L Graph resulting from Delaunay Triangulation over S
X L Re-sampled or detected support pixels with unknown depths
Df G Final disparity image
Cf G Cost matrix associated to Df
Dit L Intermediate disparity (interpolated)
Cit L Cost associated to Dit
Cg L Cost associated with regions of high confidence matches
Cb L Cost associated with regions of invalid disparities
ND G= Maximum number of disparities considered
szocc G Occupancy grid size used for re-sampling
tlo, thi G Lower and upper cost threshold for validating disparities
niters G Number of iterations the algorithm is allowed to run

Table 4.1: Algorithm Nomenclature I Description of symbols used in the proposed stereo match-
ing algorithm, and their corresponding scope (G:Global or L:Local) within the implementation.
Parameter values: ND = 128, szocc = 64, tlo = 0.07, thi = 0.2, niters = {1, . . . , 10}.

than 3-5 disparity levels (not limiting to integer-valued disparities as most dense
methods do).

At every intermediate step, we treat the stereo disparity imageDit as being con-
structed in a piece-wise planar manner via the Delaunay tessellated mesh. Each 3D
planar surface or triangle, can be described by its 3D plane parameters (π1, π2, π3, π4) ∈
R4 given by

π1X + π2Y + π3Z + π4 = 0 (4.2)

For a stereo setup with a known baseline B, and known calibration (u = fX/Z,
v = fY/Z, and d = fB/Z), the above equation reduces to

π′1u+ π′2v + π′3 = d (4.3)

where π′ = (π′1, π
′
2, π

′
3) ∈ R3 are the plane parameters in disparity space.

In order to estimate interpolated disparities on a pixel-level basis, we first con-
struct a lookup-table that identifies the triangle and its plane coefficients for each
pixel (u, v) in the left image. Subsequently, the parameters π′ for each triangle are
obtained by solving a linear system as done in (Geiger et al. 2011a), and are re-
estimated every time after the Delaunay triangulation step. The resulting piece-
wise planar tessellation can be used to linearly interpolate regions within the dis-
parity image using the estimated plane parameters π′ (see DisparityInterpolation in
Alg. 2).
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Figure 4-3: Depth prior determined via Delaunay triangulation of sparse support points I Ver-
tices in the mesh correspond to the sparse support points, or re-sampled support, while the trian-
gular regions represent the piece-wise planar scene reconstruction.

4.3.3 Cost Evaluation

The interpolated disparity image resulting from every tessellation provides a set
of candidate depths that could potentially contain valid scene points. In order to
validate these interpolated disparities, we perform Census window-based match-
ing on a 5x5 patch (Hirschmüller and Scharstein 2009; Zabih and Woodfill 1994)
between the left and right stereo images. The resulting matching cost is normalized
and retained to be validated in the next step (see CostEvaluation in Alg. 3).
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Algorithm 3 CostEvaluation
Input: (Il, Ir, Dit): Left/Right stereo image, and interpolated disparity
Output: Cit: Matching cost corresponding to Dit

1: for (u, v) ∈ ΩI do
. Interpolated disparity at (u, v)

2: d← Dit(u, v)

. Census-based 5x5 window matching
3: Cit(u, v)← CensusMatchingCost(Il(u, v), Ir(u− d, v))
4: end for

4.3.4 Disparity Refinement

The interpolated disparities computed from the tessellation may or may not
necessarily hold true for all pixels. For high-gradient regions in the image, the cost
computed between the left and right stereo patch for the given interpolated dispar-
ity can be a sufficiently good indication to validate the candidate pixel disparity.
We use this assumption to further refine and prune candidate disparities based on
the per-pixel cost computed in the previous step, as characterized by validated (Cg)
and invalidated (Cb) cost regions. Thus, we can invalidate every pixel p in the left
image, if the cost associated c(p, p − di) with matching the pixel in the right im-
age with a given interpolated disparity di is above a maximum permissible cost thi.
The same approach is used to validate pixels that fall within a suitable cost range
(< tlo) whose correspondence certainty is high. This step also allows incorrectly
matched regions to be resampled and re-evaluated for new stereo matches as the
interpolated costs of regions around the falsely matched corners are driven suffi-
ciently high. Additionally, the disparities corresponding to the least cost for each
pixel is updated with every added iteration, ensuring that the overall stereo match-
ing cost is always reduced (see Step 6 in Alg. 4). For more details regarding this
step see DisparityRefinement in Alg. 4.

4.3.5 Support Resampling

The disparity refinement step establishes pixels or regions in the image whose
disparities need to be re-evaluated, while also simultaneously providing reliable
disparities to further utilize in the matching process. With a discretized occupancy
grid of size (szocc×szocc), pixels with the highest matching cost within a 32x32 (szocc
is initialized to 32) window are established, and re-sampled. These re-sampled pix-
els are strong indicators of occluding edges, and sharp discontinuities in depth,
making them viable candidates for epipolar-constrained dense stereo matching.
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1 iteration

2 iterations

3 iterations

Figure 4-4: Iterative refinement I With every successive iteration, more piece-wise planar regions
are added to approximate the scene, thereby reducing the overall cost incurred by the approxima-
tion. The lower the intensity value of the cost image (i.e. lower matching cost), the better approxi-
mated the scene is to the ground truth.

Subsequently, the re-sampled keypoints are densely matched via epipolar search,
and new support points Smatched are established as a result. Another valuable fea-
ture is the ability to inform disparities at greater resolution and accuracy with every
subsequent iteration; the discretization of the occupancy grid is reduced by a factor
of 2 so that pixels are more densely sampled with every successive iteration (see Sup-

portResampling in Alg. 5).

4.3.6 Iterative Reconstruction

The stereo matching proceeds to reduce the overall stereo matching cost asso-
ciated with the interpolated piece-wise planar disparity map. High-matching cost
regions are re-sampled and re-estimated to better fit the piece-wise planar disparity
map to the true scene disparity. With every subsequent iteration, new keypoints are
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Algorithm 4 DisparityRefinement
Input: (Dit, Cit): Interpolated Disparity and associated matching cost
Output: Cg, Cb: Costs associated with regions of high and low matching confidence disparities

1: H ′ ← H
szocc

,W ′ ← W
szocc

. Cg : Cost matrix of confident supports: (u, v, d, cost)
2: Cg ← [0, 0, 0, tlo][H′×W ′]

. Cb: Cost matrix of invalid matches: (u, v, cost)
3: Cb ← [0, 0, thi][H′×W ′]

4: for (u, v) ∈ ΩI do
. Establish occupancy grid for resampled points

5: u′ ← u
szocc

, v′ ← v
szocc

. If matching cost is lower than previous best final cost
6: if Cit(u, v) < Cf (u, v) then
7: Df (u, v)← Dit(u, v)
8: Cf (u, v)← Cit(u, v)
9: end if

. If matching cost is lower than previous best valid cost
10: if Cit(u, v) < tlo and Cit(u, v) < Cg(u

′, v′, 4†) then
11: Cg(u

′, v′)← (u, v,Dit(u, v), Cit(u, v))
12: end if

. If matching cost is higher than previous worst invalid cost
13: if Cit(u, v) > thi and Cit(u, v) > Cb(u

′, v′, 3†) then
14: Cb(u

′, v′)← (u, v, Cit(u, v))
15: end if
16: end for

†Matrices are 1-indexed

Algorithm 5 SupportResampling
Input: (Cg, Cb, Sit): Matching costs for confident/invalid matches
Output: Sit+1: New support points for tessellation

1: Sit+1 ← Sit, X ← ∅
2: for (u, v) ∈ ΩI do

. Perform sparse epipolar stereo for resampled invalid pixels
3: if Cb(u, v) 6= 0 then
4: X ← {X, (u, v)}
5: end if

. Resample confident pixels and add to support
6: if Cg(u, v) 6= 0 then
7: Sit+1 ← {Sit+1, (u, v)}
8: end if
9: end for

. Re-estimate disparities via epipolar search
10: Smatched ← SparseEpipolarStereo(Il, Ir, X)
11: Sit+1 ← {Sit+1, Smatched}

sampled, tessellated to inform a piece-wise planar depth prior, and further evalu-
ated to reduce the overall matching cost. With such an iterative procedure, the
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overall stereo matching cost is reduced, with the obvious cost of added computa-
tion or run-time requirement (see Figure 4-5).

Figure 4-5: Depth prior estimated with every subsequent iteration I As expected, the density of
support points increase, with the piece-wise planar representation better fitting to the true scene
disparity map. (Rows 1-2, Column 1: After 1 iteration, Column 2: After 2 iterations). Row 3 illus-
trates the final semi-dense reconstruction after 2 iterations.

4.4 Experiments and Results

In this section, we evaluate the proposed high-performance stereo matching
method. We evaluate the matching accuracy and runtime performance of our pro-
posed method on the popular KITTI dataset (Geiger et al. 2012) and on two differ-
ent stereo cameras, namely the Point Grey Bumblebee2 1394a1, and the ZED Stereo
Camera2. The KITTI dataset contains rectified gray-scale stereo imagery at a resolu-
tion of 1241x376 (0.46 MP), captured from 2 Point Grey Flea2 cameras mounted with
a baseline of 0.54m. We compare against stereo matching algorithms that are com-
monly used in robotics applications - the popular implementation of Semi-Global
Matching (Hirschmüller 2005) in OpenCV (Semi-Global Block-Matching or SGBM),
ELAS (Geiger et al. 2011a) and Line-Sweep (Ramalingam et al. 2015). We provide

1 http://www.ptgrey.com/stereo-vision-cameras-systems
2 https://www.stereolabs.com/zed/
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a thorough analysis of the trade-offs between matching accuracy and run-times
achievable by our proposed method, across varied hardware and environmental
setups.

4.4.1 Evaluation on KITTI Dataset

Method Accuracy (%)
< 2px < 3px < 4px < 5px

SGBM (Hirschmüller 2005) 89.0 93.9 95.6 96.5
ELAS (Geiger et al. 2011b) 92.7 96.1 97.3 97.9
Line-Sweep (Ramalingam et al. 2015) 72.6 81.2 84.7 86.7
Ours-1† 83.1 89.9 92.9 94.7
Ours-2† 83.5 90.2 93.2 94.9
Ours-4† 85.4 91.4 94.0 95.5

†The number next to the method indicates the number of iterations the algorithm is allowed to run.

Table 4.2: Disparity estimation on KITTI datasetI Analysis of accuracy of our system on the KITTI
dataset (Geiger et al. 2012), as compared to popular stereo implementations including OpenCV’s
Semi-Global Block-Matching (Hirschmüller 2005), ELAS (Geiger et al. 2011b) and Line-Sweep (Ra-
malingam et al. 2015). The number next to the method indicates the number of iterations the algo-
rithm is allowed to run. The accuracy results are evaluated only over high-gradient (semi-dense)
regions in the image.

Disparity Estimation Accuracy In order to evaluate our proposed semi-dense
method against existing methods, we only consider disparities in the image that
have large image gradients or edges. Currently, semi-dense methods cannot be
fully evaluated on the KITTI dataset, since the test server interpolates missing dis-
parities, introducing several errors in the disparity estimates and overall accuracy.
For all valid and non-occluding semi-dense edges, we report the absolute differ-
ence between the proposed method and existing state-of-the-art stereo implemen-
tations. In our experiments on the provided KITTI stereo evaluation kit, we find
that greater than 89.9% of edge pixels had a disparity value of less than 3 pixels
with respect to ground truth for the single pass variant (Ours-1). As seen in ta-
ble 4.2, with increased number of iterations, the same algorithm improves overall
performance (Ours-2: 90.2%, Ours-4: 91.4%). For the stereo setup on the KITTI
dataset, 3 pixels correspond to ±3cm at a depth of 2 meters and ±80cm at a depth
of 10m. In addition, we compare against recent work (Ramalingam et al. 2015) on
semi-dense reconstruction on the KITTI dataset, and achieve significantly better
disparity accuracy using our approach compared to 81.2% of (Ramalingam et al.
2015). In Table 4.2 below, we compare the disparities computed by our proposed
method, and compare against existing stereo matching implementations, including
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Figure 4-6: Proposed Stereo Disparity Estimation I Illustrations of our proposed stereo disparity
estimation method (Ours-2, row 2) on the KITTI dataset with corresponding ground truth estimates
(row 3) obtained from projecting LiDAR data on to the left camera. Despite its short execution time,
our approach shows accurate estimates of disparities for a variety of scenes. The ground truth
estimates are provided as reference, and are valid points that fall below the horizon. Similar colors
indicate similar depths at which points are registered.

Semi-Global Matching, ELAS, and Line-Sweep. We do note that the main reason
for reduced accuracy compared to state-of-the-art methods is due to the local na-
ture of the algorithm, as compared to the global regularization methods used in
SGBM and ELAS. We visualize the results of our proposed method in Figure 4-6
with the corresponding ground truth disparities.

Stereo Reconstruction In this section, we show the qualitative performance of
our stereo disparity estimation approach via stereo reconstructions fused over mul-
tiple frames from a moving camera. We use the stereo imagery from the KITTI
dataset, and the corresponding ground truth poses to reconstruct scenes over a
short window time frame to qualitatively illustrate the stereo matching consistency
our approach provides. In Figure 4-7, we show our reconstruction results from
various sequences. The reconstructions of building facades, cars, road terrain, and
road curbs are well-detailed with little noise. Furthermore, unstructured and thin
occluding edges such as trees, and their trunks are also well reconstructed. See
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video via the following link3.

Figure 4-7: Scene Reconstructions I Illustrated above are various scenes reconstructed using our
proposed stereo matching approach. We use the ground truth poses from the KITTI dataset to
merge the reconstructions from multiple frames, qualitatively showing the consistency in stereo
disparity estimation of our approach.

Runtime Performance Most existing stereo matching algorithms have focused
their efforts on the accuracy, without much regard for the runtime performance of
these systems. In this work, we focus on the potential benefits and trade-offs of
stereo matching accuracy and runtime performance. Due to the iterative nature
of our proposed method, we show that our approach can be tuned to various ac-
curacy and runtime operational levels, particularly beneficial for robotics applica-
tions. In our experiments (Table 4.3 and 4.4), we evaluate the runtime performance
of our proposed method across several standard image resolutions ranging from
WVGA (320x240) to HD1080 (1920x1080). For the common stereo image resolu-
tions (800x600), our approach provides a speed-up factor of 32x for the single-pass
stereo matching case, and a factor of 12x for the two-pass stereo matching case, as

3http://people.csail.mit.edu/spillai/projects/fast-stereo-reconstruction/pillai fast stereo16.mp4
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compared to OpenCV’s SGBM (Hirschmüller 2005) implementation.

Method Accuracy (%) Run-time (Hz/ms) Speed-up

SGBM (Hirschmüller 2005) 93.9 2.8 Hz / 351.9 ms 1x
ELAS (Geiger et al. 2011b) 96.1 6.2 Hz / 160.9 ms 2.1x
Line-Sweep (Ramalingam et al. 2015) 81.2 14.2 Hz / 70.0 ms 5x
Ours-1† 89.9 92.2 Hz / 10.8 ms 32.4x
Ours-2† 90.2 34.6 Hz / 28.9 ms 12.2x
Ours-4† 91.4 17.2 Hz / 58.2 ms 6.0x

Table 4.3: Run-time performance I Analysis of run-time performance of our system on the KITTI
(1241 x 376 px, 0.46 MP) dataset (Geiger et al. 2012), as compared to popular stereo implemen-
tations including OpenCV’s Semi-Global Block-Matching (Hirschmüller 2005) and ELAS (Geiger
et al. 2011b). The number next to the method indicates the number of iterations the algorithm is
allowed to run. We achieve comparable performance, with a run-time speed-up of approximately
32 x. Accuracy is reported for disparities that are within 3 pixels of ground truth.

Method Image Resolution (px)
320x240 640x480 800x600 1280x720 1920x1080

SGBM (Hirschmüller 2005)

R
un

tim
e

(m
s) 53.4 216.7 360.0 763.7 1873.7

ELAS (Geiger et al. 2011b) 22.7 107.2 170.3 332.7 650.9
Ours-1† 3.0 8.2 10.9 18.2 35.9
Ours-2† 6.4 19.2 27.4 46.0 81.0
Ours-4† 18.7 64.9 99.2 172.9 287.2

Table 4.4: Running Time vs. Image Resolution I We compare the runtime performance of our
proposed approach (Ours) with existing state-of-the-art solutions for varied image resolutions. As
shown in the table, our proposed stereo algorithm performs an order of magnitude faster that other
popular approaches for high-resolution (720P) stereo imagery. The number next to the method
indicates the number of iterations the algorithm is allowed to run.

Failure Modes While the iterative reconstruction algorithm admits adjustable
precision in disparity estimation, it however is still vulnerable to the typical con-
cerns in image-based reconstruction systems. With varied lighting conditions (i.e.
over-exposed, under-exposed, blurry imaging conditions), the algorithm struggles
to determine the set of salient and sparse features for initializing the iterative re-
finement procedure. Figure 4-8 illustrates a few failure modes in our proposed
approach. In future work, we hope to mitigate some of these challenging scenar-
ios by incorporating robust lighting-invariant features and adaptive reconstruction
policies.

4.4.2 Evaluation on Commodity Hardware

With the advent of the USB3 standard, high-framerate stereo cameras have now
started to become mainstream. These devices open the door to newer data through-
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Figure 4-8: Disparity estimation failure on the KITTI dataset I Top row: Left image from stereo
pair, Middle row: Disparity estimated with our proposed algorithm, Bottom row: LiDAR ground
truth disparity. Under varied imaging conditions (over-exposed, under-exposed, or blurry images)
our algorithm struggles with similar concerns that typical stereo-based algorithms face. In most
cases, the difficulty is in the recovering the initial set of features whose disparities are used to seed
the iterative algorithm. In some scenarios, only a very small fraction of the image is reconstructed.

put capacities, however, existing state-of-the-art stereo algorithms fail to meet such
high throughput requirements. To this end, in addition to the KITTI dataset, we
benchmark our proposed method on two different stereo platforms including the
BumbleBee2, and the newly introduced USB3-driven ZED Stereo Camera. The
Bumblebee2 (12cm baseline) operates at 48 FPS providing gray-scale stereo imagery
at a resolution of 648x488, while the ZED Camera is configured to operate at 60Hz
with a resolution of 1280x720. In our experiments, we compare the disparities esti-
mated from our approach against that of SGBM and report results on its accuracy
and runtime performance (see Table 4.5).

Method Accuracy (%)
BumbleBee2 ZED

ELAS (Geiger et al. 2011b) 81.1 91.6
Line-Sweep (Ramalingam et al. 2015) 83.9 77.2
Ours-1† 89.6 87.5
Ours-2† 90.8 87.3

Table 4.5: Disparity estimation with commodity hardware I Analysis of accuracy of our system
on the BumbleBee2 and ZED Stereo Camera, with Semi-Global Block-Matching (Hirschmüller 2005)
considered as ground truth. We compare against other stereo implementations including ELAS and
Line-Sweep and report the accuracy for disparities that are within 3 pixels of ground truth. The
number next to the method indicates the number of iterations the algorithm is allowed to run.
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4.4.3 Implementation Details

We use the high-speed sparse-stereo implementation of (Schauwecker et al. 2012),
and the Delaunay Tessellation is performed via the Triangle4 library for the initial
set of support tessellation. Besides the 5x5 Census-based block matching that is
implemented using specialized SSE instructions (Schauwecker et al. 2012), the rest
of the code is implemented on a single-CPU thread in C++, without any specialized
instruction sets or GPU-specific code. All the results of our code are tested on an
Intel(R) Core(TM) i7-3920XM CPU @ 2.90GHz. We do note that while our current
implementation refines disparities every iteration in batch, this step can be highly-
parallel and asynchronous due to the recursive nature of the refinement over the
tessellated structure.

4.5 Discussion and Future Work

Resource-aware Computation Several robotics applications adhere to strict com-
putational budgets and runtime requirements, depending on their task domain.
Some systems require the ability to actively adapt to varying runtime requirements
and conditions, and adjust parameters accordingly. In the context of mapping and
navigation, robots may need to map the world around them, in a slow but accurate
manner, while also requiring the ability to avoid dynamic obstacles quickly and
robustly. Such systems would need to dynamically change the accuracy require-
ments in order to achieve their desired runtime performance, given a fixed compute
budget. We hope this work encourages such capabilities, and intend to consider a
tighter integration with mobile platforms that can leverage this capability.

Plan-aware Reconstruction Another potential direction for improvement would
be in the generation of rapid and high-fidelity reconstructions, given a sufficiently
coarse trajectory plan or foveation. Trajectory plans can be advantageous in reduc-
ing overall computation, especially when only a small fraction of the scene needs
to be queried and reconstructed. Figure 4-9 provides a glimpse into this capa-
bility where the volume swept by the predicted trajectory can be used to restrict
regions that are reconstructed by our algorithm. Given a reasonable exploration-
exploitation strategy, our approach can provide promising flexibility in exploiting
accurate and rich scene information, while also being able to adjust itself to rapidly
handle dynamic scenes during the exploration stage.

4https://www.cs.cmu.edu/∼quake/triangle.html
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Figure 4-9: Plan-aware Reconstruction I Trajectory plans can provide useful information such as
volumes within which the stereo disparity reconstruction can be restricted to, thereby increasing
overall efficiency of the algorithm.

4.6 Chapter Summary

As robots leverage their SLAM capabilities in other tasks, it is critical to re-
evaluate the underlying map representation that is maintained for the purpose of
vision-based SLAM. We seek a flexible map representation that can be directly esti-
mated during mapping, while being readily usable in the context of motion plan-
ning in mobile robots with little modification. With agile mobile robots in con-
text, we consider the mapping problem using stereo-vision, and propose a poten-
tial solution towards enabling this map-representation goal. In this work, we pro-
pose an iterative and high-performance mesh reconstruction algorithm estimated
from stereo imagery. By maintaining a piece-wise planar assumption, we develop a
stereo matching strategy that recursively tessellates the scene into piece-wise planar
regions so that it appropriately reconstructs it, given a fixed run-time requirement
as provided by the user. By evaluating the matching costs for candidate planes,
our approach quickly identifies planar regions, and repeats the process for non-
planar regions by introducing more stereo matches within these regions and re-
tessellating them. We compare against stereo matching algorithms that are com-
monly used in robotics applications and provide promising results of the trade-offs
between matching accuracy and run-times achievable by our proposed method,
across varied stereo dataset and hardware setups. We envision that in the future,
these tunable mesh representations can potentially enable robots to quickly recon-
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struct their immediate surroundings while being able to directly generate plans
from them and maneuver at high-speeds.
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Chapter 5

Self-Supervised Visual Ego-motion
Learning in Robots

Fundamental to this thesis is the ability for mobile robots to perform vision-
based SLAM. While visual-SLAM algorithms have enabled significant advances in
various industries today, they are still limited in their ability to learn from new
experiences and adapt to newer environments. We envision robots to be able to
learn new model representations with experience by bootstrapping known model-
based solutions as a supervisory signal. In this thesis, we advocate for the ability
to leverage SLAM-as-a-sensor to provide this bootstrapping mechanism. In the
following chapters, we show how a GPS-aided SLAM solution could potentially
bootstrap a self-supervised visual SLAM front-end.

SLAM has been studied in a broad range of applications, and is typically consid-
ered the sensor-agnostic back-end optimization problem to an application-specific
front-end. In this thesis, we focus on vision-based SLAM front-ends that transform
raw image-based sensor measurements into meaningful constraints that the SLAM-
backend can eventually solve. Most state-of-the-art implementations of vision-
based SLAM front-ends heavily rely on heuristics and design choices at various
stages of the pipeline (including feature detection, description, tracking/matching,
RANSAC). Furthermore, these methods are designed for a specific lens-characteristic
and require further calibration and tuning before they can be deployed in a stan-
dard visual-SLAM architecture.

In this chapter, we focus on learning a visual odometry front-end, and show
how a GPS-aided SLAM solution can be used to develop a fully trainable solution
to visual ego-motion estimation for varied camera optics. We propose a neural net-
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work architecture that maps observed optical flow vectors to an ego-motion density
estimate via a Mixture Density Network (MDN). By modeling the architecture as a
Conditional Variational Autoencoder (C-VAE), our model is able to provide intro-
spective reasoning and prediction for ego-motion induced scene-flow. Addition-
ally, our proposed model is especially amenable to bootstrapped ego-motion learning
in robots where the supervision in ego-motion estimation for a particular camera
sensor can be obtained from a GPS-aided SLAM solution (i.e. GPS/INS and wheel-
odometry fusion). Through experiments, we show the utility of our proposed ap-
proach in enabling the concept of self-supervised learning for visual ego-motion
estimation in autonomous robots.

x0 x1 x2 x3 x4 xt−1 xt
u1 u2 u3 u4 ut

p0

c1,4 c3,t−1

Figure 5-1: Visual Ego-motion Learning I In a typical factor-graph formulation of Pose-Graph
SLAM, the visual ego-motion contributes to the factors (ui−1,i) in the odometry chain (in red). This
chapter focuses on recovering these odometry factors by visually tracking subsequent images.

5.1 Introduction

Visual odometry (VO) (Nistér et al. 2004), commonly referred to as ego-motion
estimation, is a fundamental capability that enables robots to reliably navigate its
immediate environment. With the wide-spread adoption of cameras in various
robotics applications, there has been an evolution in visual odometry algorithms
with a wide set of variants including monocular VO (Konolige et al. 2010a; Nistér
et al. 2004), stereo VO (Howard 2008; Kitt et al. 2010) and even non-overlapping
n-camera VO (Hee Lee et al. 2013; Kneip et al. 2013). Furthermore, each of these
algorithms has been custom tailored for specific camera optics (pinhole, fisheye,
catadioptric) and the range of motions observed by these cameras mounted on var-
ious platforms (Scaramuzza 2011).

With increasing levels of model specification for each domain, we expect these
algorithms to perform differently from others while maintaining lesser generality
across various optics and camera configurations. Moreover, the strong dependence
of these algorithms on their model specification limits the ability to actively mon-
itor and optimize their intrinsic and extrinsic model parameters in an online fash-
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ion. In addition to these concerns, autonomous systems today use several sensors
with varied intrinsic and extrinsic properties that make system characterization te-
dious. Furthermore, these algorithms and their parameters are fine-tuned on spe-
cific datasets while enforcing little guarantees on their generalization performance
on new data.

To this end, we propose a fully trainable architecture for visual odometry esti-
mation in generic cameras with varied camera optics (pinhole, fisheye and catadioptric
lenses). In this work, we take a geometric approach by posing the regression task of
ego-motion as a density estimation problem. By tracking salient features in the im-
age induced by the ego-motion (via Kanade-Lucas-Tomasi/KLT feature tracking),
we learn the mapping from these tracked flow features to a probability mass over
the range of likely ego-motion. We make the following contributions:

• A fully trainable ego-motion estimator: We introduce a fully-differentiable
density estimation model for visual ego-motion estimation that robustly cap-
tures the inherent ambiguity and uncertainty in relative camera pose estima-
tion (See Figure 5-3).

• Ego-motion for generic camera optics: Without imposing any constraints on
the type of camera optics, we propose an approach that is able to recover ego-
motions for a variety of camera models including pinhole, fisheye and catadiop-
tric lenses.

• Bootstrapped ego-motion training and refinement: We propose a bootstrap-
ping mechanism for autonomous systems whereby a robot self-supervises
the ego-motion regression task. By fusing information from other sensor
sources including GPS and INS (Inertial Navigation Systems), these indirectly
inferred trajectory estimates serve as ground truth target poses/outputs for
the aforementioned regression task. Any newly introduced camera sensor
can now leverage this information to learn to provide visual ego-motion esti-
mates without relying on an externally provided ground truth source.

• Introspective reasoning via scene-flow predictions: We develop a genera-
tive model for optical flow prediction that can be utilized to perform outlier-
rejection and scene flow reasoning.

Through experiments, we provide a thorough analysis of ego-motion recovery from
a variety of camera models including pinhole, fisheye and catadioptric cameras. We
expect our general-purpose approach to be robust, and easily tunable for accuracy
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during operation. We illustrate the robustness and generality of our approach and
provide our findings in Section 5.5.

5.2 Related Work

Recovering relative camera poses from a set of images is a well studied problem
under the context of Structure-from-Motion (SfM) (Hartley and Zisserman 2003;
Triggs et al. 1999). SfM is usually treated as a non-linear optimization problem,
where the camera poses (extrinsics), camera model parameters (intrinsics), and the
3D scene structure are jointly optimized via non-linear least-squares (Triggs et al.
1999).

Unconstrained VO: Visual odometry, unlike incremental Structure-from-Motion,
only focuses on determining the 3D camera pose from sequential images or video
imagery observed by a monocular camera. Most of the early work in VO was done
primarily to determine vehicle egomotion (Matthies 1989; Moravec 1980; Olson
et al. 2000) in 6-DOF, especially for the Mars planetary rover. Over the years sev-
eral variants of the VO algorithm were proposed, leading up to the work of Nistér
et al. (2004), where the authors proposed the first real-time and scalable VO al-
gorithm. In their work, they developed a 5-point minimal solver coupled with a
RANSAC-based outlier rejection scheme (Fischler and Bolles 1981) that is still ex-
tensively used today. Other researchers (Corke et al. 2004) have extended this work
to various camera types including catadioptric and fisheye lenses.

Constrained VO: While the classical VO objective does not impose any con-
straints regarding the underlying motion manifold or camera model, it however
contains several failure modes that make it especially difficult to ensure robust op-
eration under arbitrary scene and lighting conditions. As a result, imposing ego-
motion constraints has been shown to considerably improve accuracy, robustness,
and run-time performance. One particularly popular strategy for VO estimation in
vehicles is to enforce planar homographies during matching features on the ground
plane (Ke and Kanade 2003; Liang and Pears 2002), thereby being able to robustly
recover both relative orientation and absolute scale. For example, Scaramuzza et
al. (Scaramuzza 2011; Scaramuzza et al. 2009b) introduced a novel 1-point solver
by imposing the vehicle’s non-holonomic motion constraints, thereby speeding up
the VO estimation up to 400Hz.

Data-driven VO: While several model-based methods have been developed specif-
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ically for the VO problem, a few have attempted to solve it with a data-driven ap-
proach. Typical approaches have leveraged dimensionality reduction techniques
by learning a reduced-dimensional subspace of the optical flow vectors induced by
the egomotion (Roberts et al. 2009). In Ciarfuglia et al. (2014), Ciarfuglia et al. em-
ploy Support Vector Regression (SVR) to recover vehicle egomotion (3-DOF). The
authors further build upon their previous result by swapping out the SVR module
with an end-to-end trainable convolutional neural network (Costante et al. 2016)
while showing improvements in the overall performance on the KITTI odometry
benchmark (Geiger et al. 2012). Recently, Clark et al. (2016) introduced a visual-
inertial odometry solution that takes advantage of a neural-network architecture
to learn a mapping from raw inertial measurements and sequential imagery to
6-DOF pose estimates. By posing visual-inertial odometry (VIO) as a sequence-
to-sequence learning problem, they developed a neural network architecture that
combined convolutional neural networks with Long Short-Term Units (LSTMs) to
fuse the independent sensor measurements into a reliable 6-DOF pose estimate for
ego-motion. Our work closely relates to these data-driven approaches that have re-
cently been developed. We provide a qualitative comparison of how our approach
is positioned within the visual ego-motion estimation landscape in Table 5.1.

Method Type Varied
Optics

Model
Free Robust Self

Supervised

Traditional VO (Scaramuzza and Fraundorfer 2011) 7 7 3 7

End-to-end VO (Clark et al. 2016; Costante et al. 2016) 7 3 3 7

This work 3 3 3 3

Table 5.1: Visual odometry landscape I A qualitative comparison of how our approach is posi-
tioned amongst existing solutions to ego-motion estimation.

5.3 Background

5.3.1 Visual Odometry

While VO has been widely adopted in the realm of autonomous systems to-
day, it still poses some challenges. One of the major difficulties in recovering ro-
bust odometry estimates over long operating periods is the inherent ambiguity in
solutions that 2D-to-2D matching exhibits. Fundamentally, the geometric relation
between two images Ii−1, and Ii from a calibrated camera is given by its Essential
Matrix E. The Essential Matrix contains motion parameters that describes the rel-
ative transformation between two views up to an unknown scale factor: E ' t×R,
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where t× is the skew-symmetric matrix of the vector t = [tx, ty, tz]. The main geo-
metric relationship of the essential matrix and the set of 2D-to-2D measurements is
given by the epipolar constraint: x′TEx = 0 where x and x′ are the corresponding
features in image Ii−1 and Ii. As described earlier, the essential matrix is solved
minimally using 5 feature correspondences, via the seminal work of (Nistér et al.
2004). The determined E is then decomposed into the scale-ambiguous rotation
(R) and translation (t) component, with 4 possible solutions given by:

R = U(±W T )V T (5.1)
t = U(±W )SUT (5.2)

where U , and S are recovered via the Singular Value Decomposition (SVD) of E,
E = USV T , and

W =

 0 ±1 0

∓1 0 0

0 0 1

 (5.3)

Due to this multi-modal solution space as is typical in inverse problems, we consider
density estimation as a possible alternative to the classical L2 VO regression formu-
lation that existing data-driven methods have taken (Ciarfuglia et al. 2014; Clark
et al. 2016; Costante et al. 2016). In fact, evaluating with an L2 loss will likely result
in solutions that straddle the modes without having any guarantees on finding any
or all the relevant modes (Bishop 1994; Murphy 2012).

Furthermore, VO can also be done with a variety of cameras including perspec-
tive and omnidirectional ones. These variants require lens-specific calibration rou-
tines, and intrinsic camera model correction before they are normalized into us-
able bearing vectors. Most lens types require their own correction models (for both
projection and distortion coefficients), and lack a unified model that is able to cap-
ture their implicit intrinsics. With these two concerns in mind, we seek a unified
model that is able to implicitly learn both the non-linear intrinsics and while be-
ing able to handle the ambiguities inherent in classical 2D-to-2D visual odometry.
Mixture Density Networks (MDN) (Bishop 1994) do exactly this; while capturing
non-linearities in mapping the input space to a low-dimensional latent space, it
also assumes the output space to be multi-modal and parameterized via a Gaus-
sian Mixture Model (GMM).
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5.3.2 Density Estimation with Mixture Density Networks

The promise of conditional probabilistic modeling arises typically in the con-
text of inverse problems, where the output may sometimes be multi-modal or multi-
valued for the same input value. A standard least-squares (LS) regression formula-
tion in a potentially multi-modal belief space typically leads to a model converging
to nonsensical solutions that may lie between two or more obvious modes. Instead,
we seek a general purpose mechanism to model the conditional probability distri-
bution (CPD) of the underlying manifold, that potentially exhibits multiple modes.

Mixture Density Networks (MDNs) (Bishop 1994) are a class of fully-differentiable
density estimation techniques that leverage conventional neural networks to regress
the parameters of a generative model such as a finite Gaussian Mixture Model
(GMM). The appealing nature of MDNs is in its representational capacity of condi-
tional probability distributions. Analogous to how conventional neural networks
are capable of approximating arbitrary functions, MDNs theoretically provide a
similar capability in approximating arbitrary conditional probability distributions.
Additionally, one may also observe that the least-squares regression formulation
turns out to be a special case of the MDN with a single mixture component K = 1

in the finite mixture model layer.

Here, we consider the finite Gaussian Mixture Model (GMM) whose parame-
ters are the outputs of conventional neural network. The conditional probability
density is thus represented as a convex combination of K Gaussian components,
given by

p(y|x) =
K∑
k=1

πk(x)N (y|µk(x), σ2
k(x)) (5.4)

where πk(x) is the mixing coefficient for the k-th component as specified in a typi-
cal GMM. The Gaussian kernels are parameterized by their mean vector µk(x) and
diagonal covariance σk(x). It is important to note that the parameters πk(x), µk(x),
and σk(x) are general and continuous functions of x. This allows us to model these
parameters as the output (aπ, aµ, aσ) of a conventional neural network which takes x
as its input, and is parameterized by its weights w. Since the output of the network
depends on its learned weights, we subsequently explicitly include w in our nota-
tion. Following (Bishop 1994), the outputs of the neural network are constrained
as follows: (i) The mixing coefficients must sum to 1, i.e.

∑
K πk(x;w) = 1 where
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0 ≤ πk(x;w) ≤ 1. This is accomplished via the softmax activation, given by

πk(x;w) =
exp(aπk)∑K
l=1 exp(aπl )

(5.5)

(ii) Variances σk(x) are strictly positive via the exponential activation (Eqn 5.6).

σk(x;w) = exp(aσk) (5.6)

The mean components of the output µkj(x) are represented by their network acti-
vations aµkj given by

µkj(x;w) = aµkj (5.7)

The parameters of the model w can subsequently be learned by maximizing the
data log-likelihood, or alternatively minimizing the negative log-likelihood (de-
noted as LMDN (w) in Eqn 5.8).

LMDN (w) = −
N∑
n=1

ln

{
K∑
k=1

πk(xn;w)N (y|µk(xn;w), σ2
k(xn;w))

}
(5.8)

Once the model parameters are estimated, we are able to draw samples from the
conditional distribution p(y|x;w), which in some cases may be multi-valued repre-
senting the ambiguities or one-to-many mappings that inverse problems typically
exhibit. More concretely, we are interested in the conditional modes of the result-
ing learned CPD, whose values need to be numerically determined. For a network
with K components and O outputs, the network maintains K outputs for the mix-
ing coefficients πk(x), K outputs for the tied covariance widths σk(x), and K × O
outputs for the means µkj(x).

5.3.3 Variational Auto-Encoder

The Variational Auto-encoder (VAE) (Kingma and Welling 2013; Rezende et al.
2014) is a directed graphical model (DGM) with Gaussian latent variables (Figure 5-
2). The VAE consists of a generative process or component with latent variables z

such that sample z is generated from a prior distribution z ∼ pθ(z), and data x given
by x ∼ pθ(x|z). The choice of latent variable z depends on the latent information
that needs to be captured in order to describe the true distribution of the data.
The latent description may lie in some high-dimensional space with dependencies
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between dimensions. In VAEs, the output distribution is typically Gaussian in that
p(x|z; θ) is given by

p(x|z; θ) = N (f(z; θ), σ2 ∗ I) (5.9)

Ideally, we want to avoid explicitly providing these dependencies, and want to
be able to learn the inherent dependencies and structure as informed by the data
drawn from it. We start with considering a high-dimensional latent space z that we
can easily sample from, given by its probability density function pθ(z). Assuming
that a family of distributions f(z; θ) paramterized by θ exists such that x ∼ f(z; θ),
we seek the deterministic function f such that f(z; θ) is a proxy for sampling from
pθ(x). More precisely, this is equivalent to maximizing the probability of each sam-
ple x under the generative process given by:

p(x) =
∑

p(x|z; θ)︸ ︷︷ ︸
f(z; θ)

p(z)dz (5.10)

In a VAE, the choice of the output distribution is a scaled unit-variance Gaussian
P (x|z; θ) = N (x|f(z; θ), σ2 ∗ I), with mean f(z; θ) and diagonal co-variance σ2. The
choice of Gaussian approximation allows the analytic computation of p(x|z), and
can be replaced with an appropriate distribution depending on the expected output
distribution.

Just as traditional neural networks are known to be universal function approx-
imators, given sufficient depth and non-linearity in the architecture, distributions
can be approximated using a similar strategy. Intuitively, the key idea behind VAEs
is based on this claim: any arbitrary D-dimensional distribution can be approxi-
mated by takingD variables that are normally distributed and passing them through
a sufficiently powerful function approximator (chosen such that it approximates the
target distribution) (Devroye 1986). They are called auto-encoders since training
involves minimizing a similar objective function containing an encoder and a de-
coder. The encoder (parameterized by θ) compresses the high-dimensional input x
to a latent representation given by z ∼ qφ(z|x), and the decoder (parameterized by
φ) reconstructs the original representation from the latent lower-dimensional space
x̂ ∼ pθ(x|z).

Instead of maximizing the marginal likelihood pθ(x), VAEs maximize the vari-
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Figure 5-2: Variational Auto-Encoder (VAE) I The plate notation indicates that we can sample
from the latent variable z N times, while keeping the model parameters θ fixed. The dashed lines
represent the variational approximation qφ(z|x) to the intractable posterior pθ(z|x). The generative
model parameters θ, and variational parameters φ are learned jointly in the Auto-Encoding Varia-
tional Bayes estimation.

ational lower-bound of the log-likelihood term log pθ(x),

log pθ(x) = DKL

[
qφ(z|x)||pθ(z|x)

]
+ Eqφ(z|x)

[
− log qφ(z|x) + log pθ(x, z)

]
(5.11)

≥ Eqφ(z|x)

[
− log qφ(z|x) + log pθ(x, z)

]
(5.12)

≥ Eqφ(z|x)

[
log pθ(x|z)

]︸ ︷︷ ︸
Reconstruction Error

−DKL

[
qφ(z|x)||pθ(z)

]︸ ︷︷ ︸
Variational Regularization

(5.13)

where the first term corresponds to the cost of reconstructing x̂ given z, while the
second KL-divergence term corresponds to the variational regularization term that
enforces a prior pθ(z) on the proposal distribution qφ(z|x). As described earlier, the
choice of priors are application dependent, and is chosen to be Gaussian in the cases
described later in this chapter. The parameters of the VAE are estimated efficiently
via stochastic gradient variational Bayes (SGVB) (Kingma and Welling 2013) where
the above variational lower bound is used as the surrogate objective function. In
the Conditional Variational Auto-encoder (C-VAE), the samples are generated from
the conditional distribution x ∼ pθ(x|y, z) where y is the conditional variable avail-
able during sampling. The variational bound for C-VAE is a simple extension of
Equation 5.13,

log pθ(x, y) ≥ Eqφ(z|x,y)

[
log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qφ(z|x, y)

]
(5.14)

We refer the reader to Kingma and Welling (2013); Kingma et al. (2014); Sohn
et al. (2015) for more detailed introduction to variational auto-encoders (VAEs) and
their conditional VAE variants (C-VAE).
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5.4 Visual Ego-motion Regression

As with most ego-motion estimation solutions, it is imperative to determine the
minimal parameterization of the underlying motion manifold. In certain restricted
scene structures or motion manifolds, several variants of ego-motion estimation are
proposed (Ke and Kanade 2003; Liang and Pears 2002; Scaramuzza 2011; Scara-
muzza et al. 2009b). However, we consider the case of modeling cameras with var-
ied optics and hence are interested in determining the full range of ego-motion, of-
ten restricted, that induces the pixel-level optical flow. This allows the freedom to
model various unconstrained and partially constrained motions that typically affect
the overall robustness of existing ego-motion algorithms. While model-based ap-
proaches have shown tremendous progress in accuracy, robustness, and run-time
performance, a few recent data-driven approaches have been shown to produce
equally compelling results (Clark et al. 2016; Costante et al. 2016; Konda and Memi-
sevic 2015). An adaptive and trainable solution for relative pose estimation or ego-
motion can be especially advantageous for several reasons: (i) a general-purpose
end-to-end trainable model architecture that applies to a variety of camera optics in-
cluding pinhole, fisheye, and catadioptric lenses; (ii) simultaneous and continuous
optimization over both ego-motion estimation and camera parameters (intrinsics
and extrinsics that are implicitly modeled); and (iii) joint reasoning over resource-
aware computation and accuracy within the same architecture is amenable. We en-
vision that such an approach is especially beneficial in the context of bootstrapped
(or weakly-supervised) learning in robots, where the supervision in ego-motion es-
timation for a particular camera can be obtained from the fusion of measurements
from other robot sensors (GPS, wheel encoders etc.).

Our approach is motivated by previous minimally parameterized models (Scara-
muzza 2011; Scaramuzza et al. 2009b) that are able to recover ego-motion from a
single tracked feature. We find this representation especially appealing due to the
simplicity and flexibility in pixel-level computation. Despite the reduced complex-
ity of the input space for the mapping problem, recovering the full 6-DOF ego-
motion is ill-posed due to the inherently under-constrained system. However, it
has been previously shown that under non-holonomic vehicle motion, camera ego-
motion may be fully recoverable up to a sufficient degree of accuracy using a single
point (Scaramuzza 2011; Scaramuzza et al. 2009b).

We now focus on the specifics of the ego-motion regression objective. Due to
the under-constrained nature of the prescribed regression problem, the pose esti-
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Figure 5-3: Visual Ego-motion Learning Architecture I We propose a visual ego-motion learning
architecture that maps optical flow vectors (derived from feature tracking in an image sequence) to
an ego-motion density estimate via a Mixture Density Network (MDN). By modeling the architec-
ture as a Conditional Variational Autoencoder (C-VAE), our model is able to provide introspective
reasoning and prediction for scene-flow conditioned on the ego-motion estimate and input feature
location.

mation is modeled as a density estimation problem over the range of possible ego-
motions1, conditioned on the input flow features. It is important to note that the
output of the proposed model is a density estimate p(ẑt−1,t|xt−1,t) for every feature
tracked between subsequent frames.

5.4.1 Density Estimation for Ego-motion

In typical associative mapping problems, the joint probability density p(x, z) is
decomposed into the product of two terms: (i) p(z|x): the conditional density of the
target pose z ∈ SE(3) conditioned on the input feature correspondencex = (x,∆x)

obtained from sparse optical flow (via the KLT tracker) (Birchfield 2007); and (ii)
p(x): the unconditional density of the input data x. While we are particularly in-
terested in the first term p(z|x) that predicts the range of possible values for z given
new values of x, we can observe that the density p(x) =

∑
z p(x, z)dz provides a

measure of how well the prediction is captured by the trained model.

The critical component in estimating the ego-motion belief is the ability to accu-
rately predict the conditional probability distribution p(z|x) of the pose estimates

1Although the parameterization is maintained asSE(3), it is important to realize that most autonomous ground vehicles
predominantly traverse a lower-dimensional (SE(2)) motion manifold.
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Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow ∆x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =
K∑
k=1

πk(xi)N (zi|µk(xi), σ2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xNF ) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coefficient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.
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5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN ) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN ) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ẑt−1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo : x 7→
(
µ(xt−1,t), σ(xt−1,t), π(xt−1,t)

)
(5.16)

where ẑ1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ẑ1,t = ẑ1,2 ⊕ ẑ2,3 ⊕
· · · ⊕ ẑt−1,t.

LENC =
∑
t

LtMDN

(
f vo(x), zt−1,t

)
︸ ︷︷ ︸

MDN Loss

+
∑
t

LtTRAJ(z1,t 	 ẑ1,t)︸ ︷︷ ︸
Overall Trajectory Loss

(5.17)
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Figure 5-5: Two-stage OptimizationI An illustration of the two-stage optimization procedure. The
first column shows the final solution after the first stage. Despite the minimization of the MDN loss
term, the integrated trajectory is clearly biased and poorly matches the expected trajectory result.
The second, third and fourth column shows the gradual improvement of the second stage (global
minimization including the overall trajectory loss) and matches the expected ground truth trajectory
better (i.e. estimates the regressor biases better).

5.4.3 Bootstrapped Learning for Ego-motion Estimation

Typical robot navigation systems consider the fusion of visual odometry es-
timates with other modalities including estimates derived from wheel encoders,
IMUs, GPS etc. Considering odometry estimates (for e.g. from wheel encoders)
as-is, the uncertainties in open-loop chains grow in an unbounded manner. Fur-
thermore, relative pose estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred. GPS, despite being
noise-ridden, provides an absolute sensor reference measurement that is especially
complementary to the open-loop odometry chain maintained with odometry esti-
mates. The probabilistic fusion of these two relatively uncorrelated measurement
modalities allows us to recover a sufficiently accurate trajectory estimate that can be
directly used as ground truth data z (in Figure 5-7) for our supervised regression
problem.

The indirect recovery of training data from the fusion of other sensor modalities
in robots falls within the self-supervised or bootstrapped learning paradigm. We en-
vision this capability to be especially beneficial in the context of life-long learning
in future autonomous systems. Using the fused and optimized pose estimates z

(recovered from GPS and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for a completely new sen-
sor (as illustrated in Figure 5-7). Figure 5-12 illustrates the realization of the learned
model in a typical autonomous system where it is treated as an additional sensor
source. Through experiments 5.5.3, we illustrate this concept with the recovery of
ego-motion in a robot car equipped with a GPS/INS unit and a single camera.
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leveraged to recover long-term, and drift-free trajectory of the vehicle in a fully automatic fashion.
We directly use this recovered vehicle trajectory as “ground-truth” for subsequent visual ego-motion
regression.
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Figure 5-7: Bootstrapped Ego-motion Regression I Illustration of the bootstrap mechanism
whereby a robot self-supervises the proposed ego-motion regression task in a new camera sensor
by fusing information from other sensor sources such as GPS and INS.

5.4.4 Introspective Reasoning for Scene-Flow Prediction

Scene flow is a fundamental capability that provides directly measurable quan-
tities for ego-motion analysis. The flow observed by sensors mounted on vehicles
is a function of the inherent scene depth, the relative ego-motion undergone by the
vehicle, and the intrinsic and extrinsic properties of the camera used to capture it.
As with any measured quantity, one needs to deal with sensor-level noise propa-
gated through the model in order to provide robust estimates. While the input flow
features are an indication of ego-motion, some of the features may be corrupted due
to lack of or ambiguous visual texture or due to flow induced by the dynamics of
objects other than the ego-motion itself. Evidently, we observe that the dominant
flow is generally induced by ego-motion itself, and it is this flow that we intend
to fully recover via a conditional variational auto-encoder (C-VAE). By inverting
the regression problem, we develop a generative model able to predict the most-
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Figure 5-8: Introspective reasoning for scene-flow predictionI Illustrated above are the dominant
flow vectors corresponding to scene-flow given the corresponding ego-motion. While this module
is currently only used for introspection purposes, we expect it to be critical in outlier rejection for
robust ego-motion estimation. Row 1: Sample image from camera, Row 2: Flow induced by forward
motion

likely flow ∆x̂ induced given an ego-motion estimate z, and feature location x. We
propose a scene-flow specific autoencoder that encodes the implicit egomotion ob-
served by the sensor, while jointly reasoning over the latent depth of each of the
individual tracked features. In order to make the entire architecture fully differen-
tiable, only the dominant mode (mode corresponding to largest mixture coefficient)
is sampled to recover the induced ego-motion flow. While the re-parameterization
trick, applied in VAEs to allow the back-propagation over the stochastic nodes, can
be applied to the full mixture model (Graves 2016), we only consider recovering the
flow given the dominant mode in this work.

LCVAE =E
[

log pθ(∆x|z, x)
]︸ ︷︷ ︸

Reconstruction Error

−DKL

[
qφ(z|x,∆x)||pθ(z|x)

]︸ ︷︷ ︸
Variational Regularization

(5.18)

Through the proposed denoising autoencoder model, we are also able to attain
an introspection mechanism for the presence of outliers. We incorporate this addi-
tional module via an auxiliary loss as specified in Eqn 5.18. An illustration of these
flow predictions are shown in Figures 5-8 and 5-9.
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Figure 5-9: Scene-flow prediction with odometryI Illustrated above are the dominant flow vectors
corresponding to scene-flow in a catadioptric lens conditioned on the ego-motion direction.

5.5 Experiments and Results

In this section, we provide detailed experiments on the performance, robustness
and flexibility of our proposed approach on various datasets. Our approach differ-
entiates itself from existing solutions on various fronts as shown in Table 5.1. We
evaluate the performance of our proposed approach on various publicly-available
datasets including the KITTI dataset (Geiger et al. 2012), the Multi-FOV synthetic
dataset (Zhang et al. 2016) (pinhole, fisheye, and catadioptric lenses), an omnidirectional-
camera dataset (Schönbein and Geiger 2014), and on the Oxford Robotcar 1000km
Dataset (Maddern et al. 2016).

Navigation solutions in autonomous systems today typically fuse various modal-
ities including GPS, odometry from wheel encoders and INS to provide robust tra-
jectory estimates over extended periods of operation. We provide a similar solution
by leveraging the learned ego-motion capability described in this work, and fuse it
with intermittent GPS updates2 (Section 5.5.1). While maintaining similar perfor-
mance capabilities (Table 5.2), we re-emphasize the benefits of our approach over
existing solutions:

• Versatile: With a fully trainable model, our approach is able to simultane-
ously reason over both ego-motion and implicitly modeled camera parame-
ters (intrinsics and extrinsics). Furthermore, online calibration and parameter
tuning is implicitly encoded within the same learning framework.

• Model-free: Without imposing any constraints on the type of camera optics,
our approach is able to recover ego-motions for a variety of camera models
including pinhole, fisheye and catadioptric lenses. (Section 5.5.2)

• Bootstrapped training and refinement: We illustrate a bootstrapped learning
2For evaluation purposes only, the absolute ground truth locations were added as weak priors on datasets without GPS

measurements
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example whereby a robot self-supervises the proposed ego-motion regression
task by fusing information from other sensor sources including GPS and INS
(Section 5.5.3)

• Introspective reasoning for scene-flow prediction: Via the C-VAE generative
model, we are able to reason/introspect over the predicted flow vectors in the
image given an ego-motion estimate. This provides an obvious advantage in
robust outlier detection and identifying dynamic objects whose flow vectors
need to be disambiguated from the ego-motion scene flow (Figure 5-8)

5.5.1 Evaluating Ego-motion Performance with Sensor Fusion

In this section, we evaluate our approach against a few state-of-the-art algo-
rithms for monocular visual odometry (Kitt et al. 2010). On the KITTI dataset (Geiger
et al. 2012), the pre-trained estimator is used to robustly and accurately predict ego-
motion from KLT features tracked over the dataset image sequence. The frame-
to-frame ego-motion estimates are integrated for each session to recover the full
trajectory estimate and simultaneously fused with intermittent GPS updates (in-
corporated every 150 frames). In Figure 5-10, we show the qualitative performance
in the overall trajectory obtained with our method. The entire pose-optimized tra-
jectory is compared against the ground truth trajectory. The translational errors are
computed for each of the ground truth and prediction pose pairs, and their median
value is reported in Table 5.2 for a variety of datasets with varied camera optics.

5.5.2 Varied Camera Optics

Most of the existing implementations of VO estimation are restricted to a class of
camera optics, and generally avoid implementing a general-purpose VO estimator
for varied camera optics. Our approach on the other hand, has shown the ability to
provide accurate VO with intermittent GPS trajectory estimation while simultane-
ously being applicable to a varied range of camera models. In Figure 5-11, we com-
pare with intermittent GPS trajectory estimates for all three camera models, and
verify their performance accuracy compared to ground truth. In our experiments,
we found that while our proposed solution was sufficiently powerful to model dif-
ferent camera optics, it was significantly better at modeling pinhole lenses as com-
pared to fisheye and catadioptric cameras (See Table 5.2). In future work, we would
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Figure 5-10: Sensor fusion with learned ego-motion I On fusing our proposed VO method with
intermittent GPS updates (every 150 frames, black circles), the pose-graph optimized ego-motion
solution (in green) achieves sufficiently high accuracy relative to ground truth. We test on a variety
of publicly-available datasets including (a) Multi-FOV synthetic dataset (Zhang et al. 2016) (pin-
hole shown above), (b) an omnidirectional-camera dataset (Schönbein and Geiger 2014), (c) Oxford
Robotcar 1000km Dataset (Maddern et al. 2016) (2015-11-13-10-28-08) (d-l) KITTI dataset (Geiger
et al. 2012). Weak supervision such as GPS measurements can be especially advantageous in recover-
ing improved estimates for localization, while simultaneously minimizing uncertainties associated
with pure VO-based approaches.
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Dataset Camera
Optics

Median
Trajectory

Error

KITTI-00 Pinhole 0.19 m
KITTI-01 Pinhole 0.54 m
KITTI-02 Pinhole 0.30 m
KITTI-03 Pinhole 0.09 m
KITTI-04 Pinhole 0.02 m
KITTI-05 Pinhole 0.12 m
KITTI-06 Pinhole 0.16 m
KITTI-07 Pinhole 0.18 m
KITTI-08 Pinhole 0.63 m
KITTI-09 Pinhole 0.30 m
KITTI-10 Pinhole 0.26 m
Multi-FOV (Zhang et al. 2016) Pinhole 0.18 m
Multi-FOV (Zhang et al. 2016) Fisheye 0.48 m
Multi-FOV (Zhang et al. 2016) Catadioptric 0.36 m
Omnidirectional (Schönbein and Geiger 2014) Catadioptric 0.52 m
Oxford 1000km† (Maddern et al. 2016) Pinhole 0.03 m

Table 5.2: Trajectory prediction performance I An illustration of the trajectory prediction perfor-
mance of our proposed ego-motion approach when fused with intermittent GPS updates (every 150
frames). The errors are computed across the entire length of the optimized trajectory and ground
truth. For Oxford 1000km dataset, we only evaluate on a single session (2015-11-13-10-28-08 [80GB]: †Stereo
Centre)

.

like to investigate further extensions that improve the accuracy for both fisheye and
catadioptric lenses.

5.5.3 Self-supervision via Synchronized Cross-Modal Learning

We envision the capability of robots to self-supervise tasks such as visual ego-
motion estimation to be especially beneficial in the context of life-long learning and
autonomy. We experiment and validate this concept through a concrete example
using the 1000km Oxford Robot Car dataset (Maddern et al. 2016). We train the
task of visual ego-motion on a new camera sensor by leveraging the fused GPS and
INS information collected on the robot car as ground truth trajectories (6-DOF),
and extracting feature trajectories (via KLT) from image sequences obtained from
the new camera sensor. The timestamps from the cameras are synchronized with
respect to the timestamps of the fused GPS and INS information, in order to obtain a
one-to-one mapping for training purposes. We train on the stereo centre (pinhole)
camera dataset and present our results in Table 5.2. As seen in Figure 5-10, we
are able to achieve considerably accurate long-term state estimates by fusing our
proposed visual ego-motion estimates with even sparser GPS updates (every 2-3
seconds, instead of 50Hz GPS/INS readings). This allows the robot to reduce its
reliance on GPS/INS alone to perform robust, long-term trajectory estimation.
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Figure 5-11: Varied camera optics I An illustration of the performance of our general-purpose
approach for varied camera optics (pinhole, fisheye, and catadioptric lenses) on the Multi-FOV syn-
thetic dataset (Zhang et al. 2016). Without any prior knowledge on the camera optics, or the mount-
ing configuration (extrinsics), we are able to robustly and accurately recover the full trajectory of the
vehicle (with intermittent GPS updates every 500 frames).

5.5.4 Implementation Details

In this section we describe the details of our proposed model, training method-
ology and parameters used. The inputx = (x,∆x) to the density-based ego-motion
estimator are feature tracks extracted via (Kanade-Lucas-Tomasi) KLT feature track-
ing over the raw camera image sequences. The input feature positions and flow
vectors are normalized to be the in range of [−1, 1] using the dimensions of the in-
put image. We evaluate sparse LK (Lucas-Kanade) optical flow over 7 pyramidal
scales with a scale factor of

√
2. As the features are extracted, the corresponding

robot pose (either available via GPS or GPS/INS/wheel odometry sensor fusion) is
synchronized and recorded in SE(3) for training purposes. The input KLT features,
and the corresponding relative pose estimates used for training are parameterized
as z = (t, r) ∈ R6, with a Euclidean translation vector t ∈ R3 and an Euler rota-
tion vector r ∈ R3. We once again refer the reader to Figure 5-12 illustrating the
deployment of the learned ego-motion model fused with GPS.

Network and training: The proposed architecture consists of a set of fully-
connected stacked layers (with 1024, 128 and 32 units) followed by a Mixture Den-
sity Network with 32 hidden units and 5 mixture components (K). Each of the ini-
tial fully-connected layers implement tanh activation after it, followed by a dropout
layer with a dropout rate of 0.1. The final output layer of the MDN (aπ, aµ, aσ)
consists of (O + 2) ∗K outputs where O is the desired number of states estimated.

The network is trained (in Stage 1) with loss weights of 10, 0.1, 1 correspond-
ing to the losses LMDN ,LTRAJ ,LCV AE described in previous sections. The training
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Figure 5-12: Learned Ego-motion Deployment I During model deployment, the learned visual-
egomotion model provides valuable relative pose constraints to augment the standard navigation-
based sensor fusion (GPS/INS and wheel encoder odometry fusion).

data is provided in batches of 100 frame-to-frame subsequent image pairs, each
consisting of approximately 50 randomly sampled feature matches via KLT. The
learning rate is set to 1e−3 with Adam (Kingma and Ba 2014) as the optimizer. On
the synthetic Multi-FOV dataset and the KITTI dataset, training for most models
took roughly an hour and a half (3000 epochs) independent of the KLT feature ex-
traction step. For most datasets including KITTI and the Oxford 1000km, we train
on 2-5 data sessions collected from the vehicle, and test on a completely new ses-
sion. However on the synthetic Multi-FOV dataset, we train and test on the same
set to validate our proposed method.

Two-stage optimization: We found the one-shot joint optimization of the local
ego-motion estimation and global trajectory optimization to have sufficiently low
convergence rates during training. One possible explanation is the high sensitivity
of the loss weight parameters that is used for tuning the local and global losses into
a single objective. As previously addressed in Section 5.4.2, we separate the training
into two stages thereby alleviating the aforementioned issues, and maintaining fast
convergence rates in Stage 1. Furthermore, we note that during the second stage, it
only requires a few tens of iterations for sufficiently accurate ego-motion trajecto-
ries. In order to optimize over a larger time-window in stage 2, we set the batch size
to 1000 frame-to-frame image matches, again randomly sampled from the training
set as before. Due to the large integration window and memory limitations, we
train this stage purely on the CPU for only 100 epochs each taking roughly 30s per
epoch. Additionally, in stage 2, the loss weights for LTRAJ are increased to 100 in
order to have faster convergence to the global trajectory. The remaining loss weights
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are left unchanged.

Trajectory fusion: We use GTSAM3 to construct the underlying factor graph
for pose-graph optimization. Odometry constraints obtained from the frame-to-
frame ego-motion are incorporated as a 6-DOF constraint parameterized in SE(3)

with 1 ∗ 10−3 rad rotational noise and 5 ∗ 10−2 m translation noise. As with typical
autonomous navigation solutions, we expect measurement updates in the form of
GPS (absolute reference updates) in order to correct for the long-term drift incurred
in open-loop odometry chains. We incorporate absolute prior updates only every
150 frames, with a weak translation prior of 0.01 m. The constraints are incremen-
tally added and solved using iSAM2 (Kaess et al. 2012) as the measurements are
streamed in, with updates performed every 10 frames.

While the proposed MDN is parameterized in Euler angles, the trajectory in-
tegration module parameterizes the rotation vectors in quaternions for robust and
unambiguous long-term trajectory estimation. All the rigid body transformations
are implemented directly in Tensorflow for pure-GPU training support.

Run-time performance: We are particularly interested in the run-time / test-
time performance of our approach on CPU architectures for mostly resource-constrained
settings. Independent of the KLT feature tracking run-time, we are able to recover
ego-motion estimates at roughly 3ms on a consumer-grade Intel(R) Core(TM) i7-
3920XM CPU @ 2.90GHz.

Source code and Pre-trained weights: We implemented the MDN-based ego-
motion estimator with Keras and Tensorflow, and trained our models using a com-
bination of CPUs and GPUs (NVIDIA Titan X). All the code was trained on an
server-grade Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and tested on the same
consumer-grade machine as mentioned above to emulate potential real-world use-
cases. The source code and pre-trained models used will be made available shortly4.

5.6 Discussion and Future Work

The initial results in bootstrapped learning for visual ego-motion has motivated
new directions towards life-long learning in autonomous robots. While our vi-
sual ego-motion model architecture is shown to be sufficiently powerful to recover
ego-motions for non-linear camera optics such as fisheye and catadioptric lenses,

3http://collab.cc.gatech.edu/borg/gtsam
4See https://github.com/spillai/learning-egomotion
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we continue to investigate further improvements to match existing state-of-the-art
models for these lens types. Our current model does not capture distortion effects
yet, however, this is very much a future direction we would like to take.

Active Calibration and Monitoring One of the benefits of self-supervised learn-
ing in the context of visual ego-motion is the ability to actively monitor calibration
errors in sensors, and their task-related accuracy with more experience gathered.
This same framework also allows us to incorporate active monitoring and fault tol-
erance mechanisms with little modification to our proposed solution, and make it
feasible to correct for these calibration errors on-the-fly. We envision that over time,
robots and their sensors will need to be constantly monitored and re-calibrated, and
that these self-supervised solutions that require minimal human supervision can
be especially valuable in ensuring robust and long-term operation.

Keyframe-based Tracking While sequential frame-to-frame feature tracking
and pose estimation are sufficient for egomotion estimation, one of the major disad-
vantages of performing sequential (filtering-based) VO is the unbounded uncertainty
propagation with every erroneous measurement. As with any open-loop odome-
try chain, the pose uncertainty is compounded with every subsequent relative pose
measurement, while the same features are being tracked across multiple frames.
In order to avoid frame-to-frame matching and growing pose uncertainty, certain
frames can be skipped until the camera has observed considerable movement, be-
fore a new reference frame, called keyframe, is selected. During operation, features
from the previously instantiated keyframe is matched against the current frame to
determine the relative 6-DOF pose. This continues until a new keyframe is added
and the relative pose measurement is maintained and propagated to provide the
VO estimate. Due to its increased accuracy and robustness, keyframe-based meth-
ods has become a standard step in VO and vSLAM applications (Scaramuzza and
Fraundorfer 2011). In the future, we intend to investigate this concept, and expect
treating keyframe-instantiation as a learning problem in itself, further reducing the
overall pose-estimation error incurred in visual odometry estimation.

Resource-Constrained Estimation Another consideration is the resource-constrained
setting, where the optimization objective incorporates an additional regularization
term on the number of parameters used, and the computation load consumed. This
ties again to keyframe-selection strategies, where we want to minimize computa-
tional resources on tracking every frame, while maintaining sufficient accuracy in
pose estimation. Moreover, we expect these models for ego-motion can be further
fine-tuned, and compressed for computational efficiency while being tailored to the
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desired operational regime of the robot. We hope for this resource-aware capability
to transfer to real-world limited-resource robots and to have a significant impact on
the adaptability of robots for long-term autonomy.

5.7 Chapter Summary

While many visual ego-motion algorithm variants have been proposed in the
past decade, we envision that a fully end-to-end trainable algorithm for generic
camera ego-motion estimation shall have far-reaching implications in several do-
mains, especially autonomous systems. Furthermore, we expect our method to
seamlessly operate under resource-constrained situations in the near future by lever-
aging existing solutions in model reduction and dynamic model architecture tun-
ing. With the availability of multiple sensors on these autonomous systems, we also
foresee our approach to bootstrapped task (visual ego-motion) learning to poten-
tially enable robots to learn from experience, and use the new models learned from
these experiences to encode redundancy and fault-tolerance all within the same
framework.
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Chapter 6

Self-Supervised Visual Place
Recognition in Robots

Both visual odometry estimation and place recognition are two core competen-
cies in any Visual SLAM front-end. As addressed earlier, place recognition is an
essential capability that allows mobile robots to disambiguate and identify previ-
ously visited locations, and thereby significantly improve their model of where they
are in the world. More generally, we are interested in understanding what makes
two images “similar” in the context of mobile robots, in that they are captured from
a very similar vantage point and location. In the previous chapter, we proposed a
bootstrapping mechanism that leverages a GPS-aided SLAM solution to supervise
the task of visual ego-motion estimation. Following this similar concept, we ex-
plore the ability to self-supervise place recognition in mobile robots. In this work, we
consider the space of all image-based descriptors and provide a bootstrapped mech-
anism to gauge the similarity between image descriptions specifically tailored for
the task of place-recognition in mobile robots.

6.1 Introduction

Visual place recognition, or more commonly referred to as loop-closure recog-
nition, is a critical component in robot navigation that enables it to visually re-
establish previously visited locations and simultaneously use this information to
correct the drift that was incurred in the dead-reckoned estimate. Loop-closure
recognition is a well-studied topic with several approaches leveraging sensor-specific
features for the task at hand. However, even state-of-the-art methods today use
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hand-tuned features and matching techniques to implement their vision-based loop-
closure mechanisms. With the growing sensor modalities on robotic systems, main-
taining several variants of the hand-engineered front-ends becomes increasingly
tedious and difficult. The results are less than optimal since certain feature rep-
resentations such as Convolutional Neural Networks (CNNs) extract (Zhou et al.
2014b; 2016b) for example, are generally optimized for the image classification task.
Alternatively, we could learn a metric of similarity for the purposes of localiza-
tion i.e. identifying a mapping where features extracted from identical locations
lie closer to each other, and those extracted from dissimilar places lie farther away
from each other. Furthermore, we would like to determine a calibrated distance
metric that provides a probabilistic measure of similarity such that they can be
readily deployed in safety-critical systems where modeling these probabilities can
be especially valuable. To alleviate this growing concern, we envision robots to
self-supervise the task of visual loop-closure recognition in newer sensors by boot-
strapping their existing localization and mapping capabilities.

x0 x1 x2 x3 x4 xt−1 xt
u1 u2 u3 u4 ut

p0

c1,4 c3,t−1

Figure 6-1: Visual Loop-Closure Recognition Learning I In a typical factor-graph formulation
of Pose-Graph SLAM, the vision-based loop-closure recognition contributes to relative-pose con-
straints cj,k (in red) between temporally-distant nodes. This chapter focuses on identifying these
loop-closure constraints by describing and indexing images in an embedded feature space that can
be self-supervised to perform accurate loop-closure retrieval.

6.2 Related Work

Visual place recognition in the context of vision-based navigation is a well stud-
ied problem in the robotics and computer vision literature (Lowry et al. 2016). In
order to identify previously visited locations the system needs to be able to extract
salient cues from an image that describes the content contained within it. Extract-
ing an appropriate set of cues can be especially challenging when building robust
systems that operate for extremely long periods of time. Typically, the same place
may be significantly different from its previous appearance due to various factors
such as variations in lighting (e.g. sunny, cloudy, rainy etc), observed viewpoint
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(e.g. viewing from opposite directions, viewing from significantly different van-
tage points), or perceptual aliasing (e.g. facing and seeing a brick-wall elsewhere).
These properties make it extremely challenging to hand-engineer solutions that robustly
operate in a wide range of scenarios. For a detailed overview of existing visual place
recognition methods and their capabilities, we refer the reader to a recent literature
survey (Lowry et al. 2016) on visual place recognition.

Local and Global methods Some of the earliest forms of visual place recogni-
tion entailed directly observing pixel intensities in the image and measuring their
correlation with an existing set of images maintained in an efficient database. In
order to be invariant to viewpoint changes, subsequent works (Angeli et al. 2008;
Churchill and Newman 2012; Cummins and Newman 2011; Konolige and Agrawal
2008; Košecká et al. 2005; Mei et al. 2010; Sünderhauf and Protzel 2011) proposed
using low-level locally-invariant descriptors such as SIFT (Lowe 1999), SURF (Bay
et al. 2006), ORB (Rublee et al. 2011) and others (Tuytelaars et al. 2008). These
descriptions are aggregated into a single high-dimensional feature vector for the
entire image via Bag-of-Visual-Words (BoVW) (Philbin et al. 2007; Sivic and Zis-
serman 2003), VLAD (Arandjelovic and Zisserman 2013; Jégou et al. 2010) or Fisher
Vectors (Jegou et al. 2012; Perronnin et al. 2010a) embedded in real-space RD.
Other works (Milford 2013; Singh and Kosecka 2010; Sünderhauf and Protzel
2011; Sünderhauf et al. 2013) directly modeled whole-image statistics and hand-
engineered global descriptors such as GIST (Oliva and Torralba 2001; 2006) to de-
termine an appropriate feature representation for an image. The features extracted
from each of the images are advantageously chosen to lie in a high-dimensional
space that makes it especially powerful for large-scale image search. In order to
keep the computational and memory complexity nominal with the growing database
size, and dimensionality, the features are further efficiently indexed (Nister and
Stewenius 2006), and compressed (Jegou et al. 2011) for efficient instance-level re-
trieval.

Sequence-based, Time-based or Context-based methods While image-level
feature descriptions are convenient in identifying and tagging places, it however be-
comes less reliable when the dataset grows in size. This approach can become espe-
cially difficult when the appearance does not significantly change for large portions
of dataset. For example, differentiating feature descriptions when driving along an
empty highway can be difficult, and would lead to misidentifying and matching
two considerably different locations as the same place. Furthermore, dynamic ob-
jects that may appear for a short period of time in the robot’s viewing periphery.
They are also undesirably encoded into the database that may potentially lead to
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false positive classification. These concerns led to further work (Galvez-Lopez and
Tardos 2012; Lynen et al. 2014; Maddern et al. 2012; Milford and Wyeth 2012) in
matching whole sequences of consecutive images that effectively describes a place.
In SeqSLAM, the authors (Milford and Wyeth 2012) identify potential loop closures
by casting it as a sequence alignment problem, and solving it via dynamic pro-
gramming. (Galvez-Lopez and Tardos 2012), on the other hand, rely on temporal
consistency checks across long image sequences in order to robustly propose loop
closures. Mei et al. (2010) finds cliques in the pose graph to define places. This rep-
resentation can be powerful when objects are not fully seen in a single view and an
aggregation or pooling step over the co-visibility graph enables richer scene-level
descriptions. Lynen et al. (2014) proposed a “placeless” place recognition scheme
where they match features on the level of individual descriptors, avoiding the need
to build a vocabulary for BoVW projection. By identifying high-density regions in
the distance matrix computed from feature descriptions extracted across a large
sequence of images, the system can propose swaths of potentially matching places.

Learning-based methods The aforementioned methods relied heavily on hand-
engineered feature extraction schemes coupled with appropriate distance metrics
to match places accurately. The hyper-parameters and accompanying models were
manually optimized for the target datasets they were applied to. The promise
of machine learning-based methods saw widespread adoption when increasing
dataset sizes suddenly rendered hand-engineered optimizations tedious. In one
of the earliest works in learning-based methods, Kuipers and Beeson (2002) pro-
posed a mechanism to identify distinctive features in a location relative to those
in other nearby locations. FABMAP (Cummins and Newman 2011; 2010), one of
the most relevant recent works on appearance-based mapping, models the space
of visual words and their joint probability distribution. The authors in their work
approximate the joint probability distribution via the Chow-Liu tree decomposi-
tion to develop an information-theoretic measure for place-recognition. The ob-
servational likelihood is probabilistically modeled by taking into account the dis-
tinctiveness of each visual word during a training phase. Through this model, one
can sample from the conditional distribution of visual word occurrence, in order to
appropriately weight the likelihood of having seen identical visual words before.
This drastically reduces the overall rate of false positives, thereby significantly in-
creasing the precision of the system. Latif et al. (2013) re-cast place-recognition as
a sparse convex L1 minimization problem with efficient homotopy methods that
enable robust loop-closure hypothesis. In similar light, experience-based learning
methods (Churchill and Newman 2012; Lowry et al. 2016) take advantage of the
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robot’s previous experiences to learn the set of features to match, incrementally
adding more details to the description of a place if an existing description is insuf-
ficient to match a known place.

Deep Learning methods Recently, the advancements in Convolutional Neu-
ral Network Architectures (Krizhevsky et al. 2012; Simonyan and Zisserman 2014;
Szegedy et al. 2014; 2016; 2017) have drastically changed the landscape of algo-
rithms used in vision-based recognition tasks such as object recognition (Girshick
2015; Girshick et al. 2014a; Gupta et al. 2014; He et al. 2017; Redmon et al. 2016;
Ren et al.; 2015) or place recognition (Zhou et al. 2014a; 2016a;b). Their adoption
in vision-based place recognition for robots (Chen et al. 2017; Sunderhauf et al.
2015) has been considerably successful due to their striking transferable proper-
ties (Sharif Razavian et al. 2014). Typically, transferring the task to a new domain
involves fine-tuning a pre-trained network (AlexNet (Krizhevsky et al. 2012), and
VGG Net (Simonyan and Zisserman 2014)) with data gathered in the new domain.
Due to the modular representation in the convolutional network stack, only the last
few layers (mid-level layers, and fully connected layers) are allowed to be fine-tuned
keeping the first few layers fixed (Sharif Razavian et al. 2014). More recently, Sun-
derhauf et al. (2015) leveraged object proposal techniques (Zitnick and Dollár 2014)
combined with mid-level CNN features from Places205 (Zhou et al. 2014a) to ex-
tract feature descriptors to describe a place reliably. In order to match and identify
loop-closures, however, they still resorted to a hand-specified cosine metric that en-
abled strong recognition performance. In recent work, Kendall et al. (2015) intro-
duced PoseNet, where the re-localization task is cast as a regression problem with
the 6-DOF pose as a target variable. The authors show some preliminary results in
re-localization by utilizing Structure-from-Motion estimates to self-supervise the
location regression. However, it is still unclear if such approaches generalize well
to complex and larger scenes. To our knowledge, the most promising results for
place recognition was proposed by Arandjelovic et al. (2016), where the authors
leverage the rich representational capacity of CNN architectures coupled with a
differentiable VLAD (Jégou et al. 2010; Jegou et al. 2012) layer to extract feature de-
scriptors for large-scale instance-based retrieval. More importantly, they are able to
weakly-supervise the training of these models with corresponding GPS information
making it especially amenable for scaling up the learning task.

Current Limitations All these methods, in some way or the other, require a
hand-engineered metric for matching the visual descriptors extracted. The choice
of feature extraction needs to be tightly coupled with the right distance metric in
order to retrieve similar objects appropriately. An extensive literature review in

122



studying this problem reveals further pre-processing or post-processing steps are
required to improve the overall retrieval performance. These are typically either
in form of varied feature encoding techniques (Chatfield et al. 2011) such as Vec-
tor Quantization (VQ), Vector of Locally Aggregated Descriptors (VLAD), Fisher
Vectors (FK), Super Vector (SV), Locality-constrained Linear encoding (LLC) etc or
in the form of appropriately chosen distance metrics (Arandjelovic and Zisserman
2013; Chatfield et al. 2011; Sunderhauf et al. 2015) (L1, L2, Cosine, Hamming dis-
tances etc) for matching. This adds yet another level of complexity in designing and
tuning reliable systems that are fault tolerant and robust to operating in varying ap-
pearance regimes. Furthermore, these approaches do not provide a mechanism to
optimize for specific appearance regimes (e.g. learn to ignore fog/rain in those
specific conditions). In similar light to (Chen et al. 2015b; 2017), we envision that
the distance metric can be learned in an unsupervised manner (Kuipers and Bee-
son 2002), with the distances between features describing the same place to be well
calibrated for the typical scenes that the robot may experience during its life-time.
This fine-tuned behavior can be especially advantageous since the robot chooses to
operate in a similar environment, and can quickly adapt to variations in the data
observed.

6.3 Background

6.3.1 Metric Learning

In this work we rely on metric learning to identify a metric space where the pairs
of similar sensor data (such as camera images taken of roughly the same scene, or
laser point clouds of the same location) lie closer to each other, while those that
are dissimilar (sensor data from different locations) are pushed away from each
other in some high-dimensional space. The problem of metric learning was first
introduced as Mahalanobis metric learning in (Xing et al. 2003), and subsequently
explored with various dimensionality-reduction (Cunningham and Ghahramani
2015; Kulis 2012), information-theoretic (Davis et al. 2007) and geometric (Zadeh
et al. 2016) lenses.

More abstractly, metric learning seeks to learn a non-linear mapping f(·; θ) :

Rn → Rm that takes in input data xi,xj ∈ Rn, where the Euclidean distance in the
new target space ‖f(xi; θ)− f(xj; θ)‖2 is an approximate measure of semantic dis-
tance in the original space Rn. Unlike in the supervised learning paradigm where
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Figure 6-2: Training and testing architectures for Siamese Networks I (a) In a typical siamese
network training architecture, the CNN weights (θ) are shared between the two parallel instantiated
graphs, with a common loss (such as the contrastive loss) defined between them. (b) Once the
CNN weights are learned, new features/images are mapped into the learned and task-appropriate
embedding space f(xi) at test time.

the loss function is evaluated for individual samples, here, we consider the loss
over pairs of samples X = XS ∪XD. We define sets of similar and dissimilar paired
examples XS , and XD respectively as follows

XS := {(xq,xs) | xq and xs are in the same class} (6.1)
XD := {(xq,xd) | xq and xd are in different classes} (6.2)

and define an appropriate loss function that captures the aforementioned proper-
ties.

Contrastive Loss The contrastive loss (Chopra et al. 2005) optimizes the dis-
tances between positive pairs (xq,xs) such that they approach close to each other,
while preserving the distances between negative pairs (xq,xd) at or above a fixed
margin α. Intuitively, the overall loss (Equation 6.3) is expressed as the sum of two
terms.

L(θ) =
∑

(xq ,xs) ∈ XS

`p(xq,xs)︸ ︷︷ ︸
Penalize similar examples

that are far away

+
∑

(xq ,xd) ∈ XD

`n(xq,xd)︸ ︷︷ ︸
Penalize dissimilar examples

that are nearby

(6.3)
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where `p(xq,xs) = ‖f(xq; θ)− f(xs; θ)‖2
2 (6.4)

`n(xq,xd) = max(0, α− ‖f(xq; θ)− f(xd; θ)‖2)2 (6.5)

In the above equation (6.3), the first term penalizes positive pairs that are far
away from each other, and the second term penalizes negative pairs that are nearby
while ensuring a minimum margin ofα between them. More generally, this reduces
to the following equation with y being the indicator variable in identifying positive
examples from negative ones.

L(θ) =
∑

(xi,xj)∈X

yD(xi,xj)
2 + (1− y)

[
α−D(xi,xj)

]2

+
(6.6)

where D(xi,xj) = ‖f(xi; θ)− f(xj; θ)‖2 (6.7)

and y =

1 if (xi,xj) ∈ XS,

0 if (xi,xj) ∈ XD
(6.8)

The margin α defines the radius around f(x); the contribution to the overall loss
comes from either the dissimilar pairs that are separated by a distance less than α,
or from similar pairs that are separated by a large distance.

Training with Siamese Networks Learning is then typically performed with
a Siamese architecture (Bromley et al. 1994; Chopra et al. 2005), consisting of two
parallel networks f(x; θ) that share weights θ amongst each other (See Figure 6-
2a). The contrastive loss is then defined between the two parallel networks f(xi; θ)

and f(xj; θ) given by Equation 6.6. The inputs to this architecture are sets of similar
(xq,xs) ∈ XS or dissimilar samples (xq,xd) ∈ XD, with labels y = 1 for similar sam-
ples, and y = 0 otherwise. The scalar output loss computed from batches of similar
and dissimilar samples are then used to update the parameters of the siamese net-
work θ via Stochastic Gradient Descent (SGD). Typically, batches of positive and
negative samples are provided in alternating fashion during training.

Learned Feature Embedding Once the parameters θ of the Siamese network
are sufficiently learned for the desired task, we strip the parallel network architec-
ture and only consider one of the networks for embedding the input feature xi in
its task-appropriate feature space (See Figure 6-2b). The distances (L2) in this new
embedding space are considered to be more appropriate for the task, and is es-
pecially amenable to high-dimensional indexing and querying for image retrieval
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purposes. For a comprehensive overview of metric learning and its various forms,
we refer the reader to (Kulis et al. 2013).

6.4 Self-Supervised Metric Learning for Place Recog-
nition

With the growing experiences that robots log today, we recognize the need for
fully automatic solutions for learning of and improving their performance in tasks
such as place recognition or loop-closure identification. Inspired by NetVLAD (Arand-
jelovic et al. 2016), we cast place recognition in robots as a self-supervised metric
learning problem. However, unlike their work, we instead focus on learning the
distance function that is optimal for the desired task. Most previous works (Lowry
et al. 2016; Milford 2013; Sunderhauf et al. 2015) use hand-engineered image rep-
resentations such as SIFT/ORB followed by a pooling to describe the whole image
as a single feature vector. However, in their work, they assume that the feature de-
scriptions are well-separated in the Euclidean space. Certain other works (Sunder-
hauf et al. 2015), explicitly model the distance metric based on the choices of image
representation embedding. In this work, however, we realize that certain choices in
explicit image feature representation may be application-specific to admit certain
representational capacity (Lowry et al. 2016; Sunderhauf et al. 2015).

Convolutional Neural Networks (CNNs) have been shown to be remarkably
powerful in various tasks including instance retrieval, image and object classifi-
cation, and saliency detection. Part of their success has been attributed to their
the enormous representational capacity that enable these methods to extract rich,
high-level and descriptive semantic features from images. However, most of these
systems require large amounts of training data in order to achieve their highly
touted performance capabilities. Moreover, most domain-specific tasks require
further fine-tuning of these large-scale networks in order to perform well in their
application-specific tasks. Despite the ready availability of training models and
weights, we foresee the data collection and its supervision being a predominant
source of friction for fine-tuning models for application-specific tasks such as place
recognition. Due to the rich amount of cross-modal information that robots typi-
cally collect, we envision that robots to be able to self-supervise tasks such as place
recognition by fine-tuning existing CNN models on the experience they have accu-
mulated.
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Figure 6-3: Self-Supervised Metric Learning for Localization I The illustration of our proposed
self-supervised Siamese Net architecture. The model bootstraps synchronized cross-modal infor-
mation (Images and GPS) in order to learn an appropriate similarity metric between pairs of images
in an embedded space, that implicitly learns to predict the loop-closure detection task. The key idea
is the ability to sample and train our model on positive and negative pairs of examples of similar
and dissimilar places by taking advantage of corresponding GPS location information.

To this end, we bolster these CNN-based feature representations with a fully
trainable and optimized distance metric that significantly improves the precision-
recall performance. Furthermore, we propose a completely self-supervised approach
to learning the distance metric thereby avoiding the need for any external super-
visory signal besides the data collected from the robot’s experience. We refer the
reader to Algorithm 6 for a high-level description of our proposed self-supervised
metric learning procedure for place-recognition.

6.4.1 Self-supervised Dataset Generation

Multi-camera systems and navigation modules have more-or-less become ubiq-
uitous in modern autonomous systems today. Typical systems log this sensory in-
formation in an asynchronous manner, providing a treasure of cross-modal infor-
mation that can be readily used for machine learning purposes. We foresee robots
in the near future to be able to teach itself representations for newly introduced sen-
sors by bootstrapping these task capabilities from other sensory channels. Here, we
focus on the task of vision-based place recognition via a forward-looking camera,
by leveraging synchronized information collected via standard navigation modules
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Figure 6-4: Self-Supervision from camera frustum overlap I The camera frustum overlap in
subsequent views allows us to confidently sample positive and negative examples of visual loop-
closures directly from the keyframe similarity described in Equation 6.9.

(GPS/IMU, Visual-Inertial etc.).

Sensor Synchronization In order to formalize the notation used in the follow-
ing sections, we shall refer to (It, zGPSt ) as the synchronized tuple of camera image I,
and GPS measurement zGPS , captured at approximately the same time t. In typi-
cal systems however, these sensor measurements are captured in an asynchronous
manner, and the synchronization needs to be carried out carefully in order to ensure
clean and reliable measurements for the bootstrapping procedure. It is important
to note that for the specific task of place recognition, z can also be sourced from var-
ious external sensors including, but not limited to, standard INS, or even LiDAR-
based localization systems that these autonomous systems are already equipped
with.

Key-frame Sub-sampling While we could consider the full set of synchronized
image-GPS pairs, it can be especially efficient to extract and learn only from a di-
verse set of viewpoints. We expect that learning from this strictly smaller, yet suf-
ficiently diverse set, can substantially speed up the training process while being
able to achieve the same performance characteristics when trained with the origi-
nal dataset. While it is unclear what this sampling function may look like for im-
age descriptions, we can easily provide this measure to determine a diverse set of
GPS measurements. We incorporate this via a standard keyframe-selection strat-
egy (Klein and Murray 2007; Strasdat et al. 2010) where the poses are sampled
from a continuous stream whenever the relative pose has exceeded a certain trans-
lational or rotational threshold from its previously established keyframe. We set
these translational and rotational thresholds to 5m, and π

6
radians respectively to

allow for efficient sampling of diverse keyframes. For an illustration of the sam-
pling based on GPS or viewing frustum, we refer the reader to Figure 6-4.

Key-frame Similarity The self-supervision is enabled by defining a viewing
frustum that applies to both the navigation-view zt and the image-view. We define
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Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as off-diagonal entries
that are a fixed-offset from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements zGPSi

and zGPSj given by:

K(zGPSi , zGPSj ) = exp(−γt
∥∥zti − ztj

∥∥2

2
)︸ ︷︷ ︸

Translation similarity

· exp(−γR
∥∥zRi 	 zRj

∥∥2

2
)︸ ︷︷ ︸

Rotation similarity

(6.9)

where zti is the GPS translation measured in metric-coordinates at time i, and zRi is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters γR and γt, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.
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Positive Labels Negative Labels

Figure 6-6: Self-Supervised sampling I The K kernel computed in equation 6.9 is used to “su-
pervise” the sampling procedure. Left figure: Samples whose kernel K(zGPS , z′GPS) evaluates to
higher than τRt

p are considered as positive samples (in red). Right figure: Samples whose kernel
K(zGPS , z′GPS) evaluates to lower than τRt

n are consider as negative examples (in red).

Distance-Weighted Sampling With key-frame based sampling considerably
reducing the dataset to a diverse, yet representative one for efficient training, we
now focus on sampling positive and negative pairs in order to ensure speedy con-
vergence of the proposed contrastive loss function. We first consider the key-frame
similarity matrix between all pairs of keyframes for a given dataset, and sample
positive pairs whose similarity exceeds a specified threshold τRt

p . Similarly, we
sample negative pairs whose similarity is below τRt

n . For each of the positive and
negative sets, we further sample uniformly by their inverse distance following (Wu
et al. 2017) closely, to encourage faster convergence.

6.4.2 Learning an Appropriate Distance Metric for Localization

Our proposed self-supervised place recognition architecture is realized with a
Siamese network (Figure 6-2) with an appropriate contrastive loss (given by Equa-
tion 6.10), that simultaneously finds a reduced dimensional metric space where
the relative distances between features in the embedded space are well-calibrated.
In this context, well-calibrated refers to the property that negative samples are
separated at least by a known margin α, while positive samples are likely to be
separated by a distance less than the margin. Following the terminology in Sec-
tion 6.3.1, we consider tuples (Ii, zGPSi ) ∈ X of similar (positive) XS ⊂ X and dis-
similar (negative) examples XD ⊂ X for learning an appropriate embedding func-
tion f loc(·; θloc). Intuitively, we seek to find a “semantic measure” of distance given
byD(Ii, Ij) =

∥∥f loc(Ii; θloc), f loc(Ij; θloc)∥∥2
in a target space of Rm such that they are

“similar” to those defined in the metric space of GPS measurements (in this case)
given by D(zGPSi , zGPSj ) =

∥∥zGPSi − zGPSj

∥∥
2
. Since we are particularly interested in
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identifying potential images that may be taken from within a fixed distance of each
other, we make the appropriate modification to the objective such that the original
task of loop-closure recognition can be performed with a probabilistic interpreta-
tion.

Let (I, zGPS) ∈ X be the input data and 1GPS ∈ 0, 1 be the indicator variable
representing dissimilar (1GPS = 0) and similar (1GPS = 1) pairs of examples within
X . We seek to find a kernel f loc(·; θloc) : I 7→ Φ that maps the input image I to an
embedding Φ ∈ Rm whose distances between similar places are low, while the distances
between dissimilar places are high. We take advantage of availability of synchronized
Image-GPS measurements (I, zGPS) to provide an indicator for place similarity,
thereby rendering this procedure fully automatic and self-supervised. Re-writing
equation 6.6 for our problem, we get Equation 6.10 where D(Ii, Ij) measures the
“semantic distance” between images (Equation 6.11). The indicator variable 1GPS in
Equation 6.12 determines whether the sample belongs to the similar XS (1GPS = 1,
if so) or the dissimilar set XD (1GPS = 0).

L(θloc) =
∑

((Ii,zi),(Ij ,zj))∈X

(1GPS) ·D(Ii, Ij)2 + (1− 1GPS) ·
[
α−D(Ii, Ij)

]2

+
(6.10)

where D(Ii, Ij) =
∥∥f loc(Ii; θloc)− f loc(Ij; θloc)∥∥2

(6.11)

and 1GPS =

1 if K(zGPSi , zGPSj ) > τRt
p

0 if K(zGPSi , zGPSj ) < τRt
n

(6.12)

For brevity, we omit θloc and use f loc(Ii) instead of the full expression f loc(Ii; θloc).
We pick the thresholds for τRt based on a combination of factors including con-
vergence rate and overall accuracy of the final learned metric. Nominal values of
τRt
p range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing

frustums of positive examples, with τRt
n for negative examples set to 0.4.

Figure 6-7 illustrates the visual self-similarity matrix of the feature embedding
at various stages during the training process. Initially (at epoch 0), the feature em-
bedding is equivalent to the original feature description, where the distances are
not well-calibrated. As training progresses, the similarity metric learning draws
positively labeled examples of loop-closure image pairs closer together in the em-
bedded space, while pushing the negative examples farther from each other. As
the training converges, we start to notice a few characteristics in the learned em-
bedding that make it especially powerful in identifying loop-closures: (i) The red
diagonal bands in the visual self-similarity matrix are well-separated from the blue
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Algorithm 6 Self-Supervised Metric Learning for Place Recognition
Input: X = {(I1, zGPS1 ), . . . , (It, zGPSt )}: Image sequence and corresponding GPS measurements
Output: f loc, θloc: Improved feature embedding model for place recognition task

. Compute Key-frame similarity matrix (Equation 6.9)
1: KGPS ← PairwiseKeyframeSimilarity(zGPS)

. Generate positive and negative examples for learning the similarity metric (Section 6.4.1)
2: XS ,XD ← SelfSupervisedDatasetGeneration(X ,KGPS)

. Discriminative Similarity Metric Learning via Contrastive Loss (Section 6.4.2)

. Learned invariant mapping f loc : I 7→ Φ, where I ∈ Rn and Φ ∈ Rm
3: f loc, θloc ← SceneSimilarityMetricLearning(XS ,XD)

background indicating that the learned embedding has identified a more separa-
ble function for the purposes of loop-closure recognition; and (ii) The visual self-
similarity matrix starts to resemble the target self-similarity matrix computed using
the GPS measurements (as shown in Figure 6-8). Furthermore, the t-SNE embed-
ding1 (whose values are visualized in the RGB colorspace) of the learned features
extracted at identical locations are strikingly similar, indicating that the learned fea-
ture embedding f(·; θloc) has implicitly learned a metric space that is better suited
for the task of place-recognition in mobile robots (See Figure 6-8).

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 6-7: Self-Supervised learning of a visual-similarity metric I An illustration of the simi-
larity matrix at various stages of training. At Epoch 0, the distances between features extracted at
identical locations are not well-calibrated requiring hand-tuned metrics for reliable matching. With
more positive and negative training examples, the model at Epoch 30 has learned to draw positive
features closer together (strong red off-diagonal sequences indicating loop-closures), while pushing
negative features farther apart (strong blue background). This trend continues with Epoch 180 where
the loop-closures start to look well-defined, while the background is consistently blue indicating a
reduced likelihood for false-positives.

1t-SNE (Maaten and Hinton 2008) is a non-linear dimensionality reduction technique that is es-
pecially tailored to embedding high-dimensional data on a lower dimensional manifold, typically
in R2 or R3. This makes it particularly valuable in visualizing high-dimensional data. In our case,
we embed the high-dimensional features onto a 3-dimensional manifold via t-SNE and visualize
the data as if they sit in a 3-dimensional RGB-colorspace. This allows us to identify similar feature
embeddings by their color, where features with similar color indicate that they lie closer to each
other in the original higher-dimensional space.
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Figure 6-8: Qualitative results of self-supervised metric learning on the St. Lucia Dataset I Left:
An illustration of the path traversed (100909 1210) with the colors indicating the 3-D t-SNE em-
bedding of the learned features Φ extracted at those corresponding locations. The visual features
extracted across multiple traversals along the same location are consistent, as indicated by their
similar color embedding. The colors are plotted in the RGB colorspace. Columns 2 and 3: Com-
parison of the learned visual-similarity metric against the target or ground truth similarity metric
(obtained by determining overlapping frustums using GPS measurements). As expected, the dis-
tances in the learned model tend to be well-calibrated enabling strong precision-recall performance.
Furthermore, the model can be qualitatively validated when the learned similarity matrix starts to
closely resemble the target similarity matrix (comparing columns 2 and 3 in the figure).

6.4.3 Efficient Scene Indexing, Retrieval and Matching

One of the critical requirements for place-recognition is to ensure high recall
in loop-closure proposals while maintaining sufficiently high precision in candi-
date matches. This however requires probabilistic interpretability of the matches
proposed, with accurate measures of confidence in order to incorporate these mea-
surements into the back-end pose graph optimization. Typically, similarities or
distances measured in the image descriptor space are not well-calibrated, mak-
ing these measures only amenable to distance-agnostic matching such as k-nearest
neighbor search. Moreover, an indexing and matching scheme such as k-nn also
makes it difficult to filter out false positives as the distances between descriptors in
the original embedding space is practically meaningless. Calibrating distances by
learning a new embedding has the added advantage of avoiding these false posi-
tives, while being able to recover confidence measures for the matches retrieved.

Once features Φ are extracted and mapped to an appropriate target space in Rm,
we require a mechanism to insert and query these embedded descriptors from a
database. We use a KD-Tree in order to incrementally insert features into a balanced
tree data structure, thereby enablingO(logN) queries. While other works resort to
efficient encodings such as Product Quantization (PQ) (Jegou et al. 2011) to speed
up querying, our model learns already a reduced dimensionality target space that
is especially conducive for efficient indexing and querying.
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6.5 Towards Self-Supervised Visual-SLAM Front-Ends

Modern SLAM systems today (Engel et al. 2014; Mur-Artal et al. 2015) typ-
ically consist of a vision-based front-end component to construct the set of con-
straints for optimization performed by a back-end factor-graph based solver (Kaess
et al. 2008; Kümmerle et al. 2011). The vision-based front-end typically consists
of a visual-odometry module that is responsible for frame-to-frame camera ego-
motion tracking, and a vision-based place-recognition module that identifies po-
tential loop-closure constraints that may be added to the overall graph-based opti-
mization. We envision robots in the near future to be able to bootstrap, and learn
to perform both these critical tasks as they collect more relevant experience.

x0 x1 x2 x3 x4 xt−1 xt
u1 u2 u3 u4 ut

p0

c1,4 c3,t−1

Figure 6-9: Self-Supervised Vision-based Front-End I With the methods developed thus far,
we propose one of the very first self-supervised visual-SLAM front-ends. Again, in the typical
factor-graph formulation, the visual ego-motion estimator provides odometry measurement factors
(ui−1,i), while the vision-based loop-closure module provides relative-pose constraints cj,k between
temporally distant nodes.

Self-supervised Visual Ego-motion Following work from Chapter 5, we learn
the implicit visual ego-motion function in autonomous systems that are equipped
with standard sensors such as imaging and navigation modules. By leveraging
GPS-aided SLAM as a bootstrapping mechanism, we learn to perform frame-to-
frame odometry from sequential camera imagery.

Self-supervised Visual Loop-Closure Identification As described earlier, we
leverage image-GPS pairs typically collected in autonomous vehicles to learn a met-
ric for accurate loop-closure identification. By learning a new embedding for the
task of loop-closure recognition, we are able to develop probabilistic and inter-
pretable systems that are more reliable and tolerant to hyperparameter tuning.

We refer the reader to Algorithm 7 for a high-level overview of how the self-
supervised visual-SLAM front-end component is realized. f vo(·; θvo) and f loc(·; θloc)
refer to the model and parameters learned for each of the Visual-SLAM front-end
tasks, namely visual-odometry (vo) and vision-based localization (loc).
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Algorithm 7 Deployment of Learned Visual-SLAM Front-End (See Section 6.5)
Inputs: Input image sequence (I)

Learned Visual-Egomotion Model and Parameters (fvo, θvo)
Learned Visual-Place Similarity Model (f loc, θloc)

Outputs: Optimized robot trajectory (x̂1:t)

. Ego-motion estimation (Section 5.4)
1: ut ← fvo(It−1, It; θvo)

. Odometry factor insertion
2: G ← {G,ut}

. Extract visual place description (Section 6.4)
3: Φt ← f loc(It; θloc)

. Identify loop-closure

. (query index: q, prob: pq)
4: q, pq ← QueryClosestSceneDescription(Φt)

. Loop-closure factor insertion

. cq,t: Zero-translation relative-pose constraint with large Σ
5: if pq > 0.9 then
6: G ← {G, cq,t}
7: end if

. Pose-graph optimization
8: x̂1:t ← PoseGraphIncrementalUpdate(G, x̂1:t−1)

6.6 Experiments and Results

We evaluate the performance of the proposed self-supervised localization method
on the KITTI (Geiger et al. 2012) and St. Lucia Dataset (Glover et al. 2010). For
each of the datasets, we train the localization component on all sessions but the
test set. We compare our approach against the image descriptions obtained from
extracting the activations from several layers in the Places365-AlexNet pre-trained
model (Zhou et al. 2016b) (conv3, conv4, conv5, pool5, fc6, fc7 and fc8 layers). While
we take advantage of the pre-trained models developed in (Zhou et al. 2016b) for the
following experiments, we remind the reader that the proposed framework could
allow us to learn relevant task-specific embeddings from any image-based feature
descriptor. The implementation details of our proposed method is described in
detail in section 6.6.4.

6.6.1 Learned Feature Embedding Characteristics

While pre-trained models can be especially powerful image descriptors, they are
typically trained on publicly-available datasets such as the ImageNet (Russakovsky
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et al. 2015), PASCAL VOC (Everingham et al.), COCO (Chen et al. 2015a) etc. that
have strikingly different natural image statistics. Moreover, some of these models
are trained for the purpose of image or place classification that specializes their fea-
ture description capabilities to the desired task. As with most pre-trained models,
we expect some of the descriptive performance of Convolutional Neural Networks
to generalize, especially in its lower-level layers (conv1, conv2, conv3). However, the
descriptive capabilities in its mid-level and higher-level layers (pool4, pool5, fc lay-
ers) start to specialize to the specific data regime and recognition task it is trained
for. This has been addressed quite extensively in the literature, arguing the need for
domain adaptation and fine-tuning these models on more representative datasets
to improve task-specific performance (Ganin and Lempitsky 2015; Gopalan et al.
2011; Khosla et al. 2012; Oquab et al. 2014).

Similar to previous domain adaptation works (Ganin and Lempitsky 2015; Glo-
rot et al. 2011; Gopalan et al. 2011), we are interested in adapting existing models to
newer task domains such as place-recognition with minimal human supervision in-
volved. We argue for a self-supervised approach to model fine-tuning, and empha-
size the need for a well-calibrated embedding space, where the features embedded
in the new space can provide measures for both similarity and the corresponding
confidence associated in matching.

Comparing performance between the original and learned embedding space In
Figure 6-10, we compare the precision-recall performance in loop-closure recogni-
tion using the original and learned feature embedding space. For various thresh-
olds of localization accuracy (20 and 30 meters), our learned embedding shows a
considerable performance boost over the pre-trained Places365-AlexNet model. In
the figures, we also illustrate the noticeable drop in performance with the descrip-
tive capabilities in the higher-level layers (fc6, fc7, fc8) as compared to the lower-level
layers (conv3, conv4, conv5) in the Places365-AlexNet model. This is as expected,
since the higher layers in the CNN (pool5, fc6, fc7) are more tailored to the original
classification task they were trained for.

Embedding distance calibration As described earlier, our approach to learn-
ing an appropriate similarity metric for visual loop-closure recognition affords a
probabilistic interpretation of the matches proposed. These accurate measures of
confidence can be later used to incorporate these measurements into the back-end
pose graph optimization. Figure 6-11 illustrates the interpretability of the proposed
learned embedding metric compared to the original feature embedding distance
metric. The histograms for theL2 embedding distance separation are illustrated for
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Figure 6-10: Precision-Recall performance in loop-closure recognition using the original and
learned feature embedding space I The figures show the precision-recall (P-R) performance in
loop-closure recognition for various feature descriptors using the pre-trained Places365-AlexNet
model and the learned embedding (Ours-fc7). Our learned embedding is able to significantly out-
perform the pre-trained Places365-AlexNet model for all feature layers, by self-supervising the model
on a more representative dataset.

both positive (in green) and negative (in blue) pairs of features. Here, a positive pair
refers to feature descriptions of images taken at identical locations, while the nega-
tive pairs refer to those pairs of feature descriptions that were taken from at least 50
meters apart from each other. The figure clearly illustrates how the learned embed-
ding (Ours-fc7) is able to tease apart positive pairs, from those between the negative
pairs of features, enabling an improved classifier (with a more obvious separator)
for place-recognition. Intuitively, the histogram overlap between the positive and
negative probability masses measures the ambiguity in loop-closure identification,
with our learned feature embedding (Ours-fc7) demonstrating the least amount of
overlap.

ε-NN search in the learned feature embedding space Once the distances are
calibrated in the feature embedding space, even a naı̈ve fixed-radius nearest neigh-
bor strategy, that we shall refer to as ε-NN, can be surprisingly powerful. In Fig-
ure 6-12, we show that our approach is able to achieve high-recall, with consid-
erably strong precision performance for features that lie within distance α (con-
trastive loss margin as described in Section 6.4.2) from each other.

Furthermore, the feature embedding can also be used in the context of image re-
trieval with strong recall performance via naı̈ve k-Nearest Neighbor (k-NN) search.
Figure 6-13 compares the precision-recall performance of the k-NN strategy on the
original and learned embedding space, and shows a considerable performance gain
in the learned embedding space. Furthermore, the recall performance also tends to
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Figure 6-11: Separation distance calibration I The histograms of L2 distances between posi-
tive and negative examples are shown for the various feature descriptions with the pre-trained
Places365-AlexNet model. Our learned model is able to fine-tune intermediate layers and distort the
feature embedding such that the distances between positive and negative examples (similar and dis-
similar places) are well-calibrated. This is seen especially in the first plot (top row, far left Ours-fc7),
where the probability mass for positive and negative examples are better separated with reduced
overlap, while the other histograms are not well-separated in the feature embedding space.
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Figure 6-12: Precision-Recall performance for loop-closure recognition in the original and
learned feature embedding space using fixed-radius neighborhood search (ε-nn) I The first
column convincingly shows that our learned feature embedding space is able to maintain strong
Precision-Recall performance by using ε-nn (fixed-radius search). The plot on the second column
shows the recall performance with increasing feature embedding L2 distance considered for each
query sample. The Siamese network was trained with a contrastive loss margin of α = 10, which
distorts the embedding space such that positive pairs are encouraged to only be separated by an L2

distance of 10 or lower. The figure on the right shows that in the learned feature embedding space
(Ours-fc7), we are able to capture most candidate loop-closures within an L2 distance of 5 from the
query sample, as more matching neighbors are considered.

be higher for the learned embedding space as compared to the original descriptor
space.
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Precision-Recall curve (Ours-fc7 ) Recall with increasing k-NN (Ours-fc7 )
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Figure 6-13: Precision-Recall performance for loop-closure recognition in the original and
learned feature embedding space using k-Nearest Neighbors I The first column shows that our
learned feature embedding space is able to capture more Precision-Recall performance than the pre-
trained layers (Places365-AlexNet conv5 and fc7). The plot on the second column shows the recall
performance with increasing set of neighbors considered for each query sample. Using the learned
feature embedding space (Ours-fc7), we are able to capture more candidate loop-closures within
the closest 20 neighbors of the query sample.
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6.6.2 Qualitative Results on Loop Closure Recognition

As previously described, we rely on metric learning to determine an appropri-
ate image embedding, whose distances are well-calibrated to the place-recognition
task. More specifically, we are interested in minimizing human intervention even
in the training phase, and only leverage the data collected from the more repre-
sentative dataset to learn the feature embedding. Qualitatively, one can assess the
representational capacity of the learned feature embedding space over the origi-
nal feature description space by simply performing a naı̈ve fixed-radius neighbor-
hood search (ε-nn) to identify images that are potentially captured from identi-
cal locations. Figure 6-14 compares the qualitative localization performance using
ε-nn search between a pre-trained Places365-AlexNet descriptor via its fc7 layer
(Places365-fc7) and our learned feature embedding (Ours-fc7).

Loop-closure candidates (Ours-fc7 ) Loop-closure candidates (Places365-fc7 )
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Figure 6-14: Qualitative comparison of loop-closure identification in the original and learned
feature embedding space I The figures show the qualitative performance of our proposed local-
ization method using the learned embedding (Ours-fc7), compared to the pre-trained Places365-
AlexNet model (Places365-fc7). Despite using a naive nearest-neighbor strategy, our method is able
to minimize false positives (crossed-edges shown in red).

6.6.3 Localization Performance within Visual-SLAM Front-Ends

Recall in Figure 6-9, we illustrate the underlying factor graph instantiated to
recover the optimized vehicle trajectories. Figure 6-15 shows the trajectory of the
optimized pose-graph leveraging the constraints proposed by our learned loop-
closure proposal method. The visual place-recognition module determines con-
straints between temporally distant nodes in the pose-graph that are likely to be
associated with the same physical location. To evaluate the localization module
independently, we simulate drift in the odometry chains by injecting noise in the
individual ground truth odometry measurements.
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Figure 6-15: Vision-based Pose-Graph SLAM with our learned place-recognition module I The
two sets of plots show the measured (in red) and optimized (in blue) pose-graph for a particular
KITTI and St Lucia session. The crossed edges in the measured pose-graph correspond to loop-
closure candidates proposed by our learned place-recognition module. As more measurements are
added and loop-closures are proposed (t1 < t2 < t3 < T ), the pose-graph optimization accurately
recovers the true trajectory of the vehicle across the entire session. For both sessions, we inject
odometry noise to simulate drift in typical odometry estimates.

The trajectory recovered from sequential noisy odometry measurements are
shown in red, as more measurements are added (t1 < t2 < t3 < T ). With ev-
ery new image, the self-supervised localization module describes the image in its
learned embedding space, and queries the database to recover a similar embedding
that may indicate a potential loop-closure. The loop-closures are realized as weak
zero rotation and translation relative pose-constraints connecting the query node
and the matched node. The recovered trajectories after the pose-graph optimiza-
tion (in blue) shows consistent long-range and drift-free trajectories that the vehicle
traversed.
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6.6.4 Implementation Details

Network and Training We take the pre-trained Places205 AlexNet (Zhou et al.
2014b; 2016b), and set all the layers before and including pool5 layer to be fixed,
while the rest of the fully-connected layers are allowed to be fine-tuned. The result-
ing network is used as a base network to construct the Siamese Network with shared
weights (See Section 6.4.2). We follow the distance-weighted sampling scheme as
proposed by Wu et al. (2017), and sample 10 times more negative examples as pos-
itive examples. The class weights are scaled appropriately to avoid any class im-
balance during training. In all our experiments, we set the sampling threshold τRt

to 0.9, that ensures that identical places have considerable overlap in their view-
ing frustums. We train the model for 3000 epochs, with each epoch roughly taking
10s on an NVIDIA Titan X GPU. For most datasets including KITTI and St. Lu-
cia Dataset, we train on 2-5 data sessions collected from the vehicle, and test on a
completely new session.

Pose-Graph Construction and Optimization We use GTSAM2 to construct the
resulting odometry and loop-closure measurement factors proposed by our Visual-
SLAM front-end for pose-graph optimization. Odometry constraints obtained from
the frame-to-frame ego-motion are incorporated as a 6-DOF constraint parameter-
ized in SE(3) with 1e−3 rad rotational noise and 5e−2 m translation noise. We
incorporate the loop-closure constraints as zero translation and rotation relative-
pose constraint in SE(3) with a weak translation and rotation covariance of 3 m
and 0.3 rad respectively. The constraints are incrementally added and solved using
iSAM2 (Kaess et al. 2012) as the measurements are recovered.

6.7 Discussion and Future Work

Scene Context Modeling We shall now consider a potential extension to our
scene-level similarity metric learning model using an LSTM (Hochreiter and Schmid-
huber 1997). By modeling sequence of scene descriptions as a sequence learning
problem, we can choose to reformulate the metric learning objective with a tem-
poral component that finds a similar invariant mapping fixed-length windows of
scene descriptions. This can be particularly advantageous in improving the overall
precision-recall performance of the algorithm by reducing erroneous false-positives
commonly observed in these tasks. We train a trajectory similarity metric, similar to

2http://collab.cc.gatech.edu/borg/gtsam
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the scene similarity metric previously defined, using an LSTM as the building block
to model temporally evolving scene sequences. Again, due to the ready availability
of cross-modal information, we train the trajectory similarity metric in an end-to-
end fashion while being fully self-supervised. Figure 6-16 illustrates the scene-level
similarity compared to the sequence-level similarity recovered using LSTMs.

Image-level similarity matrix (Ours-fc7 ) Sequence-level similarity matrix
(Ours-LSTM-fc7 )

Camera Trajectory (4-loops) Matching single images Matching image sequences

Figure 6-16: Simultaneous trajectory and scene similarity metric learning I By modeling the
sequence of images and their associated embeddings, our self-supervised approach to descriptor
metric learning also allows us to consider scene context. This can be particularly useful in minimiz-
ing false-positives that occur in typical single image embedding and matching.

While it is convenient to describe trajectories as fixed-length sequences, the pre-
sumed chain-like topology can be limiting especially when the robot traverses the
world with cyclic loops in the pose-graph topology. In fact, we would like to con-
sider general graph topologies of robot motion, where a scene is described by pool-
ing semantic features from the node and its kth-order neighbors. We find this to
be the graph analog of a bag-of-words-based approach where the words within a
document are pooled into a single order-less histogram that describes it as a whole.
Motivated by this analog, we notice that a new-class of Convolutional Neural Net-
works called Graph Convolutional Networks (Kipf and Welling 2016a;b) aim to shed
some light on exactly this capability. We hope to leverage some of these recent tech-
niques for the task of self-supervised place recognition, with the potential scope for
rich and hierarchical scene context modeling.

Weak-Supervision from SLAM In the context of bootstrapped learning, we
envision SLAM to be especially valuable in acting as a correspondence engine for
spatial and geometric understanding. We take advantage of this property and in-
vestigate the use of the SLAM solution in providing weak supervision to semantic
scene understanding tasks. With a Visual-Inertial Navigation System (VINS) such
as the Google Project Tango Tablet, we first extract semantic descriptions from im-
ages (using the pre-trained Places365-AlexNet model as described in the previous
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section), along with its corresponding 3D pose. Since we are particularly interested
in the consistency of the semantic model, we leverage the VINS solution and its
associated uncertainty to identify images captured at spatially identical locations
and vantage points. By leveraging the uncertainty modeled in VINS systems, we
are also able to confidently sample positive samples from the experiences collected
without any external supervision.

Stairs

4-loopsScene embedding segments

View-dependent

Figure 6-17: Weakly-Supervised scene embedding for indoor localizationI By combining Visual-
Inertial Odometry (VIO) capabilities coupled with weak supervision (via ground truth fiducial
markers), we envision that the resulting optimized state estimates can be re-purposed to provide
useful supervisory-signals to the proposed metric learning approach.The figures show various tra-
jectories collected with a VIO-capable device, with the colors indicating the “embedding” of the
semantic objects contained in the image collected at those locations. The learned semantic embed-
ding of images (as represented by its color) are consistent across multiple passes along the same
corridor. Furthermore, the scene embedding is also able to discern scenes from each other based on
the set of objects contained within those scenes.

As elaborated in this chapter, this SLAM-supervised bootstrapped learning ca-
pability allows us to learn the semantic measure between images enabling strong
and robust scene understanding performance in our trained models. We illustrate
initial results in this line of work in Figure 6-17. Via weak-supervision obtained
from a VIO sensor, we are able to learn a feature embedding space (represented by
the colors of nodes) that is able to extract consistent semantic embeddings (similar
colors) for spatially identical vantage points.

Resource-Aware Computation None of the existing learning-based approaches
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for place recognition model their task performance in a resource-aware manner. In
their work (Milford 2013), the model is explicitly reduced in order to determine
place-recognition under severe resource-constraints (memory, computation etc).
We envision that robots one day can learn to perform the same tasks with signif-
icantly fewer resources, without having to be explicitly modeled to perform such
optimized behavior. To the best of our knowledge, no such mechanism exists for
automatically tuning and refining place recognition for the desired resource con-
straints. We find this capability to be particularly valuable, and hope to pursue
future work along these directions.

6.8 Chapter Summary

In this chapter, we developed a self-supervised approach to place recognition in
robots. By leveraging the synchronization between sensors, we propose a method
to transfer and learn a metric for image-image similarity in an embedded space by
sampling corresponding information from a GPS-aided SLAM solution. Further-
more, we show that the newly learned embedding can be particularly powerful for
the task of visual place-recognition as the embedded distances are well-calibrated
for efficient indexing and accurate retrieval. Effectively, the methods developed in
this chapter and in the previous chapter enable scalable training of Visual-SLAM
front-ends without having to develop human-devised visual feature descriptors
and hand-tuned hyper-parameters during deployment.
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Chapter 7

Future Directions

7.1 Spatially and Semantically-Aware Robot Databases

Given the large volume of mixed information robots collect, there exists a strong
need for data persistence and query capabilities to enable the vision of life-long
learning and autonomy. Moreover, rich geometric and semantic relationships that
mobile robots structurally encode can be directly embedded into a context-aware
database. In some initial work (Fourie et al. 2017), we advocate for a graph-database
based abstraction that affords various SLAM-aware capabilities. These include
massively parallelizable inference schemes for experience-based learning, query-
ing, and multi-robot mapping, that are typically difficult to encode in a mono-
lithic architecture. Furthermore, it is especially appealing that this extensible star-
architecture abstraction could be leveraged to potentially decouple light-weight
robot front-ends from their elastic heterogeneous computing back-ends with many-
core, many-GPU, many-machine or hybrid configurations. With the advent of GPU-
based databases and accessible Domain-Specific Languages (DSLs) for high-performance
computing, the scope for a next-generation computational engine for large-scale
robot learning seems extremely promising.

7.2 Expressive Language for Robot Data Querying

Domain-Specific Languages (DSLs) provide a decoupled abstraction between
an algorithm and its computation schedule. Their compilers are able to synthesize
high-performance and optimized implementations for several hardware architec-
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Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and efficient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the different spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these
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Figure 7-2: Automatic labeling for an image-based trajectory planner from hindsight experi-
ence I By taking advantage of experience collected from human-supervised driving, we are able
to project the vehicle’s future trajectory onto the current camera image, and automatically recover
ground truth trajectories and their associated image for self-supervising an image-based trajectory
planner.

Figure 7-3: Automatic labeling using LiDAR for camera-based scene reconstruction I Using the
knowledge of Camera-LiDAR calibration, we are able to project the point cloud reconstructed by
the LiDAR onto onto the camera’s image, and automatically recover ground truth disparity maps
for self-supervising image-based disparity estimation algorithms (Multi-view or Temporal recon-
struction).

experience-databases to be SLAM-aware with a rich semantic understanding of the
mapped environment it perceived in the past. Furthermore, these experiences need
to be able to queryable both from a semantic and spatial context, taking advantage
of both the representations simultaneously.

As robots explore their environment equipped with several sensors, they con-
tinuously collect a multitude of measurement modalities that may or may not be
correlated. However, as task-driven learning continues to incorporate all sensor
measurements in a sound manner, it becomes cumbersome to do so as we would
expect the number of on-board sensors to grow rapidly in the years to come. With
this in mind, we treat the problem of characterizing and learning to autonomously
incorporate new sensor measurements into the robot’s task without having to ex-
plicitly specify its measurement model.

We focus on the ability to jointly consider raw measurements from various sen-
sors, and reason over their compatibility towards a task. We think that robots need
to be able to self-supervise themselves in learning to accomplish certain tasks, such
as ego-motion and place-recognition, with newly introduced sensors that have not
been characterized yet. This bootstrapped technique allows for an autonomous
agent to leverage its existing estimation, exploration, and navigation strategies to
extract meaningful cues that may allow it to accomplish similar tasks in the future.
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In figures 7-2 and 7-3, we illustrate two such examples of cross-modal learning: (a)
automatic labeling for an image-based trajectory planner from hindsight experi-
ence, and (b) automatic depth labeling using LiDAR for camera-based scene recon-
struction. Both these examples exemplify the potential of bootstrapped learning in
the context of autonomous systems, where a rich set of cross-modal information is
readily available for self-supervision.

7.4 Life-long Learning with Simulation
SLAM-AWARE LEARNING

Wide/Narrow 
Baseline Stereo

RGB/Depth 
Camera

Laser 
Rangefinder

Simulated Turtlebot (Gazebo) in an environment

Figure 7-4: Turtlebot simulation with ground truth depth, scene flow, odometry I Simulation
environments such as Gazebo can be a valuable resource for cross-modal learning, and transfer
learning in the context of self-supervised and life-long autonomy. Readily available ground truth
information such as depth, scene semantics and geometry can be used to train models in simulation
before they are fine-tuned for real-world sensory information.

Autonomous exploration and mapping strategies in robots admit a broad range
of experiences that can be inevitably used towards learning new task-specific rep-
resentations. We explore self-supervised learning in robots using both simulated
and real-world robots. We introduce a dataset-generating pipeline that allows au-
tonomous collection of a robot navigating an unknown space, along with ground
truth pose information to help bolster the labeled data concern that most super-
vised (including and especially deep-learning) techniques suffer from. We model
the simulation environment1 as closely as possible to our physical Turtlebot in or-
der to ensure the ease of transfer learning from a simulated robot environment to a
stochastically-driven environment. For e.g. we would like to learn a range of tasks
such as estimation of depth, flow, location, odometry from a simulated world with
readily available ground truth (See Figure 7-4). Additionally, with the availability
of a simulation engine that can emulate the robot’s configuration space and sensor
characteristics, we expect simulation to real-world transfer learning to be more re-
alistic and manageable with minimal fine-tuning required once these mechanisms
are deployed on the physical robot.

1Gazebo http://gazebosim.org
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Chapter 8

Conclusion

SLAM is a fundamental capability in mobile robots, and has been typically con-
sidered in the context of aiding mapping and navigation tasks. Due to the memory
and run-time complexity of the full SLAM formulation, most practical real-time
solutions only implement a specialized variant of SLAM that is geared for the spe-
cific robot application. In this thesis, we advocate for the use of SLAM as a super-
visory signal to further the perceptual capabilities in robots. Through the concept
of SLAM-supported object recognition, we develop the ability for robots equipped
with a single camera to be able to leverage their SLAM-awareness (via Monocu-
lar Visual-SLAM) to better inform object recognition within its immediate envi-
ronment. Additionally, by maintaining a spatially-cognizant view of the world,
we find our SLAM-aware approach to be particularly amenable to few-shot object
learning. We show that a SLAM-aware, few-shot object learning strategy can be
especially advantageous to mobile robots, and is able to learn object detectors from
a reduced set of training examples. In the future, we expect that an object-level ab-
straction for semantic mapping can be particularly useful in Recognition-supported
SLAM, where the SLAM objective is described over the set of objects contained in
the environment. We expect this key insight to be imperative in scaling up visual-
SLAM solutions to extremely long-term settings (hours, days, and months), while
being considerably more robust to semi-static, and dynamic environments.

Implicit to realizing modern visual-SLAM systems is its choice of map repre-
sentation. It is imperative that the map representation is crucially utilized by mul-
tiple components in the robot’s perception stack, while it is constantly optimized as
more measurements are available. Thus, we seek a unified intermediate representa-
tion for maps that can benefit the vision-based mapping and planning stacks in the
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robot. State-of-the-art solutions to feature-based visual-SLAM reconstruct sparse
3D landmarks, but fail to recover much geometric structure from these scenes to
afford vision-based navigation with these features. Other variants such as semi-
dense reconstructions may potentially afford planning-in-the-loop, however, with
the heavy-computational needs that these systems currently desire, it is still open to
discussion if these representations may be suitable for scalable mapping purposes.
Motivated by the need for a unified map representation in vision-based mapping
and navigation, we develop an iterative and high-performance mesh-reconstruction al-
gorithm from stereo imagery. We envision that in the future, these tunable mesh
representations can potentially enable robots to quickly reconstruct their immedi-
ate surroundings while being able to directly plan in them and maneuver at high-
speeds.

In order to robustly operate in dynamic and changing environments, robots
need to be able to leverage their previous experiences and continuously adapt to
their immediate surroundings, improving their overall task-performance while si-
multaneously optimizing for model efficiency. Visual SLAM implementations have
been realized in a variety of ways, ranging from sparse, feature-based methods to
semi-dense and dense, direct methods lately. While these methods have monoton-
ically improved in their overall accuracy and robustness, a fair amount of hyper-
parameter tuning is necessary to adapt these implementations to a new environ-
ment or operating regime. While most visual-SLAM front-ends explicitly encode
application-specific constraints for accurate and robust operation, we advocate for a
fully self-supervised solution to developing application-specific Visual-SLAM front-
ends. Again, by taking advantage of GPS-aided SLAM as a supervisory signal, we
leverage the fused trajectory estimates in vehicles to self-supervise the task of visual
ego-motion estimation and vision-based re-localization.

We envision that self-supervised and weakly-supervised solutions to task learn-
ing shall have far-reaching implications in several domains, especially in the con-
text of life-long learning in autonomous systems. Furthermore, we expect these
techniques to seamlessly operate under resource-constrained situations in the near
future by leveraging well-studied solutions in model reduction and dynamic model
architecture tuning. With the availability of multiple sensors on these autonomous
systems, we also foresee bootstrapped task learning to potentially enable robots to
learn from experience, while being able to deal with redundancy and fault-tolerance,
all within the same framework.
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