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MOTIVATION

Mobile robots today are endowed with rich spatial models to effectively
understand and navigate in the world
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MOTIVATION

SPATIALLY-COGNIZANT ROBOTS with SLAM

Temporally Scalable Visual SLAM using a Reduced Pose Graph
[Johannsson et. al 2013]
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Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using
SLAM as a supervisory signal
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SLAM AS A SUPERVISORY SIGNAL

Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using
SLAM as a supervisory signal

OBJECT RECOGNITION LEARNING VIA SELF-SUPERVISION LEARNING TO LOCALIZE
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Place-cells

2014 Nobel Prize in Physiology or Medicine

Spatial Cells in the Hippocampal Formation
John O'Keefe, May-Britt Moser, Edvard |. Moser




SLAM

» Simultaneous Localization and Mapping

* Joint probabillity distribution @\4 @E\A @@\A
» Factored and represented as a DGM ‘/@ ‘;@\‘ .@\‘ . ‘ﬁ
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FACTOR GRAPHS FOR SLAM

Visual-SLAM
Bundle Adjustment with odometry X*, L* = argmaxp(X,L | U, Z,)
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FACTOR GRAPHS FOR SLAM

Visual-SLAM
Bundle Adjustment with odometry

GPS-aided Localization
Fusing odometry with intermittent GPS updates
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FACTOR GRAPHS FOR SLAM

Visual-SLAM
Bundle Adjustment with odometry

GPS-aided Localization
Fusing odometry with intermittent GPS updates
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Pose-Graph SLAM
Fusing odometry with loop-closure constraints
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Latent variables

@ Robot state @ L andmarks
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(Geometric data association)



SLAM AS A SUPERVISORY SIGNAL

Self-Supervised Visual
Ego-motion Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

Self-Supervision
(SLAM-aided supervision)
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SLAM AS A SUPERVISORY SIGNAL

Self-Supervised Visual Place
Recognition Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

Knowledge Transfer
(Bootstrapping)
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SLAM AS A SUPERVISORY SIGNAL

Monocular SLAM-Supported Self-Supervised Visual Self-Supervised Visual Place
Object Recognition Ego-motion Learning Recognition Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

Correspondence Engine Self-Supervision Knowledge Transfer
(Geometric data association) (SLAM-aided supervision) (Bootstrapping)
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Monocular SLAM-Supported
Object Recognition

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

Correspondence Engine
(Geometric data association)
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OBJECT RECOGNITION IN ROBOTS

Robots equipped with a single RGB camera need to continuously recognize and
localize all potential objects in its iImmmediate environment

Robust

Avold spurious
detection/mis-classification

Single RGB Camera
Versatile

Multi-view Object Detection

Camera & Object localization
by leveraging SLAM

Real-time
Scalable recognrtion

Input RGB Video
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SEMANTIC AND GEOMETRIC
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RICHER SEMANTICS
» Shift in Visual-SLAM and Object Detection capabillities
* Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align sriosw'thcogeword'gex

* Robust VSLAM: Sparse and Semi-dense Monocular Reconstruction

ROBUST vSLAM

1 Input 2. Extract region 3. Compute 4 Clasmfy
image  proposals (~2k) CNN features regions

R-CNN, Fast(er) R-CNN (Girshick et al. 2014-5)

| RolAlign
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Semi-Dense Mappihg

with ORB-SLAM Mask-RCNN (He et al 2017)
Mur-Artal et al. (RSS 2015)
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RICHER SEMANTICS

» Shift in Visual-SLAM and Object Detection capabillities
* Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align

* Robust VSLAM: Sparse and Semi-dense Monocular Reconstruction
* Semantic SFM/SLAM: Semantics measurements for SLAM

Codebook

€I,

Descriptors with codeword index
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SEMANTIC SLAM ROBUST vSLAM
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SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

RICHER SEMANTICS

» Shift in Visual-SLAM and Object Detection capabillities
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Descriptors with codeword index
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* Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align

* Robust VSLAM: Sparse and Semi-dense Monocular Reconstruction
* Semantic SFM/SLAM: Semantics measurements for SLAM
* RGB-D Detection: Map-driven detection with RGB-D SLAM

RGB-D DETECTION SEMANTIC SLAM ROBUST vSLAM

1 Input 2. Extract region 3. Compute 4. Clasmfy
image  proposals (~2k) CNN features regions

R-CNN, Fast(er) R-CNN (Girshick et al. 2014-5)

Detection-based Object Labeling | SLAM++ Semi-Dense Mapping /
in 3D scenes with ORB-SLAM Mask-RCNN (He et al 2017)
Lai et al. (ICRA 2012) Salas-Moreno et al. (CVPR 201 3) MurArtal et al, (RSS 2015)
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STATE-OF-THE-ART OBJECT RECOGNITION

» Frame-based object-recognition

* Good overall recognition performance

* Some viewpoint, lighting invariance

* No memory, context or scene knowledge
* Spurious false positives

Category-agnostic Object Region-of-Interest Pooling and

Proposals Classification
Feed-forward CNN

Two Stage Object Recognition
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* No memory, context or scene knowledge
* Spurious false positives

Category-agnostic Object Region-of-Interest Pooling and

Proposals Classification
Feed-forward CNN

Geodesic Object Proposals with Fast-RCNN

Fast R-CNN, Girshick 2015
Geodesic Object Proposals Krahenbuhl et al 2014

Two Stage Object Recognition

15



OBJECT PROPOSALS with SLAM

» SLAM-aware object proposals

* Strong overall recognition performance

* Better viewpoint, lighting invariance

* Provides some spatial context and knowledge
* Spurious false positives
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SLAM-aware Object Proposals with Fast-RCNN
Fast R-CNN, Girshick 2015
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* Better viewpoint, lighting invariance
* Provides spatial context and scene knowledge

* No spurious false positives
* Occlusion handling
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OBJECT RECOGNITION with SLAM

» SLAM-aware object recognition

* Strong overall recognition performance
* Better viewpoint, lighting invariance
* Provides spatial context and scene knowledge

* No spurious false positives
* Occlusion handling

SLAM as a correspondence-engine for
spatially-consistent object proposals

Object evidence is aggregated across all
views, as enabled by the SLAM-aware system

SLAM-aware object proposal and evidence aggregation

with Fast-RCNN
Fast R-CNN, Girshick 2015

17



MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT
3
SLAM-aware > M
1§, M}
§ M

Keyframes Map

Inrtialization
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MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT

SLAM-aware €1 > M @
{& M}
& M

Keyframes Map

Reduced ambigurty and improved

19 reconstruction with more views



MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT

SLAM-aware €1 > M @
{& M}
& M

Keyframes Map

Distinct object views for classification

o0 via keyframe selection



MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT

. &4
SLAM-aware S > M @
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Keyframes Map

Occlusions require special
treatment
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SLAM-aware

1§, Mj

§

Keyframes

M

Map

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT

Keyframe-based Visual-SLAM

Bundle Adjustment
o =)

X" L" = argmax p(X, L | Z)

X L

\ ORB-SLAM, Mur-Artal et al 2015
SVO: Depth Filter, Forster et al 2014

K
= arg minz | e (Xik, Lik) — zkHQZk

X p | |
Semi-dense reconstruction

with keyframes
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MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT
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Object Proposals
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MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT

SLAM-aware

1§ Mj
§ M

Goal: Determine most likely semantic label

Keyframes Map

oiven all non-occluding views Occlusion-aware Proposal

Description
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KEY CONCEPT
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the object proposal ©’ onto the keyframe &k

For each object proposal

=N,

Rol Pooling and Description using Fast R-CNN

MLE factorizes assuming features \I!{ﬁ are condrtional
independent given class label y
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MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

KEY CONCEPT

MLE factorizes assuming features ‘I’i are condrtional
independent given class label y

E4 i — argmax p(\Ifj Y =y) iiv
hup = prgmer. 1] o0 )

Logistic regression on the

_ J _
— arginax Z log p(\Ijk | Y = y) 4 features extracted from the

e{1,....C - TRV
yeq ey object proposal j in view k
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SLAM-Supported Recognition Frame-based Recognition
(Ours) (Classical approach)
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SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

-
———

olily approaéh reasons wih de|:;th qnd-aveids
mis-cla@kifying occlu@led proposals

-I' 5
Sl
11

Coffee Mug Coffee Mug

SLAM-Supported Recognition Frame-based Recognition
(Ours) (Classical approach)

CORRECT PREDICTIONS 29 INCORRECT PREDICTIONS



SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

—
-
' r
"

e
1
5

Coffee Mug Coffee Mug

SLAM-Supported Recognition Frame-based Recognition
(Ours) (Classical approach)

CORRECT PREDICTIONS 29 INCORRECT PREDICTIONS



MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

SLAM-Supported Recognition with Fast-RCNN

Occluded objects are also shown since they are visible from other viewpoints

30
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Frame-based vs. SLAM-aware Precision-Recall

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION PERFORMANCE

Comparing Frame-based Recognition with SLAM-aware Recognition
on UW RGB-D Scene Dataset (v2)

— Single view (Frame-based)
— 10% view (SLAM-aware)
—— 30% views (SLAM-aware)
—— All views (SLAM-aware)

0.0

0.2 0.4

Reca

0.6

0.8

1.0

s SLAM-AWARE RECOGNITION g SLAM-AWARE RECOGNITION
g 815 89.8 g 88.5 91.
5 5
1 1
mAP mAP
B Frame-based B SLAM-aware B Frame-based B SLAM-aware

(VLAD-FLAIR encoding)
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(Fast RCNN encoding)

mAP - (mean Average Precision)

Only RGB channels are considered



Precision
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MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION PERFORMANCE

Comparing Frame-based Recognition with SLAM-aware Recognition
on UW RGB-D Scene Dataset (v2)

Frame-based vs. SLAM-aware Precision-Recall

— Single view (Frame-based)
— 10% view (SLAM-aware)
—— 30% views (SLAM-aware)
—— All views (SLAM-aware)

0.0

0.2 04 0.6 0.8 1.0
Recall

= SLAM-AWARE RECOGNITION g SLAM-AWARE RECOGNITION
g 815 89.8 g 88.5 91.

E E

50 50

L L

mAP mAP
B Frame-based B SLAM-aware B Frame-based B SLAM-aware
(VLAD-FLAIR encoding) (Fast RCNN encoding)

Key Observation

mAP - (mean Average Precision)

Only RGB channels are considered

SLAM provides useful information for handling ambiguities in
object labels, occlusion, and visibility understanding
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SLAM-AWARE FEW-SHOT OBJECT LEARNING

P &3

» SLAM-aware few-shot object learning

* Spatially-consistent proposals with occlusion-handling

* [abel drift mitigation via geometric consistency

SLAM-aware

Keyframes Map

SLAM-aware label propagation

Occluded views are not propagated onto, avoiding any mis-labeling

SLAM as a correspondence-engine
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» SLAM-aware few-shot object learning 52 fg
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* [abel drift mitigation via geometric consistency ,:

§4

SLAM-aware
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Supervised Label

SLAM-aware label propagation

LAM re ndence-engine | S | .
> a5 a COorTespo 5 Occluded views are not propagated onto, avoiding any mis-labeling
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SLAM-AWARE FEW-SHOT OBJECT LEARNING

» SLAM-aware few-shot object learning

* Spatially-consistent proposals with occlusion-handling

* [abel drift mitigation via geometric consistency

Propagated labels
& bounding boxes

Keyframes Map

Occluding-view Reconstruction \i?

SLAM-aware label propagation

SLAM as a correspondence-engine
P 5 Occluded views are not propagated onto, avoiding any mis-labeling
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» Randomized few-shot object learning

SLAM-AWARE FEW-SHOT OBJECT LEARNING

* Randomly selected training information

PERFORMANCE

 Poorly trained classifiers can benefit from SLAM-aware recognition

Precision

0.2 -

0.0

Frame-based vs. SLAM-aware Precision-Recall

— Single view (Frame-based)
—— 10% view (SLAM-aware)
—— 30% views (SLAM-aware)
- All views (SLAM-aware)

0.0

0.6 0.8

Recall

(a) 2-shot

0.2 0.4

1.0

Precision

0.2

0.0

Frame-based vs. SLAM-aware Precision-Recall

— Single view (Frame-based)

—— 10% view (SLAM-aware)
——— 30% views (SLAM-aware)
- All views (SLAM-aware)
0.0 ofz of4 0f6 0f8
Recall
(b) 5-shot

1.0

Precision

1.0

0.8

o
®»
]

o
~
L

0.2 -

0.0

Frame-based vs. SLAM-aware Precision-Recall

— Single view (Frame-based)
—— 10% view (SLAM-aware)
—— 30% views (SLAM-aware)
—— All views (SLAM-aware)

0.0

0.4 0.6 0.8

Recall

(c) 10-shot

0.2 1.0

Randomized Few-Shot Learning with SLAM-aware Recognition
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SLAM-AWARE FEW-SHOT OBJECT LEARNING
PERFORMANCE

» SLAM-aware few-shot object learning
* Randomly selected training information with SLAM-aware label propagation

* Despite minimal labels, trained classifiers are significantly more powerful

Frame-based vs. SLAM-aware Precision-Recall Frame-based vs. SLAM-aware Precision-Recall o Frame-based vs. SLAM-aware Precision-Recall
0.8 1
0.6 1
S S S
2 8 3
o o o
0.4 1
—— Single view (Frame-based) —— Single view (Frame-based) —— Single view (Frame-based)
0279 —— 10% view (SLAM-aware) 0279 —— 10% view (SLAM-aware) 0279 —— 10% view (SLAM-aware)
——— 30% views (SLAM-aware) ——— 30% views (SLAM-aware) ——— 30% views (SLAM-aware)
- All views (SLAM-aware) ——— All views (SLAM-aware) ——— All views (SLAM-aware)
00 I I I I 00 I I I I 00 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Recall Recall Recall
(a) 1-shot (b) 2-shot (b) 4-shot

SLAM-aware Few-Shot Learning with SLAM-aware Recognition
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SLAM-AWARE FEW-SHOT OBJECT LEARNING
PERFORMANCE

» SLAM-aware few-shot object learning

* Randomly selected training labels with SLAM-aware label propagation

* Despite fewer labels provided, SLAM-aware few-shot training can still achieve strong performance

Frame-based Recognition
mAP / Recall / Fl-score

SLAM-aware Recognition

Method mAP / Recall / Fl-score

2-shot (Randomized)
5-shot (Randomized)
| 0-shot (Randomized)

20-shot (Randomized)

80.5/ 634/ 69.7

760/ 726/ 73.7
79.61 745/ 760
859 /80.5/ 822

83.1 /7481 77.1

81.6/80.9 /80.5
81.6/822/81.5
91.0/89.8/90.2

| -shot (SLAM-aware) 85.3 /852 /826 8791870/ 84.3
2-shot (SLAM-aware) 8/4/8/7.6/86.3 89.6/89.0/87/.3
4-shot (SLAM-aware) 89.6/89.3/89.2 90.6 / 90.8 / 90.5

Comparison of SLAM-aware and randomized few-shot object learning

38



RECOGNITION-SUPPORTED SLAM

» Object Recognition as a front-end

measurement for SLAM

Pure Visual Optimized — Object
| | Odometry Poses Landmarks
* Rich feature capacity
* Scalable / Reduced complexity
* Viewpoint, Lighting invariant
* Pre-trained recognition models S

* Perceptual aliasing

* [ack of contextual / scene knowledge

PRIOR ART
|. Object-based SLAM: SLAM~++ [Moreno et. al 2013]

2. Semantic SFM [Bao et.al 201 1]

Future Work: Recognition-Supported SLAM

3. Localization from Semantic Observations [Antanasov et. al 2015] (Long-range loop-closure corrections with learned objects)
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SLAM AS A SUPERVISORY SIGNAL

Monocular SLAM-Supported Self-Supervised Visual Self-Supervised Visual Place
Object Recognition Ego-motion Learning Recognition Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS

with SLAM
Correspondence Engine Self-Supervision Knowledge Transfer
(Geometric data association) (SLAM-aided supervision) (Bootstrapping)
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Self-Supervised Visual
Ego-motion Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

Self-Supervision
(SLAM-aided supervision)
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VISUAL EGO-MOTION

» Visual Ego-motion /Visual Odometry

* [race the trajectory of the camera given a continuous Image sequence
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» Visual Ego-motion /Visual Odometry

* [race the trajectory of the camera given a continuous Image sequence

DETERMINE fsuch that Factor Graph for Vision-based Pose-Graph SLAM
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VISUAL EGO-MOTION

» Visual Ego-motion /Visual Odometry

* [race the trajectory of the camera given a continuous Image sequence

DETERMINE fsuch that Factor Graph for Vision-based Pose-Graph SLAM
& X" = arg)r(naxp(X U, Z,)
f(It_laIt) — u® = 2
= arg;nin 4 Z | fu(Xiz1,wi) = xl5-
Subsequent Images Odometry N - _
(Relative motion) Odometry Measurement Factors

41




MOTIVATION

42



MOTIVATION

» Why learn Visual Ego-motion / Odometry!?

42



MOTIVATION

» Why learn Visual Ego-motion / Odometry!?

* Varied camera optics: Pinhole, Fisheye, Catadioptric

Varied Camera Optics
(a) Pinhole (b) Fisheye (c) Catadioptric

42



MOTIVATION

» Why learn Visual Ego-motion / Odometry!?

* Varied camera optics: Pinhole, Fisheye, Catadioptric

* Motion constraints: Unconstrained VO, Constrained VO
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MOTIVATION

» Why learn Visual Ego-motion / Odometry!?

* Varied camera optics: Pinhole, Fisheye, Catadioptric

* Motion constraints: Unconstrained VO, Constrained VO

* Tedious calibration / monitoring: Intrinsics, Extrinsics
Varied Camera Optics

(a) Pinhole (b) Fisheye (c) Catadioptric
GROWING SENSOR CONFIGURATION

. Variants 2-D to 2-D Variants
- s\fi\\},\ ¢ 2-D to 2-D *>-point
EE=1 0 * 3-D to 3-D * 3-point
NG e 3-Dto 2-D (PnP)  * I-point, 2-point

e Stereo, RGB-D

[Scaramuzza et. al 201 1]

MIT DGC Vehicle (2007) Uber ATG Vehicle (2017)
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» “Ground-truth” Trajectory Generation

* (Generate target variables for self-supervision
f(It—171t> ? Z‘& (Zi,20") '.-5‘1. VJ
Odome’tl”y § . (227 ZgPS) d & e’ ©

‘@

(Relative motion)

Subsequent Images

* Natural synchronization of Images/GPS/INS/VWheel
Odometry to first solve a GPS-aided localization problem

u p

Robot state Wheel Odometry GPS Prior

Long-term, drift-free,
accurate robot trajectory
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SELF-SUPERVISED

» “Ground-truth” Trajectory Generation

* (Generate target variables for self-supervision

f(It—17It)

Subsequent Images

A

Odometry
(Relative motion)

* Natural synchronization of Images/GPS/INS/VWheel
Odometry to first solve a GPS-aided localization problem

X" =argmaxp(X | U, Zg)
X

M G )

. 2 2
_ arg}gnm{gfu(x“,ui) il + 3 )~ 2% |
=1 J=1 /

\

Odometry Measuremen t Factors GPS Measuremen t Priors
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Mixture Density Network (MDN) in a Conditional VAE (C-VAE)
Towards Visual Ego-motion Learning in Robots (IROS "I /)

» Contributions

* bgo-motion as a learned density estimation

* Generic camera optics (Pinhole, Fisheye, Ca:

* |ntrospective model-based reasoning

Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)
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DI”Ob|em Input Input
: : X A
radioptric) (x, Ax) (x, AT)
GMM Density Estimate
(m(x), p(x),0(x))
Z v
|\/|ixtu.re Sampled
« IE)I;CVSO'% —> ego-motion

< Encoder —

qs(z|x, Ax)
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» Contributions Mixture Density Network (MDN) in a Conditional VAE (C-VAE)
Towards Visual Ego-motion Learning in Robots (IROS "I /)
* Ego-motion as a learned density estimation problem ool Feconstucted
: : . . . . €T R
» Generic camera optics (Pinhole, Fisheye, Catadioptric) (x, Ax) (x, AZ)
* Introspective model-based reasoning () 1) o))

Z v

,Ii |

H 17

S
Density = ego.motion
€&  [Epcoder — ——) <€— Decoder =3
qs(z|x, Ax) po(Ax|z, x)
- R
Sparse Optical fl> Ego-mgtion :l'> Predicted
Towards Visual Ego-motion Learning in Robots 9 Hlow Density Feature Tracks )
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» Contributions Mixture Density Network (MDN) in a Conditional VAE (C-VAE)
Towards Visual Ego-motion Learning in Robots (IROS "I /)
* Ego-motion as a learned density estimation problem ool Feconstucted
: : . . . . €T R
» Generic camera optics (Pinhole, Fisheye, Catadioptric) (x, Ax) (x, AZ)
* Introspective model-based reasoning () 1) o))
7z v

Z  Ego-motion density estimate

X = (a:, Ax) Input feature location, and optical flow ; '—> ‘
Decoder estimating scene flow given input feature |
po(Azx|z, ) | 2 selveninputieature 1 L L .
ocation and sampled ego-motion
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s (Z‘ T, AQZ‘) Encoder estimating ego-motion pdf given input € Densiy = egomotion
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) Ego—motion Density Fstimation Mixture Density Network (MDN) in a Conditional VAE (C-VAE)
Towards Visual Ego-motion Learning in Robots (IROS "I /)
* Mixture Densrity Network (MDN): Neural Network whose oo I
outputs are parameters of a Gaussian Mixture Model (GMM) (. Ax)
fvo . X I_> (M(Xt_lat)7 O-(Xt_lat)7 W(Xt—l,t)) ?;A&I;aeﬂigfil&a)t)e
Optical Z Z

Flow EFgo-motion density estimate T

i

Mixture
<€— Density =

Network

< Encoder —

qs(z|x, Ax)
r R
Sparse Optical Ego-motion
Flow Density
— _J
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) Ego—motion Density Fstimation Mixture Density Network (MDN) in a Conditional VAE (C-VAE)
Towards Visual Ego-motion Learning in Robots (I ROS 7)
* Mixture Densrity Network (MDN): Neural Network whose oo -
outputs are parameters of a Gaussian Mixture Model (GMM) (. Ax)
)
fvo X = (M(Xt_lat)7 O-(Xt_lat)7 W(Xt—l,t)) %;A(I\glclielj?gf?l&%t)e
Optical | zZ | Z
Flow EFgo-motion density estimate T
GMM  P(zi | xi) Zm X )N (2 | pe(xi), 07 (%)) '
(Ego- motlon den5|t>/ estimate given optical flow) _________ __________ K
N ) - Mixture 5
" Densit
Lavionw =— > 8 S m(560)N (2 | i (x0), 07 (%)) |
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) Dengity Fstimation with flow intrgspection Mixture Density Network (MDN) in a Conditional VAE (C-VAE)
Towards Visual Ego-motion Learning in Robots (IROS "I /)
* Mixture Density Network (MDN): Neural Network whose ool Feconstucted
outputs are parameters of a Gaussian Mixture Model (GMM x .
P P ( ) (x, Ax) (x, AZ)
fx = (M(Xt—l,t)a 0(X¢—1,t), T (Xt—l,t)> (), 4030, 700))
Optical | Z | | Z M
Flow EFgo-motion density estimate o
» Conditional-VAE (C-VAE) to reconstruct flow vectors 1 =
olven ego-motion '
Samplgd
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(Variational Lower Bound Objective)
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» Multi-Objective Minimization

* [wo-stage optimization
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» Multi-Objective Minimization

* [wo-stage

e Local MD

motion trajectories, but prone to bias

SELF-SUPERVISED

VISUAL EGO-MOTION LEARNING
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SELF-SUPERVISED

» Multi-Objective Minimization

* [wo-stage optimization

* Local MDN loss minimizes short-term ego-

motion trajectories, but prone to bias
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* [wo-stage optimization

* Local MDN loss minimizes short-term ego-
motion trajectories, but prone to bias
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» Multi-Objective Minimization

* [wo-stage optimization

e Local MD

motion tra

N loss minimizes short-term ego-
ectories, but prone to bias

* Global Trajectory loss minimizes long-term
ego-motion prediction bias
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Learned VO

49



SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

» Learning to recover ego-motion from feature tracks = LearnedVO [\ Ground Truth

* Robust and adaptive (Tunable architectural capacity)

» Generic camera optics (Pinhole, Fisheye, Catadioptric) =
-z
* Powerful model based reasoning (Scene flow introspection)
Learned VO

49



SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

» Learning to recover ego-motion from feature tracks = LearnedVO [\ Ground Truth

* Robust and adaptive (Tunable archrtectural capacity)

* Generic camera optics (Pinhole, Fisheye, Catadioptric) - =
* Powerful model based reasoning (Scene flow introspection)
Trajectory Estimation and Optimization Learned VO

(Learned VO + intermittent GPS updates)

Pinhole Fisheye Catadioptric 49



SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

» Learning to recover ego-motion from feature tracks = LearnedVO [\ Ground Truth

* Robust and adaptive (Tunable architectural capacity)

» Generic camera optics (Pinhole, Fisheye, Catadioptric) =
'z
* Powerful model based reasoning (Scene flow introspection)
Trajectory Estimation and Optimization Learned VO
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(e) KITTI 05

(f) KITTI 07

(g) KITTI 08

(h) KITTI 09

Sensor fusion with learned ego-motion on various datasets

Fusing our learned visual ego-motion with intermrttent GPS updates
(Datasets: Multi-FOV Synthetic Dataset, Oxford |000km, KITTI)
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VISUAL EGO-MOTION PERFORMANCE

Dataset Camera . Median
Trajectory Error
KITT] Pinhole 0.02 -0.65m
Multi-FOV Pinhole 0.18 m
Multi-FOV Fisheye 048 m
Multi-FOV  Catadioptric 0.36 m
Oxford Pinhole 003 m
KITTI-Omni Catadioptric 052 m

Trajectory Prediction Performance

Fusing our learned visual ego-motion with intermittent GPS updates
(Datasets: Multi-FOV Synthetic Dataset, Oxford |000km, KITTI)
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SLAM AS A SUPERVISORY SIGNAL

Monocular SLAM-Supported Self-Supervised Visual Self-Supervised Visual Place
Object Recognition Ego-motion Learning Recognition Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS

with SLAM
Correspondence Engine Self-Supervision Knowledge Transfer
(Geometric data association) (SLAM-aided supervision) (Bootstrapping)
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SLAM AS A SUPERVISORY SIGNAL

Self-Supervised Visual Place
Recognition Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

Knowledge Transfer
(Bootstrapping)
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VISION-BASED LOOP-CLOSURE DETECTION

» Visual Place-Recognition / Loop-Closure Detection

* |[dentifying previously visited places to reduce the odometry drift
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VISION-BASED LOOP-CLOSURE DETECTION

» Visual Place-Recognition / Loop-Closure Detection

* |[dentifying previously visited places to reduce the odometry drift
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VISION-BASED LOOP-CLOSURE DETECTION

» Visual Place-Recognition / Loop-Closure Detection

* |[dentifying previously visited places to reduce the odometry drift

DETERMINE f such that

f(Z;) ~ f(Zk

Temporally-distant Images

L oop-closure

Constraint
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VISION-BASED LOOP-CLOSURE DETECTION

» Visual Place-Recognition / Loop-Closure Detection

* |[dentifying previously visited places to reduce the odometry drift

DETERMINE f such that

f(Z;) ~ f(Zk

Temporally-distant Images

L oop-closure

Constraint
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VISION-BASED LOOP-CLOSURE DETECTION

» Visual Place-Recognition / Loop-Closure Detection

* |[dentifying previously visited places to reduce the odometry drift

DETERMINE fsuch that Factor Graph for Vision-based Pose-Graph SLAM

f(Z;) ~ f(Zk
Loop-closure Po

Temporally-distant Images | )
pOratly 5 Constraint @ Robot state @ oopclosure
E4 Constraints

C1,4 C3,t—1




VISION-BASED LOOP-CLOSURE DETECTION

» Visual Place-Recognition / Loop-Closure Detection

* |[dentifying previously visited places to reduce the odometry drift

DETERMINE fsuch that - Factor Graph for Vision-based Pose-Graph SLAM
X* =argmaxp(X | U, Z)
f(I]) ~ f(Ik) —> Gk P \
= arg min < Z | fulion,w) = xills= + > el %8) — 25
Temporally-distant Images Loop-closure = ~- o -~ _
Constraint Odometry Measurement Factors Loop-Closure Constraint Factors

54

-~



MOTIVATION

» Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM
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MOTIVATION

» Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

* Histogram-based: BoOVVV [Sivic 2003, Levin 2004, Nister 2006]

* Whole-Image: GIST / Binarized Images [Sunderhauf 201 1]

* FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

* lemporal: SegSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
* Density-based: Placeless place-recognition [Lynen 2014]
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Hand-engineered descriptions and
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» Visual Place Recognition / Loop-closure Detection
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* Density-based: Placeless place-recognition [tynen 2014] -l L2, Cosine, Flamming Distance

Hand-engineered descriptions and

» Convolutional Neural Networks

* Places205: Scene Recognition [Zhou 2014, Zhou 2015]

* NetVLAD [Arandjelovic 2017]

* Place Recognition with ConvNet Landmarks [Sunderhauf 2015]
« CNIN-based Place Recognition [chen 2017
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* Places205: Scene Recognition [Zhou 2014, Zhou 2015]

* NetVLAD [Arandjelovic 2017]

* Place Recognition with ConvNet Landmarks [Sunderhauf 2015]
« CNIN-based Place Recognition [chen 2017

Supervising scene recognition
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Require large amounts of training data

Rich feature Pre-trained
. Scalable »
capacity recognition models
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* Whole-Image: GIST / Binarized Images [Sunderhauf 201 1]

* FABMAP (BoW + Chow-Liu Approx) [cummins 2008] Learn a new metric for matching
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MOTIVATION

» Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

* Histogram-based: BoOVVV [Sivic 2003, Levin 2004, Nister 2006]

* Whole-Image: GIST / Binarized Images [Sunderhauf 201 1]

* FABMAP (BoW + Chow-Liu Approx) [cummins 2008] Learn a new metric for matching
* lemporal: SegSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

* Density-based: Placeless place-recognition [Lynen 2014]

» Convolutional Neural Networks

* Places205: Scene Recognition [Zhou 2014, Zhou 2015] SLAM-aware Self-Supervision
* NetVLAD [Arandjelovic 2017] in Mobile Robots
* Place Recognition with ConvNet Landmarks [Sunderhauf 2015]

« CNIN-based Place Recognition [chen 2017

Rich feature Pre-trained
. Scalable »
capacity recognition models
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METRIC LEARNING

Learn a new metric for matching
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METRIC LEARNING

Learn a new metric for matching

Arbrtrarily-defined Distance Measure
(Meaningless)

D(xi, ;) = ||z — 242
Xs :=A{(x,, xs) | ¢, and x, are in the same class}

Xp = {(xy, xq) | *, and x4 are in different classes}
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METRIC LEARNING

Learn a new metric for matching

Arbrtrarily-defined Distance Measure “Semantic” Distance Measure
(Meaningless) (Task appropriate)
Determine
L
. Lq f (ZE , 9)
o f(za)

. flzq)

"""" ’

¢
f(xs)

Ls
©
x f (@)
D(zs, xj) = ||z — 2|2 D(xi, x;) = || f(2i;0) — flz;:0)|2

Xs :=A{(x,, xs) | ¢, and x, are in the same class}

Xp = {(xy, xq) | *, and x4 are in different classes}
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METRIC LEARNING

Learn a new metric for matching

Arbrtrarily-defined Distance Measure “Semantic’ Distance Measure
(Meaningless) (Task appropriate)
Determine
L
. z, f(x;0)
o f(xq)
& fxq)
such thatwe e o
minimize ‘
f(zs)
0 LO= > blapz)t Y @)
£a:q,ws) € Xg J qu,wd) € Xp J
£r Penalize sim\iIar examples Penalize diss;rr:ilar examples f (CB)
that are far away that are nearby
D(xi, zj) = |[z; — 2|2 D(xi,xj) = || f(z:;0) — f(x);0)]2

Xs :=A{(x,, xs) | ¢, and x, are in the same class}

Xp = {(xy, xq) | *, and x4 are in different classes}
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METRIC LEARNING

Arbrtrarily-defined Distance Measure “Semantic” Distance Measure
(Meaningless) (Task appropriate)
Determine
Ld
¢ z, f(x;0)
. f(xa)

& fxq)

such thatwe e o

minimize -"

©
f(xs)

L g
©
T f (@)
D(xi, z;) = ||&i — ;]2 D(xi, ;) = || f(xi;0) — f(25;0)]2
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METRIC LEARNING

via Contrastive Loss

Arbrtrarily-defined Distance Measure (Chopra et al. 2005)

(Meaningless)

Determine

* f(x; 0)

such that we
minimize

D(x;, xj) = ||x; — xj||2

“Semantic”’ Distance Measure

(Task appropriate)
f(@a)
oo f(a,)
...... ?
‘f(wS)
f (@)

D(xi, x;) = ||f(xi;0) — f(x;0)]2

Learning a similarity metric discriminatively, with application to face verification

57

Chopra et al. 2005



METRIC LEARNING

via Contrastive Loss

(Chopra et al. 2005)

Arbrtrarily-defined Distance Measure “Semantic” Distance Measure

(Meaningless) (Task appropriate)
Determine
T
*z (0)
& f(zq)
such thatwe e o
minimize :
o
f(xs)
£ 5 2
o LO)= Y yD@,x,)’+(1-y)|a - D;;)|
(x;,x;)EX
T f(x)
D(z;, z;) = ||z — z||2 D(z;, ;) = || f(z:;0) — f(2);0)]2

Learning a similarity metric discriminatively, with application to face verification
57 Chopra et al. 2005



METRIC LEARNING

via Contrastive Loss

(Chopra et al. 2005)

Arbrtrarily-defined Distance Measure “Semantic” Distance Measure

(Meaningless) (Task appropriate)
Determine
T
e (23 0)
°o f L (9 f(zaq)
& flzq)
such thatwe e o
minimize ‘
f(wS)
£ 5 2
o LO)= > yD(@i ;) + (1 -y)|a— Dl x;)
(x;,x;)EX +
€T f(x
where ()
D(zi,z;) = & — x| : A D(zi,x;) = || f(::0) — f(z;0)]
© ‘ J 112 1 if (x;, ;) € X, R v 7272
y:
0 if (CE@,CU]') S XD
\_ Y,

Supervision

Learning a similarity metric discriminatively, with application to face verification
57 Chopra et al. 2005



SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION
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SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Determine

e j ( : )
224 % 224 % 3 s25 w22 w0k
S Comolutior + Kelll
/_f /r 192 % 112 3 128 ( /1 enaeps viling
A 1 Sy cvow el 1 200
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SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Cross-modal Image-GPS measurements

Determine
(Id7 chi;PS)

’ (T2 ™) f(Z;0)

(=1 convolutior + Kett
[, 1 enaeps viling

s exnzxies
7 (4= e
4 ’ - x
56 x 56 x 256 () e
/Z//’Z A 2% 20x5L2 dxdn 32
A  Beyiphany 143 14 % 512
i A2 * 1x1x4036
K |
A |] [|. ]
g . ”
i o
4

(Isa ZSGPS)

(Z,2979)

GPS _GPSy _ _GPS ~  GPS
D(z;"”,2;"7) =2z;" ~ Oz,

Distance on SE(2) manifold
(Relative pose transformation)
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SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Cross-modal Image-GPS measurements

(Id7 ZcCi;PS)
O

q

(Isa ZSGPS)

(Z,2979)

GPS _GPSy _ .GPS ~ _GPS

D(z;"”,2;"7) =2z;" ~ Oz,
Distance on SE(2) manifold

(Relative pose transformation)

(Iq, ZGPS)

Determine

f(Z;0)

58

Embedding appropriate for

Visual Loop-closure Detection

f(Za)
L f(Zq)
....... .
® 1z
f(T)

D(Z;,T;) = | f(Zs) — f(Zy)]]2

“Semantic” distance in embedding



SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Embedding appropriate for

Cross-modal Image-GPS measurements . .
Visual Loop-closure Detection

Determine
(Id7 chi;PS)

* f(Z;0)

® f(Za)
(=1 convolutior + Kett .. ........... f (Iq )
Jocoren o . ®
A sexs6x156 () wlares ]
/’/ﬂ': _3 saxsi g ?ﬁa:su“ | "
| | U Diﬂij_/_ﬂj—f e / (IS)
T ZGPS AT
.( s )
such that we
(Z,2°7%) minimize f(Z)
l 2 2
L(67) = > (Leps) - D(T,Z;)" + (1 — leps) [04 — D(IZ-,IJ-)} .
((Zi,2:),(Z;,25))€X
D(zy "%, 25"%) = 27"% 6 2510 D(Z;,Z;) = || f(Zs) — f(Zy)]]2

Distance on SE(2) manifold

(Relative pose transformation) Semantic” distance in embedding
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SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Embedding appropriate for

Cross-modal Image-GPS measurements . .
Visual Loop-closure Detection
Determine
(Id7 chi;PS)
o (Z,,28°%) f(I, 9)
o f(Za)
224 % 2243 3 2% At 5 1) A e & f (IQ)
"""" ’
©
(L)
Z ZSGPS
o )
such that we
(Z,25"%) minimize f(Z)
[ 2 :
L(67) = > (Leps) - D(T,Z;)" + (1 — leps) [Oz — D(IZ-,IJ-)} .
((Zir2i),(Z;,25))€X
D(z;"",25"°) = 277" 6257 d (e e e @ < | D(Z;,1;) = ||/ (Zi) — f(Z;)ll2
Dist SE(2) manifold T N R
istance on manifo GPS = | . o . .

(Relative pose transformation) g 0 if Kz, 277°) <7 ) Semantic” distance in embedding

Self-Supervision
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SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Self-Supervised Siamese Net with

Contrastive Loss
(Bootstrapped with synchronized GPS measurements)

» Bootstrapped Visual Place Recognition
Learning for Mobile Robots

* Self-supervised Siamese Net with Contrastive Loss Lo oo Ly e Lj oo
 Calibrate distances for Loop-Closure Detection Images | |
* Distance-weighted sampling for faster convergence CNIN CNIN

-qg) 8_9 Shared Weights

» Siamese Place Recognition Model £ig l -

ééo L) >{ Contrastive Loss ¢ f(Z;)
* Pre-trained Places365-AlexNet with shared weights T :
* fc6, fc/ are fine-tuned, with remaining layers fixed PSS | - K(20FS,2679) ‘

Z(c);Ps ZiGPS ZJGPS

59



SELF-SUPERVISED METRIC LEARNING
FORVISUAL PLACE-RECOGNITION

Self-Supervised Siamese Net with

» Bootstrapped Visual Place Recognition
Learning for Mobile Robots

* Self-supervised Siamese Net with Contrastive Loss

 Calibrate distances for Loop-Closure Detection

* Distance-weighted sampling for faster convergence

» Siamese Place Recognition Model

* Pre-trained Places365-AlexNet with shared weights

* fc6, fc/ are fine-tuned, with remaining layers fixed

Images

..oynchronized
Images / GPS '

GPS/INS

GPS

59

Contrastive Loss

(Bootstrapped with synchronized GPS measurements)

CNN CNN

Shared Weights

loc loc (T
f (Z’&) >{ Contrastive Loss [« f (IJ)

f

v (2675 7GPS)

i y 45 < ‘

GPS GPS GPS
Z; Z, ZT

Self-Supervised Visual Place-Recognition Learning in Mobile Robots
Pillai et al. (Learning for Localization and Mapping Workshop, IROS 2017)



SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

» Self-supervision via cross-modal information St Lucia Dataset

....... “~ GPS measurements with colors
* Self-similarity for sequential pose measurements R L indicating bearing

* Kernel with translation and rotational components
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SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

» Self-supervision via cross-modal information

* Self-similarity for sequential pose measurements
* Kernel with translation and rotational components

K(2"5,257%) = exp(—* |12t —25][,) - exp(—" ||z © 27
N——

Translation similarity Rotation similarity

Translation (t) Rotation (R) Rot. & Trans. (Rit)

Self-Similarity

(Kernel derived from GPS measurements) a0

St Lucia Dataset

GPS measurements with colors
indicating bearing



SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

» Self-supervision via cross-modal information Se | ucia Dataset
o N R \ GPS measurements with colors
* Self-similarity for sequential pose measurements SN T indicating bearing

* Kernel with translation and rotational components

IC(Z.GPS ZGPS) — exp(_/yt HZ: _ Zj”;) -eXp(—VR HZzR o Z;?{H;) Positive/Negative Indicator

7 » 9
W L)
ion similari G 1 if (287, 260°) > 7R
Translation similarity Rotation similarity laps = P ]G b PR
0 if K(z7"",277") <1,

Negative Labels

Rot. & Trans. (Rt) Positive Labels

Self-Supervised Positive/Negative Pairs
(Distance-weighted sampling)

Translation (t) Rotation (R)

Self-Similarity

(Kernel derived from GPS measurements) a0




LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition

» Calibrate / Fine-tune an appropriate metric for place-recognition
* Learned embedding can be directly used for loop-closure detection
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LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition

» Calibrate / Fine-tune an appropriate metric for place-recognition
* Learned embedding can be directly used for loop-closure detection

GPS Self-Similarity
(Rot & Trans.)
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LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition
» Calibrate / Fine-tune an appropriate metric for place-recognition

* Learned embedding can be directly used for loop-closure detection

Image Self-Similarity GPS Self-Similarity
D(Z,,T;) = ||floc(Ii) . flOC(Ij)HZ (Rot & Trans.)
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LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition
» Calibrate / Fine-tune an appropriate metric for place-recognition

* Learned embedding can be directly used for loop-closure detection

Image Self-Similarity GPS Self-Similarity
D(T, T;) = || f°(T:) — flOC(Ij)Hz (Rot & Trans.)

ié..m 5 . 1‘ ‘am
i I N

=R

.
e
- -

"""""""

o
L .

=
SR

=
#
-

Epoch 30

Self-supervised learning of a visual-similarity metric

(Learning evolution)
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LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition

» Calibrate / Fine-tune an appropriate metric for place-recognition
* Learned embedding can be directly used for loop-closure detection

Image SeIf—SimiIarit GPS Self-Similarit
> / (Rot & Ti ) !
ot rans.

D(ZZ,I _ ||floc floc y H2

g K Er = E 1‘ ‘aa -
. =

o ~ %J

Epoch 30 Epoch I 80 B Desired

Self-supervised learning of a visual-similarity metric

(Learning evolution)
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LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition
» Calibrate / Fine-tune an appropriate metric for place-recognition

* Learned embedding can be directly used for loop-closure detection

Image SeIf—SimiIarity GPS Self-Similarity
D(Z;, ;) = || f“(T:) — f°(T;) (Rot & Trans.)

Epoch 0 Epoch 30 Epoch 180 Final Epoch | Deswed

Self-supervised learning of a visual-similarity metric

(Learning evolution)
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LEARNING A VISUAL-SIMILARITY METRIC

» Self-supervised metric learning for place-recognition

» Calibrate / Fine-tune an appropriate metric for place-recognition
* Learned embedding can be directly used for loop-closure detection

Consistent embedding
across multiple runs

....-o-....,_..

...............

Trajectory with embedded CNN features Learned Self—SimiIarity Target Self-Similarity
Colored with T-SNE (Image embedding) (GPS measurements)

(St. Lucia Dataset)
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SELF-SUPERVISED PLACE RECOGNITION
PERFORMANCE

Precision-Recall for Loop-Closure Recognition

Precision-Recall for Loop-Closure Recognition
(Comparing Places365 AlexNet layers and Ours-fc/ learned embedding)

(Comparing Places365 AlexNet fc/ and Ours-fc/ learned embedding)

Precision-Recall comparison at 20m Precision-Recall comparison at 30m Precision-Recall curve (Places365-fc7)

Precision

Precision-Recall curve (Ours-fc7)

(k-NN: Considering top 20 nearest neighbors)

(k-NN: Considering top 20 nearest neighbors)
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SELF-SUPERVISED PLACE RECOGNITION

Arbrtrarily-defined Distance Measure

(Meaningless)

PERFORMANCE

Separation Distance Calibration
(Comparing Places365 AlexNet fc/ and Ours-fc/ learned embedding)

Separation distance histogram (fc7) Separation distance histogram (Ours-fc7)
I Positive 0.35 A I Positive
0.12 I Negative Il Negative
0.30 A
0.10
0.25 A
0.08 >
3 0.20 A

@ 0.15 A
0.10 -

0.05 ~

- T T T 000 - T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Feature Embedding L, Distance (m) Feature Embedding L, Distance (m)

Plot shows the histograms of L2 distances between
similar and dissimilar examples. The distances are well-
separated In the learned embedding.
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SELF-SUPERVISED LOOP-CLOSURE DETECTION

» Learned similarity metric for loop-closure detection

* Fixed-radius NN on learned embedding
reduces false positives

* Fine-tuning only requires collecting data
* Works with any real-valued descriptor

* Learned embedding can be used for
iIndexing, querying, quantization

65



SELF-SUPERVISED LOOP-CLOSURE DETECTION

» Learned similarity metric for loop-closure detection

* Fixed-radius NN on learned embedding
reduces false positives

* Fine-tuning only requires collecting data
* Works with any real-valued descriptor

* [ earned embedding can be used for
iIndexing, querying, quantization

» Vision-based Pose-Graph SLAM

* Self-supervised loop-closure identification
with learned embedding

Factor Graph representation of
Pose-Graph SLAM
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SELF-SUPERVISED LOOP-CLOSURE DETECTION

» Learned similarity metric for loop-closure detection

* Fixed-radius NN on learned embedding
reduces false positives OPTIMIZED OPTIMIZED

* Fine-tuning only requires collecting data

* Works with any real-valued descriptor

* Learned embedding can be used for
iIndexing, querying, quantization

» Vision-based Pose-Graph SLAM MEASURED | MEASURED

* Self-supervised loop-closure identification
with learned embedding

C1.,4 C3,t—1

Factor Graph representation of KITTI Dataset St. Lucia Dataset
Pose-Graph SLAM (With learned metric) (With learned metric)
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SELF-SUPERVISED LOOP-CLOSURE DETECTION

» Vision-based Pose-Graph SLAM

* Self-supervised loop-closure identification
with learned embedding MEASURED %
OPTIMIZED % C@ Qg
Po Factor Graph representation of
tl t2 t3

Pose-Graph SLAM

KITTI Dataset
X* =argmaxp(X | U, Z)
X

M
arg;mn{Dfu(xH,uz-)xz-|§u+ > |hc<xj,xk>zjkgc} MEASURED
i=1 (4,k)eC

A

-~ (. _/ {

VO
Odometry Measurement Factors Loop-Closure Constraint Factors \¢7

t

St. Lucia Dataset
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SLAM-SUPERVISED SCENE EMBEDDINGS
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SLAM-SUPERVISED SCENE EMBEDDINGS

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine

Spatial Cells in the Hippocampal Formation
John O'Keefe, May-Britt Moser, Edvard |. Moser
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» Learning location-specific scene embeddings
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SLAM-SUPERVISED SCENE EMBEDDINGS

» Learning location-specific scene embeddings

* L earned embedding powerful in discriminating visual
scene Instances

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine

Spatial Cells in the Hippocampal Formation
John O'Keefe, May-Britt Moser, Edvard |. Moser
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Consistent scene embeddings for same location

(Colors obtained via I-SNE embedding of learned metric)




SLAM-SUPERVISED SCENE EMBEDDINGS

» Learning location-specific scene embeddings

* L earned embedding powerful in discriminating visual
scene Instances

* Weak-supervision under uncertainty (SLAM)
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SLAM-SUPERVISED SCENE EMBEDDINGS

» Learning location-specific scene embeddings

* L earned embedding powerful in discriminating visual
scene Instances

* Weak-supervision under uncertainty (SLAM)

* On-the-fly fine-tuning

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine

Spatial Cells in the Hippocampal Formation
John O'Keefe, May-Britt Moser, Edvard |. Moser
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View-dependent

SLAM-Supervised Scene Embeddings

Consistent scene embeddings for same location

(Colors obtained via I-SNE embedding of learned metric)




CENTRAL THEME: SLAM AS A SUPERVISORY SIGNAL

Monocular SLAM-Supported Self-Supervised Visual Self-Supervised Visual Place
Object Recognition Ego-motion Learning Recognition Learning

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS

with SLAM
Correspondence Engine Self-Supervision Knowledge Transfer
(Geometric data association) (SLAM-aided supervision) (Bootstrapping)
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CONTRIBUTIONS
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CONTRIBUTIONS

» Spatially Cognizant Perception
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CONTRIBUTIONS

» Spatially Cognizant Perception

* SLAM-Supported Object Recognition: Leverage SLAM capabllities to bolster classical
object recognition In spatially-situated scenes

Robust

-Reduced false positives via

view correspondence
fromm SLAM

(Multi-view prediction)

Single RGB Camera
Monocular SLAM supports

improved recognition

(Semi-Dense Mapping Backend)

Multi-view Object Detection

Objects easily tease apart to
enable better proposals

Scalable

Box-encoding / Rol Pooling

' FLAIR/Fast R-CNN
(Proposals from Semi-Dense Maps) ( as )

Monocular SLAM-Supported Object Recognition
Pillai et al. (RSS 2015)

69



CONTRIBUTIONS

» Spatially Cognizant Perception

* SLAM-Supported Object Recognition: Leverage SLAM capabllities to bolster classical
object recognition In spatially-situated scenes

* SLAM-aware Few-shot Object Learning: Use SLAM as a correspondence-engine for
spatially-consistent and occlusion-aware label propagation, and learn object detectors
from considerably fewer training examples

Robust

-Reduced false positives via

view correspondence
fromm SLAM

(Multi-view prediction)

Single RGB Camera
Monocular SLAM supports

improved recognition

(Semi-Dense Mapping Backend)
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Multi-view Object Detection

Objects easily tease apart to
enable better proposals

Scalable

Box-encoding / Rol Pooling

' FLAIR/Fast R-CNN
(Proposals from Semi-Dense Maps) ( as )

Monocular SLAM-Supported Object Recognition
Pillai et al. (RSS 2015)
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CONTRIBUTIONS

» Life-Long Learning in Mobile Robots

* Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping
the robot’s ability to perform GPS-aided SLAM, we develop a self-supervised visual
SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure
recognition
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CONTRIBUTIONS

» Life-Long Learning in Mobile Robots

* Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping
the robot’s ability to perform GPS-aided SLAM, we develop a self-supervised visual
SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure

recognition
Original Reconstructed
Input Input
X A
(x, Ax) (x, AZ)
GMM Density Estimate
(m(x), u(x),0(x))
Z Y
Mixture Sampled
« NDeetr\:ch;ti —> ego-motion
<€——  Encoder  =—3 <€— Decoder =—3
q¢(z|z, Ax) po(Ax|z, )

Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)
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CONTRIBUTIONS

» Life-Long Learning in Mobile Robots

* Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping
the robot’s ability to perform GPS-aided SLAM, we develop a self-supervised visual
SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure
recognition

Original Reconstructed

Input Input o IO ,,,,,,,,, IZ ................ ZJ ......... IT
(x, Ax) = (z, AZ) ! l

— Images
GMM Density Estimate

(m(x), u(x),0(x))

Shared Weights

l ! .
f e (IZ) »  Contrastive Loss [« f o (I J )

Synchronized
Images / GPS

GPS _GPS

o b | : GPS/INS (27" 27)
Mixture Sampled
€= Density = ego-motion :
Network P s I e

D e Encoder — € Decoder =——

Q¢(Z|CE‘, ACE) pQ(A.CE‘Z,CC) Z(();PS ZiGPS ZJGPS ngs

Towards Visual Ego-motion Learning in Robots Self-Supervised Visual Place Recognition in Mobile Robots
Pillai et al. (IROS 2017) Pillai et al. (Learning for Localization and Mapping Workshop, IROS 2017)
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CONTRIBUTIONS

» Map Representations for Vision-Based Navigation
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CONTRIBUTIONS

» Map Representations for Vision-Based Navigation

* High-Performance and Tunable Stereo Reconstruction: Develop an any-time, rteratively
refine-able, mesh reconstruction algorithm for stereo imagery that can be potentially
used In planning, obstacle avoidance etc.

High-Performance And Tunable Stereo Reconstruction
Pillai et al. (ICRA 2016)
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FUTURE DIRECTIONS

» SLAM as a supervisory signal
* Spatially and Semantically-aware Robot DBs
* Expressive Language for Robot Data Querying

Spatially and Semantically-Aware Robot DBs
(Where have | seen artwork before?)

T~o

Q© ROBOT1 Nodes
Q© ROBOT2 Nodes
£+ Sensor Frustums
X Point of Interest

-
-
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-
-

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

72 SLAMInDB: Centralized Graph Databases for Mobile Robotics [Fourie et.al 2017]
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* Spatially and Semantically-aware Robot DBs

* Expressive Language for Robot Data Querying

* Self-Supervised Cross-Modal Learning in Robots
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FUTURE DIRECTIONS

» SLAM as a supervisory signal
* Spatially and Semantically-aware Robot DBs

* Expressive Language for Robot Data Querying

* Self-Supervised Cross-Modal Learning in Robots

* Life-long Learning with Simulation

Spatially and Semantically-Aware Robot DBs
(Where have | seen artwork before?)
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SLAM-AWARE, SELF-SUPERVISED PERCEP TION
IN MOBILE ROBOTS

Image Courtesy: Willow Garage
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