
SLAM-AWARE, SELF-SUPERVISED PERCEPTION
IN MOBILE ROBOTS

Sudeep Pillai
PhD Thesis Defense

Aug 29, 2017

MOTIVATION

2

Mobile robots today are endowed with rich spatial models to effectively
understand and navigate in the world

GEOMETRIC SCENE UNDERSTANDING
FOR NAVIGATION

MOTIVATION

3

Temporally Scalable Visual SLAM using a Reduced Pose Graph
[Johannsson et. al 2013]

SPATIALLY-COGNIZANT ROBOTS with SLAM

MOTIVATION

3

Temporally Scalable Visual SLAM using a Reduced Pose Graph
[Johannsson et. al 2013]

SPATIALLY-COGNIZANT ROBOTS with SLAM

SLAM AS A SUPERVISORY SIGNAL

4

Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using

 SLAM as a supervisory signal

SLAM AS A SUPERVISORY SIGNAL

4

OBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using

 SLAM as a supervisory signal

SLAM AS A SUPERVISORY SIGNAL

4

MIT DGC Vehicle (2007) Uber ATG Vehicle (2017)

LEARNING VIA SELF-SUPERVISIONOBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using

 SLAM as a supervisory signal

SLAM AS A SUPERVISORY SIGNAL

4

MIT DGC Vehicle (2007) Uber ATG Vehicle (2017)

LEARNING VIA SELF-SUPERVISIONOBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using

 SLAM as a supervisory signal

SLAM AS A SUPERVISORY SIGNAL

4

MIT DGC Vehicle (2007) Uber ATG Vehicle (2017)

LEARNING VIA SELF-SUPERVISION LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine
Spatial Cells in the Hippocampal Formation

John O'Keefe, May-Britt Moser, Edvard I. Moser

Place-cellsGrid cells

OBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for
navigation and scene understanding, effectively using

 SLAM as a supervisory signal

SLAM

SLAM as a Bayes Net

x Robot state l Landmarks

Latent variables

z
Landmark sightings

u
Odometry

Measurements

x0 x1 x2 . . .
xM

z1 z2 z3 z4 . . .
zK

u1 u2 . . .
uM

l1 l2 . . .
lN

Figure 2-1: SLAM as a Bayes Net I Bayes network representation of the SLAM problem. xi repre-
sents the state of the robot’s trajectory at time i, lj is the location of the landmark j, ui is the robot’s
odometry measurement at time i, and zk represents the kth landmark measurement. The figure
illustrates the conditional independence between variables, whose joint probability distribution is
given by Equation 2.1. The observed variables u, and z are drawn in a lighter gray shade, while the
latent variables x and l are drawn in white.

2.1.1 Full SLAM

In the full SLAM formulation, both the robot’s trajectory X and the landmarks
L are simultaneously estimated, given the robot’s odometry measurements U and
the set of landmark sightings L. The joint probability of all the latent variables
given all the associated measurements can be written as,

p(X,L | U,Z) / p(x0)

MY

i=1

p(xi | xi�1,ui)

KY

k=1

p(zk | xik, ljk) (2.1)

/
MY

i=1

exp

⇣
�1

2

kfu(xi�1,ui)� xik2P
u

⌘

| {z }
Influence of odometry measurements

KY

k=1

exp

⇣
�1

2

khk(xik, ljk)� zkk2P
k

⌘

| {z }
Influence of landmark measurements

(2.2)

where p(x0) is the prior on the initial state of the robot, p(xi | xi�1,ui) is the influ-
ence of the motion model on the state of the system, p(zk | xik, ljk) is the influence of
landmark measurements, while assuming appropriate data association (ik, jk) be-
tween landmark sightings zk. The measurements in the system U,Z are corrupted
by noise that is assumed to be Gaussian, with zero-mean and covariance

P
u and

P
k respectively.

In order to recover an optimal estimate of the variables defined in the system,
we re-formulate the above equation 2.1 in an equivalent least-squares form. The
maximum a posteriori (MAP) position estimate of the robot’s trajectory and the land-

25

5

x0 x1 x2 . . .
xM

z1 z2 z3 z4 . . .
zK

u1 u2 . . .
uM

l1 l2 . . .
lN

Figure 2-1: SLAM as a Bayes Net I Bayes network representation of the SLAM problem. xi repre-
sents the state of the robot’s trajectory at time i, lj is the location of the landmark j, ui is the robot’s
odometry measurement at time i, and zk represents the kth landmark measurement. The figure
illustrates the conditional independence between variables, whose joint probability distribution is
given by Equation 2.1. The observed variables u, and z are drawn in a lighter gray shade, while the
latent variables x and l are drawn in white.

2.1.1 Full SLAM

In the full SLAM formulation, both the robot’s trajectory X and the landmarks
L are simultaneously estimated, given the robot’s odometry measurements U and
the set of landmark sightings L. The joint probability of all the latent variables
given all the associated measurements can be written as,

p(X,L | U,Z) / p(x0)

MY

i=1

p(xi | xi�1,ui)

KY

k=1

p(zk | xik, ljk) (2.1)

/
MY

i=1

exp

⇣
�1

2

kfu(xi�1,ui)� xik2P
u

⌘

| {z }
Influence of odometry measurements

KY

k=1

exp

⇣
�1

2

khk(xik, ljk)� zkk2P
k

⌘

| {z }
Influence of landmark measurements

(2.2)

where p(x0) is the prior on the initial state of the robot, p(xi | xi�1,ui) is the influ-
ence of the motion model on the state of the system, p(zk | xik, ljk) is the influence of
landmark measurements, while assuming appropriate data association (ik, jk) be-
tween landmark sightings zk. The measurements in the system U,Z are corrupted
by noise that is assumed to be Gaussian, with zero-mean and covariance

P
u and

P
k respectively.

In order to recover an optimal estimate of the variables defined in the system,
we re-formulate the above equation 2.1 in an equivalent least-squares form. The
maximum a posteriori (MAP) position estimate of the robot’s trajectory and the land-

25

‣ Simultaneous Localization and Mapping
• Joint probability distribution
• Factored and represented as a DGM

SLA

Factored Joint probability distribution

FACTOR GRAPHS FOR SLAM

p
Prior

x Robot state l LandmarksLatent variables z
Landmark sightings

u
OdometryMeasurements6

Visual-SLAM
Bundle Adjustment with odometry

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

FACTOR GRAPHS FOR SLAM

p
Prior

x Robot state l LandmarksLatent variables z
Landmark sightings

u
OdometryMeasurements

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

GPS-aided Localization
Fusing odometry with intermittent GPS updates

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

6

Visual-SLAM
Bundle Adjustment with odometry

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

FACTOR GRAPHS FOR SLAM

p
Prior

x Robot state l LandmarksLatent variables z
Landmark sightings

u
OdometryMeasurements

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

GPS-aided Localization
Fusing odometry with intermittent GPS updates

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

6

Visual-SLAM
Bundle Adjustment with odometry

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

Pose-Graph SLAM
Fusing odometry with loop-closure constraints

these variables.

f(x1, . . . , xn) =

mY

i=1

fi(Xi) (2.9)

Intuitively, a factor graph encodes the conditional independence inherent in the
joint distribution over the set of variables considered. We consider the factor graph
representation to be especially elegant for formalizing and intuitively describing
the di�erent applications of SLAM in this thesis.

Factor graphs were introduced by Kschischang et al. (2001) as a modern prob-
abilistic tool for factorization of and inference over arbitrary functions and prob-
ability distributions. These have recently been applied to SLAM (Dellaert 2012;
Dellaert et al. 2017; Kaess et al. 2011), where the joint probability distribution over
the relevant variables is factored as a product over measurement factors. Figure 2-3
illustrates the Pose-SLAM problem, reformulated in the form of a factor graph.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4

c1,4
c3,t�1

c3,t�1

Figure 2-3: Pose-Graph SLAM: Pose SLAM as a factor graph I A typical factor-graph formulation
of Pose SLAM, where the odometry factors are represented as ui and loop-closure factors are rep-
resented as cj,k. Factors are filled-in black nodes, and the latent variables are represented in white
circles. The prior p0 is also incorporated as a measurement factor in the far left.

2.2.1 Bundle Adjustment

In Bundle Adjustment (BA) (Hartley and Zisserman 2003; Triggs et al. 1999), the
variables xi represent the camera poses, while the factors represent the multi-view
constraints that are derived from multiple 2D projections of the same 3D landmark
point lj . Bundle Adjustment applications in robotics however, can leverage other
sensory measurements such as IMU, or wheel odometry to further improve the
overall estimate of the robot’s trajectory and the map. Figure 2-4 illustrates this
application of Bundle Adjustment in a factor graph while simultaneously includ-
ing odometry information typically measured in mobile robots. The 3D landmarks
lj may be sighted from various views along the robot’s trajectory, with 2D image-
based measurements referred to as mk. Equation 2.6 refers to the visual-SLAM

28

X

⇤
= argmax

X

p(X | U,Z
c

) (2.7)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

X

(j,k)2C
khc(xj,xk)� zjkk2P

c

| {z }
Loop-Closure Constraint Factors

)
(2.8)

2.1.3 Data association

Data association is one of the key components in a SLAM system (Bar-Shalom
et al. 1990). While a lot of care is taken in setting up the optimization objective, it is
critical to ensure that the measurements fed into the back-end optimization is not
erroneous. Data association can be evaluated in the same way as classical recogni-
tion related tasks: they need to achieve high-precision in the set of measurements
associated, while ensuring high-recall of the relevant measurements that can be
associated (Neira and Tardós 2001). We elaborate on the necessity of robust data
association in Section 2.3.

2.2 Factor Graphs for SLAM

x1 x2 x3

f1 f2 f3

Figure 2-2: Factor graph example I A factor graph is a bipartite graph that describes the factoriza-
tion of a joint probability distribution over latent random variables. The figure illustrates the condi-
tional independence constraints between variables, whose joint probability distribution can be writ-
ten as the product of them factors, given by f(x1, x2, x3) =

Qm
i=1 fi(Xi) = f1(x1, x3)f2(x2)f3(x2, x3).

Xi refers to the subset of variables that fi depends on.

A factor graph (Kschischang et al. 2001) is a bipartite graph that encodes how
a function of several variables factorizes into its a product of local functions. A
factor graph typically consists of nodes representing latent variables considered in
the estimation problem, and factors that represent the information between or on

27

SLAM AS A SUPERVISORY SIGNAL

7

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

8

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

9

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

10

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

11

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

12

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

OBJECT RECOGNITION IN ROBOTS

Robots equipped with a single RGB camera need to continuously recognize and
localize all potential objects in its immediate environment

Input RGB Video

Multi-view Object Detection
Camera & Object localization

by leveraging SLAM

Robust
Avoid spurious

detection/mis-classification

Real-time
Scalable recognition

Single RGB Camera
Versatile

13

OBJECT RECOGNITION IN ROBOTS

Robots equipped with a single RGB camera need to continuously recognize and
localize all potential objects in its immediate environment

Input RGB Video

Multi-view Object Detection
Camera & Object localization

by leveraging SLAM

Robust
Avoid spurious

detection/mis-classification

Real-time
Scalable recognition

Single RGB Camera
Versatile

13

SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

14

‣ Shift in Visual-SLAM and Object Detection capabilities

SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

14

‣ Shift in Visual-SLAM and Object Detection capabilities
• Richer Semantics: Object Proposals, R-CNN, RoI Pooling/Align

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite of
challenges, including instance segmentation, bounding-box
object detection, and person keypoint detection. Without
tricks, Mask R-CNN outperforms all existing, single-model
entries on every task, including the COCO 2016 challenge
winners. We hope our simple and effective approach will
serve as a solid baseline and help ease future research in
instance-level recognition. Code will be made available.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 34] and Fully Convolutional Network (FCN) [29]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic
segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[34] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

1

ar
X

iv
:1

70
3.

06
87

0v
2

 [c
s.C

V
]

5
A

pr
 2

01
7

Mask-RCNN (He et al 2017)

Fisher and VLAD with FLAIR

Koen E. A. van de Sande1 Cees G. M. Snoek1 Arnold W. M. Smeulders12

1 ISLA, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

A major computational bottleneck in many current al-
gorithms is the evaluation of arbitrary boxes. Dense lo-
cal analysis and powerful bag-of-word encodings, such
as Fisher vectors and VLAD, lead to improved accuracy
at the expense of increased computation time. Where a
simplification in the representation is tempting, we exploit
novel representations while maintaining accuracy. We start
from state-of-the-art, fast selective search, but our method
will apply to any initial box-partitioning. By representing
the picture as sparse integral images, one per codeword,
we achieve a Fast Local Area Independent Representation.
FLAIR allows for very fast evaluation of any box encoding
and still enables spatial pooling. In FLAIR we achieve exact
VLADs difference coding, even with `2 and power-norms.
Finally, by multiple codeword assignments, we achieve ex-
act and approximate Fisher vectors with FLAIR. The results
are a 18x speedup, which enables us to set a new state-of-
the-art on the challenging 2010 PASCAL VOC objects and
the fine-grained categorization of the CUB-2011 200 bird
species. Plus, we rank number one in the official ImageNet
2013 detection challenge.

1. Introduction
For object detection, action recognition, fine-grained im-

age categorization and many other current topics, the trend
is towards evaluating many candidate boxes in the image
for the best result. This paper introduces a data structure,
FLAIR, for which it is as efficient to evaluate one box as it
is many boxes.

In spatial pyramids for image categorization the pre-
ferred number of boxes is 30 [24], due to the large com-
putational load reduced to 17 in [5]. In the selective search
algorithm for state-of-the-art object detection [24], the num-
ber of boxes is 2,000 per image. Ideally, including the 30
fine spatial pyramids leading to 60,000 boxes per image. In-
evitably, computation has become the critical factor. Rather
than re-computing the same facts many times, once per box,
we reconsider the data structure of the image in order to

Image Descriptors with codeword index

Codebook

Decompose over codewords

……

…

Integral image

∑
Box feature encoding

Figure 1. Fast Local Area Independent Representation. Given
an initial box-partitioning, we represent a picture as sparse integral
images, one per codeword dimension. FLAIR allows for very fast
evaluation of any box encoding and still enables spatial pooling. In
FLAIR we achieve exact VLADs difference coding, even with `2
and power-norms, as well as exact and approximate Fisher vectors.

compute evaluations once per image by a new representa-
tion of the data, FLAIR, the Fast Local Area Independent
Representation (Figure 1).

In object detection, HOG has proven to be successful
in combination with the part-based model by Felzenszwalb
et al. [10]. It models object shape templates and scans
the image with boxes at multiple scales. Because more
than 100,000 boxes need to be inspected per object type
and aspect ratio, the analysis must be restricted to the low-
dimensional HOG features or to simple histograms. Re-
cently, Dean et al. [8] report an impressive speed-up for

FLAIR (van de Sande 2014)

R-CNN, Fast(er) R-CNN (Girshick et al. 2014-5)

RICHER SEMANTICS

SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

14

‣ Shift in Visual-SLAM and Object Detection capabilities
• Richer Semantics: Object Proposals, R-CNN, RoI Pooling/Align
• Robust vSLAM: Sparse and Semi-dense Monocular Reconstruction

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite of
challenges, including instance segmentation, bounding-box
object detection, and person keypoint detection. Without
tricks, Mask R-CNN outperforms all existing, single-model
entries on every task, including the COCO 2016 challenge
winners. We hope our simple and effective approach will
serve as a solid baseline and help ease future research in
instance-level recognition. Code will be made available.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 34] and Fully Convolutional Network (FCN) [29]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic
segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[34] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

1

ar
X

iv
:1

70
3.

06
87

0v
2

 [c
s.C

V
]

5
A

pr
 2

01
7

Mask-RCNN (He et al 2017)

Fisher and VLAD with FLAIR

Koen E. A. van de Sande1 Cees G. M. Snoek1 Arnold W. M. Smeulders12

1 ISLA, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

A major computational bottleneck in many current al-
gorithms is the evaluation of arbitrary boxes. Dense lo-
cal analysis and powerful bag-of-word encodings, such
as Fisher vectors and VLAD, lead to improved accuracy
at the expense of increased computation time. Where a
simplification in the representation is tempting, we exploit
novel representations while maintaining accuracy. We start
from state-of-the-art, fast selective search, but our method
will apply to any initial box-partitioning. By representing
the picture as sparse integral images, one per codeword,
we achieve a Fast Local Area Independent Representation.
FLAIR allows for very fast evaluation of any box encoding
and still enables spatial pooling. In FLAIR we achieve exact
VLADs difference coding, even with `2 and power-norms.
Finally, by multiple codeword assignments, we achieve ex-
act and approximate Fisher vectors with FLAIR. The results
are a 18x speedup, which enables us to set a new state-of-
the-art on the challenging 2010 PASCAL VOC objects and
the fine-grained categorization of the CUB-2011 200 bird
species. Plus, we rank number one in the official ImageNet
2013 detection challenge.

1. Introduction
For object detection, action recognition, fine-grained im-

age categorization and many other current topics, the trend
is towards evaluating many candidate boxes in the image
for the best result. This paper introduces a data structure,
FLAIR, for which it is as efficient to evaluate one box as it
is many boxes.

In spatial pyramids for image categorization the pre-
ferred number of boxes is 30 [24], due to the large com-
putational load reduced to 17 in [5]. In the selective search
algorithm for state-of-the-art object detection [24], the num-
ber of boxes is 2,000 per image. Ideally, including the 30
fine spatial pyramids leading to 60,000 boxes per image. In-
evitably, computation has become the critical factor. Rather
than re-computing the same facts many times, once per box,
we reconsider the data structure of the image in order to

Image Descriptors with codeword index

Codebook

Decompose over codewords

……

…

Integral image

∑
Box feature encoding

Figure 1. Fast Local Area Independent Representation. Given
an initial box-partitioning, we represent a picture as sparse integral
images, one per codeword dimension. FLAIR allows for very fast
evaluation of any box encoding and still enables spatial pooling. In
FLAIR we achieve exact VLADs difference coding, even with `2
and power-norms, as well as exact and approximate Fisher vectors.

compute evaluations once per image by a new representa-
tion of the data, FLAIR, the Fast Local Area Independent
Representation (Figure 1).

In object detection, HOG has proven to be successful
in combination with the part-based model by Felzenszwalb
et al. [10]. It models object shape templates and scans
the image with boxes at multiple scales. Because more
than 100,000 boxes need to be inspected per object type
and aspect ratio, the analysis must be restricted to the low-
dimensional HOG features or to simple histograms. Re-
cently, Dean et al. [8] report an impressive speed-up for

FLAIR (van de Sande 2014)

R-CNN, Fast(er) R-CNN (Girshick et al. 2014-5)

RICHER SEMANTICS

Probabilistic Semi-Dense Mapping from Highly
Accurate Feature-Based Monocular SLAM

Raúl Mur-Artal and Juan D. Tardós
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain

{raulmur, tardos}@unizar.es

Abstract—In the last years several direct (i.e. featureless)
monocular SLAM approaches have appeared showing impressive
semi-dense or dense scene reconstructions. These works have
questioned the need of features, in which consolidated SLAM
techniques of the last decade were based. In this paper we
present a novel feature-based monocular SLAM system that is
more robust, gives more accurate camera poses, and obtains
comparable or better semi-dense reconstructions than the cur-
rent state of the art. Our semi-dense mapping operates over
keyframes, optimized by local bundle adjustment, allowing to
obtain accurate triangulations from wide baselines. Our novel
method to search correspondences, the measurement fusion and
the inter-keyframe depth consistency tests allow to obtain clean
reconstructions with very few outliers. Against the current trend
in direct SLAM, our experiments show that by decoupling the
semi-dense reconstruction from the trajectory computation, the
results obtained are better. This opens the discussion on the
benefits of features even if a semi-dense reconstruction is desired.

I. INTRODUCTION

The problem of Visual Simultaneous Localisation and Map-
ping (Visual SLAM) has attracted the attention of the robotics
community for more than a decade. Solving this problem can
provide a robot the desirable information of self-localisation
and a model of its environment to interact with it. Most
consolidated techniques have relied on features [8, 1], while
recent approaches make use of direct methods [14, 3].

A. Feature-based SLAM
Modern feature-based techniques [8, 19, 12] are based on

keyframes [20] and bundle adjustment (BA) optimization [23].
These techniques extract features on the images, typically
keypoints selected by their repeatability and distinctiveness
from different viewpoints. Camera poses and map features are
jointly optimized by BA, which minimizes the reprojection
error. The main strengths are the following:

• Due to their good illumination and viewpoint invari-
ance, features provide wide baseline matches, which
in conjunction with large loop closures, give a strong
camera network for bundle adjustment or pose graph
optimization, resulting in very accurate solutions.

• Bags of words and binary features [5] allow to perform
place recognition in real time in large scale environments
and, depending on the features, with a high invariance to
viewpoint [11].

• As features are triangulated from spatially and temporally
distant keyframes, moving objects are typically success-
fully ignored. This characteristic and the use of RANSAC

Fig. 1. Example of a semi-dense reconstruction (top, best seen in color)
of the fr2 desk sequence from the TUM RGB-D Benchmark [22], performed
in real-time by our system. Only points with small inverse depth uncertainty
are shown. Our highly accurate feature-based monocular SLAM system [12]
provides a stream of accurately localised keyframes (bottom) from which we
compute the semi-dense reconstruction.

and robust cost functions make the SLAM system robust
in the presence of dynamic elements.

The main inconvenient of feature-based SLAM is that the
map is very sparse, being of little use for robotic tasks such
as navigation or object interaction. However the map has
excellent camera localisation capabilities (see Fig. 1, bottom).

B. Direct SLAM and Semi-Dense/Dense Mapping

Direct SLAM approaches [3, 14] localise the camera op-
timising the pose directly over pixel intensities, minimizing
the photometric error. These approaches perform a dense (all

Semi-Dense Mapping
with ORB-SLAM

Mur-Artal et al. (RSS 2015)

ROBUST vSLAM

SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

14

‣ Shift in Visual-SLAM and Object Detection capabilities
• Richer Semantics: Object Proposals, R-CNN, RoI Pooling/Align
• Robust vSLAM: Sparse and Semi-dense Monocular Reconstruction
• Semantic SFM/SLAM: Semantics measurements for SLAM

SLAM++
Salas-Moreno et al. (CVPR 2013)

SEMANTIC SLAM Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite of
challenges, including instance segmentation, bounding-box
object detection, and person keypoint detection. Without
tricks, Mask R-CNN outperforms all existing, single-model
entries on every task, including the COCO 2016 challenge
winners. We hope our simple and effective approach will
serve as a solid baseline and help ease future research in
instance-level recognition. Code will be made available.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 34] and Fully Convolutional Network (FCN) [29]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic
segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[34] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

1

ar
X

iv
:1

70
3.

06
87

0v
2

 [c
s.C

V
]

5
A

pr
 2

01
7

Mask-RCNN (He et al 2017)

Fisher and VLAD with FLAIR

Koen E. A. van de Sande1 Cees G. M. Snoek1 Arnold W. M. Smeulders12

1 ISLA, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

A major computational bottleneck in many current al-
gorithms is the evaluation of arbitrary boxes. Dense lo-
cal analysis and powerful bag-of-word encodings, such
as Fisher vectors and VLAD, lead to improved accuracy
at the expense of increased computation time. Where a
simplification in the representation is tempting, we exploit
novel representations while maintaining accuracy. We start
from state-of-the-art, fast selective search, but our method
will apply to any initial box-partitioning. By representing
the picture as sparse integral images, one per codeword,
we achieve a Fast Local Area Independent Representation.
FLAIR allows for very fast evaluation of any box encoding
and still enables spatial pooling. In FLAIR we achieve exact
VLADs difference coding, even with `2 and power-norms.
Finally, by multiple codeword assignments, we achieve ex-
act and approximate Fisher vectors with FLAIR. The results
are a 18x speedup, which enables us to set a new state-of-
the-art on the challenging 2010 PASCAL VOC objects and
the fine-grained categorization of the CUB-2011 200 bird
species. Plus, we rank number one in the official ImageNet
2013 detection challenge.

1. Introduction
For object detection, action recognition, fine-grained im-

age categorization and many other current topics, the trend
is towards evaluating many candidate boxes in the image
for the best result. This paper introduces a data structure,
FLAIR, for which it is as efficient to evaluate one box as it
is many boxes.

In spatial pyramids for image categorization the pre-
ferred number of boxes is 30 [24], due to the large com-
putational load reduced to 17 in [5]. In the selective search
algorithm for state-of-the-art object detection [24], the num-
ber of boxes is 2,000 per image. Ideally, including the 30
fine spatial pyramids leading to 60,000 boxes per image. In-
evitably, computation has become the critical factor. Rather
than re-computing the same facts many times, once per box,
we reconsider the data structure of the image in order to

Image Descriptors with codeword index

Codebook

Decompose over codewords

……

…

Integral image

∑
Box feature encoding

Figure 1. Fast Local Area Independent Representation. Given
an initial box-partitioning, we represent a picture as sparse integral
images, one per codeword dimension. FLAIR allows for very fast
evaluation of any box encoding and still enables spatial pooling. In
FLAIR we achieve exact VLADs difference coding, even with `2
and power-norms, as well as exact and approximate Fisher vectors.

compute evaluations once per image by a new representa-
tion of the data, FLAIR, the Fast Local Area Independent
Representation (Figure 1).

In object detection, HOG has proven to be successful
in combination with the part-based model by Felzenszwalb
et al. [10]. It models object shape templates and scans
the image with boxes at multiple scales. Because more
than 100,000 boxes need to be inspected per object type
and aspect ratio, the analysis must be restricted to the low-
dimensional HOG features or to simple histograms. Re-
cently, Dean et al. [8] report an impressive speed-up for

FLAIR (van de Sande 2014)

R-CNN, Fast(er) R-CNN (Girshick et al. 2014-5)

RICHER SEMANTICS

Probabilistic Semi-Dense Mapping from Highly
Accurate Feature-Based Monocular SLAM

Raúl Mur-Artal and Juan D. Tardós
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain

{raulmur, tardos}@unizar.es

Abstract—In the last years several direct (i.e. featureless)
monocular SLAM approaches have appeared showing impressive
semi-dense or dense scene reconstructions. These works have
questioned the need of features, in which consolidated SLAM
techniques of the last decade were based. In this paper we
present a novel feature-based monocular SLAM system that is
more robust, gives more accurate camera poses, and obtains
comparable or better semi-dense reconstructions than the cur-
rent state of the art. Our semi-dense mapping operates over
keyframes, optimized by local bundle adjustment, allowing to
obtain accurate triangulations from wide baselines. Our novel
method to search correspondences, the measurement fusion and
the inter-keyframe depth consistency tests allow to obtain clean
reconstructions with very few outliers. Against the current trend
in direct SLAM, our experiments show that by decoupling the
semi-dense reconstruction from the trajectory computation, the
results obtained are better. This opens the discussion on the
benefits of features even if a semi-dense reconstruction is desired.

I. INTRODUCTION

The problem of Visual Simultaneous Localisation and Map-
ping (Visual SLAM) has attracted the attention of the robotics
community for more than a decade. Solving this problem can
provide a robot the desirable information of self-localisation
and a model of its environment to interact with it. Most
consolidated techniques have relied on features [8, 1], while
recent approaches make use of direct methods [14, 3].

A. Feature-based SLAM
Modern feature-based techniques [8, 19, 12] are based on

keyframes [20] and bundle adjustment (BA) optimization [23].
These techniques extract features on the images, typically
keypoints selected by their repeatability and distinctiveness
from different viewpoints. Camera poses and map features are
jointly optimized by BA, which minimizes the reprojection
error. The main strengths are the following:

• Due to their good illumination and viewpoint invari-
ance, features provide wide baseline matches, which
in conjunction with large loop closures, give a strong
camera network for bundle adjustment or pose graph
optimization, resulting in very accurate solutions.

• Bags of words and binary features [5] allow to perform
place recognition in real time in large scale environments
and, depending on the features, with a high invariance to
viewpoint [11].

• As features are triangulated from spatially and temporally
distant keyframes, moving objects are typically success-
fully ignored. This characteristic and the use of RANSAC

Fig. 1. Example of a semi-dense reconstruction (top, best seen in color)
of the fr2 desk sequence from the TUM RGB-D Benchmark [22], performed
in real-time by our system. Only points with small inverse depth uncertainty
are shown. Our highly accurate feature-based monocular SLAM system [12]
provides a stream of accurately localised keyframes (bottom) from which we
compute the semi-dense reconstruction.

and robust cost functions make the SLAM system robust
in the presence of dynamic elements.

The main inconvenient of feature-based SLAM is that the
map is very sparse, being of little use for robotic tasks such
as navigation or object interaction. However the map has
excellent camera localisation capabilities (see Fig. 1, bottom).

B. Direct SLAM and Semi-Dense/Dense Mapping

Direct SLAM approaches [3, 14] localise the camera op-
timising the pose directly over pixel intensities, minimizing
the photometric error. These approaches perform a dense (all

Semi-Dense Mapping
with ORB-SLAM

Mur-Artal et al. (RSS 2015)

ROBUST vSLAM

SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

14

‣ Shift in Visual-SLAM and Object Detection capabilities
• Richer Semantics: Object Proposals, R-CNN, RoI Pooling/Align
• Robust vSLAM: Sparse and Semi-dense Monocular Reconstruction
• Semantic SFM/SLAM: Semantics measurements for SLAM
• RGB-D Detection: Map-driven detection with RGB-D SLAM

Detection-based Object Labeling
 in 3D scenes

Lai et al. (ICRA 2012)

RGB-D DETECTION

SLAM++
Salas-Moreno et al. (CVPR 2013)

SEMANTIC SLAM Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite of
challenges, including instance segmentation, bounding-box
object detection, and person keypoint detection. Without
tricks, Mask R-CNN outperforms all existing, single-model
entries on every task, including the COCO 2016 challenge
winners. We hope our simple and effective approach will
serve as a solid baseline and help ease future research in
instance-level recognition. Code will be made available.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 34] and Fully Convolutional Network (FCN) [29]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic
segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[34] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

1

ar
X

iv
:1

70
3.

06
87

0v
2

 [c
s.C

V
]

5
A

pr
 2

01
7

Mask-RCNN (He et al 2017)

Fisher and VLAD with FLAIR

Koen E. A. van de Sande1 Cees G. M. Snoek1 Arnold W. M. Smeulders12

1 ISLA, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

A major computational bottleneck in many current al-
gorithms is the evaluation of arbitrary boxes. Dense lo-
cal analysis and powerful bag-of-word encodings, such
as Fisher vectors and VLAD, lead to improved accuracy
at the expense of increased computation time. Where a
simplification in the representation is tempting, we exploit
novel representations while maintaining accuracy. We start
from state-of-the-art, fast selective search, but our method
will apply to any initial box-partitioning. By representing
the picture as sparse integral images, one per codeword,
we achieve a Fast Local Area Independent Representation.
FLAIR allows for very fast evaluation of any box encoding
and still enables spatial pooling. In FLAIR we achieve exact
VLADs difference coding, even with `2 and power-norms.
Finally, by multiple codeword assignments, we achieve ex-
act and approximate Fisher vectors with FLAIR. The results
are a 18x speedup, which enables us to set a new state-of-
the-art on the challenging 2010 PASCAL VOC objects and
the fine-grained categorization of the CUB-2011 200 bird
species. Plus, we rank number one in the official ImageNet
2013 detection challenge.

1. Introduction
For object detection, action recognition, fine-grained im-

age categorization and many other current topics, the trend
is towards evaluating many candidate boxes in the image
for the best result. This paper introduces a data structure,
FLAIR, for which it is as efficient to evaluate one box as it
is many boxes.

In spatial pyramids for image categorization the pre-
ferred number of boxes is 30 [24], due to the large com-
putational load reduced to 17 in [5]. In the selective search
algorithm for state-of-the-art object detection [24], the num-
ber of boxes is 2,000 per image. Ideally, including the 30
fine spatial pyramids leading to 60,000 boxes per image. In-
evitably, computation has become the critical factor. Rather
than re-computing the same facts many times, once per box,
we reconsider the data structure of the image in order to

Image Descriptors with codeword index

Codebook

Decompose over codewords

……

…

Integral image

∑
Box feature encoding

Figure 1. Fast Local Area Independent Representation. Given
an initial box-partitioning, we represent a picture as sparse integral
images, one per codeword dimension. FLAIR allows for very fast
evaluation of any box encoding and still enables spatial pooling. In
FLAIR we achieve exact VLADs difference coding, even with `2
and power-norms, as well as exact and approximate Fisher vectors.

compute evaluations once per image by a new representa-
tion of the data, FLAIR, the Fast Local Area Independent
Representation (Figure 1).

In object detection, HOG has proven to be successful
in combination with the part-based model by Felzenszwalb
et al. [10]. It models object shape templates and scans
the image with boxes at multiple scales. Because more
than 100,000 boxes need to be inspected per object type
and aspect ratio, the analysis must be restricted to the low-
dimensional HOG features or to simple histograms. Re-
cently, Dean et al. [8] report an impressive speed-up for

FLAIR (van de Sande 2014)

R-CNN, Fast(er) R-CNN (Girshick et al. 2014-5)

RICHER SEMANTICS

Probabilistic Semi-Dense Mapping from Highly
Accurate Feature-Based Monocular SLAM

Raúl Mur-Artal and Juan D. Tardós
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain

{raulmur, tardos}@unizar.es

Abstract—In the last years several direct (i.e. featureless)
monocular SLAM approaches have appeared showing impressive
semi-dense or dense scene reconstructions. These works have
questioned the need of features, in which consolidated SLAM
techniques of the last decade were based. In this paper we
present a novel feature-based monocular SLAM system that is
more robust, gives more accurate camera poses, and obtains
comparable or better semi-dense reconstructions than the cur-
rent state of the art. Our semi-dense mapping operates over
keyframes, optimized by local bundle adjustment, allowing to
obtain accurate triangulations from wide baselines. Our novel
method to search correspondences, the measurement fusion and
the inter-keyframe depth consistency tests allow to obtain clean
reconstructions with very few outliers. Against the current trend
in direct SLAM, our experiments show that by decoupling the
semi-dense reconstruction from the trajectory computation, the
results obtained are better. This opens the discussion on the
benefits of features even if a semi-dense reconstruction is desired.

I. INTRODUCTION

The problem of Visual Simultaneous Localisation and Map-
ping (Visual SLAM) has attracted the attention of the robotics
community for more than a decade. Solving this problem can
provide a robot the desirable information of self-localisation
and a model of its environment to interact with it. Most
consolidated techniques have relied on features [8, 1], while
recent approaches make use of direct methods [14, 3].

A. Feature-based SLAM
Modern feature-based techniques [8, 19, 12] are based on

keyframes [20] and bundle adjustment (BA) optimization [23].
These techniques extract features on the images, typically
keypoints selected by their repeatability and distinctiveness
from different viewpoints. Camera poses and map features are
jointly optimized by BA, which minimizes the reprojection
error. The main strengths are the following:

• Due to their good illumination and viewpoint invari-
ance, features provide wide baseline matches, which
in conjunction with large loop closures, give a strong
camera network for bundle adjustment or pose graph
optimization, resulting in very accurate solutions.

• Bags of words and binary features [5] allow to perform
place recognition in real time in large scale environments
and, depending on the features, with a high invariance to
viewpoint [11].

• As features are triangulated from spatially and temporally
distant keyframes, moving objects are typically success-
fully ignored. This characteristic and the use of RANSAC

Fig. 1. Example of a semi-dense reconstruction (top, best seen in color)
of the fr2 desk sequence from the TUM RGB-D Benchmark [22], performed
in real-time by our system. Only points with small inverse depth uncertainty
are shown. Our highly accurate feature-based monocular SLAM system [12]
provides a stream of accurately localised keyframes (bottom) from which we
compute the semi-dense reconstruction.

and robust cost functions make the SLAM system robust
in the presence of dynamic elements.

The main inconvenient of feature-based SLAM is that the
map is very sparse, being of little use for robotic tasks such
as navigation or object interaction. However the map has
excellent camera localisation capabilities (see Fig. 1, bottom).

B. Direct SLAM and Semi-Dense/Dense Mapping

Direct SLAM approaches [3, 14] localise the camera op-
timising the pose directly over pixel intensities, minimizing
the photometric error. These approaches perform a dense (all

Semi-Dense Mapping
with ORB-SLAM

Mur-Artal et al. (RSS 2015)

ROBUST vSLAM

SEMANTIC AND GEOMETRIC
SCENE UNDERSTANDING LANDSCAPE

14

STATE-OF-THE-ART OBJECT RECOGNITION

15

‣ Frame-based object-recognition

• Good overall recognition performance
• Some viewpoint, lighting invariance
• No memory, context or scene knowledge
• Spurious false positives

Two Stage Object Recognition

Category-agnostic Object
Proposals

Region-of-Interest Pooling and
Classification

Feed-forward CNN

STATE-OF-THE-ART OBJECT RECOGNITION

Geodesic Object Proposals with Fast-RCNN

15

‣ Frame-based object-recognition

• Good overall recognition performance
• Some viewpoint, lighting invariance
• No memory, context or scene knowledge
• Spurious false positives

Fast R-CNN, Girshick 2015
Geodesic Object Proposals Krahenbuhl et al 2014

Two Stage Object Recognition

Category-agnostic Object
Proposals

Region-of-Interest Pooling and
Classification

Feed-forward CNN

16

‣ SLAM-aware object proposals

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides some spatial context and knowledge
• Spurious false positives

OBJECT PROPOSALS with SLAM

16

‣ SLAM-aware object proposals

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides some spatial context and knowledge
• Spurious false positives

OBJECT PROPOSALS with SLAM

SLAM as a correspondence-engine for
spatially-consistent object proposals

16

‣ SLAM-aware object proposals

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides some spatial context and knowledge
• Spurious false positives

OBJECT PROPOSALS with SLAM

SLAM as a correspondence-engine for
spatially-consistent object proposals

Each frame is individually classified

SLAM-aware Object Proposals with Fast-RCNN

16

‣ SLAM-aware object proposals

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides some spatial context and knowledge
• Spurious false positives

Fast R-CNN, Girshick 2015

OBJECT PROPOSALS with SLAM

SLAM as a correspondence-engine for
spatially-consistent object proposals

Each frame is individually classified

17

‣ SLAM-aware object recognition

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides spatial context and scene knowledge
• No spurious false positives
• Occlusion handling

OBJECT RECOGNITION with SLAM

17

‣ SLAM-aware object recognition

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides spatial context and scene knowledge
• No spurious false positives
• Occlusion handling

OBJECT RECOGNITION with SLAM

SLAM as a correspondence-engine for
spatially-consistent object proposals

SLAM-aware object proposal and evidence aggregation
with Fast-RCNN

17

‣ SLAM-aware object recognition

• Strong overall recognition performance
• Better viewpoint, lighting invariance
• Provides spatial context and scene knowledge
• No spurious false positives
• Occlusion handling

Fast R-CNN, Girshick 2015

OBJECT RECOGNITION with SLAM

SLAM as a correspondence-engine for
spatially-consistent object proposals

Object evidence is aggregated across all
views, as enabled by the SLAM-aware system

{⇠,M}
SLAM-aware

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Initialization
18

⇠1 M

{⇠,M}
SLAM-aware

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Reduced ambiguity and improved
reconstruction with more views

19

⇠1

⇠2

M

{⇠,M}
SLAM-aware

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Distinct object views for classification
via keyframe selection

20

⇠1

⇠2 ⇠3

M

{⇠,M}
SLAM-aware

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Occlusions require special
treatment

21

⇠1

⇠2 ⇠3

⇠4

M

{⇠,M}
SLAM-aware

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Semi-dense reconstruction
with keyframes

22

Keyframe-based Visual-SLAM
Bundle Adjustment

formulation described earlier, that incorporates both odometry measurements and
landmark sightings as factors in the overall state-estimation. The classical BA prob-
lem can be written as follows:

X

⇤,L⇤
= argmax

X,L
p(X,L | Zl) (2.10)

= argmin

X

KX

k=1

khk(xik, ljk)� zkk2P
k

(2.11)

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0
l1 l2

z1 z2 z3 z4 z5

Figure 2-4: Visual-SLAM: Bundle Adjustment (BA) contained in a factor graphI A typical factor-
graph formulation of Bundle-Adjustment, where the odometry factors are represented as ui and
landmarks are represented as l. The measurements from the robot to the various landmarks at
di�erent timesteps are indicated as z.

One of the major di�culties in classical Bundle Adjustment is the scale ambi-
guity problem. In the objective function 2.11, the camera pose and landmarks are
estimated up to scale, implying that the system can be scaled down or up without
a�ecting the overall residual term. However, in most robotic applications where
odometry measurements are available, we are able to introduce an over-complete
set of measurements to recover the scale of the system, while being able to simulta-
neously incorporate the Bundle Adjustment objective within the same factor graph
(Equation 2.13). Figure 2-4 graphically illustrates how these measurements are in-
corporated to recover the robot’s trajectory, while simultaneously performing Bun-
dle Adjustment.

X

⇤,L⇤
= argmax

X,L
p(X,L | U,Zl) (2.12)

= argmin

X,L

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

KX

k=1

khk(xik, ljk)� zkk2P
k

| {z }
Bundle Adjustment Problem

)
(2.13)

29

x0 x1 x2 x3
p0

l1 l2 l3

x0 x1 x2 x3
p0

l1 l2 l3

Figure 3-6: Keyframe-based Visual-SLAM I Keyframe-based Bundle Adjustment (BA), where
some of the poses (namely x1, x2) are marginalized out to reduce the overall complexity of full BA
solution. The marginalized camera poses and their associated edges are rendered in a lighter color.

linearly in spatial coverage of the camera’s viewing frustum. New keyframes are
instantiated based on a set of criteria, typically based on the change in mutual-
information (relative 6-DOF pose transformation, or number of features tracked)
between the previously instantiated keyframe and the last frame tracked. As win-
dowed BA continues, only the relevant keyframe’s poses ⇠1:T

K

(a subset of the orig-
inal set of poses ⇠1:T

K

✓ x1:T with TK << T) and their associated map points L

are optimized in an incremental manner allowing for real-time operation of large-
scale visual SLAM problems. This has allowed keyframe-based visual SLAM im-
plementations (Engel et al. 2014; Klein and Murray 2007; Konolige and Agrawal
2008; Mur-Artal et al. 2015; Strasdat et al. 2010; 2011) to truly scale to long oper-
ating times, as they are no longer bound linearly by time, but bound by the spatial
coverage of the camera as it traverses through an environment. In later sections, we
shall emphasize the value of keyframe-based sampling as they provide an elegant
solution to the reduced computational complexity of the underlying bundle adjust-
ment (BA) problem, while simultaneously providing informative views for e�cient
object recognition.

Semi-dense Reconstruction As the optimized poses ˆ⇠ and sparse 3D landmarks
ˆ

L converge within the windowed BA optimization, they can be directly used to fur-
ther densify the 3D scene reconstruction. By sampling high-gradient regions in
each of the keyframe images, we perform dense epiploar disparity estimation be-
tween the optimized keyframes, that we shall refer to as ˆK. Using the proposed
depth filter strategy (Forster et al. 2014), the relevant patch disparities are estimated
directly using the inverse-depth parametrization (Civera et al. 2012), and filtered in
a probabilistic and recursive manner. As more images are incrementally added to
the system, new keyframes are instantiated and added to the pose-graph optimiza-
tion and subsequent semi-dense reconstruction procedures.

Simultaneous Optimization and Map Densification Due to the incremental
and real-time nature of the algorithm, the bundle adjustment (BA) optimization is
only performed for a local window of keyframes that are contained within their co-

45

ORB-SLAM, Mur-Artal et al 2015
SVO: Depth Filter, Forster et al 2014

{⇠,M}
SLAM-aware

⇠2 ⇠3

⇠4
⇠1 M

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Semi-dense Reconstruction-driven
Object Proposals

23

{⇠,M}
SLAM-aware

⇠2 ⇠3

⇠4
⇠1 M

⇠ M
Keyframes Map

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

Occlusion-aware Proposal
Description

Goal: Determine most likely semantic label
given all non-occluding views

24

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

25

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

25

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

For each object proposal

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

25

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

For each object proposal

We first compute the bounding box of
the object proposal onto the keyframe ⇠k

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

25

 j
1

 j
2 j

3

RoI Pooling and Description using Fast R-CNN

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

For each object proposal

We first compute the bounding box of
the object proposal onto the keyframe ⇠k

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

25

Figure 3-14: Quasi-depth estimation in scale-ambiguous maps I During the object evidence ag-
gregation step, object proposals Oj 2 O in the reconstructed scale-ambiguous map M are projected
on to each of the keyframes K, in order to identify objects that may be potentially occluded in that
particular view. The median depths (scaled arbitrarily, but consistently across all proposals) of each
object proposal is displayed in white.

labels, and that the features k are conditionally independent given the class label
y, the maximum-likelihood estimate (MLE) reduces to:

ŷjMLE = argmax

y2{1,...,C}

Y

k2Vj

p(j
k | Y = y) (3.7)

= argmax

y2{1,...,C}

X

k2Vj

log p(j
k | Y = y) (3.8)

Thus, the resulting MLE class label of an object proposal Oj is simply the class that
corresponds to having the largest sum of log-likelihoods of the class conditional
probabilities, estimated for each of their |Vj| observable viewpoints. Again, we re-
mind the reader that we take advantage of the keyframe selection strategy to eval-
uate our detector only on an informative subset of the vantage points in the scene,
and further take leverage of the spatially-aware visibility checks to selectively eval-
uate occlusion-free object proposals. This property significantly reduces the com-
putational complexity of the overall recognition pipeline, while maintaining strong
recognition performance by aggregating object evidence across multiple views.

3.3.6 SLAM-aware, Few-shot Object Learning

One of the primary advantages of maintaining SLAM estimates (as keyframes,
and the corresponding scene points) is that they can act as a powerful correspondence-
engine for data association purposes. We leveraged this property earlier to bolster
recognition performance, via object evidence aggregation (Section 3.3.5). Recov-
ering data associations robustly between views can be challenging; however, they
can be particularly useful in recognition tasks such as few-shot visual object learn-
ing (Fe-Fei et al. 2003; Fei-Fei et al. 2006; Hariharan and Girshick 2016). In few-

56

MLE factorizes assuming features are conditional
independent given class label y

 j
k

 j
1

 j
2 j

3

RoI Pooling and Description using Fast R-CNN

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

For each object proposal

We first compute the bounding box of
the object proposal onto the keyframe ⇠k

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

⇠2 ⇠3

⇠4
⇠1 M

 1

 2 3

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

25

Figure 3-14: Quasi-depth estimation in scale-ambiguous maps I During the object evidence ag-
gregation step, object proposals Oj 2 O in the reconstructed scale-ambiguous map M are projected
on to each of the keyframes K, in order to identify objects that may be potentially occluded in that
particular view. The median depths (scaled arbitrarily, but consistently across all proposals) of each
object proposal is displayed in white.

labels, and that the features k are conditionally independent given the class label
y, the maximum-likelihood estimate (MLE) reduces to:

ŷjMLE = argmax

y2{1,...,C}

Y

k2Vj

p(j
k | Y = y) (3.7)

= argmax

y2{1,...,C}

X

k2Vj

log p(j
k | Y = y) (3.8)

Thus, the resulting MLE class label of an object proposal Oj is simply the class that
corresponds to having the largest sum of log-likelihoods of the class conditional
probabilities, estimated for each of their |Vj| observable viewpoints. Again, we re-
mind the reader that we take advantage of the keyframe selection strategy to eval-
uate our detector only on an informative subset of the vantage points in the scene,
and further take leverage of the spatially-aware visibility checks to selectively eval-
uate occlusion-free object proposals. This property significantly reduces the com-
putational complexity of the overall recognition pipeline, while maintaining strong
recognition performance by aggregating object evidence across multiple views.

3.3.6 SLAM-aware, Few-shot Object Learning

One of the primary advantages of maintaining SLAM estimates (as keyframes,
and the corresponding scene points) is that they can act as a powerful correspondence-
engine for data association purposes. We leveraged this property earlier to bolster
recognition performance, via object evidence aggregation (Section 3.3.5). Recov-
ering data associations robustly between views can be challenging; however, they
can be particularly useful in recognition tasks such as few-shot visual object learn-
ing (Fe-Fei et al. 2003; Fei-Fei et al. 2006; Hariharan and Girshick 2016). In few-

56

MLE factorizes assuming features are conditional
independent given class label y

 j
k

 j
1

 j
2 j

3

RoI Pooling and Description using Fast R-CNN

Logistic regression on the
features extracted from the
object proposal j in view k

p(j
k|Y = y)

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

For each object proposal

We first compute the bounding box of
the object proposal onto the keyframe ⇠k

Algorithm 1 Monocular SLAM-Supported Object Recognition
Input: I1:T : Input image sequence
Output: ŷMLE : Most likely object label (8 Oj 2 O)

. 1. Semi-dense Reconstruction (Section 3.3.1)

. M: Map points

. K: vSLAM Optimized Keyframes ({I1, ⇠1), . . . , (IT
K

, ⇠T
K

)})
1: M, ˆK1:T

K

 M��������V�����SLAM(I1:T)
. 2. Multi-scale density based over-segmentation (Section 3.3.2)
. Oj 2 O: 3D Object Proposals

2: O M����V���O�����P��������(M)
. �k: Image Description (Dense-SIFT / Fast R-CNN) in the kth keyframe

3: �1:T
K

 E�����I����(I1:T
K

)
. 3. Pooling and Classification for each proposal

4: for Oj 2 O do
. BBj

k = BB(proj⇠
k

(Oj
)): Bounding-box projection of object Oj in kth keyframe with pose ⇠k

. j
k: Pooled features for object Oj (FLAIR Encoding / R-CNN RoI-Pooling) (Section 3.3.3)

5:

j
k R�I P������(BBj

k,�k) 8 k = {1, . . . , TK}
. 4. Occlusion-aware object evidence aggregation (Section 3.3.5)

6: ŷjMLE E�������A����������(j
1:T

K

)
7: end for

vision-based SLAM capabilities inherent in most mobile robots to better inform the
task of object recognition. We build on top of a recently introduced monocular vi-
sual SLAM solution called ORB-SLAM (Mur-Artal et al. 2015). Due to the sparse
feature-based representation that ORB-SLAM incorporates, we augment the out-
put with a semi-dense mapping component to increase the map reconstruction-
density, thereby providing qualitatively similar maps to those of Engel et al. (2014).

Keyframe-based vSLAM Given a sequence of images I1:T , the map is first
initialized via an automatic map initialization step (Mur-Artal et al. 2015), before
the incremental mapping proceeds. Once the map points (L) and camera poses
(X = x1:T) are reconstructed and refined by a post-processing two-view bundle
adjustment (BA) step, subsequent poses of the camera are tracked on a frame-by-
frame basis via the 2D-to-3D EPnP algorithm (Lepetit et al. 2009). As new features
are detected and added to the map, it soon becomes computationally expensive to
optimize over all the observations in the image sequence. This is typically resolved
with a marginalization step using keyframes (Klein and Murray 2007), where only
a subset of the original frames are considered for the windowed BA optimization
(See Figure 3-6).

Keyframes K = {(I1, ⇠1), . . . , (IT
K

, ⇠T
K

)} are tuples of images Ik 2 {I1, . . . , IT
K

}
and corresponding camera poses ⇠k 2 {⇠1, . . . , ⇠T

K

}, sampled such that they grow

44

⇠2 ⇠3

⇠4
⇠1 M

 1

 2 3

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

KEY CONCEPT

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

26

Figure 3-14: Quasi-depth estimation in scale-ambiguous maps I During the object evidence ag-
gregation step, object proposals Oj 2 O in the reconstructed scale-ambiguous map M are projected
on to each of the keyframes K, in order to identify objects that may be potentially occluded in that
particular view. The median depths (scaled arbitrarily, but consistently across all proposals) of each
object proposal is displayed in white.

labels, and that the features k are conditionally independent given the class label
y, the maximum-likelihood estimate (MLE) reduces to:

ŷjMLE = argmax

y2{1,...,C}

Y

k2Vj

p(j
k | Y = y) (3.7)

= argmax

y2{1,...,C}

X

k2Vj

log p(j
k | Y = y) (3.8)

Thus, the resulting MLE class label of an object proposal Oj is simply the class that
corresponds to having the largest sum of log-likelihoods of the class conditional
probabilities, estimated for each of their |Vj| observable viewpoints. Again, we re-
mind the reader that we take advantage of the keyframe selection strategy to eval-
uate our detector only on an informative subset of the vantage points in the scene,
and further take leverage of the spatially-aware visibility checks to selectively eval-
uate occlusion-free object proposals. This property significantly reduces the com-
putational complexity of the overall recognition pipeline, while maintaining strong
recognition performance by aggregating object evidence across multiple views.

3.3.6 SLAM-aware, Few-shot Object Learning

One of the primary advantages of maintaining SLAM estimates (as keyframes,
and the corresponding scene points) is that they can act as a powerful correspondence-
engine for data association purposes. We leveraged this property earlier to bolster
recognition performance, via object evidence aggregation (Section 3.3.5). Recov-
ering data associations robustly between views can be challenging; however, they
can be particularly useful in recognition tasks such as few-shot visual object learn-
ing (Fe-Fei et al. 2003; Fei-Fei et al. 2006; Hariharan and Girshick 2016). In few-

56

MLE factorizes assuming features are conditional
independent given class label y

 j
k

Logistic regression on the
features extracted from the
object proposal j in view k

p(j
k|Y = y)

⇠2 ⇠3

⇠4
⇠1 M

 1

 2 3

SLAM-Supported Recognition
(Ours)

Frame-based Recognition
(Classical approach)

SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

CORRECT PREDICTIONS INCORRECT PREDICTIONS27

SLAM-Supported Recognition
(Ours)

Frame-based Recognition
(Classical approach)

SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

CORRECT PREDICTIONS INCORRECT PREDICTIONS27

Object hypotheses are aggregated across
views resulting in correct classification

SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

SLAM-Supported Recognition
(Ours)

Frame-based Recognition
(Classical approach)

CORRECT PREDICTIONS INCORRECT PREDICTIONS

Certain object views are ambiguous
leading to misclassification

28

SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

SLAM-Supported Recognition
(Ours)

Frame-based Recognition
(Classical approach)

CORRECT PREDICTIONS INCORRECT PREDICTIONS28

Our approach reasons with depth and avoids
mis-classifying occluded proposals

SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

SLAM-Supported Recognition
(Ours)

Frame-based Recognition
(Classical approach)

CORRECT PREDICTIONS INCORRECT PREDICTIONS

Partial occlusions also lead to
misclassifications

29

SLAM-SUPPORTED vs. FRAME-BASED
OBJECT RECOGNITION

SLAM-Supported Recognition
(Ours)

Frame-based Recognition
(Classical approach)

CORRECT PREDICTIONS INCORRECT PREDICTIONS29

 SLAM-Supported Recognition with Fast-RCNN
Occluded objects are also shown since they are visible from other viewpoints

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

30

 SLAM-Supported Recognition with Fast-RCNN
Occluded objects are also shown since they are visible from other viewpoints

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION

30

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION PERFORMANCE

31

Figure 3-19: SLAM-aware recognition performance using Fast-RCNN I Performance compari-
son via precision-recall for the Frame-based vs. SLAM-aware object recognition. As expected, the
performance of our proposed SLAM-aware solution increases with more recognition evidence is
aggregated across multiple viewpoints.

frames at t = 3, the correctly classified bounding-box for the green bowl is eval-
uated to be a failure since the IoU metric is not satisfied. In Scene 08, however,
the green soda can is not recognized correctly by our method. This is since the
bounding-box is fairly loose around it, classifying most distant views to it as back-
ground (from other vantage points). This results in the most-likely label to be of
the background class, and thereby resulting in an incorrect classification. In Scene
11, some of the views of the co�ee table are incorrectly identified (class:cereal box),
as a part of the bounding box includes a cereal box. This intermittent classification
in frame-based methods is easily identified and remedied in SLAM-aware systems
when the classification probabilities are aggregated in a sound manner. Finally,
in Scene 13, we show another example of the superior classification performance
of our SLAM-aware method against frame-based methods that may occasionally
identify false positives, and false negatives.

3.4.2 Few-shot Object Learning

We evaluate the proposed SLAM-aware, few-shot object learning with two sets
of experiments. In the first experiment, we randomize the few-shot object learning
procedure, where the training set is curated with only a randomly sub-sampled set
of ground truth examples. The resulting object detector learned from the reduced
training set is used to perform SLAM-supported recognition as described earlier.
We refer to this as Randomized few-shot object learning with SLAM-aware recognition.
In the second experiment, we leverage the strong correspondences that SLAM pro-

62

Comparing Frame-based Recognition with SLAM-aware Recognition
on UW RGB-D Scene Dataset (v2)

H
igh

er
 is

 b
et

te
r SLAM-AWARE RECOGNITION

mAP

89.881.5

Frame-based SLAM-aware

mAP - (mean Average Precision)
(VLAD-FLAIR encoding)

H
igh

er
 is

 b
et

te
r SLAM-AWARE RECOGNITION

mAP

91.188.5

Frame-based SLAM-aware

(Fast RCNN encoding)

Only RGB channels are considered

MONOCULAR SLAM-SUPPORTED
OBJECT RECOGNITION PERFORMANCE

31

Figure 3-19: SLAM-aware recognition performance using Fast-RCNN I Performance compari-
son via precision-recall for the Frame-based vs. SLAM-aware object recognition. As expected, the
performance of our proposed SLAM-aware solution increases with more recognition evidence is
aggregated across multiple viewpoints.

frames at t = 3, the correctly classified bounding-box for the green bowl is eval-
uated to be a failure since the IoU metric is not satisfied. In Scene 08, however,
the green soda can is not recognized correctly by our method. This is since the
bounding-box is fairly loose around it, classifying most distant views to it as back-
ground (from other vantage points). This results in the most-likely label to be of
the background class, and thereby resulting in an incorrect classification. In Scene
11, some of the views of the co�ee table are incorrectly identified (class:cereal box),
as a part of the bounding box includes a cereal box. This intermittent classification
in frame-based methods is easily identified and remedied in SLAM-aware systems
when the classification probabilities are aggregated in a sound manner. Finally,
in Scene 13, we show another example of the superior classification performance
of our SLAM-aware method against frame-based methods that may occasionally
identify false positives, and false negatives.

3.4.2 Few-shot Object Learning

We evaluate the proposed SLAM-aware, few-shot object learning with two sets
of experiments. In the first experiment, we randomize the few-shot object learning
procedure, where the training set is curated with only a randomly sub-sampled set
of ground truth examples. The resulting object detector learned from the reduced
training set is used to perform SLAM-supported recognition as described earlier.
We refer to this as Randomized few-shot object learning with SLAM-aware recognition.
In the second experiment, we leverage the strong correspondences that SLAM pro-

62

Key Observation
SLAM provides useful information for handling ambiguities in

object labels, occlusion, and visibility understanding

Comparing Frame-based Recognition with SLAM-aware Recognition
on UW RGB-D Scene Dataset (v2)

H
igh

er
 is

 b
et

te
r SLAM-AWARE RECOGNITION

mAP

89.881.5

Frame-based SLAM-aware

mAP - (mean Average Precision)
(VLAD-FLAIR encoding)

H
igh

er
 is

 b
et

te
r SLAM-AWARE RECOGNITION

mAP

91.188.5

Frame-based SLAM-aware

(Fast RCNN encoding)

Only RGB channels are considered

32

SLAM-AWARE FEW-SHOT OBJECT LEARNING

⇠2 ⇠3

⇠4
⇠1 M

{⇠,M}
SLAM-aware

⇠
Keyframes

M
Map

(j
1, y)

 SLAM-aware label propagation
Occluded views are not propagated onto, avoiding any mis-labelingSLAM as a correspondence-engine

‣ SLAM-aware few-shot object learning
• Spatially-consistent proposals with occlusion-handling
• Label drift mitigation via geometric consistency

Reconstruction

33

SLAM-AWARE FEW-SHOT OBJECT LEARNING

⇠2 ⇠3

⇠4
⇠1 M

{⇠,M}
SLAM-aware

⇠
Keyframes

M
Map

(j
1, y)

 SLAM-aware label propagation
Occluded views are not propagated onto, avoiding any mis-labelingSLAM as a correspondence-engine

Supervised Label Reconstruction

‣ SLAM-aware few-shot object learning
• Spatially-consistent proposals with occlusion-handling
• Label drift mitigation via geometric consistency

34

SLAM-AWARE FEW-SHOT OBJECT LEARNING

 SLAM-aware label propagation
Occluded views are not propagated onto, avoiding any mis-labelingSLAM as a correspondence-engine

⇠2 ⇠3

⇠4
⇠1 M

{⇠,M}
SLAM-aware

⇠
Keyframes

M
Map

(j
1, y)

ReconstructionSupervised Label

‣ SLAM-aware few-shot object learning
• Spatially-consistent proposals with occlusion-handling
• Label drift mitigation via geometric consistency

SLAM-AWARE FEW-SHOT OBJECT LEARNING

35

(j
2, y) (j

3, y)

⇠2 ⇠3

⇠4
⇠1 M

(j
1, y)

 SLAM-aware label propagation
Occluded views are not propagated onto, avoiding any mis-labeling

{⇠,M}
SLAM-aware

⇠
Keyframes

M
Map

SLAM as a correspondence-engine

Reconstruction

Propagated labels
& bounding boxes

Occluding-view

‣ SLAM-aware few-shot object learning
• Spatially-consistent proposals with occlusion-handling
• Label drift mitigation via geometric consistency

SLAM-AWARE FEW-SHOT OBJECT LEARNING
PERFORMANCE

36

(a) 2-shot (b) 5-shot (c) 10-shot

Figure 3-20: SLAM-aware recognition with randomized few-shot training I The figures illustrate
the performance results of our proposed SLAM-aware recognition solution when the detector is
trained on a few examples (Few-shot training). The performance of our SLAM-aware method con-
siderably outperforms frame-based methods, despite poorly trained classifiers in the 2, 5 and 10-
shot cases. Furthermore, our approach seamlessly provides improved accuracy with more views
considered for aggregation. Here, 10% views implies that only a tenth of the keyframes are used for
inferring the object label.

Figure 3-21: Randomized few-shot training with increasing examples considered I We illustrate
the performance of our proposed SLAM-aware recognition solution when the detector is trained
on a randomized subset of the ground truth labels. Despite being trained on incomplete informa-
tion, the SLAM-supported recognition solution can considerably bolster recognition performance
by aggregating evidence across multiple-views. In the above experiments, we also investigate the
SLAM-aware solution where only a fraction of keyframe views are considered (10%, 30%) to in-
fer the object label. With increasing views considered, our proposed method is able to seamlessly
provide better recognition performance.

aggregation step, our approach is able to seamlessly provide better recognition per-
formance. In Figures 3-21 and 3-20, we notice a considerable bump in performance
with the first 10% of views considered for SLAM-aware view-aggregation, before
we observe diminishing returns with additional views.

SLAM-aware few-shot object learning with SLAM-aware recognition Given
limited labeled information, few-shot object learning can especially benefit from ad-
ditional constraints or assumptions as it allows to reason over the unlabeled data.
By leveraging accurate data associations between various keyframe views, a SLAM-

64

Randomized Few-Shot Learning with SLAM-aware Recognition

‣ Randomized few-shot object learning
• Randomly selected training information
• Poorly trained classifiers can benefit from SLAM-aware recognition

SLAM-AWARE FEW-SHOT OBJECT LEARNING
PERFORMANCE

37

SLAM-aware Few-Shot Learning with SLAM-aware Recognition

‣ SLAM-aware few-shot object learning
• Randomly selected training information with SLAM-aware label propagation
• Despite minimal labels, trained classifiers are significantly more powerful

(a) 1-shot (b) 2-shot (b) 4-shot

Figure 3-22: SLAM-aware recognition with few-shot SLAM-aware training I The figures illus-
trate the performance results of our proposed SLAM-aware recognition solution when the detector
is trained on a few examples (Few-shot training). The performance of our SLAM-aware method
considerably outperforms frame-based methods, despite poorly trained classifiers in the 2, 5 and
10-shot cases. Furthermore, approach seamlessly provides improved accuracy with more views
considered for aggregation. Here, 10% views implies that only a tenth of the keyframes are used for
inferring the object label.

Figure 3-23: SLAM-aware few-shot training with increasing examples considered I We illus-
trate the performance of our proposed SLAM-aware few-shot training solution. The SLAM-aware
few-shot training solution is able to achieve high precision-recall, with significantly fewer training
examples considered compared to the randomized few-shot training case.

shot learning approach also shows promising results even in the extreme one-shot
training case (Figure 3-22), achieve an mAP of 85.3% in the frame-based evaluation.

3.5 Discussion and Future Work

Our earlier contribution (Pillai and Leonard 2015) has inspired several recent
works in SLAM-supported recognition (Bogun et al. 2015; Tateno et al. 2016) and
semantic mapping (Dong et al. 2016; Sünderhauf et al. 2016). With the availability
of pre-trained CNN-based models, the semantic image understanding landscape
has considerably changed. Recognition models are getting considerably stronger to

66

SLAM-AWARE FEW-SHOT OBJECT LEARNING
PERFORMANCE

38

‣ SLAM-aware few-shot object learning
• Randomly selected training labels with SLAM-aware label propagation
• Despite fewer labels provided, SLAM-aware few-shot training can still achieve strong performance

Method Frame-based Recognition
mAP / Recall / F1-score

SLAM-aware Recognition
mAP / Recall / F1-score

2-shot (Randomized) 80.5 / 63.4 / 69.7 83.1 / 74.8 / 77.1

5-shot (Randomized) 76.0 / 72.6 / 73.7 81.6 / 80.9 / 80.5

10-shot (Randomized) 79.6 / 74.5 / 76.0 81.6 / 82.2 / 81.5

20-shot (Randomized) 85.9 / 80.5 / 82.2 91.0 / 89.8 / 90.2

1-shot (SLAM-aware) 85.3 / 85.2 / 82.6 87.9 / 87.0 / 84.3

2-shot (SLAM-aware) 87.4 / 87.6 / 86.3 89.6 / 89.0 / 87.3

4-shot (SLAM-aware) 89.6 / 89.3 / 89.2 90.6 / 90.8 / 90.5

Comparison of SLAM-aware and randomized few-shot object learning

RECOGNITION-SUPPORTED SLAM

Future Work: Recognition-Supported SLAM
(Long-range loop-closure corrections with learned objects)

Pure Visual
Odometry

Optimized
Poses

‣ Object Recognition as a front-end
measurement for SLAM
• Rich feature capacity
• Scalable / Reduced complexity
• Viewpoint, Lighting invariant
• Pre-trained recognition models
• Perceptual aliasing
• Lack of contextual / scene knowledge

Object
Landmarks

39

PRIOR ART
1. Object-based SLAM: SLAM++ [Moreno et. al 2013]

2. Semantic SFM [Bao et. al 2011]

3. Localization from Semantic Observations [Antanasov et. al 2015]

RECOGNITION-SUPPORTED SLAM

Future Work: Recognition-Supported SLAM
(Long-range loop-closure corrections with learned objects)

Pure Visual
Odometry

Optimized
Poses

‣ Object Recognition as a front-end
measurement for SLAM
• Rich feature capacity
• Scalable / Reduced complexity
• Viewpoint, Lighting invariant
• Pre-trained recognition models
• Perceptual aliasing
• Lack of contextual / scene knowledge

Object
Landmarks

39

PRIOR ART
1. Object-based SLAM: SLAM++ [Moreno et. al 2013]

2. Semantic SFM [Bao et. al 2011]

3. Localization from Semantic Observations [Antanasov et. al 2015]

SLAM AS A SUPERVISORY SIGNAL

40

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

40

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

41

‣ Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

VISUAL EGO-MOTION

41

‣ Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

VISUAL EGO-MOTION

I1

41

‣ Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

VISUAL EGO-MOTION

f(It�1, It) 7! u

Odometry
(Relative motion)

Subsequent Images

fDETERMINE such that

I1

41

‣ Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

VISUAL EGO-MOTION

f(It�1, It) 7! u

Odometry
(Relative motion)

Subsequent Images

fDETERMINE such that

I1

p0

I2 I3

It
It�1

41

work architecture that maps observed optical flow vectors to an ego-motion density
estimate via a Mixture Density Network (MDN). By modeling the architecture as a
Conditional Variational Autoencoder (C-VAE), our model is able to provide intro-
spective reasoning and prediction for ego-motion induced scene-flow. Addition-
ally, our proposed model is especially amenable to bootstrapped ego-motion learning
in robots where the supervision in ego-motion estimation for a particular camera
sensor can be obtained from a GPS-aided SLAM solution (i.e. GPS/INS and wheel-
odometry fusion). Through experiments, we show the utility of our proposed ap-
proach in enabling the concept of self-supervised learning for visual ego-motion
estimation in autonomous robots.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 5-1: Visual Ego-motion Learning I In a typical factor-graph formulation of Pose-Graph
SLAM, the visual ego-motion contributes to the factors (ui�1,i) in the odometry chain (in red). This
chapter focuses on recovering these odometry factors by visually tracking subsequent images.

5.1 Introduction

Visual odometry (VO) (Nistér et al. 2004), commonly referred to as ego-motion
estimation, is a fundamental capability that enables robots to reliably navigate its
immediate environment. With the wide-spread adoption of cameras in various
robotics applications, there has been an evolution in visual odometry algorithms
with a wide set of variants including monocular VO (Konolige et al. 2010a; Nistér
et al. 2004), stereo VO (Howard 2008; Kitt et al. 2010) and even non-overlapping
n-camera VO (Hee Lee et al. 2013; Kneip et al. 2013). Furthermore, each of these
algorithms has been custom tailored for specific camera optics (pinhole, fisheye,
catadioptric) and the range of motions observed by these cameras mounted on var-
ious platforms (Scaramuzza 2011).

With increasing levels of model specification for each domain, we expect these
algorithms to perform di�erently from others while maintaining lesser generality
across various optics and camera configurations. Moreover, the strong dependence
of these algorithms on their model specification limits the ability to actively mon-
itor and optimize their intrinsic and extrinsic model parameters in an online fash-

93

u Visual Odometry
Measurements

Factor Graph for Vision-based Pose-Graph SLAM

x Robot state

‣ Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

VISUAL EGO-MOTION

f(It�1, It) 7! u

Odometry
(Relative motion)

Subsequent Images

fDETERMINE such that

I1

p0

I2 I3

It
It�1

41

work architecture that maps observed optical flow vectors to an ego-motion density
estimate via a Mixture Density Network (MDN). By modeling the architecture as a
Conditional Variational Autoencoder (C-VAE), our model is able to provide intro-
spective reasoning and prediction for ego-motion induced scene-flow. Addition-
ally, our proposed model is especially amenable to bootstrapped ego-motion learning
in robots where the supervision in ego-motion estimation for a particular camera
sensor can be obtained from a GPS-aided SLAM solution (i.e. GPS/INS and wheel-
odometry fusion). Through experiments, we show the utility of our proposed ap-
proach in enabling the concept of self-supervised learning for visual ego-motion
estimation in autonomous robots.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 5-1: Visual Ego-motion Learning I In a typical factor-graph formulation of Pose-Graph
SLAM, the visual ego-motion contributes to the factors (ui�1,i) in the odometry chain (in red). This
chapter focuses on recovering these odometry factors by visually tracking subsequent images.

5.1 Introduction

Visual odometry (VO) (Nistér et al. 2004), commonly referred to as ego-motion
estimation, is a fundamental capability that enables robots to reliably navigate its
immediate environment. With the wide-spread adoption of cameras in various
robotics applications, there has been an evolution in visual odometry algorithms
with a wide set of variants including monocular VO (Konolige et al. 2010a; Nistér
et al. 2004), stereo VO (Howard 2008; Kitt et al. 2010) and even non-overlapping
n-camera VO (Hee Lee et al. 2013; Kneip et al. 2013). Furthermore, each of these
algorithms has been custom tailored for specific camera optics (pinhole, fisheye,
catadioptric) and the range of motions observed by these cameras mounted on var-
ious platforms (Scaramuzza 2011).

With increasing levels of model specification for each domain, we expect these
algorithms to perform di�erently from others while maintaining lesser generality
across various optics and camera configurations. Moreover, the strong dependence
of these algorithms on their model specification limits the ability to actively mon-
itor and optimize their intrinsic and extrinsic model parameters in an online fash-

93

u Visual Odometry
Measurements

Factor Graph for Vision-based Pose-Graph SLAM

x Robot state

‣ Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

VISUAL EGO-MOTION

f(It�1, It) 7! u

Odometry
(Relative motion)

Subsequent Images

fDETERMINE such that

I1

p0

I2 I3

It
It�1

X

⇤
= argmax

X

p(X | U,Z
c

) (2.7)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

X

(j,k)2C
khc(xj,xk)� zjkk2P

c

| {z }
Loop-Closure Constraint Factors

)
(2.8)

2.1.3 Data association

Data association is one of the key components in a SLAM system (Bar-Shalom
et al. 1990). While a lot of care is taken in setting up the optimization objective, it is
critical to ensure that the measurements fed into the back-end optimization is not
erroneous. Data association can be evaluated in the same way as classical recogni-
tion related tasks: they need to achieve high-precision in the set of measurements
associated, while ensuring high-recall of the relevant measurements that can be
associated (Neira and Tardós 2001). We elaborate on the necessity of robust data
association in Section 2.3.

2.2 Factor Graphs for SLAM

x1 x2 x3

f1 f2 f3

Figure 2-2: Factor graph example I A factor graph is a bipartite graph that describes the factoriza-
tion of a joint probability distribution over latent random variables. The figure illustrates the condi-
tional independence constraints between variables, whose joint probability distribution can be writ-
ten as the product of them factors, given by f(x1, x2, x3) =

Qm
i=1 fi(Xi) = f1(x1, x3)f2(x2)f3(x2, x3).

Xi refers to the subset of variables that fi depends on.

A factor graph (Kschischang et al. 2001) is a bipartite graph that encodes how
a function of several variables factorizes into its a product of local functions. A
factor graph typically consists of nodes representing latent variables considered in
the estimation problem, and factors that represent the information between or on

27

42

MOTIVATION

‣ Why learn Visual Ego-motion / Odometry?

42

MOTIVATION

‣ Why learn Visual Ego-motion / Odometry?

• Varied camera optics: Pinhole, Fisheye, Catadioptric

42

Varied Camera Optics
(a) Pinhole (b) Fisheye (c) Catadioptric

Im
ag

e
Fo

rw
ar

d

(a) Pinhole (b) Fisheye (c) Catadioptric

Figure 5-8: Introspective reasoning for scene-flow predictionI Illustrated above are the dominant
flow vectors corresponding to scene-flow given the corresponding ego-motion. While this module
is currently only used for introspection purposes, we expect it to be critical in outlier rejection for
robust ego-motion estimation. Row 1: Sample image from camera, Row 2: Flow induced by forward
motion

likely flow �x̂ induced given an ego-motion estimate z, and feature location x. We
propose a scene-flow specific autoencoder that encodes the implicit egomotion ob-
served by the sensor, while jointly reasoning over the latent depth of each of the
individual tracked features. In order to make the entire architecture fully di�eren-
tiable, only the dominant mode (mode corresponding to largest mixture coe�cient)
is sampled to recover the induced ego-motion flow. While the re-parameterization
trick, applied in VAEs to allow the back-propagation over the stochastic nodes, can
be applied to the full mixture model (Graves 2016), we only consider recovering the
flow given the dominant mode in this work.

LCVAE =E
⇥
log p✓(�x|z, x)⇤

| {z }
Reconstruction Error

�DKL

⇥
q�(z|x,�x)||p✓(z|x)

⇤
| {z }

Variational Regularization
(5.18)

Through the proposed denoising autoencoder model, we are also able to attain
an introspection mechanism for the presence of outliers. We incorporate this addi-
tional module via an auxiliary loss as specified in Eqn 5.18. An illustration of these
flow predictions are shown in Figures 5-8 and 5-9.

108

MOTIVATION

‣ Why learn Visual Ego-motion / Odometry?

• Varied camera optics: Pinhole, Fisheye, Catadioptric
• Motion constraints: Unconstrained VO, Constrained VO

 Variants

• 2-D to 2-D
• 3-D to 3-D
• 3-D to 2-D (PnP)

42

Varied Camera Optics
(a) Pinhole (b) Fisheye (c) Catadioptric

Im
ag

e
Fo

rw
ar

d

(a) Pinhole (b) Fisheye (c) Catadioptric

Figure 5-8: Introspective reasoning for scene-flow predictionI Illustrated above are the dominant
flow vectors corresponding to scene-flow given the corresponding ego-motion. While this module
is currently only used for introspection purposes, we expect it to be critical in outlier rejection for
robust ego-motion estimation. Row 1: Sample image from camera, Row 2: Flow induced by forward
motion

likely flow �x̂ induced given an ego-motion estimate z, and feature location x. We
propose a scene-flow specific autoencoder that encodes the implicit egomotion ob-
served by the sensor, while jointly reasoning over the latent depth of each of the
individual tracked features. In order to make the entire architecture fully di�eren-
tiable, only the dominant mode (mode corresponding to largest mixture coe�cient)
is sampled to recover the induced ego-motion flow. While the re-parameterization
trick, applied in VAEs to allow the back-propagation over the stochastic nodes, can
be applied to the full mixture model (Graves 2016), we only consider recovering the
flow given the dominant mode in this work.

LCVAE =E
⇥
log p✓(�x|z, x)⇤

| {z }
Reconstruction Error

�DKL

⇥
q�(z|x,�x)||p✓(z|x)

⇤
| {z }

Variational Regularization
(5.18)

Through the proposed denoising autoencoder model, we are also able to attain
an introspection mechanism for the presence of outliers. We incorporate this addi-
tional module via an auxiliary loss as specified in Eqn 5.18. An illustration of these
flow predictions are shown in Figures 5-8 and 5-9.

108

MOTIVATION

 2-D to 2-D Variants

•5-point
• 8-point
• 1-point, 2-point
• Stereo, RGB-D

[Scaramuzza et. al 2011]

‣ Why learn Visual Ego-motion / Odometry?

• Varied camera optics: Pinhole, Fisheye, Catadioptric
• Motion constraints: Unconstrained VO, Constrained VO
• Tedious calibration / monitoring: Intrinsics, Extrinsics

 Variants

• 2-D to 2-D
• 3-D to 3-D
• 3-D to 2-D (PnP)

42

Varied Camera Optics
(a) Pinhole (b) Fisheye (c) Catadioptric

Im
ag

e
Fo

rw
ar

d

(a) Pinhole (b) Fisheye (c) Catadioptric

Figure 5-8: Introspective reasoning for scene-flow predictionI Illustrated above are the dominant
flow vectors corresponding to scene-flow given the corresponding ego-motion. While this module
is currently only used for introspection purposes, we expect it to be critical in outlier rejection for
robust ego-motion estimation. Row 1: Sample image from camera, Row 2: Flow induced by forward
motion

likely flow �x̂ induced given an ego-motion estimate z, and feature location x. We
propose a scene-flow specific autoencoder that encodes the implicit egomotion ob-
served by the sensor, while jointly reasoning over the latent depth of each of the
individual tracked features. In order to make the entire architecture fully di�eren-
tiable, only the dominant mode (mode corresponding to largest mixture coe�cient)
is sampled to recover the induced ego-motion flow. While the re-parameterization
trick, applied in VAEs to allow the back-propagation over the stochastic nodes, can
be applied to the full mixture model (Graves 2016), we only consider recovering the
flow given the dominant mode in this work.

LCVAE =E
⇥
log p✓(�x|z, x)⇤

| {z }
Reconstruction Error

�DKL

⇥
q�(z|x,�x)||p✓(z|x)

⇤
| {z }

Variational Regularization
(5.18)

Through the proposed denoising autoencoder model, we are also able to attain
an introspection mechanism for the presence of outliers. We incorporate this addi-
tional module via an auxiliary loss as specified in Eqn 5.18. An illustration of these
flow predictions are shown in Figures 5-8 and 5-9.

108

MOTIVATION

 2-D to 2-D Variants

•5-point
• 8-point
• 1-point, 2-point
• Stereo, RGB-D

[Scaramuzza et. al 2011]

GROWING SENSOR CONFIGURATION

MIT DGC Vehicle (2007) Uber ATG Vehicle (2017)

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

43

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ “Ground-truth” Trajectory Generation

• Generate target variables for self-supervision

43

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ “Ground-truth” Trajectory Generation

• Generate target variables for self-supervision

43

f(It�1, It) 7!
Odometry

(Relative motion)Subsequent Images

z

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ “Ground-truth” Trajectory Generation

• Generate target variables for self-supervision

43

p0

(I1, zGPS
1)

(I2, zGPS
2)

(It, zGPS
t)

• Natural synchronization of Images/GPS/INS/Wheel
Odometry to first solve a GPS-aided localization problem

f(It�1, It) 7!
Odometry

(Relative motion)Subsequent Images

z

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ “Ground-truth” Trajectory Generation

• Generate target variables for self-supervision

43

Long-term, drift-free,
accurate robot trajectory

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Fused Ego-motion Trajectory

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

p
GPS Prior

x

Robot state

u
Wheel Odometry

p0

(I1, zGPS
1)

(I2, zGPS
2)

(It, zGPS
t)

• Natural synchronization of Images/GPS/INS/Wheel
Odometry to first solve a GPS-aided localization problem

f(It�1, It) 7!
Odometry

(Relative motion)Subsequent Images

z

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ “Ground-truth” Trajectory Generation

• Generate target variables for self-supervision

43

Long-term, drift-free,
accurate robot trajectory

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Fused Ego-motion Trajectory

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

p
GPS Prior

x

Robot state

u
Wheel Odometry

p0

(I1, zGPS
1)

(I2, zGPS
2)

(It, zGPS
t)

• Natural synchronization of Images/GPS/INS/Wheel
Odometry to first solve a GPS-aided localization problem

f(It�1, It) 7!
Odometry

(Relative motion)Subsequent Images

z

2.2.2 GPS-aided localization

Another application of localization-only SLAM that we shall refer to in later
chapters is GPS-aided localization (Indelman et al. 2013). This is typically consid-
ered in standard navigation-related tasks where the goal is to fuse mutually uncor-
related sensor measurements from wheel odometry or IMUs and GPS. While GPS
is known to provide precise global positioning on a coarser timescale, IMUs and
wheel odometry operate at much higher frequencies providing accurate and fine-
grained relative pose estimates on a shorter time-scale. The fusion of both these
complementary measurements allow us to recover globally-consistent, and accu-
rate, long-term trajectories that the robot has observed. This is formalized as,

X

⇤
= argmax

X

p(X | U,Zg) (2.14)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

GX

j=1

khg(xj)� zjk2P
g

| {z }
GPS Measurement Priors

)
(2.15)

Figure 2-5 illustrates the equivalent factor graph representation of this specialized
SLAM problem.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0 p3 pt�1

Figure 2-5: GPS-Aided Localization as a factor graph I The factor graph illustration of the GPS-
Aided Localization problem that we solve to enable self-supervision in Chapters 5 and 6. The odom-
etry factors are represented as ui and GPS measurement prior factors are represented as pj .

2.3 Vision-based SLAM Front-Ends

So far we have described the critical optimization objective that is responsible
for accurate recovery of the robot’s trajectory and the landmarks that it has ob-
served. We refer to this component as the “back-end” to the SLAM implementa-
tion, as it sits behind an abstraction layer that is agnostic to the di�erent sensors
and measurement modalities available to the robot. A typical mobile robot may
be equipped with a multitude of sensors including cameras, laser range-finders,
wheel-encoders, IMUs (Inertial Measurement Units), GPS modules etc. We expect

30

EGO-MOTION REGRESSION

Images

Fused GPS/INS
w/ Odometry

Ego-motion
Regression

I1 I2 I3 IT�1 IT

Model Model Model
z1,2 z2,3 zT�1,T

xT�1,Tx1,2 x2,3

Sy
nc

hr
on

ize
d

Im
ag

es
 /

St
at

e

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Optical Flow
x = (x,�x)

z

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

44

f : x 7! z

EGO-MOTION REGRESSION

Images

Fused GPS/INS
w/ Odometry

Ego-motion
Regression

I1 I2 I3 IT�1 IT

Model Model Model
z1,2 z2,3 zT�1,T

xT�1,Tx1,2 x2,3

Sy
nc

hr
on

ize
d

Im
ag

es
 /

St
at

e

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

+Fused GPS/INS trajectory representation(Ground truth target poses)

Unsupervised feature tracking (KLT)in new camera sensor with synchronized target poses from fused GPS/INSBootstrapping visual ego-motion learningin new camera sensor

Synchronized camera sensor timestamps with GPS/INS timestamps

UNSUPERVISEDROBOT DATA COLLECTION BOOTSTRAPPEDGROUND TRUTH GENERATION

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Optical Flow
x = (x,�x)

z

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

44

f : x 7! z

Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

‣ Contributions

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

‣ Contributions
• Ego-motion as a learned density estimation problem

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

‣ Contributions
• Ego-motion as a learned density estimation problem
• Generic camera optics (Pinhole, Fisheye, Catadioptric)

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

‣ Contributions
• Ego-motion as a learned density estimation problem
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Introspective model-based reasoning

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

‣ Contributions
• Ego-motion as a learned density estimation problem
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Introspective model-based reasoning

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Mixture Density Network (MDN) in a Conditional VAE (C-VAE)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

Towards Visual Ego-motion Learning in Robots (IROS ’17)

‣ Contributions
• Ego-motion as a learned density estimation problem
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Introspective model-based reasoning

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Mixture Density Network (MDN) in a Conditional VAE (C-VAE)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

Sparse Optical
Flow

Ego-motion
Density

Predicted
Feature Tracks

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

Towards Visual Ego-motion Learning in Robots (IROS ’17)

‣ Contributions
• Ego-motion as a learned density estimation problem
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Introspective model-based reasoning

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Mixture Density Network (MDN) in a Conditional VAE (C-VAE)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

Sparse Optical
Flow

Ego-motion
Density

Predicted
Feature Tracks

z Ego-motion density estimate

Encoder estimating ego-motion pdf given input
feature location and flow

q�(z|x,�x)

Decoder estimating scene flow given input feature
location and sampled ego-motionp✓(�x|z, x)

Input feature location, and optical flow
x = (x,�x)

45
Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

Towards Visual Ego-motion Learning in Robots (IROS ’17)

Mixture Density Network (MDN) in a Conditional VAE (C-VAE)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ Ego-motion Density Estimation
• Mixture Density Network (MDN): Neural Network whose
outputs are parameters of a Gaussian Mixture Model (GMM)

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Towards Visual Ego-motion Learning in Robots (IROS ’17)

46

z
Ego-motion density estimate

Optical
Flow

Sparse Optical
Flow

Ego-motion
Density

Predicted
Feature Tracks

Mixture Density Network (MDN) in a Conditional VAE (C-VAE)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ Ego-motion Density Estimation
• Mixture Density Network (MDN): Neural Network whose
outputs are parameters of a Gaussian Mixture Model (GMM)

parameters as the output of a conventional neural network
which takes x as its input. Following [14], the outputs of
the neural network are constrained as follows: (i) the mix-
ing coefficients must sum to 1, i.e.

P
K ⇡k(x) = 1 where

0  ⇡k(x)  1 (Eqn. 2). (ii) variances �k(x) are strictly
positive via the softmax activation (Eqn. 3).

⇡k(x) =
exp(a⇡k)PK
l=1 exp(a

⇡
l)

(2)

�k(x) = exp(a�k), µk(x) = aµk (3)

E(w) = �
NX

n=1

(
KX

k=1

⇡k(x)N (z | µk(x),�
2
k(x))

)
(4)

L(D) = � log

(
KX

k=1

⇡k N (x | µk,⌃k)

)
(5)

The proposed model is learned end-to-end by first opti-
mizing the data log-likelihood described over the Gaussian
Mixture Model (GMM). More specifically, we minimize the
negative log likelihood given the input KLT feature tracks
(position in normalized image coordinates, and normalized
flow).

As with most ego-motion estimation solutions, it is im-
perative to determine the minimal parameterization of the
underlying motion manifold. Several solvers including Nis-
ter’s 5-point [1, 50], 8-point [51, 52] require several points
in order to infer the relative motion, in the most generic
camera model case. In certain restricted scene structure or
motion manifolds, several variants of ego-motion estima-
tion are proposed [13, 34, 30, 31, 32, 33]. However, we
consider the case of modeling the generic camera as a single

pixel, and hence are interested in determining the full range
of ego-motion, often restricted, that induces the pixel-level
optical flow. This allows the freedom to model various un-
constrained and partially constrained motions that typically
affect the overall robustness of existing ego-motion algo-
rithms. Furthermore, we model the mapping from optical
flow to ego-motion on a sensel-level allowing for the prob-
abilistic fusion of ego-motion density estimates across ar-
bitrary pixels, independent of the sensor from which it was
acquired.

3.2. Robust flow using denoising autoencoders

Scene flow is a fundamental capability that provides di-
rectly measurable quantities for egomotion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles are a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,

one needs to deal with noise propagated in order to pro-
vide robust estimates for visual odometry. We treat scene
flow obtained from any general purpose optical-flow tracker
(such as KLT) as a generative model whose latent factors
are determined by the underlying feature depth, and rela-
tive camera motion, while assuming a static environment.
We propose a scene-flow specific autoencoder that encodes
the implicit egomotion observed by the sensor, while jointly
reasoning over the latent depth of each of the individual
tracked features. Through the proposed denoising autoen-
coder model, we are also able to maintain robustness in the
prediction of the motion estimates despite the overwhelm-
ing presence of outliers.

Since we are particularly interested in the relative motion
undergone by the camera, the autoencoder regresses for this
latent relative motion estimate via an auxiliary loss.

LVAE(�, ✓,x) = �DKL(q�(z|x)||p✓(z)) + Eq�(z|x)
⇥
log p✓(x|z)

⇤

(6)

3.3. Learning to select keyframes

As previously discussed in Section 2, frame-to-frame
VO suffers from growing errors in relative pose estimation,
typically observed in open-loop odometry chains within the
pose-graph context of state-estimation. To this end, we pro-
pose a trainable keyframe-selection strategy that avoids the
pitfalls in naive frame-to-frame VO previously discussed.

In Figure 2, we illustrate the methodology to train a
keyframe-selection strategy for reduced error propagation
induced in relative pose estimation.

- Delay regression or classify pairs of input samples in
order to minimize the accumulated uncertainty associated
with regressing pose between subsequent frames. VO be-
comes a simultaneous classification and regression prob-
lem, where features are classified first before they are re-
gressed to estimate motion.

Keyframe-selection strategy

Figure 2: Learning to select keyframes: The triplet pair allows us to
consider the keyframe-based VO problem as a simultaneous classification
and regression problem.

parameters as the output of a conventional neural network
which takes x as its input. Following [14], the outputs of
the neural network are constrained as follows: (i) the mix-
ing coefficients must sum to 1, i.e.

P
K ⇡k(x) = 1 where

0  ⇡k(x)  1 (Eqn. 2). (ii) variances �k(x) are strictly
positive via the softmax activation (Eqn. 3).

⇡k(x) =
exp(a⇡k)PK
l=1 exp(a

⇡
l)

(2)

�k(x) = exp(a�k), µk(x) = aµk (3)

E(w) = �
NX

n=1

(
KX

k=1

⇡k(x)N (z | µk(x),�
2
k(x))

)
(4)

L(D) = � log

(
KX

k=1

⇡k N (x | µk,⌃k)

)
(5)

The proposed model is learned end-to-end by first opti-
mizing the data log-likelihood described over the Gaussian
Mixture Model (GMM). More specifically, we minimize the
negative log likelihood given the input KLT feature tracks
(position in normalized image coordinates, and normalized
flow).

As with most ego-motion estimation solutions, it is im-
perative to determine the minimal parameterization of the
underlying motion manifold. Several solvers including Nis-
ter’s 5-point [1, 50], 8-point [51, 52] require several points
in order to infer the relative motion, in the most generic
camera model case. In certain restricted scene structure or
motion manifolds, several variants of ego-motion estima-
tion are proposed [13, 34, 30, 31, 32, 33]. However, we
consider the case of modeling the generic camera as a single

pixel, and hence are interested in determining the full range
of ego-motion, often restricted, that induces the pixel-level
optical flow. This allows the freedom to model various un-
constrained and partially constrained motions that typically
affect the overall robustness of existing ego-motion algo-
rithms. Furthermore, we model the mapping from optical
flow to ego-motion on a sensel-level allowing for the prob-
abilistic fusion of ego-motion density estimates across ar-
bitrary pixels, independent of the sensor from which it was
acquired.

3.2. Robust flow using denoising autoencoders

Scene flow is a fundamental capability that provides di-
rectly measurable quantities for egomotion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles are a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,

one needs to deal with noise propagated in order to pro-
vide robust estimates for visual odometry. We treat scene
flow obtained from any general purpose optical-flow tracker
(such as KLT) as a generative model whose latent factors
are determined by the underlying feature depth, and rela-
tive camera motion, while assuming a static environment.
We propose a scene-flow specific autoencoder that encodes
the implicit egomotion observed by the sensor, while jointly
reasoning over the latent depth of each of the individual
tracked features. Through the proposed denoising autoen-
coder model, we are also able to maintain robustness in the
prediction of the motion estimates despite the overwhelm-
ing presence of outliers.

Since we are particularly interested in the relative motion
undergone by the camera, the autoencoder regresses for this
latent relative motion estimate via an auxiliary loss.

LVAE(�, ✓,x) = �DKL(q�(z|x)||p✓(z)) + Eq�(z|x)
⇥
log p✓(x|z)

⇤

(6)

3.3. Learning to select keyframes

As previously discussed in Section 2, frame-to-frame
VO suffers from growing errors in relative pose estimation,
typically observed in open-loop odometry chains within the
pose-graph context of state-estimation. To this end, we pro-
pose a trainable keyframe-selection strategy that avoids the
pitfalls in naive frame-to-frame VO previously discussed.

In Figure 2, we illustrate the methodology to train a
keyframe-selection strategy for reduced error propagation
induced in relative pose estimation.

- Delay regression or classify pairs of input samples in
order to minimize the accumulated uncertainty associated
with regressing pose between subsequent frames. VO be-
comes a simultaneous classification and regression prob-
lem, where features are classified first before they are re-
gressed to estimate motion.

Keyframe-selection strategy

Figure 2: Learning to select keyframes: The triplet pair allows us to
consider the keyframe-based VO problem as a simultaneous classification
and regression problem.

Constraints
(via activations)

parameters as the output of a conventional neural network
which takes x as its input. Following [14], the outputs of
the neural network are constrained as follows: (i) the mix-
ing coefficients must sum to 1, i.e.

P
K ⇡k(x) = 1 where

0  ⇡k(x)  1 (Eqn. 2). (ii) variances �k(x) are strictly
positive via the softmax activation (Eqn. 3).

⇡k(x) =
exp(a⇡k)PK
l=1 exp(a

⇡
l)

(2)

�k(x) = exp(a�k), µk(x) = aµk (3)

E(w) = �
NX

n=1

(
KX

k=1

⇡k(x)N (z | µk(x),�
2
k(x))

)
(4)

L(D) = � log

(
KX

k=1

⇡k N (x | µk,⌃k)

)
(5)

The proposed model is learned end-to-end by first opti-
mizing the data log-likelihood described over the Gaussian
Mixture Model (GMM). More specifically, we minimize the
negative log likelihood given the input KLT feature tracks
(position in normalized image coordinates, and normalized
flow).

As with most ego-motion estimation solutions, it is im-
perative to determine the minimal parameterization of the
underlying motion manifold. Several solvers including Nis-
ter’s 5-point [1, 50], 8-point [51, 52] require several points
in order to infer the relative motion, in the most generic
camera model case. In certain restricted scene structure or
motion manifolds, several variants of ego-motion estima-
tion are proposed [13, 34, 30, 31, 32, 33]. However, we
consider the case of modeling the generic camera as a single

pixel, and hence are interested in determining the full range
of ego-motion, often restricted, that induces the pixel-level
optical flow. This allows the freedom to model various un-
constrained and partially constrained motions that typically
affect the overall robustness of existing ego-motion algo-
rithms. Furthermore, we model the mapping from optical
flow to ego-motion on a sensel-level allowing for the prob-
abilistic fusion of ego-motion density estimates across ar-
bitrary pixels, independent of the sensor from which it was
acquired.

3.2. Robust flow using denoising autoencoders

Scene flow is a fundamental capability that provides di-
rectly measurable quantities for egomotion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles are a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,

one needs to deal with noise propagated in order to pro-
vide robust estimates for visual odometry. We treat scene
flow obtained from any general purpose optical-flow tracker
(such as KLT) as a generative model whose latent factors
are determined by the underlying feature depth, and rela-
tive camera motion, while assuming a static environment.
We propose a scene-flow specific autoencoder that encodes
the implicit egomotion observed by the sensor, while jointly
reasoning over the latent depth of each of the individual
tracked features. Through the proposed denoising autoen-
coder model, we are also able to maintain robustness in the
prediction of the motion estimates despite the overwhelm-
ing presence of outliers.

Since we are particularly interested in the relative motion
undergone by the camera, the autoencoder regresses for this
latent relative motion estimate via an auxiliary loss.

LVAE(�, ✓,x) = �DKL(q�(z|x)||p✓(z)) + Eq�(z|x)
⇥
log p✓(x|z)

⇤

(6)

3.3. Learning to select keyframes

As previously discussed in Section 2, frame-to-frame
VO suffers from growing errors in relative pose estimation,
typically observed in open-loop odometry chains within the
pose-graph context of state-estimation. To this end, we pro-
pose a trainable keyframe-selection strategy that avoids the
pitfalls in naive frame-to-frame VO previously discussed.

In Figure 2, we illustrate the methodology to train a
keyframe-selection strategy for reduced error propagation
induced in relative pose estimation.

- Delay regression or classify pairs of input samples in
order to minimize the accumulated uncertainty associated
with regressing pose between subsequent frames. VO be-
comes a simultaneous classification and regression prob-
lem, where features are classified first before they are re-
gressed to estimate motion.

Keyframe-selection strategy

Figure 2: Learning to select keyframes: The triplet pair allows us to
consider the keyframe-based VO problem as a simultaneous classification
and regression problem.

Outputs

GMM p(zi | xi) =
KX

k=1

⇡k(xi)N (z | µk(xi),�
2
k(xi))

(Ego-motion density estimate given optical flow)

LMDN = �
NX

n=1

ln

(
KX

k=1

⇡k(xn)N (z | µk(xn),�
2
k(xn))

)

(Minimize neg. log-likelihood under the GMM model)

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Towards Visual Ego-motion Learning in Robots (IROS ’17)

46

z
Ego-motion density estimate

Optical
Flow

Sparse Optical
Flow

Ego-motion
Density

Predicted
Feature Tracks

Mixture Density Network (MDN) in a Conditional VAE (C-VAE)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

C-VAE

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

‣ Density Estimation with flow introspection
• Mixture Density Network (MDN): Neural Network whose
outputs are parameters of a Gaussian Mixture Model (GMM)

(Variational Lower Bound Objective)

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Towards Visual Ego-motion Learning in Robots (IROS ’17)

47

z
Ego-motion density estimate

Optical
Flow

• Conditional-VAE (C-VAE) to reconstruct flow vectors
given ego-motion

KLT Feature
Tracks

Ego-motion
Density

Predicted
Feature Tracks

Im
ag

e
Fo

rw
ar

d

(a) Pinhole (b) Fisheye (c) Catadioptric

Figure 5-8: Introspective reasoning for scene-flow predictionI Illustrated above are the dominant
flow vectors corresponding to scene-flow given the corresponding ego-motion. While this module
is currently only used for introspection purposes, we expect it to be critical in outlier rejection for
robust ego-motion estimation. Row 1: Sample image from camera, Row 2: Flow induced by forward
motion

likely flow �x̂ induced given an ego-motion estimate z, and feature location x. We
propose a scene-flow specific autoencoder that encodes the implicit egomotion ob-
served by the sensor, while jointly reasoning over the latent depth of each of the
individual tracked features. In order to make the entire architecture fully di�eren-
tiable, only the dominant mode (mode corresponding to largest mixture coe�cient)
is sampled to recover the induced ego-motion flow. While the re-parameterization
trick, applied in VAEs to allow the back-propagation over the stochastic nodes, can
be applied to the full mixture model (Graves 2016), we only consider recovering the
flow given the dominant mode in this work.

LCVAE =E
⇥
log p✓(�x|z, x)⇤

| {z }
Reconstruction Error

�DKL

⇥
q�(z|x,�x)||p✓(z|x)

⇤
| {z }

Variational Regularization
(5.18)

Through the proposed denoising autoencoder model, we are also able to attain
an introspection mechanism for the presence of outliers. We incorporate this addi-
tional module via an auxiliary loss as specified in Eqn 5.18. An illustration of these
flow predictions are shown in Figures 5-8 and 5-9.

108

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

48

‣ Multi-Objective Minimization

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

48

‣ Multi-Objective Minimization
• Two-stage optimization

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Windowed Trajectory Optimization

Pose Integration WindowTrajectory Loss
MDN LossModel Model Model Model

Training Inputs

Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow �x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =

KX

k=1

⇡k(xi)N (zi|µk(xi), �
2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xN

F

) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coe�cient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.

104

48

‣ Multi-Objective Minimization
• Two-stage optimization

• Local MDN loss minimizes short-term ego-
motion trajectories, but prone to bias

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Stage 1

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Windowed Trajectory Optimization

Pose Integration WindowTrajectory Loss
MDN LossModel Model Model Model

Training Inputs

Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow �x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =

KX

k=1

⇡k(xi)N (zi|µk(xi), �
2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xN

F

) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coe�cient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.

104

48

‣ Multi-Objective Minimization
• Two-stage optimization

• Local MDN loss minimizes short-term ego-
motion trajectories, but prone to bias

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Stage 1

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Windowed Trajectory Optimization

Pose Integration WindowTrajectory Loss
MDN LossModel Model Model Model

Training Inputs

Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow �x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =

KX

k=1

⇡k(xi)N (zi|µk(xi), �
2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xN

F

) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coe�cient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.

104

48

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Two-stage Optimization

‣ Multi-Objective Minimization
• Two-stage optimization

• Local MDN loss minimizes short-term ego-
motion trajectories, but prone to bias

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Stage 1

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Windowed Trajectory Optimization

Pose Integration WindowTrajectory Loss
MDN LossModel Model Model Model

Training Inputs

Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow �x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =

KX

k=1

⇡k(xi)N (zi|µk(xi), �
2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xN

F

) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coe�cient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.

104

48

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Two-stage Optimization

‣ Multi-Objective Minimization
• Two-stage optimization

• Local MDN loss minimizes short-term ego-
motion trajectories, but prone to bias

• Global Trajectory loss minimizes long-term
ego-motion prediction bias

Stage 2

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Stage 1

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Windowed Trajectory Optimization

Pose Integration WindowTrajectory Loss
MDN LossModel Model Model Model

Training Inputs

Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow �x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =

KX

k=1

⇡k(xi)N (zi|µk(xi), �
2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xN

F

) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coe�cient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.

104

48

tion, it is clear that optimizing frame-to-frame measurements
does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates.
As one expects, the integrated trajectories are sensitive to
even negligible biases in the ego-motion regressor.

Two-stage optimization: To circumvent the aforemen-
tioned issue, we introduce a second optimization stage that
jointly minimizes the aforementioned local objective with a
global objective that minimizes the error incurred between
the overall trajectory and the trajectory obtained by inte-
grating the regressed pose estimates obtained via the local
optimization. This allows the global optimization stage to
have a warm-start with an almost correct initial guess for
the network parameters.

As seen in Eqn 4, LTRAJ pertains to the overall trajec-
tory error incurred by integrating the individual regressed
estimates over a batched window (we typically consider 200
to 1000 frames). This allows us to fine-tune the regressor to
predict valid estimates that integrate towards accurate long-
term ego-motion trajectories. For illustrative purposes only,
we refer the reader to Figure 3 where we validate this two-
stage approach over a simulated dataset [27]. As expected,
the model is able to roughly learn the curved trajectory path,
however, it is not able to make accurate predictions when
integrated for longer time-windows (due to the lack of the
global objective loss term in Stage 1). Figure 2 provides
a high-level overview of the input-output relationships of
the training procedure, including the various network losses
incorporated in the ego-motion encoder/regressor.

In Eqn 4, ˆzt�1,t is the frame-to-frame ego-motion estimate
and the regression target/output of the MDN function F ,
where F : x 7!

⇣
µ(xt�1,t),�(xt�1,t),⇡(xt�1,t)

⌘
. ˆ

z1,t is
the overall trajectory predicted by integrating the individu-
ally regressed frame-to-frame ego-motion estimates and is
defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 � · · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
F (x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(4)

C. Bootstrapped learning for ego-motion estimation

Typical robot navigation systems consider the fusion of
visual odometry estimates with other modalities including

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

0 5 0 1 0 0

X (m)

2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Y
(m

)

G rou n d Tru th
Pre d M e a n

Stage 1 Stage 2 Stage 2 Stage 2
(Final) (Epoch 4) (Epoch 8) (Epoch 18)

Fig. 3: Two-stage Optimization: An illustration of the two-stage optimiza-
tion procedure. The first column shows the final solution after the first stage.
Despite the minimization, the integrated trajectory is clearly biased and
poorly matches the expected result. The second, and third column shows
the gradual improvement of the second stage (global minimization) and
matches the expected ground truth trajectory better.

estimates derived from wheel encoders, IMUs, GPS etc. Con-
sidering odometry estimates (for e.g. from wheel encoders)
as-is, it is clear that the uncertainties in open-loop chains
grow in an unbounded manner. Furthermore, relative pose
estimation may also be inherently biased due to calibration
errors that eventually contribute to the overall error incurred.
GPS, despite being noise-ridden, provides an absolute sensor
reference measurement that is especially complementary to
the open-loop odometry chain maintained with odometry
estimates. The probabilistic fusion of these two relatively
uncorrelated measurement modalities allows us to recover
a sufficiently approximate trajectory estimate that can be di-
rectly used as ground truth data for the supervised regression
problem.

Fig. 4: Bootstrapped learning for ego-motion estimation: An illustration
of the bootstrap mechanism whereby a robot self-supervises the proposed
ego-motion regression task in a new camera sensor by fusing information
from other sensor sources including GPS and INS.

The indirect recovery of training data from the fusion
of other sensor modalities in robots falls within the self-
supervised or bootstrapped learning paradigm. We envision
this capability to be especially beneficial in the context of
life-long learning in future autonomous systems. Using the
fused and optimized pose estimates (recovered from GPS
and odometry estimates), we are able to recover the required
input-output relationships for training visual ego-motion for
a completely new sensor. Through experiments IV-C, we
illustrate this concept with the recovery of ego-motion in
a robot car equipped with GPS and INS.

D. Robust flow using Conditional Variational Auto-encoders

Scene flow is a fundamental capability that provides
directly measurable quantities for ego-motion analysis. How-
ever, one realizes that the flow observed by sensors mounted
on vehicles is a function of the inherent depth of points
observed in the image, the relative motion undergone by
the vehicle, and the intrinsic and extrinsic properties of the
camera used to capture it. As with any measured quantity,
one needs to deal with sensor-level noise propagated through
the model in order to provide robust estimates. While the
input flow features are an indication of ego-motion, some of
the features may be corrupted due to lack of visual texture

Two-stage Optimization

‣ Multi-Objective Minimization
• Two-stage optimization

• Local MDN loss minimizes short-term ego-
motion trajectories, but prone to bias

• Global Trajectory loss minimizes long-term
ego-motion prediction bias

Stage 2

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Stage 1

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

5.4.2 Trajectory Optimization

While minimizing the MDN loss (LMDN) as described above provides a rea-
sonable regressor for ego-motion estimation, it is evident that optimizing frame-
to-frame measurements does not ensure long-term consistencies in the ego-motion
trajectories obtained by integrating these regressed estimates. As one expects, the
integrated trajectories are sensitive to even negligible biases in the ego-motion re-
gressor.

Two-stage optimization: To circumvent the aforementioned issue, we introduce
a second optimization stage that jointly minimizes the local objective (LMDN) with a
global objective that minimizes the error incurred between the overall trajectory and
the trajectory obtained by integrating the regressed pose estimates obtained via the
local optimization. This allows the global optimization stage to have a warm-start
with an almost correct initial guess for the network parameters.

As seen in Eqn 5.17, LTRAJ pertains to the overall trajectory error incurred by in-
tegrating the individual regressed estimates over a batched window (we typically
consider 200 to 1000 frames). This allows us to fine-tune the regressor to predict
valid estimates that integrate towards accurate long-term ego-motion trajectories.
As expected, the model is able to roughly learn the curved trajectory path, how-
ever, it is not able to make accurate predictions when integrated for longer time-
windows (due to the lack of the global objective loss term in Stage 1). Figure 5-4
provides a high-level overview of the input-output relationships of the training
procedure, including the various network losses incorporated in the ego-motion
encoder/regressor. We refer the reader to Figure 5-5 where we illustrate this two-
stage approach over a simulated dataset (Zhang et al. 2016).

In Eqn 5.17, ˆzt�1,t is the frame-to-frame ego-motion estimate and the regression
target/output of the MDN function f vo given by

f vo
: x 7!

⇣
µ(xt�1,t), �(xt�1,t), ⇡(xt�1,t)

⌘
(5.16)

where ˆ

z1,t is the overall trajectory predicted by integrating the individually re-
gressed frame-to-frame ego-motion estimates and is defined by ˆ

z1,t = ˆ

z1,2 � ˆ

z2,3 �
· · ·� ˆ

zt�1,t.

LENC =

X

t

Lt
MDN

⇣
f vo

(x), zt�1,t

⌘

| {z }
MDN Loss

+

X

t

Lt
TRAJ(z1,t ˆ

z1,t)

| {z }
Overall Trajectory Loss

(5.17)

105

Windowed Trajectory Optimization

Pose Integration WindowTrajectory Loss
MDN LossModel Model Model Model

Training Inputs

Figure 5-4: Windowed trajectory optimization I An illustration of the losses introduced for train-
ing frame-to-frame ego-motion (local) and windowed ego-motion (global) by compounding the poses
determined from each of the individual frame-to-frame measurements.

that is induced by the given input feature x and the flow �x. Due to its pow-
erful and rich modeling capabilities, we use a Mixture Density Network (MDN) to
parametrize the conditional density estimate. The powerful representational ca-
pacity of neural networks coupled with rich probabilistic modeling that GMMs
admit, allows us to model multi-valued or multi-modal beliefs that typically arise
in inverse problems such as visual ego-motion. For each of the NF input flow fea-
tures xi extracted via KLT, the conditional probability density of the target pose
data zi is given by p(zi|xi), modeled directly with an K-component mixture den-
sity network.

p(zi|xi) =

KX

k=1

⇡k(xi)N (zi|µk(xi), �
2
k(xi)) (5.15)

The proposed model is learned end-to-end by maximizing the data log-likelihood,
or alternatively minimizing the negative log-likelihood (denoted asLMDN in Eqn 5.8),
given the NF input feature tracks (x1 . . .xN

F

) and expected ego-motion estimate z.
The resulting ego-motion density estimates p(zi|xi) obtained from each individual
flow vectors xi are then fused by taking the product of their densities. However,
to maintain tractability of density products, only the mean and covariance corre-
sponding to the largest mixture coe�cient (i.e. most likely mixture mode) for each
feature is considered for subsequent trajectory optimization.

104

48

Learned VO

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Learned VO Ground Truth

49

‣ Learning to recover ego-motion from feature tracks
• Robust and adaptive (Tunable architectural capacity)
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Powerful model based reasoning (Scene flow introspection)

Learned VO

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Learned VO Ground Truth

49

‣ Learning to recover ego-motion from feature tracks
• Robust and adaptive (Tunable architectural capacity)
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Powerful model based reasoning (Scene flow introspection)

Learned VO

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Learned VO Ground Truth

49

‣ Learning to recover ego-motion from feature tracks
• Robust and adaptive (Tunable architectural capacity)
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Powerful model based reasoning (Scene flow introspection)

Pinhole Fisheye

Trajectory Estimation and Optimization
(Learned VO + intermittent GPS updates)

0 50 100

X (m)

20

0

20

40

60

80

100

120

140

Y
(m

)

Median Trajectory Error: 0.36 m

Ground Truth
Pred SLAM
GPS updates

0 50 100

X (m)

20

0

20

40

60

80

100

120

140

Y
(m

)

Median Trajectory Error: 0.48 m

Ground Truth
Pred SLAM
GPS updates

Catadioptric

Learned VO

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

Learned VO Ground Truth

49

‣ Learning to recover ego-motion from feature tracks
• Robust and adaptive (Tunable architectural capacity)
• Generic camera optics (Pinhole, Fisheye, Catadioptric)
• Powerful model based reasoning (Scene flow introspection)

Pinhole Fisheye

Trajectory Estimation and Optimization
(Learned VO + intermittent GPS updates)

0 50 100

X (m)

20

0

20

40

60

80

100

120

140

Y
(m

)

Median Trajectory Error: 0.36 m

Ground Truth
Pred SLAM
GPS updates

0 50 100

X (m)

20

0

20

40

60

80

100

120

140

Y
(m

)

Median Trajectory Error: 0.48 m

Ground Truth
Pred SLAM
GPS updates

Catadioptric
Pinhole

Forward

Left RightForward

Generative Modeling
(Scene flow introspection)

Catadioptric

Intermittent
GPS Prior

Learned
Visual Odometry Wheel OdometryImages

I
Optical Flow
x = (x,�x)

I1 I2 I3 IT�1 IT

Model Model Model

x1,2 x2,3 xT�1,T

ẑ2,3ẑ1,2 ẑT�1,T

DEPLOYMENT

SELF-SUPERVISED
VISUAL EGO-MOTION LEARNING

50

Sensor fusion with learned ego-motion on various datasets
Fusing our learned visual ego-motion with intermittent GPS updates

(Datasets: Multi-FOV Synthetic Dataset, Oxford 1000km, KITTI)

VISUAL EGO-MOTION PERFORMANCE

51

(a) Multi-FOV Synthetic Dataset (b) Omnicam Dataset (c) Oxford 1000km (d) KITTI 00

(e) KITTI 05 (f) KITTI 07 (g) KITTI 08 (h) KITTI 09

Fig. 6: Sensor fusion with learned ego-motion: On fusing our proposed VO method with intermittent GPS updates (every 150 frames, black circles), the
pose-graph optimized ego-motion solution (in green) achieves sufficiently high accuracy relative to ground truth. We test on a variety of publicly-available
datasets including (a) Multi-FOV synthetic dataset [27] (pinhole shown above), (b) an omnidirectional-camera dataset [28], (c) Oxford Robotcar 1000km
Dataset [29] (2015-11-13-10-28-08) (d-h) KITTI dataset [21]. Weak supervision such as GPS measurements can be especially advantageous in recovering
improved estimates for localization, while simultaneously minimizing uncertainties associated with pure VO-based approaches.

Dataset Camera
Optics

Median
Trajectory Error

KITTI-00 Pinhole 0.19 m
KITTI-02 Pinhole 0.30 m
KITTI-05 Pinhole 0.12 m
KITTI-07 Pinhole 0.18 m
KITTI-08 Pinhole 0.63 m
KITTI-09 Pinhole 0.30 m
Multi-FOV [27] Pinhole 0.18 m
Multi-FOV [27] Fisheye 0.48 m
Multi-FOV [27] Catadioptric 0.36 m
Omnidirectional [28] Catadioptric 0.52 m
Oxford 1000km† [29] Pinhole 0.03 m

TABLE II: Trajectory prediction performance: An illustration of the
trajectory prediction performance of our proposed ego-motion approach
when fused with intermittent GPS updates (every 150 frames). The errors
are computed across the entire length of the optimized trajectory and
ground truth. For Oxford 1000km dataset, we only evaluate on a single
session (2015-11-13-10-28-08 [80GB]: †Stereo Centre)

.
catadioptric cameras (See Table II). In future work, we
would like to investigate further extensions that improve the
accuracy for both fisheye and catadioptric lenses.

C. Self-supervised Visual Ego-motion Learning in Robots

We envision the capability of robots to self-supervise
tasks such as visual ego-motion estimation to be especially
beneficial in the context of life-long learning and autonomy.
We experiment and validate this concept through a concrete
example using the 1000km Oxford Robot Car dataset [29].
We train the task of visual ego-motion on a new camera
sensor by leveraging the fused GPS and INS information
collected on the robot car as ground truth trajectories (6-
DOF), and extracting feature trajectories (via KLT) from
image sequences obtained from the new camera sensor. The
timestamps from the cameras are synchronized with respect

Pinhole Fisheye Catadioptric

Fig. 7: Varied camera optics: An illustration of the performance of
our general-purpose approach for varied camera optics (pinhole, fisheye,
and catadioptric lenses) on the Multi-FOV synthetic dataset [27]. Without
any prior knowledge on the camera optics, or the mounting configuration
(extrinsics), we are able to robustly and accurately recover the full trajectory
of the vehicle (with intermittent GPS updates every 500 frames).

to the timestamps of the fused GPS and INS information, in
order to obtain a one-to-one mapping for training purposes.
We train on the stereo centre (pinhole) camera dataset and
present our results in Table II. As seen in Figure 6, we
are able to achieve considerably accurate long-term state
estimates by fusing our proposed visual ego-motion estimates
with even sparser GPS updates (every 2-3 seconds, instead
of 50Hz GPS/INS readings). This allows the robot to reduce
its reliance on GPS/INS alone to perform robust, long-term
trajectory estimation.

D. Implementation Details

In this section we describe the details of our proposed
model, training methodology and parameters used. The input
x = (x,�x) to the density-based ego-motion estimator
are feature tracks extracted via (Kanade-Lucas-Tomasi) KLT
feature tracking over the raw camera image sequences. The
input feature positions and flow vectors are normalized to
be the in range of [�1, 1] using the dimensions of the

Trajectory Prediction Performance
Fusing our learned visual ego-motion with intermittent GPS updates

(Datasets: Multi-FOV Synthetic Dataset, Oxford 1000km, KITTI)

Dataset Camera Median
Trajectory Error

KITTI Pinhole 0.02 - 0.63 m

Multi-FOV Pinhole 0.18 m

Multi-FOV Fisheye 0.48 m

Multi-FOV Catadioptric 0.36 m

Oxford Pinhole 0.03 m

KITTI-Omni Catadioptric 0.52 m

52

VISUAL EGO-MOTION PERFORMANCE

SLAM AS A SUPERVISORY SIGNAL

53

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

SLAM AS A SUPERVISORY SIGNAL

53

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

p0

I1

I2
I3

It

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

p0

I1

I2
I3

It

DETERMINE such that

7!
Loop-closure
ConstraintTemporally-distant Images

f(Ij) ' f(Ik)
f

cj,k

Ij

Ik

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

p0

I1

I2
I3

It

DETERMINE such that

7!
Loop-closure
ConstraintTemporally-distant Images

f(Ij) ' f(Ik)
f

cj,k

Ij

Ik

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

Loop-closure
Constraints

Factor Graph for Vision-based Pose-Graph SLAM

x Robot state

hand-tuned features and matching techniques to implement their vision-based loop-
closure mechanisms. With the growing sensor modalities on robotic systems, main-
taining several variants of the hand-engineered front-ends becomes increasingly
tedious and di�cult. The results are less than optimal since certain feature rep-
resentations such as Convolutional Neural Networks (CNNs) extract (Zhou et al.
2014b; 2016b) for example, are generally optimized for the image classification task.
Alternatively, we could learn a metric of similarity for the purposes of localiza-
tion i.e. identifying a mapping where features extracted from identical locations
lie closer to each other, and those extracted from dissimilar places lie farther away
from each other. Furthermore, we would like to determine a calibrated distance
metric that provides a probabilistic measure of similarity such that they can be
readily deployed in safety-critical systems where modeling these probabilities can
be especially valuable. To alleviate this growing concern, we envision robots to
self-supervise the task of visual loop-closure recognition in newer sensors by boot-
strapping their existing localization and mapping capabilities.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 6-1: Visual Loop-Closure Recognition Learning I In a typical factor-graph formulation
of Pose-Graph SLAM, the vision-based loop-closure recognition contributes to relative-pose con-
straints cj,k (in red) between temporally-distant nodes. This chapter focuses on identifying these
loop-closure constraints by describing and indexing images in an embedded feature space that can
be self-supervised to perform accurate loop-closure retrieval.

6.2 Related Work

Visual place recognition in the context of vision-based navigation is a well stud-
ied problem in the robotics and computer vision literature (Lowry et al. 2016). In
order to identify previously visited locations the system needs to be able to extract
salient cues from an image that describes the content contained within it. Extract-
ing an appropriate set of cues can be especially challenging when building robust
systems that operate for extremely long periods of time. Typically, the same place
may be significantly di�erent from its previous appearance due to various factors
such as variations in lighting (e.g. sunny, cloudy, rainy etc), observed viewpoint

119

p0

I1

I2
I3

It

DETERMINE such that

7!
Loop-closure
ConstraintTemporally-distant Images

f(Ij) ' f(Ik)
f

cj,k

Ij

Ik

54

‣ Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

VISION-BASED LOOP-CLOSURE DETECTION

Loop-closure
Constraints

Factor Graph for Vision-based Pose-Graph SLAM

x Robot state

hand-tuned features and matching techniques to implement their vision-based loop-
closure mechanisms. With the growing sensor modalities on robotic systems, main-
taining several variants of the hand-engineered front-ends becomes increasingly
tedious and di�cult. The results are less than optimal since certain feature rep-
resentations such as Convolutional Neural Networks (CNNs) extract (Zhou et al.
2014b; 2016b) for example, are generally optimized for the image classification task.
Alternatively, we could learn a metric of similarity for the purposes of localiza-
tion i.e. identifying a mapping where features extracted from identical locations
lie closer to each other, and those extracted from dissimilar places lie farther away
from each other. Furthermore, we would like to determine a calibrated distance
metric that provides a probabilistic measure of similarity such that they can be
readily deployed in safety-critical systems where modeling these probabilities can
be especially valuable. To alleviate this growing concern, we envision robots to
self-supervise the task of visual loop-closure recognition in newer sensors by boot-
strapping their existing localization and mapping capabilities.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 6-1: Visual Loop-Closure Recognition Learning I In a typical factor-graph formulation
of Pose-Graph SLAM, the vision-based loop-closure recognition contributes to relative-pose con-
straints cj,k (in red) between temporally-distant nodes. This chapter focuses on identifying these
loop-closure constraints by describing and indexing images in an embedded feature space that can
be self-supervised to perform accurate loop-closure retrieval.

6.2 Related Work

Visual place recognition in the context of vision-based navigation is a well stud-
ied problem in the robotics and computer vision literature (Lowry et al. 2016). In
order to identify previously visited locations the system needs to be able to extract
salient cues from an image that describes the content contained within it. Extract-
ing an appropriate set of cues can be especially challenging when building robust
systems that operate for extremely long periods of time. Typically, the same place
may be significantly di�erent from its previous appearance due to various factors
such as variations in lighting (e.g. sunny, cloudy, rainy etc), observed viewpoint

119

p0

I1

I2
I3

It

DETERMINE such that

7!
Loop-closure
ConstraintTemporally-distant Images

f(Ij) ' f(Ik)
f

cj,k

Ij

Ik

X

⇤
= argmax

X

p(X | U,Z
c

) (2.7)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

X

(j,k)2C
khc(xj,xk)� zjkk2P

c

| {z }
Loop-Closure Constraint Factors

)
(2.8)

2.1.3 Data association

Data association is one of the key components in a SLAM system (Bar-Shalom
et al. 1990). While a lot of care is taken in setting up the optimization objective, it is
critical to ensure that the measurements fed into the back-end optimization is not
erroneous. Data association can be evaluated in the same way as classical recogni-
tion related tasks: they need to achieve high-precision in the set of measurements
associated, while ensuring high-recall of the relevant measurements that can be
associated (Neira and Tardós 2001). We elaborate on the necessity of robust data
association in Section 2.3.

2.2 Factor Graphs for SLAM

x1 x2 x3

f1 f2 f3

Figure 2-2: Factor graph example I A factor graph is a bipartite graph that describes the factoriza-
tion of a joint probability distribution over latent random variables. The figure illustrates the condi-
tional independence constraints between variables, whose joint probability distribution can be writ-
ten as the product of them factors, given by f(x1, x2, x3) =

Qm
i=1 fi(Xi) = f1(x1, x3)f2(x2)f3(x2, x3).

Xi refers to the subset of variables that fi depends on.

A factor graph (Kschischang et al. 2001) is a bipartite graph that encodes how
a function of several variables factorizes into its a product of local functions. A
factor graph typically consists of nodes representing latent variables considered in
the estimation problem, and factors that represent the information between or on

27

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

55

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

• Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]

• Whole-Image: GIST / Binarized Images [Sunderhauf 2011]

• FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

• Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

• Density-based: Placeless place-recognition [Lynen 2014]

55

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

• Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]

• Whole-Image: GIST / Binarized Images [Sunderhauf 2011]

• FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

• Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

• Density-based: Placeless place-recognition [Lynen 2014]

55

SIFT, SURF, ORB, BRIEF, GIST
BOW, VLAD, Fisher Vectors

L1, L2, Cosine, Hamming Distance

Hand-engineered descriptions and
metrics for matching

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

• Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]

• Whole-Image: GIST / Binarized Images [Sunderhauf 2011]

• FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

• Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

• Density-based: Placeless place-recognition [Lynen 2014]

55

‣ Convolutional Neural Networks

SIFT, SURF, ORB, BRIEF, GIST
BOW, VLAD, Fisher Vectors

L1, L2, Cosine, Hamming Distance

Hand-engineered descriptions and
metrics for matching

• Places205: Scene Recognition [Zhou 2014, Zhou 2015]

• NetVLAD [Arandjelovic 2017]

• Place Recognition with ConvNet Landmarks [Sunderhauf 2015]

• CNN-based Place Recognition [Chen 2017]

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

• Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]

• Whole-Image: GIST / Binarized Images [Sunderhauf 2011]

• FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

• Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

• Density-based: Placeless place-recognition [Lynen 2014]

55

‣ Convolutional Neural Networks

SIFT, SURF, ORB, BRIEF, GIST
BOW, VLAD, Fisher Vectors

L1, L2, Cosine, Hamming Distance

Hand-engineered descriptions and
metrics for matching

Supervising scene recognition
is tedious / expensive

Require large amounts of training data

Rich feature
capacity Scalable Pre-trained

recognition models

• Places205: Scene Recognition [Zhou 2014, Zhou 2015]

• NetVLAD [Arandjelovic 2017]

• Place Recognition with ConvNet Landmarks [Sunderhauf 2015]

• CNN-based Place Recognition [Chen 2017]

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

• Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]

• Whole-Image: GIST / Binarized Images [Sunderhauf 2011]

• FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

• Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

• Density-based: Placeless place-recognition [Lynen 2014]

55

‣ Convolutional Neural Networks

SIFT, SURF, ORB, BRIEF, GIST
BOW, VLAD, Fisher Vectors

L1, L2, Cosine, Hamming Distance

Hand-engineered descriptions and
metrics for matching

Supervising scene recognition
is tedious / expensive

Require large amounts of training data

Rich feature
capacity Scalable Pre-trained

recognition models

• Places205: Scene Recognition [Zhou 2014, Zhou 2015]

• NetVLAD [Arandjelovic 2017]

• Place Recognition with ConvNet Landmarks [Sunderhauf 2015]

• CNN-based Place Recognition [Chen 2017]

Learn a new metric for matching

‣ Visual Place Recognition / Loop-closure Detection
as a front-end measurement for Vision-based SLAM

MOTIVATION

• Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]

• Whole-Image: GIST / Binarized Images [Sunderhauf 2011]

• FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]

• Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]

• Density-based: Placeless place-recognition [Lynen 2014]

55

‣ Convolutional Neural Networks

SIFT, SURF, ORB, BRIEF, GIST
BOW, VLAD, Fisher Vectors

L1, L2, Cosine, Hamming Distance

Hand-engineered descriptions and
metrics for matching

Supervising scene recognition
is tedious / expensive

Require large amounts of training data

Rich feature
capacity Scalable Pre-trained

recognition models

• Places205: Scene Recognition [Zhou 2014, Zhou 2015]

• NetVLAD [Arandjelovic 2017]

• Place Recognition with ConvNet Landmarks [Sunderhauf 2015]

• CNN-based Place Recognition [Chen 2017]

Learn a new metric for matching

SLAM-aware Self-Supervision
in Mobile Robots

56

METRIC LEARNING
Learn a new metric for matching

56

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

D(xi,xj) = kxi � xjk2

CNN

Loss

CNN

Shared Weights

✓

L(✓)

f(xi)

xj

f(xj)

xi

CNN
(with trained weights)

✓

Image embedding

xi

f(xi)

(a) Training: Siamese Network Architecture
(b) Testing: Feature embedding

Figure 6-2: Training and testing architectures for Siamese Networks I (a) In a typical siamese
network training architecture, the CNN weights (✓) are shared between the two parallel instantiated
graphs, with a common loss (such as the contrastive loss) defined between them. (b) Once the
CNN weights are learned, new features/images are mapped into the learned and task-appropriate
embedding space f(xi) at test time.

the loss function is evaluated for individual samples, here, we consider the loss
over pairs of samples X = XS [XD. We define sets of similar and dissimilar paired
examples XS , and XD respectively as follows

XS := {(xq,xs) | xq and xs are in the same class} (6.1)
XD := {(xq,xd) | xq and xd are in di�erent classes} (6.2)

and define an appropriate loss function that captures the aforementioned proper-
ties.

Contrastive Loss The contrastive loss (Chopra et al. 2005) optimizes the dis-
tances between positive pairs (xq,xs) such that they approach close to each other,
while preserving the distances between negative pairs (xq,xd) at or above a fixed
margin ↵. Intuitively, the overall loss (Equation 6.3) is expressed as the sum of two
terms.

L(✓) =
X

(x
q

,x
s

) 2 X
S

`p(xq,xs)

| {z }
Penalize similar examples

that are far away

+

X

(x
q

,x
d

) 2 X
D

`n(xq,xd)

| {z }
Penalize dissimilar examples

that are nearby

(6.3)

124

METRIC LEARNING
Learn a new metric for matching

56

“Semantic” Distance Measure
(Task appropriate)

f(xs)

f(xd)
f(xq)

f(x)

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

D(xi,xj) = kxi � xjk2

CNN

Loss

CNN

Shared Weights

✓

L(✓)

f(xi)

xj

f(xj)

xi

CNN
(with trained weights)

✓

Image embedding

xi

f(xi)

(a) Training: Siamese Network Architecture
(b) Testing: Feature embedding

Figure 6-2: Training and testing architectures for Siamese Networks I (a) In a typical siamese
network training architecture, the CNN weights (✓) are shared between the two parallel instantiated
graphs, with a common loss (such as the contrastive loss) defined between them. (b) Once the
CNN weights are learned, new features/images are mapped into the learned and task-appropriate
embedding space f(xi) at test time.

the loss function is evaluated for individual samples, here, we consider the loss
over pairs of samples X = XS [XD. We define sets of similar and dissimilar paired
examples XS , and XD respectively as follows

XS := {(xq,xs) | xq and xs are in the same class} (6.1)
XD := {(xq,xd) | xq and xd are in di�erent classes} (6.2)

and define an appropriate loss function that captures the aforementioned proper-
ties.

Contrastive Loss The contrastive loss (Chopra et al. 2005) optimizes the dis-
tances between positive pairs (xq,xs) such that they approach close to each other,
while preserving the distances between negative pairs (xq,xd) at or above a fixed
margin ↵. Intuitively, the overall loss (Equation 6.3) is expressed as the sum of two
terms.

L(✓) =
X

(x
q

,x
s

) 2 X
S

`p(xq,xs)

| {z }
Penalize similar examples

that are far away

+

X

(x
q

,x
d

) 2 X
D

`n(xq,xd)

| {z }
Penalize dissimilar examples

that are nearby

(6.3)

124

Determine

f(x; ✓)

METRIC LEARNING
Learn a new metric for matching

56

“Semantic” Distance Measure
(Task appropriate)

f(xs)

f(xd)
f(xq)

f(x)

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

D(xi,xj) = kxi � xjk2

CNN

Loss

CNN

Shared Weights

✓

L(✓)

f(xi)

xj

f(xj)

xi

CNN
(with trained weights)

✓

Image embedding

xi

f(xi)

(a) Training: Siamese Network Architecture
(b) Testing: Feature embedding

Figure 6-2: Training and testing architectures for Siamese Networks I (a) In a typical siamese
network training architecture, the CNN weights (✓) are shared between the two parallel instantiated
graphs, with a common loss (such as the contrastive loss) defined between them. (b) Once the
CNN weights are learned, new features/images are mapped into the learned and task-appropriate
embedding space f(xi) at test time.

the loss function is evaluated for individual samples, here, we consider the loss
over pairs of samples X = XS [XD. We define sets of similar and dissimilar paired
examples XS , and XD respectively as follows

XS := {(xq,xs) | xq and xs are in the same class} (6.1)
XD := {(xq,xd) | xq and xd are in di�erent classes} (6.2)

and define an appropriate loss function that captures the aforementioned proper-
ties.

Contrastive Loss The contrastive loss (Chopra et al. 2005) optimizes the dis-
tances between positive pairs (xq,xs) such that they approach close to each other,
while preserving the distances between negative pairs (xq,xd) at or above a fixed
margin ↵. Intuitively, the overall loss (Equation 6.3) is expressed as the sum of two
terms.

L(✓) =
X

(x
q

,x
s

) 2 X
S

`p(xq,xs)

| {z }
Penalize similar examples

that are far away

+

X

(x
q

,x
d

) 2 X
D

`n(xq,xd)

| {z }
Penalize dissimilar examples

that are nearby

(6.3)

124

such that we
minimize

CNN

Loss

CNN

Shared Weights

✓

L(✓)

f(xi)

xj

f(xj)

xi

CNN
(with trained weights)

✓

Image embedding

xi

f(xi)

(a) Training: Siamese Network Architecture
(b) Testing: Feature embedding

Figure 6-2: Training and testing architectures for Siamese Networks I (a) In a typical siamese
network training architecture, the CNN weights (✓) are shared between the two parallel instantiated
graphs, with a common loss (such as the contrastive loss) defined between them. (b) Once the
CNN weights are learned, new features/images are mapped into the learned and task-appropriate
embedding space f(xi) at test time.

the loss function is evaluated for individual samples, here, we consider the loss
over pairs of samples X = XS [XD. We define sets of similar and dissimilar paired
examples XS , and XD respectively as follows

XS := {(xq,xs) | xq and xs are in the same class} (6.1)
XD := {(xq,xd) | xq and xd are in di�erent classes} (6.2)

and define an appropriate loss function that captures the aforementioned proper-
ties.

Contrastive Loss The contrastive loss (Chopra et al. 2005) optimizes the dis-
tances between positive pairs (xq,xs) such that they approach close to each other,
while preserving the distances between negative pairs (xq,xd) at or above a fixed
margin ↵. Intuitively, the overall loss (Equation 6.3) is expressed as the sum of two
terms.

L(✓) =
X

(x
q

,x
s

) 2 X
S

`p(xq,xs)

| {z }
Penalize similar examples

that are far away

+

X

(x
q

,x
d

) 2 X
D

`n(xq,xd)

| {z }
Penalize dissimilar examples

that are nearby

(6.3)

124

Determine

f(x; ✓)

METRIC LEARNING
Learn a new metric for matching

57

f(xs)

f(xd)
f(xq)

f(x)

Determine

such that we
minimize

“Semantic” Distance Measure
(Task appropriate)

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2D(xi,xj) = kxi � xjk2

f(x; ✓)

METRIC LEARNING

57

f(xs)

f(xd)
f(xq)

f(x)

Determine

such that we
minimize

“Semantic” Distance Measure
(Task appropriate)

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

via Contrastive Loss
(Chopra et al. 2005)

Learning a similarity metric discriminatively, with application to face verification
Chopra et al. 2005

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2D(xi,xj) = kxi � xjk2

f(x; ✓)

METRIC LEARNING

57

f(xs)

f(xd)
f(xq)

f(x)

Determine

such that we
minimize

“Semantic” Distance Measure
(Task appropriate)

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

via Contrastive Loss
(Chopra et al. 2005)

Learning a similarity metric discriminatively, with application to face verification
Chopra et al. 2005

where `p(xq,xs) = kf(xq; ✓)� f(xs; ✓)k22 (6.4)
`n(xq,xd) = max(0,↵� kf(xq; ✓)� f(xd; ✓)k2)2 (6.5)

In the above equation (6.3), the first term penalizes positive pairs that are far
away from each other, and the second term penalizes negative pairs that are nearby
while ensuring a minimum margin of↵ between them. More generally, this reduces
to the following equation with y being the indicator variable in identifying positive
examples from negative ones.

L(✓) =
X

(x
i

,x
j

)2X
yD(xi,xj)

2
+ (1� y)

h
↵�D(xi,xj)

i2
+

(6.6)

where D(xi,xj) = kf(xi; ✓)� f(xj; ✓)k22 (6.7)

and y =

8
<

:
1 if (xi,xj) 2 XS,

0 if (xi,xj) 2 XD

(6.8)

The margin ↵ defines the radius around f(x); the contribution to the overall loss
comes from either the dissimilar pairs that are separated by a distance less than ↵,
or from similar pairs that are separated by a large distance.

Training with Siamese Networks Learning is then typically performed with
a Siamese architecture (Bromley et al. 1994; Chopra et al. 2005), consisting of two
parallel networks f(x; ✓) that share weights ✓ amongst each other (See Figure 6-
2a). The contrastive loss is then defined between the two parallel networks f(xi; ✓)

and f(xj; ✓) given by Equation 6.6. The inputs to this architecture are sets of similar
(xq,xs) 2 XS or dissimilar samples (xq,xd) 2 XD, with labels y = 1 for similar sam-
ples, and y = 0 otherwise. The scalar output loss computed from batches of similar
and dissimilar samples are then used to update the parameters of the siamese net-
work ✓ via Stochastic Gradient Descent (SGD). Typically, batches of positive and
negative samples are provided in alternating fashion during training.

Learned Feature Embedding Once the parameters ✓ of the Siamese network
are su�ciently learned for the desired task, we strip the parallel network architec-
ture and only consider one of the networks for embedding the input feature xi in
its task-appropriate feature space (See Figure 6-2b). The distances (L2) in this new
embedding space are considered to be more appropriate for the task, and is es-
pecially amenable to high-dimensional indexing and querying for image retrieval

125

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2D(xi,xj) = kxi � xjk2

f(x; ✓)

METRIC LEARNING

57

f(xs)

f(xd)
f(xq)

f(x)

Determine

such that we
minimize

“Semantic” Distance Measure
(Task appropriate)

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

via Contrastive Loss
(Chopra et al. 2005)

Learning a similarity metric discriminatively, with application to face verification
Chopra et al. 2005

where `p(xq,xs) = kf(xq; ✓)� f(xs; ✓)k22 (6.4)
`n(xq,xd) = max(0,↵� kf(xq; ✓)� f(xd; ✓)k2)2 (6.5)

In the above equation (6.3), the first term penalizes positive pairs that are far
away from each other, and the second term penalizes negative pairs that are nearby
while ensuring a minimum margin of↵ between them. More generally, this reduces
to the following equation with y being the indicator variable in identifying positive
examples from negative ones.

L(✓) =
X

(x
i

,x
j

)2X
yD(xi,xj)

2
+ (1� y)

h
↵�D(xi,xj)

i2
+

(6.6)

where D(xi,xj) = kf(xi; ✓)� f(xj; ✓)k22 (6.7)

and y =

8
<

:
1 if (xi,xj) 2 XS,

0 if (xi,xj) 2 XD

(6.8)

The margin ↵ defines the radius around f(x); the contribution to the overall loss
comes from either the dissimilar pairs that are separated by a distance less than ↵,
or from similar pairs that are separated by a large distance.

Training with Siamese Networks Learning is then typically performed with
a Siamese architecture (Bromley et al. 1994; Chopra et al. 2005), consisting of two
parallel networks f(x; ✓) that share weights ✓ amongst each other (See Figure 6-
2a). The contrastive loss is then defined between the two parallel networks f(xi; ✓)

and f(xj; ✓) given by Equation 6.6. The inputs to this architecture are sets of similar
(xq,xs) 2 XS or dissimilar samples (xq,xd) 2 XD, with labels y = 1 for similar sam-
ples, and y = 0 otherwise. The scalar output loss computed from batches of similar
and dissimilar samples are then used to update the parameters of the siamese net-
work ✓ via Stochastic Gradient Descent (SGD). Typically, batches of positive and
negative samples are provided in alternating fashion during training.

Learned Feature Embedding Once the parameters ✓ of the Siamese network
are su�ciently learned for the desired task, we strip the parallel network architec-
ture and only consider one of the networks for embedding the input feature xi in
its task-appropriate feature space (See Figure 6-2b). The distances (L2) in this new
embedding space are considered to be more appropriate for the task, and is es-
pecially amenable to high-dimensional indexing and querying for image retrieval

125

where

Supervision

where `p(xq,xs) = kf(xq; ✓)� f(xs; ✓)k22 (6.4)
`n(xq,xd) = max(0,↵� kf(xq; ✓)� f(xd; ✓)k2)2 (6.5)

In the above equation (6.3), the first term penalizes positive pairs that are far
away from each other, and the second term penalizes negative pairs that are nearby
while ensuring a minimum margin of↵ between them. More generally, this reduces
to the following equation with y being the indicator variable in identifying positive
examples from negative ones.

L(✓) =
X

(x
i

,x
j

)2X
yD(xi,xj)

2
+ (1� y)

h
↵�D(xi,xj)

i2
+

(6.6)

where D(xi,xj) = kf(xi; ✓)� f(xj; ✓)k22 (6.7)

and y =

8
<

:
1 if (xi,xj) 2 XS,

0 if (xi,xj) 2 XD

(6.8)

The margin ↵ defines the radius around f(x); the contribution to the overall loss
comes from either the dissimilar pairs that are separated by a distance less than ↵,
or from similar pairs that are separated by a large distance.

Training with Siamese Networks Learning is then typically performed with
a Siamese architecture (Bromley et al. 1994; Chopra et al. 2005), consisting of two
parallel networks f(x; ✓) that share weights ✓ amongst each other (See Figure 6-
2a). The contrastive loss is then defined between the two parallel networks f(xi; ✓)

and f(xj; ✓) given by Equation 6.6. The inputs to this architecture are sets of similar
(xq,xs) 2 XS or dissimilar samples (xq,xd) 2 XD, with labels y = 1 for similar sam-
ples, and y = 0 otherwise. The scalar output loss computed from batches of similar
and dissimilar samples are then used to update the parameters of the siamese net-
work ✓ via Stochastic Gradient Descent (SGD). Typically, batches of positive and
negative samples are provided in alternating fashion during training.

Learned Feature Embedding Once the parameters ✓ of the Siamese network
are su�ciently learned for the desired task, we strip the parallel network architec-
ture and only consider one of the networks for embedding the input feature xi in
its task-appropriate feature space (See Figure 6-2b). The distances (L2) in this new
embedding space are considered to be more appropriate for the task, and is es-
pecially amenable to high-dimensional indexing and querying for image retrieval

125

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2D(xi,xj) = kxi � xjk2

f(x; ✓)

METRIC LEARNING

58

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

58

Determine

f(I; ✓)

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

58

Cross-modal Image-GPS measurements

(Id, zGPS
d)

(Iq, zGPS
q)

(Is, zGPS
s)

(I, zGPS)

Determine

f(I; ✓)

D(zGPS
i , zGPS

j) = zGPS
i zGPS

j

Distance on SE(2) manifold
(Relative pose transformation)

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

58

Cross-modal Image-GPS measurements

(Id, zGPS
d)

(Iq, zGPS
q)

(Is, zGPS
s)

(I, zGPS)

Embedding appropriate for
Visual Loop-closure Detection

f(Id)

f(Is)

f(Iq)

f(I)

Determine

f(I; ✓)

D(zGPS
i , zGPS

j) = zGPS
i zGPS

j

Distance on SE(2) manifold
(Relative pose transformation)

D(Ii, Ij) = kf(Ii)� f(Ij)k2

“Semantic” distance in embedding

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

58

identifying potential images that may be taken from within a fixed distance of each
other, we make the appropriate modification to the objective such that the original
task of loop-closure recognition can be performed with a probabilistic interpreta-
tion.

Let (I, zGPS
) 2 X be the input data and GPS 2 0, 1 be the indicator variable

representing dissimilar (GPS = 0) and similar (GPS = 1) pairs of examples within
X . We seek to find a kernel f loc

(·; ✓loc) : I 7! � that maps the input image I to an
embedding � 2 Rm whose distances between similar places are low, while the distances
between dissimilar places are high. We take advantage of availability of synchronized
Image-GPS measurements (I, zGPS

) to provide an indicator for place similarity,
thereby rendering this procedure fully automatic and self-supervised. Re-writing
equation 6.6 for our problem, we get Equation 6.10 where D(Ii, Ij) measures the
“semantic distance” between images (Equation 6.11). The indicator variable GPS in
Equation 6.12 determines whether the sample belongs to the similar XS (GPS = 1,
if so) or the dissimilar set XD (GPS = 0).

L(✓loc) =
X

((I
i

,z
i

),(I
j

,z
j

))2X
(GPS) ·D(Ii, Ij)

2
+ (1� GPS) ·

h
↵�D(Ii, Ij)

i2
+

(6.10)

where D(Ii, Ij) =
��f loc

(Ii; ✓
loc
)� f loc

(Ij; ✓
loc
)

��
2

(6.11)

and GPS =

8
<

:
1 if K(z

GPS
i , zGPS

j) > ⌧Rt

p

0 if K(z

GPS
i , zGPS

j) < ⌧Rt

n

(6.12)

For brevity, we omit ✓loc and use f loc
(Ii) instead of the full expression f loc

(Ii; ✓loc).
We pick the thresholds for ⌧Rt based on a combination of factors including con-
vergence rate and overall accuracy of the final learned metric. Nominal values of
⌧Rt

p range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing
frustums of positive examples, with ⌧Rt

n for negative examples set to 0.4.

Figure 6-7 illustrates the visual self-similarity matrix of the feature embedding
at various stages during the training process. Initially (at epoch 0), the feature em-
bedding is equivalent to the original feature description, where the distances are
not well-calibrated. As training progresses, the similarity metric learning draws
positively labeled examples of loop-closure image pairs closer together in the em-
bedded space, while pushing the negative examples farther from each other. As
the training converges, we start to notice a few characteristics in the learned em-
bedding that make it especially powerful in identifying loop-closures: (i) The red
diagonal bands in the visual self-similarity matrix are well-separated from the blue

131

such that we
minimize

Cross-modal Image-GPS measurements

(Id, zGPS
d)

(Iq, zGPS
q)

(Is, zGPS
s)

(I, zGPS)

Embedding appropriate for
Visual Loop-closure Detection

f(Id)

f(Is)

f(Iq)

f(I)

Determine

f(I; ✓)

D(zGPS
i , zGPS

j) = zGPS
i zGPS

j

Distance on SE(2) manifold
(Relative pose transformation)

D(Ii, Ij) = kf(Ii)� f(Ij)k2

“Semantic” distance in embedding

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

58

identifying potential images that may be taken from within a fixed distance of each
other, we make the appropriate modification to the objective such that the original
task of loop-closure recognition can be performed with a probabilistic interpreta-
tion.

Let (I, zGPS
) 2 X be the input data and GPS 2 0, 1 be the indicator variable

representing dissimilar (GPS = 0) and similar (GPS = 1) pairs of examples within
X . We seek to find a kernel f loc

(·; ✓loc) : I 7! � that maps the input image I to an
embedding � 2 Rm whose distances between similar places are low, while the distances
between dissimilar places are high. We take advantage of availability of synchronized
Image-GPS measurements (I, zGPS

) to provide an indicator for place similarity,
thereby rendering this procedure fully automatic and self-supervised. Re-writing
equation 6.6 for our problem, we get Equation 6.10 where D(Ii, Ij) measures the
“semantic distance” between images (Equation 6.11). The indicator variable GPS in
Equation 6.12 determines whether the sample belongs to the similar XS (GPS = 1,
if so) or the dissimilar set XD (GPS = 0).

L(✓loc) =
X

((I
i

,z
i

),(I
j

,z
j

))2X
(GPS) ·D(Ii, Ij)

2
+ (1� GPS) ·

h
↵�D(Ii, Ij)

i2
+

(6.10)

where D(Ii, Ij) =
��f loc

(Ii; ✓
loc
)� f loc

(Ij; ✓
loc
)

��
2

(6.11)

and GPS =

8
<

:
1 if K(z

GPS
i , zGPS

j) > ⌧Rt

p

0 if K(z

GPS
i , zGPS

j) < ⌧Rt

n

(6.12)

For brevity, we omit ✓loc and use f loc
(Ii) instead of the full expression f loc

(Ii; ✓loc).
We pick the thresholds for ⌧Rt based on a combination of factors including con-
vergence rate and overall accuracy of the final learned metric. Nominal values of
⌧Rt

p range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing
frustums of positive examples, with ⌧Rt

n for negative examples set to 0.4.

Figure 6-7 illustrates the visual self-similarity matrix of the feature embedding
at various stages during the training process. Initially (at epoch 0), the feature em-
bedding is equivalent to the original feature description, where the distances are
not well-calibrated. As training progresses, the similarity metric learning draws
positively labeled examples of loop-closure image pairs closer together in the em-
bedded space, while pushing the negative examples farther from each other. As
the training converges, we start to notice a few characteristics in the learned em-
bedding that make it especially powerful in identifying loop-closures: (i) The red
diagonal bands in the visual self-similarity matrix are well-separated from the blue

131

Self-Supervision

identifying potential images that may be taken from within a fixed distance of each
other, we make the appropriate modification to the objective such that the original
task of loop-closure recognition can be performed with a probabilistic interpreta-
tion.

Let (I, zGPS
) 2 X be the input data and GPS 2 0, 1 be the indicator variable

representing dissimilar (GPS = 0) and similar (GPS = 1) pairs of examples within
X . We seek to find a kernel f loc

(·; ✓loc) : I 7! � that maps the input image I to an
embedding � 2 Rm whose distances between similar places are low, while the distances
between dissimilar places are high. We take advantage of availability of synchronized
Image-GPS measurements (I, zGPS

) to provide an indicator for place similarity,
thereby rendering this procedure fully automatic and self-supervised. Re-writing
equation 6.6 for our problem, we get Equation 6.10 where D(Ii, Ij) measures the
“semantic distance” between images (Equation 6.11). The indicator variable GPS in
Equation 6.12 determines whether the sample belongs to the similar XS (GPS = 1,
if so) or the dissimilar set XD (GPS = 0).

L(✓loc) =
X

((I
i

,z
i

),(I
j

,z
j

))2X
(GPS) ·D(Ii, Ij)

2
+ (1� GPS) ·

h
↵�D(Ii, Ij)

i2
+

(6.10)

where D(Ii, Ij) =
��f loc

(Ii; ✓
loc
)� f loc

(Ij; ✓
loc
)

��
2

(6.11)

and GPS =

8
<

:
1 if K(z

GPS
i , zGPS

j) > ⌧Rt

p

0 if K(z

GPS
i , zGPS

j) < ⌧Rt

n

(6.12)

For brevity, we omit ✓loc and use f loc
(Ii) instead of the full expression f loc

(Ii; ✓loc).
We pick the thresholds for ⌧Rt based on a combination of factors including con-
vergence rate and overall accuracy of the final learned metric. Nominal values of
⌧Rt

p range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing
frustums of positive examples, with ⌧Rt

n for negative examples set to 0.4.

Figure 6-7 illustrates the visual self-similarity matrix of the feature embedding
at various stages during the training process. Initially (at epoch 0), the feature em-
bedding is equivalent to the original feature description, where the distances are
not well-calibrated. As training progresses, the similarity metric learning draws
positively labeled examples of loop-closure image pairs closer together in the em-
bedded space, while pushing the negative examples farther from each other. As
the training converges, we start to notice a few characteristics in the learned em-
bedding that make it especially powerful in identifying loop-closures: (i) The red
diagonal bands in the visual self-similarity matrix are well-separated from the blue

131

such that we
minimize

Cross-modal Image-GPS measurements

(Id, zGPS
d)

(Iq, zGPS
q)

(Is, zGPS
s)

(I, zGPS)

Embedding appropriate for
Visual Loop-closure Detection

f(Id)

f(Is)

f(Iq)

f(I)

Determine

f(I; ✓)

D(zGPS
i , zGPS

j) = zGPS
i zGPS

j

Distance on SE(2) manifold
(Relative pose transformation)

D(Ii, Ij) = kf(Ii)� f(Ij)k2

“Semantic” distance in embedding

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

Self-Supervised Siamese Net with
Contrastive Loss

(Bootstrapped with synchronized GPS measurements)

GPS/INS

IT

Sy
nc

hr
on

ize
d

Im
ag

es
 /

GP
S CNN

Contrastive Loss

CNN

zGPS
TzGPS

jzGPS
i

f loc(I
j

)f loc(I
i

)

✓loc

Shared Weights

K(zGPS
i , zGPS

j)

I0

zGPS
0

Images

59

‣ Bootstrapped Visual Place Recognition
Learning for Mobile Robots

• Self-supervised Siamese Net with Contrastive Loss
• Calibrate distances for Loop-Closure Detection
• Distance-weighted sampling for faster convergence

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

‣ Siamese Place Recognition Model

• Pre-trained Places365-AlexNet with shared weights
• fc6, fc7 are fine-tuned, with remaining layers fixed

Self-Supervised Siamese Net with
Contrastive Loss

(Bootstrapped with synchronized GPS measurements)

GPS/INS

IT

Sy
nc

hr
on

ize
d

Im
ag

es
 /

GP
S CNN

Contrastive Loss

CNN

zGPS
TzGPS

jzGPS
i

f loc(I
j

)f loc(I
i

)

✓loc

Shared Weights

K(zGPS
i , zGPS

j)

I0

zGPS
0

Images

59

‣ Bootstrapped Visual Place Recognition
Learning for Mobile Robots

• Self-supervised Siamese Net with Contrastive Loss
• Calibrate distances for Loop-Closure Detection
• Distance-weighted sampling for faster convergence

Self-Supervised Visual Place-Recognition Learning in Mobile Robots
Pillai et al. (Learning for Localization and Mapping Workshop, IROS 2017)

SELF-SUPERVISED METRIC LEARNING
FOR VISUAL PLACE-RECOGNITION

‣ Siamese Place Recognition Model

• Pre-trained Places365-AlexNet with shared weights
• fc6, fc7 are fine-tuned, with remaining layers fixed

‣ Self-supervision via cross-modal information

• Self-similarity for sequential pose measurements
• Kernel with translation and rotational components

St Lucia Dataset
GPS measurements with colors

indicating bearing

St. Lucia Dataset

0.0

1.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

60

SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 29

standard keyframe-selection Klein and Murray 2007; Strasdat et al. 2010 where the poses
are sampled from a continuous stream whenever the relative pose has exceeded a cer-
tain translational or rotational threshold from its previously established keyframe. Setting
these translational and rotational thresholds to 5m, and ⇡

6 radians typically reduces the a
driving dataset (such as the St. Lucia Glover et al. 2010) roughly by a factor of 10. For
an illustration of the sampling based on GPS or viewing frustum, we refer the reader to
Figure 2.2.

Key-frame Similarity The self-supervision is enabled by defining a viewing frustum
that applies to both the navigation-view z

t

and the camera-view. We define a Gaussian
similarity kernelK between two instances of GPS measurements zGPS

i

and z

GPS

j

given by:

K(z

GPS

i

, zGPS

j

) = exp(��t
�

�

z

t
i

� z

t
j

�

�

2

2
)

| {z }

Translation similarity

· exp(��R
�

�

z

R
i

 z

R
j

�

�

2

2
)

| {z }

Rotation similarity

(2.12)

where z

t
i

is the GPS translation measured in metric-coordinates at time i, and z

R
i

is the
corresponding rotation or bearing determined from the sequential GPS coordinates for
the particular session (See Figure 2.3). Here, the only hyper-parameter required is the
choice of the bandwidth parameters �R and �t, and generally depends on the viewing
frustum of the camera used. The resulting similarity matrix for the translation (using GPS
translation t only), and the rotation (using established bearing R only) is illustrated in
Figure 2.3. Sampling is illustrated in Figure 2.4.

Distance-Weighted Sampling With key-frame based sampling considerably reduc-
ing the dataset to a diverse, yet representative one for e�cient training, we now focus on
sampling positive and negative pairs in order to ensure speedy convergence of the pro-
posed contrastive loss function. We first consider the key-frame similarity matrix between
all pairs of Key-frames for a given dataset, and sample positive pairs whose similarity
exceeds a specified threshold. Similarly, we sample negative pairs whose similarity is be-
low the same threshold. For each of the positive and negative sets, we further sample
uniformly by their inverse distance following Wu et al. 2017 closely.

2.4.2 Learning an appropriate distance metric for localization

Our proposed self-supervised place recognition architecture is realized with a Siamese
network (Figure 2.1) with an appropriate objective function 2.13 that simultaneously finds
a reduced dimensional metric space where the relative distances between features and
their corresponding measurements z are well-calibrated. In this context, well-calibrated
refers to the property that negative samples are separated at least by a known margin,
while positive samples are separated within distance of the margin. Following the termi-
nology in Section 2.3.1, we consider tuples (z

GPS, I) of similar (positive) and dissimilar
(negative) examples for learning an appropriate metric f loc in the space of image descrip-
tors. Intuitively, we seek to find a “semantic measure” of distance given by

�

�f loc

(I
i

), f loc

(I
j

)

�

�

2
in a target space of Rm in such a way that they agree with those defined in the metric space
of GPS measurements (in this case) given by D(z

GPS

i

, zGPS

j

) =

�

�

z

GPS

i

� z

GPS

j

�

�

2
. Since we

‣ Self-supervision via cross-modal information

• Self-similarity for sequential pose measurements
• Kernel with translation and rotational components

St Lucia Dataset
GPS measurements with colors

indicating bearing

St. Lucia Dataset

0.0

1.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

60

Self-Similarity
(Kernel derived from GPS measurements)

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

Time

Ti
m

e
SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 29

standard keyframe-selection Klein and Murray 2007; Strasdat et al. 2010 where the poses
are sampled from a continuous stream whenever the relative pose has exceeded a cer-
tain translational or rotational threshold from its previously established keyframe. Setting
these translational and rotational thresholds to 5m, and ⇡

6 radians typically reduces the a
driving dataset (such as the St. Lucia Glover et al. 2010) roughly by a factor of 10. For
an illustration of the sampling based on GPS or viewing frustum, we refer the reader to
Figure 2.2.

Key-frame Similarity The self-supervision is enabled by defining a viewing frustum
that applies to both the navigation-view z

t

and the camera-view. We define a Gaussian
similarity kernelK between two instances of GPS measurements zGPS

i

and z

GPS

j

given by:

K(z

GPS

i

, zGPS

j

) = exp(��t
�

�

z

t
i

� z

t
j

�

�

2

2
)

| {z }

Translation similarity

· exp(��R
�

�

z

R
i

 z

R
j

�

�

2

2
)

| {z }

Rotation similarity

(2.12)

where z

t
i

is the GPS translation measured in metric-coordinates at time i, and z

R
i

is the
corresponding rotation or bearing determined from the sequential GPS coordinates for
the particular session (See Figure 2.3). Here, the only hyper-parameter required is the
choice of the bandwidth parameters �R and �t, and generally depends on the viewing
frustum of the camera used. The resulting similarity matrix for the translation (using GPS
translation t only), and the rotation (using established bearing R only) is illustrated in
Figure 2.3. Sampling is illustrated in Figure 2.4.

Distance-Weighted Sampling With key-frame based sampling considerably reduc-
ing the dataset to a diverse, yet representative one for e�cient training, we now focus on
sampling positive and negative pairs in order to ensure speedy convergence of the pro-
posed contrastive loss function. We first consider the key-frame similarity matrix between
all pairs of Key-frames for a given dataset, and sample positive pairs whose similarity
exceeds a specified threshold. Similarly, we sample negative pairs whose similarity is be-
low the same threshold. For each of the positive and negative sets, we further sample
uniformly by their inverse distance following Wu et al. 2017 closely.

2.4.2 Learning an appropriate distance metric for localization

Our proposed self-supervised place recognition architecture is realized with a Siamese
network (Figure 2.1) with an appropriate objective function 2.13 that simultaneously finds
a reduced dimensional metric space where the relative distances between features and
their corresponding measurements z are well-calibrated. In this context, well-calibrated
refers to the property that negative samples are separated at least by a known margin,
while positive samples are separated within distance of the margin. Following the termi-
nology in Section 2.3.1, we consider tuples (z

GPS, I) of similar (positive) and dissimilar
(negative) examples for learning an appropriate metric f loc in the space of image descrip-
tors. Intuitively, we seek to find a “semantic measure” of distance given by

�

�f loc

(I
i

), f loc

(I
j

)

�

�

2
in a target space of Rm in such a way that they agree with those defined in the metric space
of GPS measurements (in this case) given by D(z

GPS

i

, zGPS

j

) =

�

�

z

GPS

i

� z

GPS

j

�

�

2
. Since we

‣ Self-supervision via cross-modal information

• Self-similarity for sequential pose measurements
• Kernel with translation and rotational components

St Lucia Dataset
GPS measurements with colors

indicating bearing

St. Lucia Dataset

0.0

1.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

60

30 CHAPTER 2. SELF-SUPERVISED VISUAL PLACE RECOGNITION IN ROBOTS

St. Lucia Dataset

0.0

1.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 2.3: Bootstrapped learning using cross-modal information: Top row: An illustration of the vehicle
path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and GPS measurements. The
colors correspond to the vehicle bearing angle (RotationR) inferred from the sequential GPS measurements.
Bottom row: The similarity matrix determined from the translation (t), rotation (R) and their combination
(Rt) on the St. Lucia Dataset using the assumed ground-truth GPS measurements. Each row and column
in the similarity matrix corresponds to key-frames sampled from the dataset as described in Section 2.4.1.
The sampling scheme ensures a time-invariant (aligned) representation where loop-closures appear as o�-
diagonal entries that are a fixed-o�set from the current sequence (main-diagonal). We use a Gauassian
kernel (Equation 2.12) to describe the similarity between key-frames and sample positive/negative samples
from the combined Rt similarity matrix.

Positive Labels Negative Labels

Figure 2.4: Self-Supervised sampling: The K kernel computed in equation 2.12 is used to “supervise” the
sampling procedure. Left figure: Samples whose kernel K(zGPS , z0GPS) evaluates to higher than ⌧Rt

p

are
considered as positive samples (in red). Right figure: Samples whose kernel K(zGPS , z0GPS) evaluates to
lower than ⌧Rt

n

are consider as negative examples (in red).

are particularly interested in identifying potential images that may be taken from within
a fixed distance of each other, we make the appropriate modification to the objective such

Self-Supervised Positive/Negative Pairs
(Distance-weighted sampling)

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

Positive/Negative Indicator

Self-Similarity
(Kernel derived from GPS measurements)

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

Time

Ti
m

e
SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

Epoch 30 Epoch 180 Final Epoch

‣ Self-supervised metric learning for place-recognition

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

61

Epoch 30 Epoch 180 Final Epoch

‣ Self-supervised metric learning for place-recognition

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

61

Desired

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

GPS Self-Similarity
(Rot & Trans.)

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

Image Self-Similarity

Epoch 30 Epoch 180 Final Epoch

‣ Self-supervised metric learning for place-recognition

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

Epoch 0

61

Desired

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

GPS Self-Similarity
(Rot & Trans.)

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

Image Self-Similarity

Epoch 30 Epoch 180 Final Epoch

‣ Self-supervised metric learning for place-recognition

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

Self-supervised learning of a visual-similarity metric
(Learning evolution)

Epoch 0

61

Desired

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

GPS Self-Similarity
(Rot & Trans.)

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

Image Self-Similarity

Epoch 30 Epoch 180 Final Epoch

‣ Self-supervised metric learning for place-recognition

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

Self-supervised learning of a visual-similarity metric
(Learning evolution)

Epoch 0

61

Desired

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

GPS Self-Similarity
(Rot & Trans.)

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

2.4. SELF-SUPERVISED METRIC LEARNING FOR PLACE RECOGNITION 31

that this classification is rendered feasible.
Let (I

i

, zGPS

i

) 2 X be the input data and
GPS

2 0, 1 be the indicator variable rep-
resenting dissimilar and similar examples of x respectively. We seek to find a kernel
f loc

(·; ✓) : x 7! � that maps the input image I
i

to an embedding vector �
i

2 Rm whose
distances between similar places are low, while the distances between dissimilar places are high.
We take advantage of availability of synchronized Image-GPS measurements (I, zGPS

)

to provide an indicator for place similarity, thereby rendering this procedure fully auto-
matic and self-supervised. Re-writing equation 2.6 for our domain, we get Equation 2.13
where D(I

i

, I
j

) measures the “semantic distance” between images (Equation 2.14). The in-
dicator variable

GPS

in Equation 2.15 determines whether the sample is labeled positive
(

GPS

= 1, if so) or negative (
GPS

= 0).

L(✓) =
X

((Ii,zi),(Ij ,zj))2X

(

GPS

) ·D(I
i

, I
j

)

2
+ (1�

GPS

) ·
h

↵�D(I
i

, I
j

)

i2

+
(2.13)

D(I
i

, I
j

) =

�

�f loc

(I
i

)� f loc

(I
j

)

�

�

2
(2.14)

GPS

=

(

1 if K(z

GPS

i

, zGPS

j

) > ⌧Rt
p

0 if K(z

GPS

i

, zGPS

j

) < ⌧Rt
n

(2.15)

For brevity, we omit ✓ in the above expression and use f loc

(I
i

) instead of the full expres-
sion f loc

(I
i

; ✓). We pick the thresholds for ⌧Rt based on a combination of factors including
convergence rate and overall accuracy of the final learned metric. Nominal values of ⌧Rt

p

range from 0.8 to 0.9 that indicate the tightness of the overlap between viewing frustums
of positive examples, with ⌧Rt

n

for negative examples set to 0.4.

1.0

0.0
Epoch 0 Epoch 30 Epoch 180 Final Epoch

Figure 2.5: Self-Supervised learning of a visual-similarity metric: An illustration of the similarity matrix
at various stages of training. At Epoch 0, the distances between features extracted at identical locations are
not well-calibrated requiring hand-tuned metrics for reliable matching. With more positive and negative
training examples, the model at Epoch 30has learned to draw positive features closer together (strong red
o�-diagonal sequences indicating loop-closures), while pushing negative features farther apart (strong blue
background). This trend continues with Epoch 180 where the loop-closures start to look well-defined, while
the background is consistently blue indicating a reduced likelihood for false-positives.

Image Self-Similarity

Epoch 30 Epoch 180 Final Epoch

‣ Self-supervised metric learning for place-recognition

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

Self-supervised learning of a visual-similarity metric
(Learning evolution)

Epoch 0

61

Desired

St. Lucia Dataset

1.0

0.0
Translation (t) Rotation (R) Rot. & Trans. (Rt)

Figure 6-5: Bootstrapped learning using cross-modal information I Top row I An illustration
of the vehicle path traversed in the St. Lucia dataset (100909 1210) with synchronized Image and
GPS measurements. The colors correspond to the vehicle bearing angle (Rotation R) inferred from
the sequential GPS measurements. Bottom row I The self-similarity matrix determined from the
translation (t), rotation (R) and their combination (Rt) on the St. Lucia Dataset using the assumed
ground-truth GPS measurements. Each row and column in the self-similarity matrix corresponds
to key-frames sampled from the dataset as described in Section 6.4.1. The sampling scheme en-
sures a time-invariant (aligned) representation where loop-closures appear as o�-diagonal entries
that are a fixed-o�set from the current sequence (main-diagonal). We use a Gaussian kernel (Equa-
tion 6.9) to describe the similarity between key-frames and sample positive/negative samples from
the combined Rt similarity matrix.

a Gaussian similarity kernel K between two instances of GPS measurements z

GPS
i

and z

GPS
j given by:

K(z

GPS
i , zGPS

j) = exp(��t

��
z

t

i � z

t

j

��2

2
)

| {z }
Translation similarity

· exp(��R

��
z

R

i z

R

j

��2

2
)

| {z }
Rotation similarity

(6.9)

where z

t

i is the GPS translation measured in metric-coordinates at time i, and z

R

i is
the corresponding rotation or bearing determined from the sequential GPS coordi-
nates for the particular session (See Figure 6-5). Here, the only hyper-parameter re-
quired is the choice of the bandwidth parameters �R and �t, and generally depends
on the viewing frustum of the camera used. The resulting similarity matrix for the
translation (using GPS translation t only), and the rotation (using established bear-
ing R only) is illustrated in Figure 6-5. Sampling is illustrated in Figure 6-6.

129

GPS Self-Similarity
(Rot & Trans.)

Learned Self-Similarity
(Image embedding)

Trajectory with embedded CNN features
Colored with T-SNE

(St. Lucia Dataset)

‣ Self-supervised metric learning for place-recognition

32 CHAPTER 2. SELF-SUPERVISED VISUAL PLACE RECOGNITION IN ROBOTS

1.0

0.0
Trajectory with features

colored with T-SNE embedding
Learned Similarity Metric

(Final epoch)
Target Similarity Metric

(From figure 2.3)

Figure 2.6: Qualitative results of self-supervised metric learning on the St. Lucia Dataset: Left: An il-
lustration of the path traversed (100909 1210) with the colors indicating the 3-D T-SNE embedding of the
learned features � extracted at those corresponding locations. The colors are plotted in the RGB colorspace.
Similar colors in this illustration indicate similar visual similarity extracted from those locations. Columns 2
and 3: Comparison of the learned visual-similarity metric against the target or ground truth similarity met-
ric (obtained by determining overlapping frustums using GPS measurements). As expected, the distances
in the learned model tend to be well-calibrated enabling strong precision-recall performance. Furthermore,
the model can be qualitatively validated when the learned similarity matrix starts to closely resemble the
target similarity matrix (comparing columns 2 and 3 in the figure).

Algorithm 1 Self-Supervised Metric Learning for Place Recognition
Input: (I

i

, zGPS

i

) 2 X : Input image sequence and corresponding GPS measurements
Output: f loc,Mloc: Fine-tuned, invariant mapping for place recognition and corresponding model

. Compute GPS similarity matrix (Equation 2.12)
1: KGPS P�������S���������GPS(zGPS)

. Generate positive and negative examples for learning the similarity metric (Section 2.4.1)
2: X

S

,X
D

 S���S���������D������G���������(I,KGPS)
. Discriminative Similarity Metric Learning via Contrastive Loss (Section 2.4.2)
. Learned invariant mapping/metric f loc : I 7! �, where I 2 Rn and � 2 Rm

. Probabilistic measure of similarity ploc(�
i

,�
j

;Mloc) = �loc(�
i

� �
j

;Mloc)
3: f loc, ploc,Mloc S����S���������M�����L�������(X

S

,X
D

)

2.4.3 E�cient scene indexing, retrieval and matching

Once features � are extracted and mapped to an appropriate target space in Rm, we re-
quire a mechanism to insert and query these fine-tuned descriptors from a database. We
use a KD-Tree in order to incrementally insert features into a balanced tree data structure,
thereby enabling O(logN) queries. While other works resort to e�cient encodings such
as Product Quantization (PQ) Jegou et al. 2011 to speed up querying, our model learns
already learns a reduced dimensionality target space that is especially conducive for e�-
cient indexing and querying.

Scene and trajectory matching While it is convenient to perform matching queries
on the granularity of scenes, it however makes it particularly vulnerable to undesirable
levels of false-positives. This is a well-understood concern Cummins and Newman 2010;
Galvez-Lopez and Tardos 2012; Lowry et al. 2016; Lynen et al. 2014; Milford and Wyeth

Target Self-Similarity
(GPS measurements)

Consistent embedding
across multiple runs

62

• Calibrate / Fine-tune an appropriate metric for place-recognition
• Learned embedding can be directly used for loop-closure detection

LEARNING A VISUAL-SIMILARITY METRIC

SELF-SUPERVISED PLACE RECOGNITION
PERFORMANCE

Precision-Recall comparison at 20m Precision-Recall comparison at 30m

Figure 6-10: Precision-Recall performance in loop-closure recognition using the original and
learned feature embedding space I The figures show the precision-recall (P-R) performance in
loop-closure recognition for various feature descriptors using the pre-trained Places365-AlexNet
model and the learned embedding (Ours-fc7). Our learned embedding is able to significantly out-
perform the pre-trained Places365-AlexNet model for all feature layers, by self-supervising the model
on a more representative dataset.

confidence can be later used to incorporate these measurements into the back-end
pose graph optimization. Figure 6-11 illustrates the interpretability of the proposed
learned embedding metric compared to the original feature embedding distance
metric. The histograms for the L2 embedding distance separation are illustrated for
both positive (in green) and negative (in blue) pairs of features. Here, a positive pair
refers to feature descriptions of images taken at identical locations, while the nega-
tive pairs refer to those pairs of feature descriptions that were taken from at least 50
meters apart from each other. The figure clearly illustrates how the learned embed-
ding (Ours-fc7) is able to tease apart positive pairs, from those between the negative
pairs of features, enabling an improved classifier (with a more obvious separator)
for place-recognition. Intuitively, the histogram overlap between the positive and
negative probability masses measures the ambiguity in loop-closure identification,
with our learned feature embedding (Ours-fc7) demonstrating the least amount of
overlap.

"-NN search in the learned feature embedding space Once the distances are
calibrated in the feature embedding space, even a naı̈ve fixed-radius nearest neigh-
bor strategy, that we shall refer to as "-NN, can be surprisingly powerful. In Fig-
ure 6-12, we show that our approach is able to achieve high-recall, with consid-
erably strong precision performance for features that lie within distance ↵ (con-
trastive loss margin as described in Section 6.4.2) from each other.

Furthermore, the feature embedding can also be used in the context of image re-

137

63

Precision-Recall for Loop-Closure Recognition
(Comparing Places365 AlexNet layers and Ours-fc7 learned embedding)

Precision-Recall curve (Ours-fc7) Recall with increasing k-NN (Ours-fc7)

Precision-Recall curve (Places365-conv5) Recall with increasing k-NN (Places365-conv5)

Precision-Recall curve (Places365-fc7) Recall with increasing k-NN (Places365-fc7)

Figure 6-13: Precision-Recall performance for loop-closure recognition in the original and
learned feature embedding space using k-Nearest Neighbors I The first column shows that our
learned feature embedding space is able to capture more Precision-Recall performance than the pre-
trained layers (Places365-AlexNet conv5 and fc7). The plot on the second column shows the recall
performance with increasing set of neighbors considered for each query sample. Using the learned
feature embedding space (Ours-fc7), we are able to capture more candidate loop-closures within
the closest 20 neighbors of the query sample.

traversed.

140

Precision-Recall curve (Ours-fc7) Recall with increasing k-NN (Ours-fc7)

Precision-Recall curve (Places365-conv5) Recall with increasing k-NN (Places365-conv5)

Precision-Recall curve (Places365-fc7) Recall with increasing k-NN (Places365-fc7)

Figure 6-13: Precision-Recall performance for loop-closure recognition in the original and
learned feature embedding space using k-Nearest Neighbors I The first column shows that our
learned feature embedding space is able to capture more Precision-Recall performance than the pre-
trained layers (Places365-AlexNet conv5 and fc7). The plot on the second column shows the recall
performance with increasing set of neighbors considered for each query sample. Using the learned
feature embedding space (Ours-fc7), we are able to capture more candidate loop-closures within
the closest 20 neighbors of the query sample.

traversed.

140

Precision-Recall for Loop-Closure Recognition
(Comparing Places365 AlexNet fc7 and Ours-fc7 learned embedding)

(k-NN: Considering top 20 nearest neighbors)(k-NN: Considering top 20 nearest neighbors)

64

Separation distance histogram (Ours-fc7) Separation distance histogram (conv3) Separation distance histogram (conv4) Separation distance histogram (conv5)

Separation distance histogram (pool5) Separation distance histogram (fc6) Separation distance histogram (fc7) Separation distance histogram (fc8)

Figure 6-11: Separation distance calibration I The histograms of L2 distances between posi-
tive and negative examples are shown for the various feature descriptions with the pre-trained
Places365-AlexNet model. Our learned model is able to fine-tune intermediate layers and distort the
feature embedding such that the distances between positive and negative examples (similar and dis-
similar places) are well-calibrated. This is seen especially in the first plot (top row, far left Ours-fc7),
where the probability mass for positive and negative examples are better separated with reduced
overlap, while the other histograms are not well-separated in the feature embedding space.

Precision-Recall curve (Ours-fc7) Recall for increasing L2 embedded distance (Ours-fc7)

Figure 6-12: Precision-Recall performance for loop-closure recognition in the original and
learned feature embedding space using fixed-radius neighborhood search ("-nn) I The first
column convincingly shows that our learned feature embedding space is able to maintain strong
Precision-Recall performance by using "-nn (fixed-radius search). The plot on the second column
shows the recall performance with increasing feature embedding L2 distance considered for each
query sample. The Siamese network was trained with a contrastive loss margin of ↵ = 10, which
distorts the embedding space such that positive pairs are encouraged to only be separated by an L2

distance of 10 or lower. The figure on the right shows that in the learned feature embedding space
(Ours-fc7), we are able to capture most candidate loop-closures within an L2 distance of 5 from the
query sample, as more matching neighbors are considered.

trieval with strong recall performance via naı̈ve k-Nearest Neighbor (k-NN) search.
Figure 6-13 compares the precision-recall performance of the k-NN strategy on the
original and learned embedding space, and shows a considerable performance gain

138

Separation distance histogram (Ours-fc7) Separation distance histogram (conv3) Separation distance histogram (conv4) Separation distance histogram (conv5)

Separation distance histogram (pool5) Separation distance histogram (fc6) Separation distance histogram (fc7) Separation distance histogram (fc8)

Figure 6-11: Separation distance calibration I The histograms of L2 distances between posi-
tive and negative examples are shown for the various feature descriptions with the pre-trained
Places365-AlexNet model. Our learned model is able to fine-tune intermediate layers and distort the
feature embedding such that the distances between positive and negative examples (similar and dis-
similar places) are well-calibrated. This is seen especially in the first plot (top row, far left Ours-fc7),
where the probability mass for positive and negative examples are better separated with reduced
overlap, while the other histograms are not well-separated in the feature embedding space.

Precision-Recall curve (Ours-fc7) Recall for increasing L2 embedded distance (Ours-fc7)

Figure 6-12: Precision-Recall performance for loop-closure recognition in the original and
learned feature embedding space using fixed-radius neighborhood search ("-nn) I The first
column convincingly shows that our learned feature embedding space is able to maintain strong
Precision-Recall performance by using "-nn (fixed-radius search). The plot on the second column
shows the recall performance with increasing feature embedding L2 distance considered for each
query sample. The Siamese network was trained with a contrastive loss margin of ↵ = 10, which
distorts the embedding space such that positive pairs are encouraged to only be separated by an L2

distance of 10 or lower. The figure on the right shows that in the learned feature embedding space
(Ours-fc7), we are able to capture most candidate loop-closures within an L2 distance of 5 from the
query sample, as more matching neighbors are considered.

trieval with strong recall performance via naı̈ve k-Nearest Neighbor (k-NN) search.
Figure 6-13 compares the precision-recall performance of the k-NN strategy on the
original and learned embedding space, and shows a considerable performance gain

138

Separation Distance Calibration
(Comparing Places365 AlexNet fc7 and Ours-fc7 learned embedding)

Plot shows the histograms of L2 distances between
similar and dissimilar examples. The distances are well-

separated in the learned embedding.

SELF-SUPERVISED PLACE RECOGNITION
PERFORMANCE

f(xs)

f(xd)
f(xq)

f(x)

“Semantic” Distance Measure
(Task appropriate)

D(xi,xj) = kf(xi; ✓)� f(xj ; ✓)k2

Arbitrarily-defined Distance Measure
(Meaningless)

xd

xs

xq

x

D(xi,xj) = kxi � xjk2

‣ Learned similarity metric for loop-closure detection

SELF-SUPERVISED LOOP-CLOSURE DETECTION

• Fixed-radius NN on learned embedding
reduces false positives

• Fine-tuning only requires collecting data
• Works with any real-valued descriptor
• Learned embedding can be used for
indexing, querying, quantization

65

‣ Learned similarity metric for loop-closure detection

SELF-SUPERVISED LOOP-CLOSURE DETECTION

• Fixed-radius NN on learned embedding
reduces false positives

• Fine-tuning only requires collecting data
• Works with any real-valued descriptor
• Learned embedding can be used for
indexing, querying, quantization

65

‣ Vision-based Pose-Graph SLAM

• Self-supervised loop-closure identification
with learned embedding

hand-tuned features and matching techniques to implement their vision-based loop-
closure mechanisms. With the growing sensor modalities on robotic systems, main-
taining several variants of the hand-engineered front-ends becomes increasingly
tedious and di�cult. The results are less than optimal since certain feature rep-
resentations such as Convolutional Neural Networks (CNNs) extract (Zhou et al.
2014b; 2016b) for example, are generally optimized for the image classification task.
Alternatively, we could learn a metric of similarity for the purposes of localiza-
tion i.e. identifying a mapping where features extracted from identical locations
lie closer to each other, and those extracted from dissimilar places lie farther away
from each other. Furthermore, we would like to determine a calibrated distance
metric that provides a probabilistic measure of similarity such that they can be
readily deployed in safety-critical systems where modeling these probabilities can
be especially valuable. To alleviate this growing concern, we envision robots to
self-supervise the task of visual loop-closure recognition in newer sensors by boot-
strapping their existing localization and mapping capabilities.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 6-1: Visual Loop-Closure Recognition Learning I In a typical factor-graph formulation
of Pose-Graph SLAM, the vision-based loop-closure recognition contributes to relative-pose con-
straints cj,k (in red) between temporally-distant nodes. This chapter focuses on identifying these
loop-closure constraints by describing and indexing images in an embedded feature space that can
be self-supervised to perform accurate loop-closure retrieval.

6.2 Related Work

Visual place recognition in the context of vision-based navigation is a well stud-
ied problem in the robotics and computer vision literature (Lowry et al. 2016). In
order to identify previously visited locations the system needs to be able to extract
salient cues from an image that describes the content contained within it. Extract-
ing an appropriate set of cues can be especially challenging when building robust
systems that operate for extremely long periods of time. Typically, the same place
may be significantly di�erent from its previous appearance due to various factors
such as variations in lighting (e.g. sunny, cloudy, rainy etc), observed viewpoint

119

Factor Graph representation of
Pose-Graph SLAM

‣ Learned similarity metric for loop-closure detection

SELF-SUPERVISED LOOP-CLOSURE DETECTION

St. Lucia Dataset
(With learned metric)

KITTI Dataset
(With learned metric)

• Fixed-radius NN on learned embedding
reduces false positives

• Fine-tuning only requires collecting data
• Works with any real-valued descriptor
• Learned embedding can be used for
indexing, querying, quantization

OPTIMIZED

MEASURED

OPTIMIZED

MEASURED

65

‣ Vision-based Pose-Graph SLAM

• Self-supervised loop-closure identification
with learned embedding

hand-tuned features and matching techniques to implement their vision-based loop-
closure mechanisms. With the growing sensor modalities on robotic systems, main-
taining several variants of the hand-engineered front-ends becomes increasingly
tedious and di�cult. The results are less than optimal since certain feature rep-
resentations such as Convolutional Neural Networks (CNNs) extract (Zhou et al.
2014b; 2016b) for example, are generally optimized for the image classification task.
Alternatively, we could learn a metric of similarity for the purposes of localiza-
tion i.e. identifying a mapping where features extracted from identical locations
lie closer to each other, and those extracted from dissimilar places lie farther away
from each other. Furthermore, we would like to determine a calibrated distance
metric that provides a probabilistic measure of similarity such that they can be
readily deployed in safety-critical systems where modeling these probabilities can
be especially valuable. To alleviate this growing concern, we envision robots to
self-supervise the task of visual loop-closure recognition in newer sensors by boot-
strapping their existing localization and mapping capabilities.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 6-1: Visual Loop-Closure Recognition Learning I In a typical factor-graph formulation
of Pose-Graph SLAM, the vision-based loop-closure recognition contributes to relative-pose con-
straints cj,k (in red) between temporally-distant nodes. This chapter focuses on identifying these
loop-closure constraints by describing and indexing images in an embedded feature space that can
be self-supervised to perform accurate loop-closure retrieval.

6.2 Related Work

Visual place recognition in the context of vision-based navigation is a well stud-
ied problem in the robotics and computer vision literature (Lowry et al. 2016). In
order to identify previously visited locations the system needs to be able to extract
salient cues from an image that describes the content contained within it. Extract-
ing an appropriate set of cues can be especially challenging when building robust
systems that operate for extremely long periods of time. Typically, the same place
may be significantly di�erent from its previous appearance due to various factors
such as variations in lighting (e.g. sunny, cloudy, rainy etc), observed viewpoint

119

Factor Graph representation of
Pose-Graph SLAM

St. Lucia Dataset

KITTI Dataset

KITTI Sequence 00

M
ea

su
re

d
O

pt
im

iz
ed

t1 t2 t3 T

St. Lucia Dataset

M
ea

su
re

d
O

pt
im

iz
ed

t1 t2 t3 T

Figure 6-15: Vision-based Pose-Graph SLAM with our learned place-recognition module I The
two sets of plots show the measured (in red) and optimized (in blue) pose-graph for a particular
KITTI and St Lucia session. The crossed edges in the measured pose-graph correspond to loop-
closure candidates proposed by our learned place-recognition module. As more measurements are
added and loop-closures are proposed (t1 < t2 < t3 < T), the pose-graph optimization accurately
recovers the true trajectory of the vehicle across the entire session. For both sessions, we inject
odometry noise to simulate drift in typical odometry estimates.

and 0.3 rad respectively. The constraints are incrementally added and solved using
iSAM2 (Kaess et al. 2012) as the measurements are recovered.

6.7 Discussion and Future Work

Scene Context Modeling We shall now consider a potential extension to our
scene-level similarity metric learning model using an LSTM (Hochreiter and Schmid-
huber 1997). By modeling sequence of scene descriptions as a sequence learning
problem, we can choose to reformulate the metric learning objective with a tem-
poral component that finds a similar invariant mapping fixed-length windows of
scene descriptions. This can be particularly advantageous in improving the overall
precision-recall performance of the algorithm by reducing erroneous false-positives

142

OPTIMIZED

MEASURED

KITTI Sequence 00

M
ea

su
re

d
O

pt
im

iz
ed

t1 t2 t3 T

St. Lucia Dataset

M
ea

su
re

d
O

pt
im

iz
ed

t1 t2 t3 T

Figure 6-15: Vision-based Pose-Graph SLAM with our learned place-recognition module I The
two sets of plots show the measured (in red) and optimized (in blue) pose-graph for a particular
KITTI and St Lucia session. The crossed edges in the measured pose-graph correspond to loop-
closure candidates proposed by our learned place-recognition module. As more measurements are
added and loop-closures are proposed (t1 < t2 < t3 < T), the pose-graph optimization accurately
recovers the true trajectory of the vehicle across the entire session. For both sessions, we inject
odometry noise to simulate drift in typical odometry estimates.

and 0.3 rad respectively. The constraints are incrementally added and solved using
iSAM2 (Kaess et al. 2012) as the measurements are recovered.

6.7 Discussion and Future Work

Scene Context Modeling We shall now consider a potential extension to our
scene-level similarity metric learning model using an LSTM (Hochreiter and Schmid-
huber 1997). By modeling sequence of scene descriptions as a sequence learning
problem, we can choose to reformulate the metric learning objective with a tem-
poral component that finds a similar invariant mapping fixed-length windows of
scene descriptions. This can be particularly advantageous in improving the overall
precision-recall performance of the algorithm by reducing erroneous false-positives

142

OPTIMIZED

MEASURED

66

hand-tuned features and matching techniques to implement their vision-based loop-
closure mechanisms. With the growing sensor modalities on robotic systems, main-
taining several variants of the hand-engineered front-ends becomes increasingly
tedious and di�cult. The results are less than optimal since certain feature rep-
resentations such as Convolutional Neural Networks (CNNs) extract (Zhou et al.
2014b; 2016b) for example, are generally optimized for the image classification task.
Alternatively, we could learn a metric of similarity for the purposes of localiza-
tion i.e. identifying a mapping where features extracted from identical locations
lie closer to each other, and those extracted from dissimilar places lie farther away
from each other. Furthermore, we would like to determine a calibrated distance
metric that provides a probabilistic measure of similarity such that they can be
readily deployed in safety-critical systems where modeling these probabilities can
be especially valuable. To alleviate this growing concern, we envision robots to
self-supervise the task of visual loop-closure recognition in newer sensors by boot-
strapping their existing localization and mapping capabilities.

x0 x1 x2 x3 x4 xt�1 xt

u1 u2 u3 u4 ut

p0

c1,4 c3,t�1

Figure 6-1: Visual Loop-Closure Recognition Learning I In a typical factor-graph formulation
of Pose-Graph SLAM, the vision-based loop-closure recognition contributes to relative-pose con-
straints cj,k (in red) between temporally-distant nodes. This chapter focuses on identifying these
loop-closure constraints by describing and indexing images in an embedded feature space that can
be self-supervised to perform accurate loop-closure retrieval.

6.2 Related Work

Visual place recognition in the context of vision-based navigation is a well stud-
ied problem in the robotics and computer vision literature (Lowry et al. 2016). In
order to identify previously visited locations the system needs to be able to extract
salient cues from an image that describes the content contained within it. Extract-
ing an appropriate set of cues can be especially challenging when building robust
systems that operate for extremely long periods of time. Typically, the same place
may be significantly di�erent from its previous appearance due to various factors
such as variations in lighting (e.g. sunny, cloudy, rainy etc), observed viewpoint

119

Factor Graph representation of
Pose-Graph SLAM

SELF-SUPERVISED LOOP-CLOSURE DETECTION

• Self-supervised loop-closure identification
with learned embedding

‣ Vision-based Pose-Graph SLAM

X

⇤
= argmax

X

p(X | U,Z
c

) (2.7)

= argmin

X

(
MX

i=1

kfu(xi�1,ui)� xik2P
u

| {z }
Odometry Measurement Factors

+

X

(j,k)2C
khc(xj,xk)� zjkk2P

c

| {z }
Loop-Closure Constraint Factors

)
(2.8)

2.1.3 Data association

Data association is one of the key components in a SLAM system (Bar-Shalom
et al. 1990). While a lot of care is taken in setting up the optimization objective, it is
critical to ensure that the measurements fed into the back-end optimization is not
erroneous. Data association can be evaluated in the same way as classical recogni-
tion related tasks: they need to achieve high-precision in the set of measurements
associated, while ensuring high-recall of the relevant measurements that can be
associated (Neira and Tardós 2001). We elaborate on the necessity of robust data
association in Section 2.3.

2.2 Factor Graphs for SLAM

x1 x2 x3

f1 f2 f3

Figure 2-2: Factor graph example I A factor graph is a bipartite graph that describes the factoriza-
tion of a joint probability distribution over latent random variables. The figure illustrates the condi-
tional independence constraints between variables, whose joint probability distribution can be writ-
ten as the product of them factors, given by f(x1, x2, x3) =

Qm
i=1 fi(Xi) = f1(x1, x3)f2(x2)f3(x2, x3).

Xi refers to the subset of variables that fi depends on.

A factor graph (Kschischang et al. 2001) is a bipartite graph that encodes how
a function of several variables factorizes into its a product of local functions. A
factor graph typically consists of nodes representing latent variables considered in
the estimation problem, and factors that represent the information between or on

27

SLAM-SUPERVISED SCENE EMBEDDINGS

67

SLAM-SUPERVISED SCENE EMBEDDINGS

67

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine
Spatial Cells in the Hippocampal Formation

John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-SUPERVISED SCENE EMBEDDINGS

‣ Learning location-specific scene embeddings

67

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine
Spatial Cells in the Hippocampal Formation

John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-SUPERVISED SCENE EMBEDDINGS

‣ Learning location-specific scene embeddings

• Learned embedding powerful in discriminating visual
scene instances

SLAM-Supervised Scene Embeddings
Consistent scene embeddings for same location

(Colors obtained via T-SNE embedding of learned metric)

Stairs

4-loopsScene embedding segments

View-dependent

67

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine
Spatial Cells in the Hippocampal Formation

John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-SUPERVISED SCENE EMBEDDINGS

‣ Learning location-specific scene embeddings

• Learned embedding powerful in discriminating visual
scene instances

• Weak-supervision under uncertainty (SLAM)

SLAM-Supervised Scene Embeddings
Consistent scene embeddings for same location

(Colors obtained via T-SNE embedding of learned metric)

Stairs

4-loopsScene embedding segments

View-dependent

67

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine
Spatial Cells in the Hippocampal Formation

John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-SUPERVISED SCENE EMBEDDINGS

‣ Learning location-specific scene embeddings

• Learned embedding powerful in discriminating visual
scene instances

• Weak-supervision under uncertainty (SLAM)
• On-the-fly fine-tuning

SLAM-Supervised Scene Embeddings
Consistent scene embeddings for same location

(Colors obtained via T-SNE embedding of learned metric)

Stairs

4-loopsScene embedding segments

View-dependent

67

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine
Spatial Cells in the Hippocampal Formation

John O'Keefe, May-Britt Moser, Edvard I. Moser

CENTRAL THEME: SLAM AS A SUPERVISORY SIGNAL

68

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported
Object Recognition

I1

I2
I3

It

Self-Supervised Visual Place
Recognition Learning

I1

I2
I3

Self-Supervised Visual
Ego-motion Learning

Correspondence Engine
(Geometric data association)

Knowledge Transfer
(Bootstrapping)

Self-Supervision
(SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS
with SLAM

CONTRIBUTIONS

69

CONTRIBUTIONS

69

‣ Spatially Cognizant Perception

CONTRIBUTIONS

69

‣ Spatially Cognizant Perception
• SLAM-Supported Object Recognition: Leverage SLAM capabilities to bolster classical
object recognition in spatially-situated scenes

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported Object Recognition
Pillai et al. (RSS 2015)

CONTRIBUTIONS

69

‣ Spatially Cognizant Perception
• SLAM-Supported Object Recognition: Leverage SLAM capabilities to bolster classical
object recognition in spatially-situated scenes

• SLAM-aware Few-shot Object Learning: Use SLAM as a correspondence-engine for
spatially-consistent and occlusion-aware label propagation, and learn object detectors
from considerably fewer training examples

Multi-view Object Detection
Objects easily tease apart to

enable better proposals
(Proposals from Semi-Dense Maps)

Robust
Reduced false positives via

view correspondence
from SLAM

(Multi-view prediction)

Scalable
Box-encoding / RoI Pooling

(FLAIR/Fast R-CNN)

Single RGB Camera
Monocular SLAM supports

improved recognition
(Semi-Dense Mapping Backend)

Figure 3-2: SLAM-aware Object Recognition I The proposed SLAM-aware object recognition
system is able to robustly localize and recognize several objects in the scene, aggregating detection
evidence across multiple views. Annotations in white are provided for clarity and are actual pre-
dictions proposed by our system. Keyframe poses are shown with red camera frustums, while the
3-D triads correspond to the camera poses tracked on a frame-by-frame basis. The labels in green are
for illustrative purposes only.

shick 2015; He et al. 2017; Redmon et al. 2016; Ren et al.; 2015), to enable strong
recognition performance in monocular mobile systems. Additionally, we show that
maintaining a SLAM-aware representation makes our system particularly amenable
to few-shot object learning. Thus, the integration with a monocular visual-SLAM
(vSLAM) back-end enables our SLAM-aware approach to take advantage of both
the reconstructed map and camera location to significantly bolster object recogni-
tion, both during its training and deployment phases.

We present several experimental results validating the improved recognition
performance of our proposed system: (i) The system is compared against the cur-
rent state-of-the-art (Lai et al. 2012; 2014) on the UW-RGBD Scene (Lai et al. 2011;
2014) Dataset. We compare the improved recognition performance of being SLAM-
aware to being SLAM-oblivious (i.e. classical frame-based techniques); (ii) We show
that our approach easily extends to newer feature encoding techniques utilized
in state-of-the-art CNN-based methods, further improving the recognition perfor-
mance in single-camera equipped mobile robots; and (iii) By leveraging the un-
derlying semi-dense reconstruction and optimized keyframes that our approach
provides, we show that a SLAM-aware, few-shot object learning strategy can be es-
pecially advantageous to mobile robots that can learn quickly from a minimal set
of experiences.

38

Monocular SLAM-Supported Object Recognition
Pillai et al. (RSS 2015)

CONTRIBUTIONS

70

‣ Life-Long Learning in Mobile Robots
• Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping
the robot’s ability to perform GPS-aided SLAM, we develop a self-supervised visual
SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure
recognition

CONTRIBUTIONS

70

‣ Life-Long Learning in Mobile Robots
• Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping
the robot’s ability to perform GPS-aided SLAM, we develop a self-supervised visual
SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure
recognition

Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

CONTRIBUTIONS

70

‣ Life-Long Learning in Mobile Robots
• Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping
the robot’s ability to perform GPS-aided SLAM, we develop a self-supervised visual
SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure
recognition

Towards Visual Ego-motion Learning in Robots
Pillai et al. (IROS 2017)

Sampled
ego-motion

Reconstructed
Input

Encoder

Original
Input

Decoder

K

2

1

z

Mixture
Density
Network

GMM Density Estimate
(⇡(x), µ(x),�(x))

qφ(z|x,∆x) pθ(∆x|z, x)

(x,∆x̂)(x,∆x) x

GPS/INS

IT

Sy
nc

hr
on

ize
d

Im
ag

es
 /

GP
S CNN

Contrastive Loss

CNN

zGPS
TzGPS

jzGPS
i

f loc(I
j

)f loc(I
i

)

✓loc

Shared Weights

K(zGPS
i , zGPS

j)

I0

zGPS
0

Images

Self-Supervised Visual Place Recognition in Mobile Robots
Pillai et al. (Learning for Localization and Mapping Workshop, IROS 2017)

CONTRIBUTIONS

71

CONTRIBUTIONS

71

‣ Map Representations for Vision-Based Navigation

CONTRIBUTIONS

71

‣ Map Representations for Vision-Based Navigation
• High-Performance and Tunable Stereo Reconstruction: Develop an any-time, iteratively
refine-able, mesh reconstruction algorithm for stereo imagery that can be potentially
used in planning, obstacle avoidance etc.

High-Performance And Tunable Stereo Reconstruction
Pillai et al. (ICRA 2016)

FUTURE DIRECTIONS

72

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

72

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying
• Self-Supervised Cross-Modal Learning in Robots

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying
• Self-Supervised Cross-Modal Learning in Robots

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

Transferring LiDAR
information for camera-based

scene reconstruction the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying
• Self-Supervised Cross-Modal Learning in Robots

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying
• Self-Supervised Cross-Modal Learning in Robots

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

Transferring hindsight
experience for lane-estimation

the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying
• Self-Supervised Cross-Modal Learning in Robots

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

FUTURE DIRECTIONS
‣ SLAM as a supervisory signal

• Spatially and Semantically-aware Robot DBs
• Expressive Language for Robot Data Querying
• Self-Supervised Cross-Modal Learning in Robots
• Life-long Learning with Simulation

Figure 7-1: Semantic foveation with SLAM-aware backends I We illustrate the potential of
SLAM-aware databases that allow for semantically relevant and e�cient queries in a scene. In this
example, we are able to query the database for various views of the same piece of artwork that has
previously been recognized. By making the database, both semantically and spatially-aware, we are
able to query the semantics in a scene given its spatial location or query the di�erent spatial locations
of a given semantic entity. Furthermore, these databases can be temporally persistent that allows
multi-session SLAM solutions to provide strong relational connectivity within the graph database.

tures, including multi-core, and heterogeneous architectures (x86, ARM, CUDA),
all while maintaining the exact same source-code implementation. Inspired by
these recent trends, we are particularly interested in developing similar domain-
specific expressions and abstractions for large-scale robot data computation. Through
some recent work (Moll et al. 2017), we hope to develop an expressive DSL for mo-
bile robots that can allow complex machine-learning workflow specifications on
high-volume robot data, while abstracting performance decisions to a massively
parallel heterogeneous back-end. We expect these tools and abstractions to heavily
leverage modern GPGPU hardware, and foresee it being especially valuable to the
robotics community as we enter an era for petabyte-level machine learning.

7.3 Self-Supervised Cross-Modal Learning in Robots

Self-supervised learning provides a compelling solution to the life-long auton-
omy problem in robots. If robots are to constantly learn from their experiences, they
need to be able to query their experiences and the physical world that they interact
with, both from a spatial and semantic context. In the near future, we expect these

147

Spatially and Semantically-Aware Robot DBs
(Where have I seen artwork before?)

72

the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
di�cult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
e�ciently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(
@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
di�erent systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:

Expressive Language for Robot Data Querying
(Show me X in all robot views, across multiple sessions)

SLAMinDB: Centralized Graph Databases for Mobile Robotics [Fourie et. al 2017]

ACKNOWLEDGEMENTS

John Leonard Nicholas Roy Antonio TorralbaLeslie Kaelbling

Thesis Committee

ACKNOWLEDGEMENTS

Marine Robotics Group

Robotics, Vision and Sensor Networks Group

CSAIL and EECS

MIT Community

Seth

ACKNOWLEDGEMENTS

Friends

and many others …

ACKNOWLEDGEMENTS

Family

ACKNOWLEDGEMENTS

Parents

ACKNOWLEDGEMENTS

Sruthi

Questions!

79

Image Courtesy: Willow Garage

SLAM-AWARE, SELF-SUPERVISED PERCEPTION
IN MOBILE ROBOTS

