
Small Universal Spiking Neural P Systems with

Cooperating Rules

Padmavati Metta1, Srinivasan Raghuraman2, and Kamala Krithivasan2

1 Institute of Computer Science and Research Institute of the IT4Innovations Centre
of Excellence, Silesian University in Opava, Czech Republic

2 Indian Institute of Technology, Chennai, India
vmetta@gmail.com, srini131293@gmail.com, kamala@iitm.ac.in

Abstract. The paper considers spiking neural P systems (SN P sys-
tems) with cooperating rules where each neuron has a finite number
of sets of rules. Each set is called a component and each rule from a
component has the same component label. At each step only one of the
components can be active for the whole system and one of the enabled
rules from this active component of each neuron fires. By using 59 neu-
rons, a small universal SN P system with two components, working in
terminating mode, is constructed for computing functions.

1 Introduction

Cooperating distributed grammar systems (CDGS) were introduced in [1] to
model the so–called blackboard type of problem solving architectures. A CD
grammar system consists of several component grammars, these are the prob-
lem solving agents, which generate a common sentential form by taking turns in
the rewriting process. The sentential form represents the blackboard, the cur-
rent state of the problem, which the agents might modify according to a certain
protocol until a terminal string is generated. CD grammar systems with context-
free components working in the cooperation protocol called terminal mode (or
t-mode) of derivation are more powerful than context-free grammars; they char-
acterize the class of ET0L languages, the languages generated by so-called ex-
tended tabled interactionless Lindenmayer systems.

The concept of cooperation and distribution as known from the CD grammar
systems is introduced to spiking neural P systems [4]. Spiking neural P systems
[2] are parallel and distributed computing models inspired by the neurophysio-
logical behaviour of neurons sending electrical pulses of identical voltages called
spikes to the neighbouring neurons through synapses. An SN P system can be
used as a computing device in various ways. Most of the previous research on
SN P systems focused on three ways: as number generating/computing devices,
as language generators, and as devices for computing functions.

A k-component SN P system with cooperating rules is represented as a di-
rected graph where nodes correspond to the neurons with the initial spikes men-
tioned in it; the input neuron has an incoming arrow and the output neuron



has an outgoing arrow, suggesting their communication with the environment.
Each neuron has k components (which can be empty) separated by lines. Each
non-empty component has a finite number of spiking and forgetting rules that
involve the spikes present in the neuron in the form of occurrences of a symbol
a. The arcs indicate the synapses between the neurons. Using spiking rules, the
information in a certain neuron can be sent to its neighbouring neurons in the
form of spikes, which are accumulated at the target neurons. When we use a
forgetting rule in a certain neuron, a specified number of spikes will be removed
from the neuron. The application of each rule is determined by the current ac-
tive component and checking the contents (number of spikes) of the neuron. The
rules in the system are uniquely labelled but for the sake of simplicity, we at-
tach only the component label. The rules inside the same component share the
same component label. In each time unit, the number of spikes in each neuron
contribute to the configuration of the system.

Generally, in an SN P system, a global clock is assumed to mark the time of
the whole system. SN P systems work in a synchronous manner, that is, one rule
must be applied for each neuron from the list of applicable rules at any step.
The different neurons work in parallel. Using the rules in this way, we pass from
one configuration of the system to another configuration; such a step is called a
transition. A computation is a finite or infinite sequence of transitions starting
from the initial configuration. A computation halts if it reaches a configuration
where no rule can be used. Note that the transition of configuration C is non-
deterministic in the sense that there may be different rules applicable to C.

Spiking neural P systems with cooperating rules are based on cooperation
among the components and passing of control between components in each neu-
ron. At any step or in any sequence of steps (depends on mode of application)
only one of the components is active for the whole system and one of the enabled
rules from this component of each neuron can fire during a step (or steps). Af-
ter that another (not necessarily different) component of each neuron becomes
active. The way of passing active control is called protocol. Similar to the CD
grammar systems, series of cooperation protocols among the components in neu-
rons of an SN P system can been considered, where for example any component,
once started, has to perform exactly k, at most k, at least k or an arbitrary num-
ber of transition steps. In the so-called t-mode, a component may stop working
if and only if none of its rules is applicable. In =1 mode, the rules in the com-
ponent of each neuron are used in exactly one step and then control is passed.
Selection of the next active component is non-deterministic and only one compo-
nent generates the output at a step, other components wait for passing control.
This paper considers the SN P systems with two components working in the
terminating mode.

Cooperating SN P systems are indeed more powerful by offering seamless
synchronization without the use of any delays as seen in [4], where computational
completeness has been proved for asynchronous as well as sequential cooperating
SN P systems with two components using unbounded as well as general neurons



working in the terminating mode. In this paper, we take on one of the problems
mentioned in [4].

Looking for small universal computing devices is a classical research topic in
computer science, see, e.g., [3], and the references therein. This topic has been
heavily investigated in the framework of SN P systems [6], where a universal
SN P system with standard delayed rules was obtained by using 84 neurons
for computing functions, and the system with 76 neurons can generate any set
of Turing computable natural numbers. In [9], these results were improved: 67
neurons for standard delayed rules in the case of computing functions, and 63
neurons for standard rules in the case of generating sets of numbers. In this work,
we investigate small universal SN P systems with two components (with standard
rules, without delay) working in terminating mode. As devices of computing
functions, we construct a universal SN P system with two components by using
59 neurons.

2 Universal Register Machines

We assume the reader to be familiar with formal language theory and membrane
computing. The reader can find details about them in [8], [7] etc.

We pass now to introducing the universal register machines. Because the
register machines used in the following sections are deterministic, we only recall
the definition of this type of machines. A deterministic register machine is a
construct M = (m,H, l0, lh, I), where m is the number of registers, H is the set
of instruction labels, l0 is the start label (labelling an ADD instruction), lh is
the halt label (assigned to instruction HALT), and I is the set of instructions;
each label from H labels only one instruction from I, thus precisely identifying
it. When it is useful, a label can be seen as a state of the machine, l0 being the
initial state, lh the final/accepting state.
The labelled instructions are of the following forms:

1. li: (ADD(r), lj) (add 1 to register r and then go to the instruction with label
lj),

2. li: (SUB(r), lj, lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

3. lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers). If we reach the halt
instruction, then the number n present in register 0 (we assume that the registers
are always numbered from 0 to m−1) at that time is said to be generated by M .
It is known (see, [5]) that register machines generate all sets of numbers which
are Turing computable.



A register machine can also compute any Turing computable function: we
introduce the arguments n1, n2, . . . , nk in specified registers r1, r2, . . . , rk (with-
out loss of the generality, we may assume that we use the first k registers), we
start with the instruction with label l0, and if we stop (with the instruction with
label lh), then the value of the function is placed in another specified register, rt,
with all registers different from rt being empty. The partial function computed
in this way is denoted by M(n1, n2, . . . , nk). In the computing form, it is known
(see e.g., [5]) that the deterministic register machines are equivalent with Turing
machines.

Fig. 1. A universal register machine Mu from Korec [3]

In [3], the register machines are used for computing functions, with universal-
ity defined as follows. Let (φ0, φ1, . . .) be a fixed admissible enumeration of the
unary partial recursive functions. A register machine Mu is said to be universal
if there is a recursive function g such that for all natural numbers x, y we have
φx(y) = Mu(g(x), y). In [3], several universal register machines are constructed,
with the input (the couple of numbers g(x) and y) introduced in registers 1 and
2, and the result obtained in register 0. In the following, we consider the specific
universal register machine Mu = (8, H, l0, lh, I), with instructions (their labels
constitute the set H) given in Fig. 1, which is also the one used in [6] (it has 8
registers numbered from 0 to 7 and 23 instructions).

3 Spiking Neural P Systems with Cooperating Rules

We pass on now to introducing SN P systems with cooperating rules investigated
in this paper.
Definition 1. [SN P system with cooperating rules] An SN P system with
cooperating rules is an SN P system of degree m ≥ 1 with p ≥ 1 components, of
the form



Π = (O,Σ, σ1, σ2, σ3, . . . , σm, syn, in, out), where

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {1, 2, . . . , p} is the label alphabet for components;
3. σ1, σ2, σ3, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m;

where
(a) ni ≥ 0 is the initial number of spikes contained in the cell;
(b) Ri = ∪l∈ΣRil, where each Ril, 1 ≤ l ≤ p is a set (can be empty) of rules

representing a component l in σi having rules of the following two forms:
i. E/ar → a, where E is a regular expression over O, r ≥ 1 (if L(E) =

ar, then we write simply ar → a);
ii. as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any

rule E/ar → a of type i. from Ril;
4. syn ⊆ {1, 2, 3, . . . ,m} × {1, 2, 3, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m

(synapses among cells);
5. in, out ∈ {1, 2, 3, . . . ,m} indicates the input and output neurons, respec-

tively.

The rules of the type E/ar → a are spiking rules, and can be applied only if
the neuron contains n spikes such that an ∈ L(E) and n ≥ r. When neuron σi

spikes, its spike is replicated in such a way that one spike is sent immediately
to all neurons σj such that (i, j) ∈ syn. The rules of type as → λ are forgetting
rules; s spikes are simply removed (“forgotten”) when applying. Like in the case
of spiking rules, the left hand side of a forgetting rule must “cover” the contents
of the neuron, that is, as → λ is applied only if the neuron contains exactly s
spikes. For simplicity, in the graphical representation of the system, the rules in
the component l of neuron σi are prefixed with l and the components inside the
neuron are separated by lines.

As defined above, each component of the neurons can contain several rules.
More precisely, it is allowed to have two spiking rules E1/a

r1 → a and E2/a
r2 →

a with L(E1)∩L(E2) 6= ∅ in the same component. This leads to a non-deterministic
way of using the rules and we cannot avoid the non-determinism (deterministic
systems will compute only singleton sets).

The configuration of an SN P system is described by the number of spikes
in each neuron. Thus, the initial configuration of the system is described as
C0 = 〈n1, n2, n3, . . . , nm〉.

The SN P system is synchronized by means of a global clock and works in
a locally sequential and globally maximal manner with one component active
at a step for the whole system. That is, the working is sequential at the level
of each neuron. In each neuron, at each step, if there is more than one rule
enabled from the active component by its current contents, then only one of
them (chosen non-deterministically) can fire. But still, the system as a whole
evolves in a parallel and synchronising way, as in, at each step, all the neurons
(that have an enabled rule) choose a rule from the active component and all of



them fire at once. Using the rules, the system passes from one configuration to
another configuration; such a step is called a transition.

In a component-l-restricted transition, we say that the symbol 1 is generated
if at least one rule with label l is used and a spike is sent out to the environment
by the output neuron and the symbol 0 is generated if no spike is sent out to the
environment. Similar to the CD grammar systems, several cooperation strategies
among the components can be considered: we here consider only the five basic
ones.

For two configurations C and C′, we write C =⇒∗
l C′, C =⇒=k

l C′, C =⇒≤k
l C′,

C =⇒≥k
l C′, C =⇒t

l C
′, for some k ≥ 1, if configuration C′ can be reached from

C as follows: (1) by any number of transitions, (2) by k transition steps, (3) by
at most k transition steps, (4) by at least k transition steps, (5) by a sequence
of transition steps using rules from lth component of each neuron, which cannot
be continued, respectively.

A computation ofΠ is a finite or infinite sequence of transitions starting from
the initial configuration, and every configuration appearing in such a sequence is
called reachable. Therefore a finite (step) computation γα of Π in the mode α ∈
{∗, t}∪{≤ k,= k,≥ k | k ≥ 1}, is defined as γα = C0 =⇒α

j1
C1 =⇒α

j2
. . . =⇒α

jy
Cy

for some y ≥ 1, 1 ≤ jy ≤ p, where C0 is the initial configuration. A computation
γα of Π halts when the system reaches a configuration where no rule can be
used as per the cooperating protocol α (i.e., the SN P system has halted). This
paper only works in the terminating mode, so for convenience the mode is not
explicitly used in the definitions hereafter.

With any computation, halting or not, we associate a spike train: a sequence
of digits 0 and 1, with 1 appearing at positions corresponding to those steps
when the output neuron sent a spike out of the system. With a spike train
we can associate various numbers, which can be considered as generated by an
SN P system. For instance, the distance in time between the first two spikes,
between all consecutive spikes, the total number of spikes (in the case of halting
computations), and so on.

It is clear that the standard SN P system introduced in [2] is a special case
of the cooperating SN P system where the number of components is one. Similar
to the standard SN P system, there are various ways of using this device. In the
generative mode, one of the neurons is considered as the output neuron and the
spikes of the output neuron are sent to the environment. An SN P system can
also work in the accepting mode: a neuron is designated as the input neuron
and two spikes are introduced in it at an interval of n steps; the number n is
accepted if the computation halts.

When both an input and an output neuron are considered, the system can
be used as a transducer, both for strings and infinite sequences, as well as for
computing numerical functions. Like in the case considered in [6], in order to
compute a function f : Nk → N , where N is the set of all non-negative integers,
k natural numbers n1, . . . , nk are introduced into the system by “reading” from
the environment a binary sequence z = 10n1−110n2−1 . . . 10nk−11. This means
that the input neuron of Π receives a spike at each step corresponding to a



digit 1 from string z and no spike otherwise. Note that k + 1 spikes are exactly
inputted; that is, it is assumed that no further spike is coming to the input
neuron after the last spike.

We start from the initial configuration and we define the result of a compu-
tation as the number of steps between the first two spikes sent out by the output
neuron. The result is 0 if no spikes exit the output neuron and the computation
halts. The computations and the result of computations are defined in the same
way as for usual SN P systems - the time distance between the first two spikes
emitted by the system with the restriction that the system outputs exactly two
spikes and halts (immediately after the second spike), hence it produces a spike
train of the form 0b10r−11, for some b ≥ 0 and with r = f(n1, . . . , nk).

4 Small Universal Computing SN P Systems with Two

Components Working in Terminating Mode

We proceed now to constructing a universal SN P system Πu with cooperating
rules, for computing functions. The system has two components and works in
the terminating mode. To construct a universal SN P system Πu, we follow the
way used in [6] to simulate a universal register machine Mu.

Before the construction, a modification should be made in Mu because sub-
traction operation on neurons corresponding to the registers where the result is
placed is not allowed in the construction from [2], but the register 0 of Mu is a
subject of such operations. That is why a further register has to be added– la-
belled with 8–and the halt instruction of Mu should be replaced by the following
instructions:
lh: (SUB(0), l22, l

′
h), l22: (ADD(8), lh), l

′
h: HALT.

In this way, the obtained register machine M ′
u has 9 registers, 24 ADD and SUB

instructions and 25 labels.

The usual way of simulating a register machine M ′
u by an SN P system is the

construction of an SN P system with cooperating rules Πu, where neurons are
associated with each register and with each label of an instruction of the machine.
For each register r of Mu, we associate a neuron σr. If a register r contains a
number n, then the associated neuron σr will contain 2n spikes. Starting with
neurons σ1 and σ2 already loaded with 2g(x) and 2y spikes, respectively, and
introducing two spikes in neuron l0, we can compute in our system Πu in the
same way as the universal register machine Mu from Fig. 1; if the computation
halts, then neuron σ8 will contain 2φx(y) number of spikes.

With each label li of an instruction in M ′
u, we associate a neuron σli and

some auxiliary neurons σli,q , q = 1, 2, . . ., thus precisely identified by label li.
Specifically, modules ADD and SUB are constructed to simulate the instructions
of M ′

u. The modules are given in a graphical form in Figs. 3 and 4. In the initial
configuration, all neurons of Πu are empty. There are two additional tasks to
solve: to introduce the mentioned spikes in the neurons σl0 , σ1, σ2, and to output
the computed number.



The first task is covered by module INPUT presented in Fig. 2. After receiving
the first spike from the environment, neuron σin starts in the second component
and fires. Subsequently, neurons σc1 and σc2 send to neuron σ1 as many pairs of
spikes as one more than the number of steps between the first two input spikes,
and after that they get “over flooded” by the second input spike and are blocked.
In turn, neurons σc3 and σc4 start working only after collecting two spikes and
stop working after receiving the third spike. No rule in the second component is
applicable, so the systems switches to the first component and enables the firing
of neuron σc5 . It sends two spikes to neuron σl0 , thus starting the simulation of
M ′

u. At that moment, neurons σ1 and σ2 are already loaded using spikes from
the neurons σc1 through σc4 . Thus, at the end of the INPUT module, some of
the neurons are still left with spikes, but this is not a cause for concern as those
neurons will be nowhere reused.

Fig. 2. INPUT module

In general, the simulation of an ADD or a SUB instruction starts by intro-
ducing two spikes in the neuron with the instruction label (we say that this
neuron is activated). Modules as in Fig. 3 and Fig. 4 are associated with the
ADD and the SUB instructions.
Simulating li: (ADD(r), lj) (module ADD in Fig. 3).

Assume that we are in a step t when we have to simulate an instruction
li: (ADD(r), lj), with two spikes present in neuron σli (like σl0 in the initial
configuration) and no spikes in any other neuron, except in those associated with
registers. Even if the system is in the second component at the time, it must
switch over to the first component, since we are working in the terminating mode
and there are no rules in the second component which are currently applicable
anywhere in the system. Having two spikes inside and now in the first component,
neuron σli fires using the rule a2/a → a producing a spike. This spike will
simultaneously go to neurons σr and σlj . In step t + 1, neuron σli fires again
using the rule a → a and sends another spike to σr and σlj . Note that there was



Fig. 3. Deterministic ADD module li: (ADD(r), lj)

no switch in the component as the first component still had a rule applicable.
Therefore, from the firing of neuron σli , the system adds two spikes each to
neuron σr and σlj and activates the neuron σlj . Consequently, the simulation of
the ADD instruction is possible in Πu.

Another important point to note is that if lj is also the label for an ADD
instruction, then σlj will fire in step t+ 1 itself using the rule a → a. This does
not hamper the correctness of the module since the second spike will also reach
σlj in the next step and another spike will be sent out by using the same rule. If
it is a SUB instruction, σlj will not fire in step t+1 as there is no rule applicable
in the first component of the neuron corresponding to a SUB instruction, as we
will see in the SUB module simulation.
Simulating li: (SUB(r), lj, lk) (module SUB in Fig. 4).

Fig. 4. SUB module: simulation of li: (SUB(r), lj , lk)



Assume that we are in a step t when we have to simulate an instruction li:
(SUB(r), lj , lk), with two spikes present in neuron σli and no spikes in any
other neurons, except in those associated with registers. Let us examine now
Fig. 4, starting from the situation of having two spikes in neuron σli and neuron
σr, which holds a certain number of spikes (this number is twice the value of
the corresponding register r). Even if the system is in the first component at
the time, it must switch over to the second component, since we are working
in the terminating mode and there are no rules in the first component which
are currently applicable anywhere in the system. A spike from neuron σli goes
immediately to neurons σli,1 , σli,2 and σr. If σr does not contain any spikes to
begin with (this corresponds to the case when register r is empty), then in the
step t + 1, the spike sent by σli gets forgotten by virtue of the rule a → λ and
σr is again left with no spikes, indicating that it is still zero. At the same time,
neurons σli,1 and σli,2 send spikes using the rule a → a. Thus, neurons σlj and
σlk end with 1 and 2 spikes respectively. In the subsequent step t+2, σlj forgets
the spike through the rule a → λ. In the case of the neuron σlk , if it corresponds
to an ADD instruction, it will fire in the next step since the second component
of the neuron corresponding to an ADD instruction has no rule applicable and
the system cannot switch over to the first component as σlj has an applicable
rule. If it corresponds to a SUB instruction, it will fire in the same step and this
does not create any issues as the operation is complete and the next one may
begin. Thus the neuron σlk gets activated, as required by simulating the SUB
instruction.

If neuron σr has 2n spikes to begin with, where n ≥ 1, then in the step
t + 1, the rule a3(aa)∗/a3 → a is used in σr and a → a is used in neurons σli,1

and σli,2 , and hence the neurons σlj and σlk receive 2 and 3 spikes respectively.
The neuron σr now has 2 spikes lesser than when it started out and hence we
have achieved the decrement of the register r by 1. In the subsequent step t+2,
σlk forgets the spikes through the rule a3 → λ. In the case of the neuron σlj ,
if it corresponds to an ADD instruction, it will fire in the next step since the
second component of the neuron corresponding to an ADD instruction has no
rule applicable and the system cannot switch over to the first component as σlk

has an applicable rule. If it corresponds to a SUB instruction, it will fire in the
step t + 2 and this does not create any problems as the operation is complete
and the next one may begin. Thus the neuron σlj gets activated, as required by
simulating the SUB instruction.

Another important point to note is that in our construction, the neuron σr

is sending a spike. Note that there may be more than a single SUB instruction
involving the same register r. In that case, when σr sends a spike, it would be
sent to not just σlj and σlk but also to target neurons of all SUB instructions
involving r. This is handled since the second components of both ADD and SUB
modules have the forgetting rule a → λ. So in the same step where σlk forgets
its three spikes, those target neurons which received a spike unnecessarily will
also forget their spike received from σr . Since σr does not send spikes when it
started out with a zero value, we do not have any problem in that case.



Fig. 5. Module OUTPUT

It is also important to note that the neurons σli associated with ADD in-
structions are different from those associated with SUB instructions: in the first
case it starts firing after receiving either one spike or two spikes, in the latter
case the neuron fires only after receiving two spikes.

Having the result of the computation in register 8, which is never decre-
mented during the computation, we can output the result by means of the mod-
ule OUTPUT from Figure 5. When neuron l′h receives two spikes, it fires and
sends a spike to neurons σ8, σl′

h,1
and σout with the system in the first compo-

nent (it will switch to the first component even otherwise as only rules in the
first component are enabled and we are working in the terminating mode). Let t
be the moment when neuron l′h fires. Suppose the number stored in the register
8 of M ′

u is n.
At step t + 1, neuron σout fires for the first time sending its spike to the

environment. The number of steps from this spike to the next one is the function
of the number computed by the system. Since no rules are enabled in the first
component, the system switches to the second component. Now the two neurons
σ8 and σl′

h,1
spike during the next n+1 steps (σ8 would fire n+1 times and σl′

h,1

would fire for one time). The neuron σout will become active only after 2n+ 1
spikes are removed from σ8. So at time t + n+ 3, the system again switches to
the first component and the neuron σout fires for the second time. In this way,
we get the spike train ..10n+11, encoding the number φx(y) as the result of the
computation. The overall design of the system is given in Fig. 6.

Thus, the system Πu has

– 9 neurons for the 9 registers,
– 25 neurons for the 25 labels,
– 28 neurons for 14 SUB instructions,
– 6 neurons in the INPUT module,
– 2 neurons in the OUTPUT module,

which comes to a total of 70 neurons. This number can be slightly decreased, by
some “code optimization”, exploiting some particularities of the register machine
M ′

u.



Fig. 6. The general design of the universal SN P system

First, let us observe that the sequence of two consecutive ADD instructions
l17: (ADD(2), l21), l21: (ADD(3), l18), without any other instruction addressing
the label l21, can be simulated by merging the modules for these two instructions
and eliminating the neuron σl21 , and in this way we save the neuron associated
with l21.

If the two SUB instructions address different registers, then they can share
one auxiliary neuron, as shown in Fig. 7. The working of any particular instruc-
tion is as described above. The only difference is that when one of the instructions
executes, a spike is sent to the target neuron of another SUB instruction. Since
the second components of both ADD and SUB modules have the forgetting rule
a → λ, those target neurons which received a spike will forget their spike re-
ceived from σli1,2

.
By using the results as above, the 14 SUB instructions can be classified to four
groups:



Fig. 7. A module simulating SUB-SUB instructions

1. l0: (SUB(1), l1, l2), l3: (SUB(5), l2, l4), l4: (SUB(6), l5, l3),
l6: (SUB(7), l7, l8), l10: (SUB(4), l0, l11), l13: (SUB(2), l18, l19),
l15: (SUB(3), l18, l20), l19: (SUB(0), l0, l18);

2. l8: (SUB(6), l9, l0), l11: (SUB(5), l12, l13), l18: (SUB(4), l0, lh), lh: (SUB(0),
l22, l

′
h);

3. l12 : (SUB(5), l14, l15);

4. l14 : (SUB(5), l16, l17).

All modules associated with the instructions in each group can share one aux-
iliary neuron. In this way, 7 neurons are saved from the first group, 3 neurons
from the second group.

Merging ADD and SUB instructions does not seem readily possible. This
is because the ADD module has no auxiliary neurons and merging the neurons
corresponding to the instruction labels is also not possible as the rules in the first
component are different and the rules in the second component cannot be omit-
ted. We have already considered the optimization of merging two consecutive
ADD instructions into one and this is possible.

Overall 11 neurons are saved, thus an improvement is achieved from 70 to
59 neurons. We state this result in the form of a theorem in order to stress its
importance.

Theorem 1. There exists a universal spiking neural P system with two compo-

nents working in terminating mode having 59 neurons for computing functions.



5 Conclusion

Starting from the definition of spiking neural P systems and following the idea
of cooperating distributed grammar systems, we have proposed a class of spiking
neural P systems with cooperating rules for which we have constructed a small
universal computing system with two components working in the terminating
mode. The system constructed in this work has 59 neurons. This number can
be reduced by using more components, for instance, the number of auxiliary
neurons in the SUB module can be brought down to one by using four compo-
nents. Thus, further work could include smaller universal systems using more
components and perhaps working in different modes.

Acknowledgements The work was supported by EU project Development of
Research Capacities of the Silesian University in Opava (CZ.1.07/2.3.00/30.0007)
and European Regional Development Fund in the IT4Innovations Centre of Ex-
cellence project (CZ.1.05/1.1.00/02.0070).

References

1. Csuhaj-Varju, E., Dassow, J.: On cooperating/distributed grammar systems, Jour-
nal of Information Processing and Cybernetics (EIK), 26, 49–63 (1990).

2. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems, Fundamenta
Informaticae, 71, 279–308 (2006).

3. Korec, I.: Small universal Turing machines, Theoretical Computer Science, 168,
267–301 (1996).

4. Metta, V. P., Raghuraman, S., Krithivasan, K.: Spiking neural P systems with
cooperating rules, Conference on membrane computing (CMC 15), August 20 -22,
2014, Prague, Czech Republic.

5. Minsky, M.: Computation – finite and infinite machines, Prentice Hall, Englewood
Cliffs, NJ, (1967).

6. Păun, A., Păun, Gh.: Small universal spiking neural P systems, BioSystems, 90(1),
48–60 (2007).

7. Păun, Gh., Rozenberg, G., Salomaa, A. (eds) Handbook of Membrane Computing.
Oxford University Press, Oxford (2010).

8. Rozenberg, G., A. Salomaa, A. (eds): Handbook of Formal Languages. 3 volumes,
Springer, Berlin, (1997).

9. Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems, Funda-
menta Informaticae, 87, 117–136 (2008).


