SLAM-AWARE, SELF-SUPERVISED PERCEPTION IN MOBILE ROBOTS

Sudeep Pillai PhD Thesis Defense Aug 29, 2017

MOTIVATION

Mobile robots today are endowed with rich spatial models to effectively understand and navigate in the world

GEOMETRIC SCENE UNDERSTANDING FOR NAVIGATION

SPATIALLY-COGNIZANT ROBOTS with SLAM

Temporally Scalable Visual SLAM using a Reduced Pose Graph [Johannsson et. al 2013]

MOTIVATION

SPATIALLY-COGNIZANT ROBOTS with SLAM

Temporally Scalable Visual SLAM using a Reduced Pose Graph [Johannsson et. al 2013]

MOTIVATION

Mobile robots need to be endowed with SLAM-aware perceptual models for navigation and scene understanding, effectively using SLAM as a supervisory signal

Mobile robots need to be endowed with SLAM-aware perceptual models for navigation and scene understanding, effectively using SLAM as a supervisory signal

OBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for navigation and scene understanding, effectively using SLAM as a supervisory signal

LEARNING VIA SELF-SUPERVISION

MIT DGC Vehicle (2007)

OBJECT RECOGNITION

Uber ATG Vehicle (2017)

LEARNING VIA SELF-SUPERVISION

MIT DGC Vehicle (2007)

OBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for navigation and scene understanding, effectively using SLAM as a supervisory signal

Uber ATG Vehicle (2017)

LEARNING VIA SELF-SUPERVISION

MIT DGC Vehicle (2007)

OBJECT RECOGNITION

Mobile robots need to be endowed with SLAM-aware perceptual models for navigation and scene understanding, effectively using SLAM as a supervisory signal

Uber ATG Vehicle (2017)

LEARNING TO LOCALIZE

Grid cells

2014 Nobel Prize in Physiology or Medicine Spatial Cells in the Hippocampal Formation John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM

Simultaneous Localization and Mapping

- Joint probability distribution
- Factored and represented as a DGM

SLAM as a Bayes Net

$$p(\mathbf{X}, \mathbf{L} \mid \mathbf{U}, \mathbf{Z}) \propto p(\mathbf{x}_0) \prod_{i=1}^{M} p(\mathbf{x}_i \mid \mathbf{x}_{i-1}, \mathbf{u}_i) \prod_{k=1}^{K} p(\mathbf{z}_k \mid \mathbf{x}_{ik}, \mathbf{l}_{jk})$$
$$\propto \prod_{i=1}^{M} \exp\left(-\frac{1}{2} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2\right) \prod_{k=1}^{K} \exp\left(-\frac{1}{2} \|h_k(\mathbf{x}_{ik}, \mathbf{l}_{jk}) - \mathbf{z}_k\|_{\Sigma_k}^2\right)$$

Influence of odometry measurements

Influence of landmark measurements

Factored Joint probability distribution

1

FACTOR GRAPHS FOR SLAM

$$\mathbf{X}^*, \mathbf{L}^* = \underset{\mathbf{X}, \mathbf{L}}{\operatorname{arg\,max}} p(\mathbf{X}, \mathbf{L} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{l}})$$
$$= \underset{\mathbf{X}, \mathbf{L}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^M \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{k=1}^K \|h_k(\mathbf{x}_{ik}, \mathbf{l}_{jk}) - \mathbf{z}_k\|_{\Sigma_u}^2 \right\}$$

Odometry Measurement Factors

Bundle Adjustment Problem

p

FACTOR GRAPHS FOR SLAM

$$\mathbf{X}^{*}, \mathbf{L}^{*} = \underset{\mathbf{X}, \mathbf{L}}{\operatorname{arg\,max}} p(\mathbf{X}, \mathbf{L} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{l}})$$
$$= \underset{\mathbf{X}, \mathbf{L}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_{u}(\mathbf{x}_{i-1}, \mathbf{u}_{i}) - \mathbf{x}_{i}\|_{\Sigma_{u}}^{2} + \sum_{k=1}^{K} \|h_{k}(\mathbf{x}_{ik}, \mathbf{l}_{jk}) - \mathbf{z}_{k}\|_{\Sigma_{u}}^{2} \right\}$$

Odometry Measurement Factors

Bundle Adjustment Problem

$$\mathbf{X}^* = \underset{\mathbf{X}}{\operatorname{arg\,max}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{g}})$$
$$= \underset{\mathbf{X}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{j=1}^{G} \|h_g(\mathbf{x}_j) - \mathbf{z}_j\|_{\Sigma_g}^2 \right\}$$

Odometry Measurement Factors

GPS Measurement Priors

p

Prior

FACTOR GRAPHS FOR SLAM

$$\mathbf{X}^{*}, \mathbf{L}^{*} = \underset{\mathbf{X}, \mathbf{L}}{\operatorname{arg\,max}} p(\mathbf{X}, \mathbf{L} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{l}})$$
$$= \underset{\mathbf{X}, \mathbf{L}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_{u}(\mathbf{x}_{i-1}, \mathbf{u}_{i}) - \mathbf{x}_{i}\|_{\Sigma_{u}}^{2} + \sum_{k=1}^{K} \|h_{k}(\mathbf{x}_{ik}, \mathbf{l}_{jk}) - \mathbf{z}_{k}\|_{\Sigma_{u}}^{2} \right\}$$

Odometry Measurement Factors

Bundle Adjustment Problem

$$\mathbf{X}^* = \underset{\mathbf{X}}{\operatorname{arg\,max}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{g}})$$

=
$$\underset{\mathbf{X}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{j=1}^{G} \|h_g(\mathbf{x}_j) - \mathbf{z}_j\|_{\Sigma_g}^2 \right\}$$

Odometry Measurement Factors

GPS Measurement Priors

$$\mathbf{X}^* = \underset{\mathbf{X}}{\operatorname{arg\,max}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_c)$$
$$= \underset{\mathbf{X}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{(j,k)\in\mathcal{C}} \|h_c(\mathbf{x}_j, \mathbf{x}_k) - \mathbf{z}_{jk}\|_{\Sigma_u}^2 \right\}$$

Odometry Measurement Factors

Loop-Closure Constraint Factors

Measurements

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

(Geometric data association)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Self-Supervision (SLAM-aided supervision)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Knowledge Transfer (Bootstrapping)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

(Geometric data association)

Self-Supervision

(SLAM-aided supervision)

Knowledge Transfer (Bootstrapping)

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

(Geometric data association)

Self-Supervision

Knowledge Transfer

OBJECT RECOGNITION IN ROBOTS

Single RGB Camera Versatile

Multi-view Object Detection Camera & Object localization by leveraging SLAM

Input RGB Video

Robots equipped with a single RGB camera need to continuously recognize and localize all potential objects in its immediate environment

Robust

Avoid spurious detection/mis-classification

> Real-time Scalable recognition

OBJECT RECOGNITION IN ROBOTS

Single RGB Camera Versatile

Multi-view Object Detection Camera & Object localization by leveraging SLAM

Input RGB Video

Robots equipped with a single RGB camera need to continuously recognize and localize all potential objects in its immediate environment

Robust

Avoid spurious detection/mis-classification

> Real-time Scalable recognition

Shift in Visual-SLAM and Object Detection capabilities

- Shift in Visual-SLAM and Object Detection capabilities
 - Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align

RICHER SEMANTICS

- Shift in Visual-SLAM and Object Detection capabilities
 - Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align
 - Robust vSLAM: Sparse and Semi-dense Monocular Reconstruction

RICHER SEMANTICS

- Shift in Visual-SLAM and Object Detection capabilities
 - Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align
 - Robust vSLAM: Sparse and Semi-dense Monocular Reconstruction
 - Semantic SFM/SLAM: Semantics measurements for SLAM

SEMANTIC SLAM

SLAM++ Salas-Moreno et al. (CVPR 2013)

RICHER SEMANTICS

Shift in Visual-SLAM and Object Detection capabilities

- Richer Semantics: Object Proposals, R-CNN, Rol Pooling/Align
- Robust vSLAM: Sparse and Semi-dense Monocular Reconstruction
- Semantic SFM/SLAM: Semantics measurements for SLAM
- **RGB-D Detection:** Map-driven detection with RGB-D SLAM

RGB-D DETECTION

SEMANTIC SLAM

Detection-based Object Labeling in 3D scenes Lai et al. (ICRA 2012)

SLAM++ Salas-Moreno et al. (CVPR 2013)

RICHER SEMANTICS

ROBUST vSLAM

STATE-OF-THE-ART OBJECT RECOGNITION

Frame-based object-recognition

- Good overall recognition performance
- Some viewpoint, lighting invariance
- No memory, context or scene knowledge
- Spurious false positives

Two Stage Object Recognition

15

STATE-OF-THE-ART OBJECT RECOGNITION

Frame-based object-recognition

- Good overall recognition performance
- Some viewpoint, lighting invariance
- No memory, context or scene knowledge
- Spurious false positives

Two Stage Object Recognition

Geodesic Object Proposals with Fast-RCNN

Fast R-CNN, Girshick 2015 Geodesic Object Proposals Krahenbuhl et al 2014

- SLAM-aware object proposals
 - Strong overall recognition performance
 - Better viewpoint, lighting invariance
 - Provides some spatial context and knowledge
 - Spurious false positives

- SLAM-aware object proposals
 - Strong overall recognition performance
- Better viewpoint, lighting invariance
- Provides some spatial context and knowledge
- Spurious false positives

SLAM as a correspondence-engine for spatially-consistent object proposals

- SLAM-aware object proposals
 - Strong overall recognition performance
 - Better viewpoint, lighting invariance
 - Provides some spatial context and knowledge
 - Spurious false positives

SLAM as a correspondence-engine for spatially-consistent object proposals

Each frame is individually classified

- SLAM-aware object proposals
- Strong overall recognition performance
- Better viewpoint, lighting invariance
- Provides some spatial context and knowledge
- Spurious false positives

SLAM as a correspondence-engine for spatially-consistent object proposals

Each frame is individually classified

SLAM-aware Object Proposals with Fast-RCNN

Fast R-CNN, Girshick 2015

OBJECT RECOGNITION with SLAM

SLAM-aware object recognition

- Strong overall recognition performance
- Better viewpoint, lighting invariance
- Provides spatial context and scene knowledge
- No spurious false positives
- Occlusion handling

OBJECT RECOGNITION with SLAM

SLAM-aware object recognition

- Strong overall recognition performance
- Better viewpoint, lighting invariance
- Provides spatial context and scene knowledge
- No spurious false positives
- Occlusion handling

SLAM as a correspondence-engine for spatially-consistent object proposals

OBJECT RECOGNITION with SLAM

SLAM-aware object recognition

- Strong overall recognition performance
- Better viewpoint, lighting invariance
- Provides spatial context and scene knowledge
- No spurious false positives
- Occlusion handling

SLAM as a correspondence-engine for spatially-consistent object proposals

Object evidence is aggregated across all views, as enabled by the SLAM-aware system

SLAM-aware object proposal and evidence aggregation with Fast-RCNN Fast R-CNN, Girshick 2015

SLAM-aware $\{\xi, \mathcal{M}\}$ $\xi \mathcal{M}$ Keyframes Map

Initialization

SLAM-aware $\{\xi, \mathcal{M}\}$ \mathcal{M} Map Keyframes

Reduced ambiguity and improved reconstruction with more views

SLAM-aware $\{\xi, \mathcal{M}\}$ ξ ξ \mathcal{M} KeyframesMap

Distinct object views for classification via keyframe selection

 ξ_2

SLAM-aware $\{\xi, \mathcal{M}\}$ ٦ \mathcal{M} Keyframes Map

Occlusions require special treatment

Keyframe-based Visual-SLAM Bundle Adjustment

SLAM-aware $\{\xi, \mathcal{M}\}$ \mathcal{M} Keyframes Map

 \mathbf{X}, \mathbf{L}

 $= \arg m$ \mathbf{X}

$\mathbf{X}^*, \mathbf{L}^* = \arg \max p(\mathbf{X}, \mathbf{L} \mid \mathbf{Z}_{\mathbf{l}})$

$$\inf \sum_{k=1}^{K} \|h_k(\mathbf{x}_{ik}, \mathbf{l}_{jk}) - \mathbf{z}_k\|_{\sum_k}^2$$

ORB-SLAM, *Mur-Artal et al* 2015 SVO: Depth Filter, Forster et al 2014

Semi-dense reconstruction with keyframes

 ξ_2

SLAM-aware $\{\xi, \mathcal{M}\}$ ξ ξ \mathcal{M} KeyframesMap

Semi-dense Reconstruction-Object Proposals

SLAM-aware $\{\xi, \mathcal{M}\}$ ξ ξ \mathcal{M} KeyframesMap

Goal: Determine most likely semantic label given all non-occluding views

Occlusion-aware Proposal Description

For each object proposal $\mathcal{O}^j \in \mathcal{O}$

We first compute the bounding box of the object proposal \mathcal{O}^{j} onto the keyframe ξ_{k}

For each object proposal $\mathcal{O}^j \in \mathcal{O}$

We first compute the bounding box of the object proposal \mathcal{O}^{j} onto the keyframe ξ_{k}

For each object proposal $\mathcal{O}^{j} \in \mathcal{O}$

Rol Pooling and Description using Fast R-CNN

We first compute the bounding box of the object proposal \mathcal{O}^{j} onto the keyframe ξ_{k}

Rol Pooling and Description using Fast R-CNN

$$\hat{y}_{MLE}^{j} = \underset{y \in \{1, \dots, C\}}{\operatorname{argmax}} \prod_{k \in \mathcal{V}^{j}} p(\Psi_{k}^{j} \mid Y = y)$$
$$= \underset{y \in \{1, \dots, C\}}{\operatorname{argmax}} \sum_{k \in \mathcal{V}^{j}} \log p(\Psi_{k}^{j} \mid Y = y)$$

MLE factorizes assuming features Ψ^j_k are conditional independent given class label y

We first compute the bounding box of the object proposal \mathcal{O}^{j} onto the keyframe ξ_{k}

Rol Pooling and Description using Fast R-CNN

$$\hat{y}_{MLE}^{j} = \underset{y \in \{1, \dots, C\}}{\operatorname{argmax}} \prod_{k \in \mathcal{V}^{j}} p(\Psi_{k}^{j} \mid Y = y)$$
$$= \underset{y \in \{1, \dots, C\}}{\operatorname{argmax}} \sum_{k \in \mathcal{V}^{j}} \log p(\Psi_{k}^{j} \mid Y = y) \quad \checkmark$$

MLE factorizes assuming features Ψ^j_k are conditional independent given class label y

$$p(\Psi_k^j | Y = y)$$

Logistic regression on the features extracted from the object proposal \mathbf{j} in view \mathbf{k}

MLE factorizes assuming features Ψ^j_k are conditional independent given class label y

$$\hat{y}_{MLE}^{j} = \underset{y \in \{1, \dots, C\}}{\operatorname{argmax}} \prod_{k \in \mathcal{V}^{j}} p(\Psi_{k}^{j} \mid Y = y)$$
$$= \underset{y \in \{1, \dots, C\}}{\operatorname{argmax}} \sum_{k \in \mathcal{V}^{j}} \log p(\Psi_{k}^{j} \mid Y = y) \quad \blacktriangleleft$$

$$p(\Psi_k^j | Y = y)$$

Logistic regression on the features extracted from the object proposal \mathbf{j} in view \mathbf{k}

SLAM-Supported Recognition (Ours)

CORRECT PREDICTIONS 27

Frame-based Recognition (Classical approach)

INCORRECT PREDICTIONS

SLAM-Supported Recognition (Ours)

CORRECT PREDICTIONS 27

Frame-based Recognition (Classical approach)

INCORRECT PREDICTIONS

SLAM-Supported Recognition (Ours)

CORRECT PREDICTIONS 28

Frame-based Recognition (Classical approach)

INCORRECT PREDICTIONS

SLAM-Supported Recognition (Ours)

CORRECT PREDICTIONS 28

Frame-based Recognition (Classical approach)

SLAM-Supported Recognition (Ours)

CORRECT PREDICTIONS 29

Frame-based Recognition (Classical approach)

SLAM-Supported Recognition (Ours)

CORRECT PREDICTIONS 29

Frame-based Recognition (Classical approach)

MONOCULAR SLAM-SUPPORTED OBJECT RECOGNITION

SLAM-Supported Recognition with Fast-RCNN Occluded objects are also shown since they are visible from other viewpoints

MONOCULAR SLAM-SUPPORTED OBJECT RECOGNITION

SLAM-Supported Recognition with Fast-RCNN Occluded objects are also shown since they are visible from other viewpoints

MONOCULAR SLAM-SUPPORTED OBJECT RECOGNITION PERFORMANCE

Comparing Frame-based Recognition with SLAM-aware Recognition on UW RGB-D Scene Dataset (v2)

Higher is better

MONOCULAR SLAM-SUPPORTED OBJECT RECOGNITION PERFORMANCE

Comparing Frame-based Recognition with SLAM-aware Recognition on UW RGB-D Scene Dataset (v2)

SLAM provides useful information for handling ambiguities in object labels, occlusion, and visibility understanding

SLAM as a correspondence-engine

SLAM-aware label propagation

SLAM as a correspondence-engine

SLAM-aware label propagation

SLAM as a correspondence-engine

SLAM-aware label propagation

SLAM as a correspondence-engine

SLAM-aware label propagation

SLAM-AWARE FEW-SHOT OBJECT LEARNING PERFORMANCE

- Randomized few-shot object learning
 - Randomly selected training information
 - Poorly trained classifiers can benefit from SLAM-aware recognition

Randomized Few-Shot Learning with SLAM-aware Recognition

SLAM-AWARE FEW-SHOT OBJECT LEARNING PERFORMANCE

- SLAM-aware few-shot object learning
- Randomly selected training information with SLAM-aware label propagation
- Despite minimal labels, trained classifiers are significantly more powerful

SLAM-aware Few-Shot Learning with SLAM-aware Recognition

SLAM-AWARE FEW-SHOT OBJECT LEARNING PERFORMANCE

- SLAM-aware few-shot object learning
- Randomly selected training labels with SLAM-aware label propagation
- Despite fewer labels provided, SLAM-aware few-shot training can still achieve strong performance

Method	Frame-based Recognition mAP / Recall / FI-score	SLAM-aware Recognition mAP / Recall / FI-score
2-shot (Randomized)	80.5 / 63.4 / 69.7	83.1 / 74.8 / 77.1
5-shot (Randomized)	76.0 / 72.6 / 73.7	81.6 / 80.9 / 80.5
10-shot (Randomized)	79.6 / 74.5 / 76.0	81.6 / 82.2 / 81.5
20-shot (Randomized)	85.9 / 80.5 / 82.2	91.0/89.8/90.2
I-shot (SLAM-aware)	85.3 / 85.2 / 82.6	87.9 / 87.0 / 84.3
2-shot (SLAM-aware)	87.4 / 87.6 / 86.3	89.6 / 89.0 / 87.3
4-shot (SLAM-aware)	89.6 / 89.3 / 89.2	90.6 / 90.8 / 90.5

Comparison of SLAM-aware and randomized few-shot object learning

RECOGNITION-SUPPORTED SLAM

- Object Recognition as a front-end measurement for SLAM
- Rich feature capacity
- Scalable / Reduced complexity
- Viewpoint, Lighting invariant
- Pre-trained recognition models
- Perceptual aliasing
- Lack of contextual / scene knowledge

PRIOR ART

- I. Object-based SLAM: SLAM++ [Moreno et. al 2013]
- 2. Semantic SFM [Bao et. al 2011]
- 3. Localization from Semantic Observations [Antanasov et. al 2015]

Future Work: Recognition-Supported SLAM

(Long-range loop-closure corrections with learned objects)

RECOGNITION-SUPPORTED SLAM

- Object Recognition as a front-end measurement for SLAM
- Rich feature capacity
- Scalable / Reduced complexity
- Viewpoint, Lighting invariant
- Pre-trained recognition models
- Perceptual aliasing
- Lack of contextual / scene knowledge

PRIOR ART

- I. Object-based SLAM: SLAM++ [Moreno et. al 2013]
- 2. Semantic SFM [Bao et. al 2011]
- 3. Localization from Semantic Observations [Antanasov et. al 2015]

Future Work: Recognition-Supported SLAM

(Long-range loop-closure corrections with learned objects)

SLAM AS A SUPERVISORY SIGNAL

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

(Geometric data association)

Self-Supervision

(SLAM-aided supervision)

Knowledge Transfer (Bootstrapping)

SLAM AS A SUPERVISORY SIGNAL

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

Self-Supervision

(SLAM-aided supervision)

Knowledge Transfer

VISUAL EGO-MOTION

Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

DETERMINE f such that

 $f(\mathcal{I}_{t-1},\mathcal{I}_t) \quad \mapsto$

Subsequent Images

Odometry (Relative motion)

Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

DETERMINE f such that

 $f(\mathcal{I}_{t-1},\mathcal{I}_t) \quad \mapsto$

Subsequent Images

Odometry (Relative motion)

Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

DETERMINE f such that

 $f(\mathcal{I}_{t-1},\mathcal{I}_t)$

Subsequent Images

Odometry (Relative motion)

Factor Graph for Vision-based Pose-Graph SLAM

Visual Ego-motion / Visual Odometry

• Trace the trajectory of the camera given a continuous image sequence

DETERMINE f such that

 $f(\mathcal{I}_{t-1},\mathcal{I}_t)$

Subsequent Images

Odometry (Relative motion)

Factor Graph for Vision-based Pose-Graph SLAM

$$\begin{aligned} \mathbf{X}^* &= \operatorname*{arg\,max}_{\mathbf{X}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{c}}) \\ &= \operatorname*{arg\,min}_{\mathbf{X}} \left\{ \sum_{i=1}^{M} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{(j,k) \in \mathcal{C}} \|h_c(\mathbf{x}_j, \mathbf{x}_k) - \mathbf{z}_{jk} \right\} \end{aligned}$$

Odometry Measurement Factors

Loop-Closure Constraint Factors

MOTIVATION

MOTIVATION

Why learn Visual Ego-motion / Odometry?

- Why learn Visual Ego-motion / Odometry?
- Varied camera optics: Pinhole, Fisheye, Catadioptric

MOTIVATION

Varied Camera Optics (a) Pinhole (b) Fisheye (c) Catadioptric

Why learn Visual Ego-motion / Odometry?

- Varied camera optics: Pinhole, Fisheye, Catadioptric
- Motion constraints: Unconstrained VO, Constrained VO

MOTIVATION

Varied Camera Optics (a) Pinhole (b) Fisheye (c) Catadioptric

Variants

- 2-D to 2-D
- 3-D to 3-D
- 3-D to 2-D (PnP)

2-D to 2-D Variants

- •5-point
- 8-point
- I-point, 2-point
- Stereo, RGB-D [Scaramuzza et. al 2011]

Why learn Visual Ego-motion / Odometry?

- Varied camera optics: Pinhole, Fisheye, Catadioptric
- Motion constraints: Unconstrained VO, Constrained VO
- Tedious calibration / monitoring: Intrinsics, Extrinsics

GROWING SENSOR CONFIGURATION

MIT DGC Vehicle (2007)

Uber ATG Vehicle (2017)

MOTIVATION

Varied Camera Optics (a) Pinhole (b) Fisheye (c) Catadioptric

Variants

- 2-D to 2-D
- 3-D to 3-D
- 3-D to 2-D (PnP)

2-D to 2-D Variants

- •5-point
- 8-point
- I-point, 2-point
- Stereo, RGB-D [Scaramuzza et. al 2011]

Ground-truth' Trajectory Generation

Generate target variables for self-supervision

Ground-truth' Trajectory Generation

• Generate target variables for self-supervision

 $f(\mathcal{I}_{t-1}, \mathcal{I}_t)$ ·. z•···

Subsequent Images

Odometry (Relative motion)

Ground-truth' Trajectory Generation

• Generate target variables for self-supervision

Subsequent Images

Odometry (Relative motion)

• Natural synchronization of Images/GPS/INS/Wheel Odometry to first solve a GPS-aided localization problem

Ground-truth' Trajectory Generation

• Generate target variables for self-supervision

Subsequent Images

Odometry (Relative motion)

 Natural synchronization of Images/GPS/INS/Wheel Odometry to first solve a GPS-aided localization problem

Fused Ego-motion Trajectory

Long-term, drift-free, accurate robot trajectory

Ground-truth' Trajectory Generation

• Generate target variables for self-supervision

$$f(\mathcal{I}_{t-1}, \mathcal{I}_t) \quad \longmapsto \quad \dot{z} \cdots \dot{z}$$

Subsequent Images

Odometry (Relative motion)

• Natural synchronization of Images/GPS/INS/Wheel Odometry to first solve a GPS-aided localization problem

$$\mathbf{X}^* = \underset{\mathbf{X}}{\operatorname{arg\,max}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{g}})$$

=
$$\underset{\mathbf{X}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{j=1}^{G} \|h_g(\mathbf{x}_j) - \mathbf{z}_j\|_{\Sigma_g}^2 \right\}$$

Odometry Measurement Factors

GPS Measurement Priors

Fused Ego-motion Trajectory

Long-term, drift-free, accurate robot trajectory

Images

Optical Flow $\mathbf{x} = (x, \Delta x)$

Ego-motion Regression

Fused GPS/INS w/ Odometry \mathbf{Z}

 $f: \mathbf{x} \mapsto \mathbf{z}$

EGO-MOTION REGRESSION

Towards Visual Ego-motion Learning in Robots *Pillai et al. (IROS 2017)* Images

Optical Flow $\mathbf{x} = (x, \Delta x)$

Ego-motion Regression

Fused GPS/INS w/ Odometry **Z**

 $f: \mathbf{x} \mapsto \mathbf{z}$

EGO-MOTION REGRESSION

Contributions

- Contributions
 - Ego-motion as a learned density estimation problem

- Contributions
- Ego-motion as a learned density estimation problem
- Generic camera optics (Pinhole, Fisheye, Catadioptric)

45

- Contributions
- Ego-motion as a learned density estimation problem
- Generic camera optics (Pinhole, Fisheye, Catadioptric)
- Introspective model-based reasoning

45

- Contributions
- Ego-motion as a learned density estimation problem
- Generic camera optics (Pinhole, Fisheye, Catadioptric)
- Introspective model-based reasoning

- Contributions
 - Ego-motion as a learned density estimation problem
- Generic camera optics (Pinhole, Fisheye, Catadioptric)
- Introspective model-based reasoning

Contributions

- Ego-motion as a learned density estimation problem
- Generic camera optics (Pinhole, Fisheye, Catadioptric)
- Introspective model-based reasoning

$$\begin{array}{lll} \mathbf{Z} & & \mbox{Ego-motion density estimate} \\ \mathbf{x} = (x, \Delta x) & & \mbox{Input feature location, and optical flow} \\ p_{\theta}(\Delta x | \mathbf{z}, x) & & \mbox{Decoder estimating scene flow given input feature location and sampled ego-motion} \\ p_{\phi}(\mathbf{z} | x, \Delta x) & & \mbox{Encoder estimating ego-motion pdf given input feature location and flow} \end{array}$$

- Ego-motion Density Estimation
- Mixture Density Network (MDN): Neural Network whose outputs are parameters of a Gaussian Mixture Model (GMM)

$$\begin{array}{c} f^{vo}: \mathbf{x} \mapsto \begin{pmatrix} \mu(\mathbf{x}_{t-1,t}), \sigma(\mathbf{x}_{t-1,t}), \pi(\mathbf{x}_{t-1,t}) \end{pmatrix} \\ \text{Optical} & \mathbf{Z} \\ \text{Flow} & \text{Ego-motion density estimate} \end{array}$$

Ego-motion Density Estimation

• Mixture Density Network (MDN): Neural Network whose outputs are parameters of a Gaussian Mixture Model (GMM)

$$\begin{aligned} f^{vo} : \mathbf{x} \mapsto \begin{pmatrix} \mu(\mathbf{x}_{t-1,t}), \sigma(\mathbf{x}_{t-1,t}), \pi(\mathbf{x}_{t-1,t}) \end{pmatrix} \\ & \text{Optical} \\ & \text{Flow} \end{aligned}$$
 Ego-motion density estimate

GMM

Outputs

$$p(\mathbf{z}_i \mid \mathbf{x}_i) = \sum_{k=1}^{K} \pi_k(\mathbf{x}_i) \mathcal{N}(\mathbf{z} \mid \mu_k(\mathbf{x}_i), \sigma_k^2(\mathbf{x}_i))$$
(Equation density estimate given entical flow)

(Ego-motion density estimate given optical flow)

$$\mathcal{L}_{\mathcal{MDN}} = -\sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k(\mathbf{x}_n) \mathcal{N}(\mathbf{z} \mid \mu_k(\mathbf{x}_n), \sigma_k^2(\mathbf{x}_n)) \right\}$$

(Minimize neg. log-likelihood under the GMM model)

$$\pi_{k}(\boldsymbol{x}) = \frac{\exp(a_{k}^{\pi})}{\sum_{l=1}^{K} \exp(a_{l}^{\pi})}$$

$$\sigma_{k}(\boldsymbol{x}) = \exp(a_{k}^{\sigma}), \quad \mu_{k}(\boldsymbol{x}) = a_{k}^{\mu}$$

$$Constraints \sum_{l=1}^{K} \sum_{k=1}^{K} \sum_{l=1}^{K} \sum_{k=1}^{K} \sum_{k=1}^{K} \sum_{l=1}^{K} \sum_{k=1}^{K} \sum_{k=1}^$$

- Density Estimation with flow introspection
- Mixture Density Network (MDN): Neural Network whose outputs are parameters of a Gaussian Mixture Model (GMM)

$$\begin{aligned} f^{vo} : \mathbf{x} \mapsto \begin{pmatrix} \mu(\mathbf{x}_{t-1,t}), \sigma(\mathbf{x}_{t-1,t}), \pi(\mathbf{x}_{t-1,t}) \end{pmatrix} \\ \text{Optical} & \mathbf{Z} \\ \text{Flow} & \text{Ego-motion density estimate} \end{aligned}$$

 Conditional-VAE (C-VAE) to reconstruct flow vectors given ego-motion

C-VAE
$$\mathcal{L}_{\text{CVAE}} = \mathbb{E}\left[\log p_{\theta}(\Delta x | \mathbf{z}, x)\right] - \underbrace{D_{KL}\left[q_{\phi}(\mathbf{z} | x, \Delta x) || p_{\theta}(\mathbf{z} | x, \Delta x)\right]}_{\mathcal{L}_{\text{CVAE}}}$$

Reconstruction Error

Variational Regularization

(Variational Lower Bound Objective)

Multi-Objective Minimization

- Multi-Objective Minimization
- Two-stage optimization

Windowed Trajectory Optimization

- Multi-Objective Minimization
- Two-stage optimization
- Local MDN loss minimizes short-term egomotion trajectories, but prone to bias

- Multi-Objective Minimization
- Two-stage optimization
- Local MDN loss minimizes short-term egomotion trajectories, but prone to bias

- Multi-Objective Minimization
- Two-stage optimization
- Local MDN loss minimizes short-term egomotion trajectories, but prone to bias

- Multi-Objective Minimization
 - Two-stage optimization
 - Local MDN loss minimizes short-term egomotion trajectories, but prone to bias
 - **Global** Trajectory loss minimizes long-term ego-motion prediction bias

- Multi-Objective Minimization
 - Two-stage optimization
 - Local MDN loss minimizes short-term egomotion trajectories, but prone to bias
 - **Global** Trajectory loss minimizes long-term ego-motion prediction bias

- Learning to recover ego-motion from feature tracks
 - Robust and adaptive (Tunable architectural capacity)
 - Generic camera optics (Pinhole, Fisheye, Catadioptric)
 - Powerful model based reasoning (Scene flow introspection)

- Learning to recover ego-motion from feature tracks
 - Robust and adaptive (Tunable architectural capacity)
 - Generic camera optics (Pinhole, Fisheye, Catadioptric)
 - Powerful model based reasoning (Scene flow introspection)

- Learning to recover ego-motion from feature tracks
 - Robust and adaptive (Tunable architectural capacity)
 - Generic camera optics (Pinhole, Fisheye, Catadioptric)
 - Powerful model based reasoning (Scene flow introspection)

Trajectory Estimation and Optimization

(Learned VO + intermittent GPS updates)

- Learning to recover ego-motion from feature tracks
 - Robust and adaptive (Tunable architectural capacity)
 - Generic camera optics (Pinhole, Fisheye, Catadioptric)
 - Powerful model based reasoning (Scene flow introspection)

Trajectory Estimation and Optimization

(Learned VO + intermittent GPS updates)

• Wheel Odometry

DEPLOYMENT

VISUAL EGO-MOTION PERFORMANCE

Sensor fusion with learned ego-motion on various datasets Fusing our learned visual ego-motion with intermittent GPS updates (Datasets: Multi-FOV Synthetic Dataset, Oxford 1000km, KITTI)

VISUAL EGO-MOTION PERFORMANCE

Dataset	Camera	Median Trajectory Error
KITTI	Pinhole	0.02 - 0.63 m
Multi-FOV	Pinhole	0.18 m
Multi-FOV	Fisheye	0.48 m
Multi-FOV	Catadioptric	0.36 m
Oxford	Pinhole	0.03 m
KITTI-Omni	Catadioptric	0.52 m

Trajectory Prediction Performance Fusing our learned visual ego-motion with intermittent GPS updates (Datasets: Multi-FOV Synthetic Dataset, Oxford 1000km, KITTI)

SLAM AS A SUPERVISORY SIGNAL

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

(Geometric data association)

Self-Supervision

(SLAM-aided supervision)

Knowledge Transfer (Bootstrapping)

SLAM AS A SUPERVISORY SIGNAL

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

Self-Supervision

Knowledge Transfer (Bootstrapping)

Visual Place-Recognition / Loop-Closure Detection

Visual Place-Recognition / Loop-Closure Detection

Visual Place-Recognition / Loop-Closure Detection

Visual Place-Recognition / Loop-Closure Detection

Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

DETERMINE f such that $f(\mathcal{I}_j) \simeq f(\mathcal{I}_k) \mapsto$ $c_{j,k}$ \mathcal{I}_k Loop-closure Temporally-distant Images

Constraint

Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

DETERMINE f such that $f(\mathcal{I}_j) \simeq f(\mathcal{I}_k) \mapsto$ $c_{j,k}$ \mathcal{I}_k Loop-closure Temporally-distant Images

Constraint

Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

DETERMINE f such that $c_{j,k}$ $f(\mathcal{I}_j) \simeq f(\mathcal{I}_k)$ \mathcal{I}_k Loop-closure Temporally-distant Images

Constraint

Factor Graph for Vision-based Pose-Graph SLAM

Visual Place-Recognition / Loop-Closure Detection

• Identifying previously visited places to reduce the odometry drift

DETERMINE f such that $c_{j,k}$ $f(\mathcal{I}_j) \simeq f(\mathcal{I}_k)$ \mathcal{I}_k Loop-closure Temporally-distant Images

Constraint

Factor Graph for Vision-based Pose-Graph SLAM

$$\mathbf{X}^* = \underset{\mathbf{X}}{\operatorname{arg\,max}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_c)$$

=
$$\underset{\mathbf{X}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_u(\mathbf{x}_{i-1}, \mathbf{u}_i) - \mathbf{x}_i\|_{\Sigma_u}^2 + \sum_{(j,k)\in\mathcal{C}} \|h_c(\mathbf{x}_j, \mathbf{x}_k) - \mathbf{z}_{jk} \right\}$$

Odometry Measurement Factors

Loop-Closure Constraint Factors

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

- Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]
- Whole-Image: GIST / Binarized Images [Sunderhauf 2011]
- FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]
- Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
- Density-based: Placeless place-recognition [Lynen 2014]

MOTIVATION

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

- Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]
- Whole-Image: GIST / Binarized Images [Sunderhauf 2011]
- FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]
- Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
- Density-based: Placeless place-recognition [Lynen 2014]

Hand-engineered descriptions and metrics for matching

SIFT, SURF, ORB, BRIEF, GIST BOW, VLAD, Fisher Vectors LI, L2, Cosine, Hamming Distance

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

- Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]
- Whole-Image: GIST / Binarized Images [Sunderhauf 2011]
- FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]
- Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
- Density-based: Placeless place-recognition [Lynen 2014]

Convolutional Neural Networks

- Places205: Scene Recognition [Zhou 2014, Zhou 2015]
- NetVLAD [Arandjelovic 2017]
- Place Recognition with ConvNet Landmarks [Sunderhauf 2015]
- CNN-based Place Recognition [Chen 2017]

Hand-engineered descriptions and metrics for matching

SIFT, SURF, ORB, BRIEF, GIST BOW, VLAD, Fisher Vectors LI, L2, Cosine, Hamming Distance

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

- Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]
- Whole-Image: GIST / Binarized Images [Sunderhauf 2011]
- FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]
- Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
- Density-based: Placeless place-recognition [Lynen 2014]

Convolutional Neural Networks

- Places205: Scene Recognition [Zhou 2014, Zhou 2015]
- NetVLAD [Arandjelovic 2017]
- Place Recognition with ConvNet Landmarks [Sunderhauf 2015]
- CNN-based Place Recognition [Chen 2017]

Hand-engineered descriptions and metrics for matching

SIFT, SURF, ORB, BRIEF, GIST BOW, VLAD, Fisher Vectors LI, L2, Cosine, Hamming Distance

Supervising scene recognition is tedious / expensive

Require large amounts of training data

Rich feature capacity

Scalable

Pre-trained recognition models

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

- Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]
- Whole-Image: GIST / Binarized Images [Sunderhauf 2011]
- FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]
- Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
- Density-based: Placeless place-recognition [Lynen 2014]

Convolutional Neural Networks

- Places205: Scene Recognition [Zhou 2014, Zhou 2015]
- NetVLAD [Arandjelovic 2017]
- Place Recognition with ConvNet Landmarks [Sunderhauf 2015]
- CNN-based Place Recognition [Chen 2017]

Learn a new metric for matching

Supervising scene recognition is tedious / expensive

Require large amounts of training data

Rich feature capacity

Scalable

Pre-trained recognition models

Visual Place Recognition / Loop-closure Detection as a front-end measurement for Vision-based SLAM

- Histogram-based: BoVW [Sivic 2003, Levin 2004, Nister 2006]
- Whole-Image: GIST / Binarized Images [Sunderhauf 2011]
- FABMAP (BoW + Chow-Liu Approx) [Cummins 2008]
- Temporal: SeqSLAM, CAT-SLAM [Milford 2012, Maddern 2012]
- Density-based: Placeless place-recognition [Lynen 2014]

Convolutional Neural Networks

- Places205: Scene Recognition [Zhou 2014, Zhou 2015]
- NetVLAD [Arandjelovic 2017]
- Place Recognition with ConvNet Landmarks [Sunderhauf 2015]
- CNN-based Place Recognition [Chen 2017]

Learn a new metric for matching

SLAM-aware Self-Supervision in Mobile Robots

Rich feature capacity

Scalable

Pre-trained recognition models

Learn a new metric for matching

$$D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$$

$$D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$$

 $\mathcal{X}_D := \{ (\boldsymbol{x}_q, \boldsymbol{x}_d) \mid \boldsymbol{x}_q \text{ and } \boldsymbol{x}_d \text{ are in } different \text{ classes} \}$

 $D(x_i, x_j) = \|x_i - x_j\|_2$

Determine

$$f({m x}; heta)$$

•

such that we minimize

 $D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$

 $D(x_i, x_j) = \|x_i - x_j\|_2$

via Contrastive Loss

(Chopra et al. 2005)

Determine

$$f(oldsymbol{x}; heta)$$

such that we minimize

 $D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$

Learning a similarity metric discriminatively, with application to face verification

 $D(x_i, x_j) = \|x_i - x_j\|_2$

via Contrastive Loss

(Chopra et al. 2005)

Determine

$$f({m x}; heta)$$

such that we minimize

$$P(\boldsymbol{x}_i, \boldsymbol{x}_j)^2 + (1-y) \Big[lpha - D(\boldsymbol{x}_i, \boldsymbol{x}_j) \Big]_+^2$$

$$D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$$

Learning a similarity metric discriminatively, with application to face verification

via Contrastive Loss

(Chopra et al. 2005)

Determine

$$f({m x}; heta)$$

such that we minimize

$$(\boldsymbol{x}_i, \boldsymbol{x}_j)^2 + (1-y) \Big[\alpha - D(\boldsymbol{x}_i, \boldsymbol{x}_j) \Big]_+^2$$

where

$$egin{array}{l} ext{if} \left(oldsymbol{x}_i,oldsymbol{x}_j
ight) \in \mathcal{X}_S, \ ext{if} \left(oldsymbol{x}_i,oldsymbol{x}_j
ight) \in \mathcal{X}_D \end{array}$$

Supervision

 $D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$

"Semantic" Distance Measure

(Task appropriate)

 $f(\boldsymbol{x}_q)$

 $f(oldsymbol{x}_s)$

 $f(\boldsymbol{x}_d)$

 $f(\boldsymbol{x})$

SELF-SUPERVISED METRIC LEARNING FOR VISUAL PLACE-RECOGNITION

SELF-SUPERVISED METRIC LEARNING FOR VISUAL PLACE-RECOGNITION

Determine

 $f(\mathcal{I}; \theta)$

SELF-SUPERVISED METRIC LEARNING FOR VISUAL PLACE-RECOGNITION

Cross-modal Image-GPS measurements

 $D(\mathbf{z}_i^{GPS}, \mathbf{z}_j^{GPS}) = \mathbf{z}_i^{GPS} \ominus \mathbf{z}_j^{GPS}$

Distance on SE(2) manifold (Relative pose transformation)

Determine

 $f(\mathcal{I};\theta)$

Cross-modal Image-GPS measurements

 $D(\mathbf{z}_i^{GPS}, \mathbf{z}_j^{GPS}) = \mathbf{z}_i^{GPS} \ominus \mathbf{z}_j^{GPS}$

Distance on SE(2) manifold (Relative pose transformation)

 $D(\mathcal{I}_i, \mathcal{I}_j) = \|f(\mathcal{I}_i) - f(\mathcal{I}_j)\|_2$

"Semantic" distance in embedding

Cross-modal Image-GPS measurements

(Relative pose transformation)

$$D(\mathcal{I}_i, \mathcal{I}_j) = \|f(\mathcal{I}_i) - f(\mathcal{I}_j)\|_2$$

"Semantic" distance in embedding

Self-Supervision

- Bootstrapped Visual Place Recognition
 Learning for Mobile Robots
 - Self-supervised Siamese Net with Contrastive Loss
 - Calibrate distances for Loop-Closure Detection
 - Distance-weighted sampling for faster convergence

Siamese Place Recognition Model

- Pre-trained Places365-AlexNet with shared weights
- fc6, fc7 are fine-tuned, with remaining layers fixed

Self-Supervised Siamese Net with Contrastive Loss

(Bootstrapped with synchronized GPS measurements)

- Bootstrapped Visual Place Recognition Learning for Mobile Robots
 - Self-supervised Siamese Net with Contrastive Loss
 - Calibrate distances for Loop-Closure Detection
 - Distance-weighted sampling for faster convergence

Siamese Place Recognition Model

- Pre-trained Places365-AlexNet with shared weights
- fc6, fc7 are fine-tuned, with remaining layers fixed

Self-Supervised Siamese Net with **Contrastive Loss**

(Bootstrapped with synchronized GPS measurements)

Self-Supervised Visual Place-Recognition Learning in Mobile Robots Pillai et al. (Learning for Localization and Mapping Workshop, IROS 2017)

SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

Self-supervision via cross-modal information

- Self-similarity for sequential pose measurements
- Kernel with translation and rotational components

SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

Self-supervision via cross-modal information

- Self-similarity for sequential pose measurements
- Kernel with translation and rotational components

$$\mathcal{K}(\mathbf{z}_{i}^{GPS}, \mathbf{z}_{j}^{GPS}) = \underbrace{\exp(-\gamma^{\mathbf{t}} \left\| \mathbf{z}_{i}^{\mathbf{t}} - \mathbf{z}_{j}^{\mathbf{t}} \right\|_{2}^{2}} \cdot \underbrace{\exp(-\gamma^{\mathbf{R}} \left\| \mathbf{z}_{i}^{\mathbf{t}} \right\|_{2}^{2}} \cdot \underbrace{\exp($$

Translation (t)

Rotation (R)

Rot. & Trans. (Rt)

Self-Similarity (Kernel derived from GPS measurements)

 $\left\| \mathbf{z}_{i}^{\mathbf{R}} \ominus \mathbf{z}_{j}^{\mathbf{R}} \right\|_{2}^{2}$

Rotation similarity

60

SELF-SUPERVISED LABELS FOR LOOP-CLOSURES

Self-supervision via cross-modal information

- Self-similarity for sequential pose measurements
- Kernel with translation and rotational components

$$\mathcal{K}(\mathbf{z}_{i}^{GPS}, \mathbf{z}_{j}^{GPS}) = \underbrace{\exp(-\gamma^{\mathbf{t}} \left\| \mathbf{z}_{i}^{\mathbf{t}} - \mathbf{z}_{j}^{\mathbf{t}} \right\|_{2}^{2}} \cdot \underbrace{\exp(-\gamma^{\mathbf{R}} \left\| \mathbf{z}_{i}^{\mathbf{t}} \right\|_{2}^{2}} \cdot \underbrace{\exp($$

Translation (t)

Rotation (R)

Rot. & Trans. (Rt)

Self-Similarity (Kernel derived from GPS measurements)

St Lucia Dataset

GPS measurements with colors indicating bearing

 $\left\| \mathbf{z}_{i}^{\mathbf{R}} \ominus \mathbf{z}_{j}^{\mathbf{R}} \right\|_{2}^{2}$

Rotation similarity

Positive/Negative Indicator $\mathbb{1}_{GPS} = \begin{cases} 1 & \text{if } \mathcal{K}(\mathbf{z}_i^{GPS}, \mathbf{z}_j^{GPS}) > \tau_p^{\mathbf{Rt}} \\ 0 & \text{if } \mathcal{K}(\mathbf{z}_i^{GPS}, \mathbf{z}_j^{GPS}) < \tau_n^{\mathbf{Rt}} \end{cases}$

Positive Labels

Negative Labels

Self-Supervised Positive/Negative Pairs (Distance-weighted sampling)

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Desired

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Image Self-Similarity $D(\mathcal{I}_i, \mathcal{I}_j) = \left\| f^{loc}(\mathcal{I}_i) - f^{loc}(\mathcal{I}_j) \right\|_2$

Desired

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Image Self-Similarity $D(\mathcal{I}_i, \mathcal{I}_j) = \left\| f^{loc}(\mathcal{I}_i) - f^{loc}(\mathcal{I}_j) \right\|_2$

Self-supervised learning of a visual-similarity metric (Learning evolution) 61

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Image Self-Similarity $D(\mathcal{I}_i, \mathcal{I}_j) = \left\| f^{loc}(\mathcal{I}_i) - f^{loc}(\mathcal{I}_j) \right\|_2$

(Learning evolution)

GPS Self-Similarity (Rot & Trans.)

Desired

61

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Image Self-Similarity $D(\mathcal{I}_i, \mathcal{I}_j) = \left\| f^{loc}(\mathcal{I}_i) - f^{loc}(\mathcal{I}_j) \right\|_2$

GPS Self-Similarity (Rot & Trans.)

(Learning evolution)

61

Self-supervised metric learning for place-recognition

- Calibrate / Fine-tune an appropriate metric for place-recognition
- Learned embedding can be directly used for loop-closure detection

Trajectory with embedded CNN features Colored with T-SNE (St. Lucia Dataset)

Learned Self-Similarity (Image embedding) **Target Self-Similarity** (GPS measurements)

SELF-SUPERVISED PLACE RECOGNITION PERFORMANCE

Precision-Recall for Loop-Closure Recognition (Comparing Places 365 AlexNet layers and Ours-fc7 learned embedding)

(k-NN: Considering top 20 nearest neighbors)

Precision-Recall for Loop-Closure Recognition (Comparing Places 365 AlexNet fc7 and Ours-fc7 learned embedding)

(k-NN: Considering top 20 nearest neighbors)

SELF-SUPERVISED PLACE RECOGNITION PERFORMANCE

Plot shows the histograms of L2 distances between similar and dissimilar examples. The distances are wellseparated in the learned embedding.

"Semantic" Distance Measure (Task appropriate)

 $D(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|f(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_j; \theta)\|_2$

SELF-SUPERVISED LOOP-CLOSURE DETECTION

Learned similarity metric for loop-closure detection

- Fixed-radius NN on learned embedding reduces false positives
- Fine-tuning only requires collecting data
- Works with any real-valued descriptor
- Learned embedding can be used for indexing, querying, quantization

SELF-SUPERVISED LOOP-CLOSURE DETECTION

Learned similarity metric for loop-closure detection

- Fixed-radius NN on learned embedding reduces false positives
- Fine-tuning only requires collecting data
- Works with any real-valued descriptor
- Learned embedding can be used for indexing, querying, quantization

Vision-based Pose-Graph SLAM

• Self-supervised loop-closure identification with learned embedding

SELF-SUPERVISED LOOP-CLOSURE DETECTION

Learned similarity metric for loop-closure detection

- Fixed-radius NN on learned embedding reduces false positives
- Fine-tuning only requires collecting data
- Works with any real-valued descriptor
- Learned embedding can be used for indexing, querying, quantization

Vision-based Pose-Graph SLAM

• Self-supervised loop-closure identification with learned embedding

(With learned metric)

(With learned metric)

SELF-SUPERVISED LOOP-CLOSURE DETEC ON

Vision-based Pose-Graph SLAM

• Self-supervised loop-closure identification with learned embedding

$$\mathbf{X}^{*} = \underset{\mathbf{X}}{\operatorname{arg\,max}} p(\mathbf{X} \mid \mathbf{U}, \mathbf{Z}_{\mathbf{c}})$$
$$= \underset{\mathbf{X}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{M} \|f_{u}(\mathbf{x}_{i-1}, \mathbf{u}_{i}) - \mathbf{x}_{i}\|_{\Sigma_{u}}^{2} + \sum_{(j,k)\in\mathcal{C}} \|h_{c}(\mathbf{x}_{j}, \mathbf{x}_{k}) - \mathbf{z}_{jk}\|_{\Sigma_{c}}^{2} \right\} \qquad \text{MEA}$$

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine **Spatial Cells in the Hippocampal Formation** John O'Keefe, May-Britt Moser, Edvard I. Moser

Learning location-specific scene embeddings

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine **Spatial Cells in the Hippocampal Formation** John O'Keefe, May-Britt Moser, Edvard I. Moser

Learning location-specific scene embeddings

• Learned embedding powerful in discriminating visual scene instances

Place-cells

2014 Nobel Prize in Physiology or Medicine **Spatial Cells in the Hippocampal Formation** John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-Supervised Scene Embeddings

Consistent scene embeddings for same location (Colors obtained via T-SNE embedding of learned metric)

Learning location-specific scene embeddings

- Learned embedding powerful in discriminating visual scene instances
- Weak-supervision under uncertainty (SLAM)

Place-cells

2014 Nobel Prize in Physiology or Medicine **Spatial Cells in the Hippocampal Formation** John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-Supervised Scene Embeddings

Consistent scene embeddings for same location (Colors obtained via T-SNE embedding of learned metric)

Learning location-specific scene embeddings

- Learned embedding powerful in discriminating visual scene instances
- Weak-supervision under uncertainty (SLAM)
- On-the-fly fine-tuning

LEARNING TO LOCALIZE

Place-cells

2014 Nobel Prize in Physiology or Medicine **Spatial Cells in the Hippocampal Formation** John O'Keefe, May-Britt Moser, Edvard I. Moser

SLAM-Supervised Scene Embeddings

Consistent scene embeddings for same location (Colors obtained via T-SNE embedding of learned metric)

CENTRAL THEME: SLAM AS A SUPERVISORY SIGNAL

SUPERVISION & SELF-SUPERVISION IN MOBILE ROBOTS with **SLAM**

Correspondence Engine

(Geometric data association)

Self-Supervision (SLAM-aided supervision)

Knowledge Transfer (Bootstrapping)

Spatially Cognizant Perception

Spatially Cognizant Perception

• SLAM-Supported Object Recognition: Leverage SLAM capabilities to bolster classical object recognition in spatially-situated scenes

Single RGB Camera Monocular SLAM supports improved recognition

(Semi-Dense Mapping Backend)

Multi-view Object Detection

Objects easily tease apart to enable better proposals (Proposals from Semi-Dense Maps)

> Monocular SLAM-Supported Object Recognition Pillai et al. (RSS 2015)

- Spatially Cognizant Perception
 - object recognition in spatially-situated scenes
 - from considerably fewer training examples

Single RGB Camera

Monocular SLAM supports improved recognition (Semi-Dense Mapping Backend)

Multi-view Object Detection

Objects easily tease apart to enable better proposals (Proposals from Semi-Dense Maps)

> Monocular SLAM-Supported Object Recognition Pillai et al. (RSS 2015)

• SLAM-Supported Object Recognition: Leverage SLAM capabilities to bolster classical

• SLAM-aware Few-shot Object Learning: Use SLAM as a correspondence-engine for spatially-consistent and occlusion-aware label propagation, and learn object detectors

- Life-Long Learning in Mobile Robots
 - recognition

• Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping the robot's ability to perform GPS-aided SLAM, we develop a self-supervised visual SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure

- Life-Long Learning in Mobile Robots
 - recognition

Towards Visual Ego-motion Learning in Robots Pillai et al. (IROS 2017)

• Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping the robot's ability to perform GPS-aided SLAM, we develop a self-supervised visual SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure

- Life-Long Learning in Mobile Robots
 - recognition

Towards Visual Ego-motion Learning in Robots Pillai et al. (IROS 2017)

• Self-supervised Ego-motion and Visual Place Recognition Learning: By bootstrapping the robot's ability to perform GPS-aided SLAM, we develop a self-supervised visual SLAM front-end capable of performing visual ego-motion, and vision-based loop-closure

Self-Supervised Visual Place Recognition in Mobile Robots Pillai et al. (Learning for Localization and Mapping Workshop, IROS 2017)
CONTRIBUTIONS

Map Representations for Vision-Based Navigation

CONTRIBUTIONS

- Map Representations for Vision-Based Navigation
 - used in planning, obstacle avoidance etc.

• High-Performance and Tunable Stereo Reconstruction: Develop an any-time, iteratively refine-able, mesh reconstruction algorithm for stereo imagery that can be potentially

High-Performance And Tunable Stereo Reconstruction Pillai et al. (ICRA 2016)

FUTURE DIRECTIONS

FUTURE DIRECTIONS

• Spatially and Semantically-aware Robot DBs

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying
- Self-Supervised Cross-Modal Learning in Robots

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying
- Self-Supervised Cross-Modal Learning in Robots

Transferring LiDAR information for camera-based scene reconstruction

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying
- Self-Supervised Cross-Modal Learning in Robots

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying
- Self-Supervised Cross-Modal Learning in Robots

Transferring hindsight experience for lane-estimation

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying
- Self-Supervised Cross-Modal Learning in Robots

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

- Spatially and Semantically-aware Robot DBs
- Expressive Language for Robot Data Querying
- Self-Supervised Cross-Modal Learning in Robots
- Life-long Learning with Simulation

FUTURE DIRECTIONS

Spatially and Semantically-Aware Robot DBs

(Where have I seen artwork before?)

John Leonard

Nicholas Roy

Leslie Kaelbling

Antonio Torralba

Thesis Committee

- Robotics, Vision and Sensor Networks Group
 - **CSAIL** and **EECS**
 - MIT Community

- Seth
- Marine Robotics Group

ACKNOWLEDGEMENTS Friends

and many others ...

Parents

ACKNOWLEDGEMENTS Sruthi

SLAM-AWARE, SELF-SUPERVISED PERCEPTION IN MOBILE ROBOTS

Image Courtesy: Willow Garage

Questions!