
Spiking Neural P Systems with

Cooperating Rules

Venkata Padmavati Metta1, Srinivasan Raghuraman2, and
Kamala Krithivasan2

1 Institute of Computer Science and Research Institute of the IT4Innovations Centre
of Excellence, Silesian University in Opava, Czech Republic

2 Indian Institute of Technology, Chennai, India
vmetta@gmail.com, srini131293@gmail.com, kamala@iitm.ac.in

Abstract. The concept of cooperation and distribution as known from
grammar systems is introduced to spiking neural P systems (in short,
SN P systems) in which each neuron has a finite number of sets (called
components) of rules. During computations, at each step only one of the
components can be active for the whole system and one of the enabled
rules from this active component of each neuron fires. The switching
between the components occurs under different cooperation strategies.
This paper considers the terminating mode, in which the switching occurs
when no rule is enabled in the active component of any neuron in the
system. By introducing this new mechanism, the computational power
of asynchronous and sequential SN P systems with standard rules is
investigated. The results are that asynchronous standard SN P systems
with two components and strongly sequential unbounded SN P systems
with two components are Turing complete.

1 Introduction

Cooperative grammar systems were introduced by Meersman and Rozenberg in
[6], in the context of two-level grammars. The systematic study of cooperating
distributed (for short, CD) grammar systems was initiated by Csuhaj-Varjú and
Dassow in [2], where productions are distributed over a finite number of sets,
called components. These components cooperate during the derivation process
by applying productions on a common sentential form; following some fixed
cooperation protocol.

The concept of cooperation and distribution as known from CD grammar
systems is introduced to spiking neural P systems. Spiking neural P systems [5]
are parallel and distributed computing models inspired by the neurophysiological
behaviour of neurons sending electrical pulses of identical voltages called spikes
to the neighbouring neurons through synapses. An SN P system is represented
as a directed graph where nodes correspond to the neurons having spiking rules
and forgetting rules. The rules involve the spikes present in the neuron in the
form of occurrences of a symbol a. The arcs indicate the synapses among the
neurons. The spiking rules are of the form E / ar → a and are used only if

267

B028480
Typewritten Text
Proceedings of CMC-15August 20 — 22, 2014, Prague, Czech Republic



the neuron contains n spikes such that an ∈ L(E) and n≥ r, where L(E) is
the language represented by regular expression E. In this case ar number of
spikes are consumed and one spike is sent out. When neuron σi sends a spike,
it is replicated in such a way that one spike is immediately sent to all neurons
j such that (i, j) ∈ syn, where syn is the set of arcs between the neurons. The
transmission of spikes takes no time, the spike will be available in neuron j in
the next step. The forgetting rules are of the form as → λ and are applied only
if the neuron contains exactly as spikes. The rule simply removes s spikes. For
all forgetting rules, s must not be the member of L(E) for any firing rule within
the same neuron.

A rule is bounded if it is of the form ai/aj → a, where 1 ≤ j ≤ i, or of the
form ak → λ, where k ≥ 1. A neuron is bounded if it contains only bounded
rules. A rule is called unbounded if is of the form ac(ai)∗/aj → a, where c ≥ 0,
i ≥ 1, j ≥ 1. A neuron is unbounded if it contains only unbounded rules. A
neuron is general if it contains both bounded and unbounded rules. An SN P
system is bounded if all the neurons in the system are bounded. It is unbounded
if it has bounded and unbounded neurons. Finally, an SN P system is general
if it has general neurons (i.e., it contains at least one neuron which has both
bounded and unbounded rules).

The usual SN P systems are synchronous (a global clock is assumed) and work
in a maximally parallel manner, in the sense that all neurons that are fireable
must fire. However, in any neuron, at most one rule is allowed to fire. One
neuron is designated as the output neuron of the system and its spikes can exit
into the environment, thus producing a spike train. Two main kinds of outputs
can be associated with a computation in an SN P system: a set of numbers,
obtained by considering the number of steps elapsed between consecutive spikes
which exit the output neuron, and a set of numbers, obtained by considering
the total number of spikes emitted by the output neuron until the system halts.
Two main types of results were obtained for synchronous SN P systems using
standard rules (producing one spike): computational completeness in the case
when no bound was imposed on the number of spikes present in the system, and
a characterization of semi-linear sets of numbers in the case when a bound was
imposed [5].

This paper introduces spiking neural P system with cooperating rules where
each neuron has a finite number of sets of spiking and forgetting rules. Each set is
called a component which can be empty. At any step or during a sequence of steps
(depending on the mode of application) only one of the components is active for
the whole system and only one of the enabled rules from this component of each
neuron can fire during that step. After that another (not necessarily different)
component of each neuron becomes active. The way of passing active control is
called a protocol. Similar to CD grammar systems, series of cooperation protocols
among the components in neurons of an SN P system can be considered, where
for example any component, once started, has to perform exactly k, at most
k, at least k, k ≥ 1 or an arbitrary number of transition steps. In the so-called
terminating mode, a component may stop working if and only if none of the rules

268



in that component of any neuron is applicable. In any case, the selection of the
next active component is non-deterministic and only one component generates
the output at a step, other components wait for receiving control.

This paper considers asynchronous SN P systems [1], where in any step, a
neuron can apply or not apply its rules which are enabled by the number of
spikes it contains (further spikes can come, thus changing the rules enabled in
the next step). Because the time between two firings of the output neuron is
now irrelevant, the result of a computation is the number of spikes sent out
by the system, not the distance between certain spikes leaving the system.
It was proved that such asynchronous SN P systems with extended rules are
equivalent to Turing machines (as generators of sets of natural numbers) but
universality of such systems with standard rules is still an open problem. The
additional non-determinism introduced in the functioning of the system by the
non-synchronization has more computing power in the case of using two com-
ponents. That is, two component SN P systems with standard rules working
asynchronously are equivalent to the Turing machines (interpreted as generators
of sets of (vectors of) numbers).

The paper also considers sequential SN P systems in which, at every step
of the computation, if there is at least one neuron with at least one rule that
is fireable, we only allow one such neuron and one such rule (both nondeter-
ministically chosen) to be fired. Here, not every step has at least one neuron
with a fireable rule. (Thus, the system might be dormant until a rule becomes
fireable. However, the clock will keep on ticking.) The sequential unbounded as
well as general SN P systems are proved to be universal [4]. A system is strongly
sequential, if at every step, there is at least one neuron with a fireable rule. It is
shown that strongly sequential general SN P systems are universal but strongly
sequential unbounded SN P systems are not universal [4]. In this paper, we also
prove that strongly sequential unbounded SN P systems with two components
are universal.

The paper is organized as follows. In the next section, register machines are
defined. SN P systems with cooperating rules are introduced in Section 3. The
universality of asynchronous two component SN P systems with standard rules is
proved in Section 4 and that of strongly sequential SN P systems with standard
unbounded neurons is proved in Section 5.

2 Prerequisites

We assume the reader to be familiar with formal language theory, CD grammar
systems and membrane computing. The reader can find details about them in
[10], [3], [9] etc.

The family of Turing computable sets of natural numbers is denoted by NRE
(the notation comes from the fact that these numbers are the length sets of
recursively enumerable languages). The family of NRE is also the family of
sets of numbers generated/recognized by register machines. For the universality
proofs in this paper, we use the characterization of NRE by means of register

269



machines [7]. Such a device - in the non-deterministic version - is a constructM =
(m,H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labelling an ADD instruction), lh is the halt label
(assigned to instruction HALT ), and I is the set of instructions; each label from
H labels only one instruction from I, thus precisely identifying it.

The labelled instructions are of the following forms:

1. li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj,lk non-deterministically chosen),

2. li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

3. lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers). If we reach the halt
instruction, then the number n present in register 1 (the registers are numbered
from 1 to m) at that time is said to be generated by M . It is known (e.g.,
see, [7]) that register machines generate all sets of numbers which are Turing
computable.

A register machine can also accept a set of numbers: a number n is accepted
by M if, starting with n in register 1 and all other registers empty, the compu-
tation eventually halts (without loss of generality, we may assume that in the
halting configuration all registers are empty). Deterministic register machines
(i.e., with ADD instructions of the form li : (ADD(r), lj) working in the accept-
ing mode are known to be equivalent to Turing machines.

It is also possible to consider register machines producing sets of vectors of
natural numbers. In this case a distinguished set of v registers (for some v ≥ 1)
are designated as the output registers. A v-tuple (l1, l2, . . . , lv) ∈ Nv is generated
if M eventually halts and the contents of the output registers are l1, l2, . . . , lv
respectively.

Without loss of generality we may assume that in the halting configuration all
the registers, except the output ones, are empty. We also assume (without loss
of generality) that the output registers are non-decreasing and their contents
is only incremented (i.e., the output registers are never the subject of SUB
instructions, but only of ADD instructions).

We will refer to a register machine with v-output registers (the other registers
are auxiliary registers) as a v-output register machine. It is well known that a set
S of v-tuples of numbers is generated by a v-output register machine if and only
if S is recursively enumerable. When dealing with vectors of numbers, hence with
the Parikh images of languages (or with sets of vectors generated/recognized by
register machines), we write PsRE.

270



3 Spiking Neural P Systems with Cooperating Rules

We pass on now to introducing SN P systems with cooperating rules investigated
in this paper.
Definition 1. [SN P system with cooperating rules] An SN P system with
cooperating rules is an SN P system of degree m ≥ 1 with p ≥ 1 components, of
the form

Π = (O,Σ, σ1, σ2, σ3, . . . , σm, syn, out), where

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {1, 2, . . . , p} is the label alphabet for components;
3. σ1, σ2, σ3, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m;

where
(a) ni ≥ 0 is the initial number of spikes contained in the neuron;
(b) Ri = ∪l∈ΣRil, where each Ril, 1 ≤ l ≤ p, is a set (can be empty) of rules

representing a component l in σi having rules of the following two forms:
i. E/ar → a, where E is a regular expression over O, r ≥ 1 (if L(E) =

ar, then we simply write ar → a);
ii. as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any

rule E/ar → a of type i. from Ril;
4. syn ⊆ {1, 2, 3, . . . ,m} × {1, 2, 3, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m

(synapses among cells);
5. out ∈ {1, 2, 3, . . . ,m} indicates the output neuron.

Because we do not need the delay between firing and spiking (i.e., rules of the
form E/ar → a; d, with d ≥ 1) as well as extended rules (i.e., rules of the form
E/ar → aq, with q ≥ 1) in the proofs below, we do not consider these features
in the definition, but such rules can be introduced in the usual way.

The rules of the type E/ar → a are spiking rules, and can be applied only if
the neuron contains n spikes such that an ∈ L(E) and n ≥ r. When neuron σi

spikes, its spike is replicated in such a way that one spike is sent immediately
to all neurons σj such that (i, j) ∈ syn. The rules of type as → λ are forgetting
rules; s spikes are simply removed (“forgotten”) when applying such a rule. Like
in the case of spiking rules, the left-hand side of a forgetting rule must “cover”
the contents of the neuron, that is, as → λ is applied only if the neuron contains
exactly s spikes. For simplicity, in the graphical representation of the system,
the rules in the component l of neuron σi are prefixed with l and the components
inside the neuron is separated by lines.

As defined above, each component of the neurons can contain several rules.
More precisely, it is allowed to have two spiking rules E1/a

r1 → a and E2/a
r2 →

a with L(E1)∩L(E2) 6= ∅ in the same component. This leads to a non-deterministic
way of using the rules and we cannot avoid the non-determinism (deterministic
systems will compute only singleton sets).

271



The configuration of an SN P system is described by the number of spikes
in each neuron. Thus, the initial configuration of the system is described as
C0 = 〈n1, n2, n3, . . . , nm〉.

The SN P system is synchronized by means of a global clock and works in a
locally sequential and globally maximal manner with one component active at a
step for the whole system. That is, the working is sequential at the level of each
neuron. In each neuron, at each step, if there is more than one rule enabled from
the active component by its current contents, then only one of them (chosen non-
deterministically) can fire. But still, the system as a whole evolves in a parallel
and synchronising way, as in each step, all the neurons (that have an enabled
rule) choose a rule from the active component and all of them fire at once. Using
the rules, the system passes from one configuration to another configuration;
such a step is called a transition.

In a component-l-restricted transition, we say that the symbol 1 is generated
if at least one rule with label l is used and a spike is sent out to the environment
by the output neuron and the symbol 0 is generated if no spike is sent out to
the environment. Similar to CD grammar systems, several cooperation strategies
among the components can be considered: we here consider only the five basic
ones.

For two configurations C and C′, we write C =⇒∗
l C′, C =⇒=k

l C′, C =⇒≤k
l C′,

C =⇒≥k
l C′, C =⇒t

l C′, for some k ≥ 1, if configuration C′ can be reached from
C as follows: (1) by any number of transitions, (2) by k transition steps, (3) by
at most k transition steps, (4) by at least k transition steps, (5) by a sequence
of transition steps using rules from lth component of each neuron, which cannot
be continued, respectively.

A computation ofΠ is a finite or infinite sequence of transitions starting from
the initial configuration, and every configuration appearing in such a sequence is
called reachable. Therefore a finite (step) computation γα of Π in the mode α ∈
{∗, t}∪{≤ k,= k,≥ k | k ≥ 1}, is defined as γα = C0 =⇒α

j1
C1 =⇒α

j2
. . . =⇒α

jy
Cy

for some y ≥ 1, 1 ≤ jy ≤ p, where C0 is the initial configuration. A computation
γα of Π halts when the system reaches a configuration where no rule can be
used as per the cooperating protocol α (i.e., the SN P system has halted). This
paper only works in the terminating mode, so for convenience the mode is not
explicitly used in the definitions hereafter.

With any computation, halting or not, we associate a spike train: a sequence
of digits 0 and 1, with 1 appearing at positions corresponding to those steps
when the output neuron sent a spike out of the system. With a spike train
we can associate various numbers, which can be considered as generated by an
SN P system. For instance, the distance in time between the first two spikes,
between all consecutive spikes, the total number of spikes (in the case of halting
computations), and so on.

It is clear that the standard SN P system introduced in [5] is a special case
of the cooperating SN P system where the number of components is one. Similar
to the standard SN P system, there are various ways of using this device. In the
generative mode, one of the neurons is considered as the output neuron and the

272



spikes of the output neuron are sent to the environment. SN P systems can also
be used for generating sets of vectors, by considering several output neurons,
σi1 , σi2 , . . . , σiv . In this case, the system is called a v-output SN P system. Here
a vector of numbers, (n1, n2, . . . , nv), is said to be generated by the system if nj

is the number corresponding to the spike train from σij , where 1 ≤ j ≤ v.

We denote by CpN
max
gen (Π) [CpPsmax

gen (Π)] the set of numbers [of vectors,
resp.] generated by a p-component SN P system Π in a maximally parallel man-
ner, and by NCpSpik2P

max
m (β) [PsCpSpik2P

max
m (β)], β ∈ {gene, unb, boun},

the family of such sets of numbers [sets of vectors of numbers, resp.] generated
by cooperating SN P systems of type β (gene stands for general, unb for un-
bounded, boun for bounded), with at most m neurons and p components. When
m is not bounded, it is replaced by ∗. The subscript 2 reminds us of the fact
that we count the number of steps elapsed between the first two spikes.

An SN P system can also work in the accepting mode: a neuron is designated
as the input neuron and two spikes are introduced in it at an interval of n steps;
input n is encoded by 2n in the input register; the number n is accepted if the
computation halts.

In the asynchronous case, in each time unit, any neuron is free to use a rule
or not. Even if enabled, a rule is not necessarily applied, the neuron can remain
still in spite of the fact that it contains rules which are enabled by its contents.
If the contents of the neuron are not changed, a rule which was enabled in a step
t can fire later. If new spikes are received, then it is possible that other rules
will be enabled – and applied or not. This way of using the rules also applies
to the output neuron, hence now the distance in time between the spikes sent
out by the system is no longer relevant. That is why, for asynchronous SN P
systems we take as the result of a computation the total number of spikes sent
out; this, in turn, makes necessary considering only halting computations (the
computations never halting are ignored, they provide no output). We denote
by CpN

nsyn
gen (Π) [CpPsnsyngen (Π)] the set of numbers [of vectors, resp.] generated

by an asynchronous cooperating SN P system Π with p components, and by
NCpSpiktotP

nsyn
m (β) [PsCpSpiktotP

nsyn
m (β)], β ∈ {gene, unb, boun}, the fam-

ily of such sets of numbers [sets of vectors of numbers, resp.] generated by an
asynchronous cooperating SN P systems of type β, with at most m neurons and
p components. When m is not bounded, it is replaced by ∗. The subscript tot
reminds us of the fact that we count all spikes sent to the environment.

In the strongly sequential case, in each neuron, in each time unit, at least
one neuron contains a fireable rule and exactly one of them is chosen to fire
non-deterministically. Here, the output can be interpreted in any of the earlier
suggested ways. In this paper, we consider the distance in time between the
first two spikes. We denote by CpN

sseq
gen (Π) [CpPssseqgen (Π)] the set of numbers

[of vectors, resp.] generated by a strongly sequential cooperating SN P system
Π , and by NCpSpik2P

sseq
m (β) [PsCpSpik2P

sseq
m (β)], β ∈ {gene, unb, boun}, the

family of such sets of numbers [sets of vectors of numbers, resp.] generated by
strongly sequential cooperating SN P systems of type β, with at most m neurons
and p components. When m is not bounded, it is replaced by ∗.

273



4 Computational completeness of asynchronous SN P
systems with two components using standard rules

We pass now to prove that the power of two components in standard neurons
(where standard rules, producing one spike at a time, are used) can compensate
for the loss of power entailed by removing the synchronization.

Theorem 1. NC2SpiktotP
nsyn
∗ (gene) = NRE.

Proof. We only have to prove the inclusion NRE ⊆ NC2SpiktotP
nsyn
∗ (gene),

and to this aim, we use the characterization of NRE by means of register ma-
chines used in the generating mode.

Let M = (m,H, l0, lh, I) be a register machine with m registers, having the
properties specified above: the result of a computation is the number stored in
register 1 at the end of the computation and this register is never decremented
during the computation.

What we want is an asynchronous SN P system with two components Π
which (1) simulates the register machine M , and (2) has its output neuron
emitting the number of spikes equal to the number computed by M .

Instead of specifying all technical details of the construction, we present the
three main types of modules of the system Π , with the neurons, their rules, and
their synapses represented graphically. In turn, simulating M means to simulate
the ADD instructions and the SUB instructions. Thus, we will have one type
of module associated with ADD instructions, one associated with SUB instruc-
tions, and one dealing with the spiking of the output neuron (a FIN module).
The modules of the three types are given in Figs. 1, 2 and 3 respectively.

For each register r of M , we consider a neuron σr in Π whose contents
corresponds to the contents of the register. Specifically, if the register r holds
the number n > 0, then the neuron σr will contain 2n spikes. With each label li
of an instruction in M , we also associate a neuron σli with a single rule a → a
in its first component and no rules in its second component. There are also
some auxiliary neurons σli,q , q = 1, 2, 3, . . ., thus precisely identified by label
li. Initially, all these neurons are empty, with the exception of the neuron σl0

associated with the start label of M , which contains a single spike. This means
that this neuron is activated. During the computation, the neuron σli which
receives a spike will become active in its first component. Thus, simulating an
instruction li : (OP (r), lj , lk) of M means starting with neuron σli activated,
operating the register r as requested by OP , then introducing a spike in one
of the neurons σlj , σlk which becomes active in this way. When activating the
neuron σlh , associated with the halting label of M , the computation in M is
completely simulated in Π ; we will then send to the environment a number of
spikes equal to the number stored in the register 1 of M . Neuron σ1 is the output
neuron of the system.
Simulating li : (ADD(r), lj , lk) (module ADD in Fig. 1).

The initial instruction, that labelled l0, is an ADD instruction. Assume that
we are in a step when we have to simulate an instruction li : (ADD(r), lj , lk),

274



Fig. 1. ADD module: simulation of li : (ADD(r), lj , lk)

with a spike present in neuron σli (like σl0 in the initial configuration) and no
spikes in any other neurons, except in those associated with registers. Even if
the system is in the second component at the time, it must switch over to the
first component, since we are working in the terminating mode and there are no
rules in the second component which are currently applicable anywhere in the
system.

Having a spike inside and now in the first component, neuron σli can fire, and
at some time it will do it, producing a spike. This spike will simultaneously go
to neurons σr , σli,1 and σli,2 . The neurons σr and σli,2 cannot spike because the
firing rules are present in their second components. The neuron σli,1 will spike at
some time, then a spike will simultaneously go to the neurons σr and σli,2 . Since
no rules are enabled in the first component, the system switches to the second
component. Before the system switches, the neuron σr receives two spikes from
σli and σli,1 , thus simulating the increase of the value of register r with 1. Now
the system is in the second component. The neuron σli,2 has two spikes and it
can fire by choosing one of its rules a2/a → a or a2 → a non-deterministically.
If the neuron σli,2 uses its first rule a2/a → a, then it consumes one spike and
sends a spike to each of the neurons σli,3 and σli,4 . The neuron σli,2 is left with
one spike and thus it has an enabled rule a → a. The system switches to the
first component only when no rules are enabled in the neuron σli,2 . When the
neuron σli,2 fires for the second time, neurons σli,3 and σli,4 receive another spike
and the system switches to the first component. The neurons σli,3 and σli,4 have
enabled rules and they can fire. The system will be in the first component as
long as enabled rules are present in σli,3 and σli,4 . After some time, the neuron
σli,3 uses it spiking rule and sends a spike to σli,5 and the neuron σli,4 forgets its

275



spikes. So eventually neuron σli,5 fires and sends a spike to σlj , thus activating
it.

If the neuron σli,2 uses its second rule a2 → a, then each of the neurons
σli,3 and σli,4 receive one spike finally. After some time, the neuron σli,4 uses it
spiking rule and sends a spike to σli,6 and the neuron σli,5 forgets its spikes. So
after some time, neuron σli,6 fires and sends a spike to σlk , thus activating it.
Therefore, from the firing of neuron σli , the system adds two spikes to neuron
σr and non-deterministically fires one of the neurons σlj and σlk . Consequently,
the simulation of the ADD instruction is possible in Π .
Simulating li : (SUB(r), lj , lk) (module SUB in Fig. 2).

Fig. 2. SUB module: simulation of li : (SUB(r), lj , lk)

Let us now examine Fig. 2, starting from the situation of having a spike in neuron
σli and no spike in other neurons, except neurons associated with registers;
assume that neuron σr holds a number of spikes of the form 2n, n ≥ 0. Sometime,
the neuron σli will fire and a spike goes immediately to each of the neurons σli,1 ,
σli,2 and σr. The system must switch over to the second component, since we are
working in the terminating mode and there are no rules in the first component
which are currently applicable anywhere in the system.

If σr does not contain any spikes to begin with (this corresponds to the case
when register r is empty), then eventually the spike sent by σli gets forgotten
by virtue of the rule a → λ and σr is again left with no spikes, indicating that it
is still zero. Eventually, neurons σli,1 and σli,2 also send spikes using their rule
a → a. Thus, neurons σli,3 and σli,4 end up with 2 spikes each and the system
switches to the first component. After some steps, σli,3 forgets the two spikes

276



through the rule a2 → λ and the neuron σli,4 fires using its rule a2 → a. With
no rules applicable in the first component, the system switches to the second
component and eventually neuron σli,6 sends a spike to neuron σlk , as required,
thus finishing the simulation of the SUB instruction for the case when register
r is empty.

If neuron σr has 2n spikes to begin with, where n ≥ 1, then after some steps,
the rule a(aa)+/a3 → a is used in σr. Hence, σr now has two spikes less that
what it began indicating that r has been reduced by 1. Further, neurons σli,3

and σli,4 end up with 3 spikes each. After some steps, σli,4 forgets the three
spikes through the rule a3 → λ and the neuron σli,3 fires using its rule a3 → a.
With no rules applicable in the first component, the system switches to the
second component and eventually neuron σli,5 sends a spike to neuron σlj , thus
completing the simulation of the decrement case of the SUB instruction.

What remains to be examined is the possible interference between SUB
modules. Note that there may be more than a single SUB instruction involving
the same register r. Assume that we simulate the instruction li : (SUB(r), lj , lk),
hence neuron σr sends a spike to all neurons of the form σli′,3 and σli′,4 for which
there is an instruction l′i : (SUB(r), l′j , l

′
k) in M . These spikes will be forgotten

using the rule a → λ and this is the correct continuation of the computation.
Note that the system will be in the first component as long as any spikes are
present in the neurons of the form σli′,3 and σli′,4 . Thus, the neurons σli,5 and
σli,6 will become active only after the forgetting rule a → λ is applied in each
neuron of the form σli′,3 and σli′,4 .

This means that the simulation of the SUB instruction is correct, we started
from li and ended in lj if the register was non-empty (and we decreased it by
one), and in lk if the register was empty.
Simulating lh : (HALT ) (module FIN in Fig. 3).

Fig. 3. FIN module: simulation of lh : HALT

When the neuron σlh is activated, it (eventually) sends one spike to neuron σ1,
corresponding to the register 1 of M . From now on, this neuron can fire, and it
sends out one spike for each two spikes present in it, hence the system will emit
a number of spikes which corresponds to the contents of the register 1 of M at
the end of the computation (after reaching the instruction lh : HALT ).

Consequently, C2N
nsyn
gen (Π) = N(M) and this completes the proof. ⊓⊔

277



Clearly, the previous construction is the same for the accepting mode, and can
be carried out for deterministic register machines (the ADD instructions are of
the form li : (ADD(r), lj). Similarly, if the result of a computation is defined as
the number of spikes present in a specified neuron in the halting configuration,
then the previous construction is the same, we only have to add one further
neuron which is designated as the output neuron and which collects all spikes
emitted by neuron σ1.

Theorem 1 can easily be extended by allowing more output neurons and then
simulating a v-output register machine, producing in this way sets of vectors of
natural numbers.

Theorem 2. PsC2SpiktotP
nsyn
∗ (gene) = PsRE.

5 Sequential spiking neural P systems with two
components

In this section, we restrict the model to operate in a sequential manner. Before
considering the power of sequential SN P systems with two components, we first
recall some results from [4] on the power of the sequential SN P systems with
one component.

1. Sequential SN P systems with general neurons are universal.
2. Sequential SN P systems with unbounded neurons are universal.
3. Strongly sequential SN P systems with general neurons are universal.
4. Strongly sequential SN P systems with unbounded neurons are not universal.

The paper [4] makes use of delayed rules to achieve synchronization. Here the
synchronization can be achieved by switching between the components and hence
delayed rules are not required. Here we prove that two component strongly se-
quential SN P systems with standard unbounded neurons without any delay are
computationally complete.

Theorem 3. NC2Spik2P
sseq
∗ (unb) = NRE.

Proof. Given some register machine M generating a set N(M), we can simulate
M with a strongly sequential unbounded SN P Π having two components which
generates the set C2N

seq
gen(Π) = {x | x ∈ N(M)}. The SN P Π ’s initial configu-

ration will again start with the initial configuration for each module along with
a single spike in neuron σl0 .

To create a strongly sequential unbounded SN P generating exactly N(M)
use the same ideas and methods given in Theorem 1. The ADD module is the
same as the one shown in Fig. 1 but we remove the rule 2 : a → λ from the
neuron σr so that the subsystem becomes unbounded. Since no rules from σr are
fired in the ADD module, the subsystem works correctly even in the sequential
mode.

The new subtraction module is shown in Fig. 4. It is initiated with a single
spike in neuron σli which immediately sends a spike to neurons σr, σli,1 and σli,2

278



Fig. 4. Strongly sequential unbounded two component SN P SUB module

at time t + 1 (where t is the time the initial spike is sent to neuron σli). If the
value in the register r is not zero then the three neurons non-deterministically
spike during the next three steps (time t+2, t+3, and t+4). This causes neuron
σli,3 to spike and neuron σli,4 to forget sequentially during the following two time
steps (time t+5 and t+6). Since no rules are enabled in the second component,
the system switches to the first component. In the step t + 7, neuron σli,5 fires
and sends a spike to σli,6 . Since neuron σr sends spikes to all neurons σli′,3 and
σli′,4 where li′ : (SUB(r), lj′ , lk′), these neurons receive a single spike during
the computation of instruction li. These spikes must be forgotten before the
next instruction executes. Here, the system switches to the second component
and fires the rule in the neuron σli,6 only after all spikes are removed from the
neurons σli′,3 and σli′,4 using their forgetting rule a → λ present in their first
components. When the neuron σli,6 fires, it initiates the instruction module lj .

If σr does not contain any spikes to begin with (this corresponds to the case
when register r is empty), then the neuron σr does not fire and the neurons
σli,3 and σli,4 receive two spikes each. Since no rules are enabled in the second
component, the system switches to the first component. This causes neurons
σli,3 to forget and σli,4 to spike sequentially during the following two time steps
(time t + 4 and t + 5). The spike from σli,4 goes simultaneously to neurons σr

and σli,7 in time step t+6. Neuron σli,7 sends a spike to σr and σli,8 in time step
t+ 7. Since no rules are enabled in the first component, the system switches to
the second component. Now the neuron σr has three spikes. The neurons σr and

279



σli,8 fire sequentially in the next two steps t+ 8 and t+ 9. Thus the contents of
σr is cleared indicating that r remains zero, as required. The spike from σr goes
to σli,3 , σli,4 and all neurons σli′ ,4 , where li′ : (SUB(r), lj′ , lk′). The neurons σli,9

and σli,10 with rules in different components ensures that the spikes in σli,3 , σli,4

and all σli′,3 and σli′,4 are forgotten before enabling the instruction module lk
as the spike received by σli,8 (from σli,7) percolates through σli,9 and σli,10 to lk.

Fig. 5. Strongly sequential unbounded two component SN P output module

To simulate lh : (HALT ), we create the module given in Fig. 5. When
neuron lh receives a spike, it fires and sends a spike to neurons σ1 and σout with
the system in the first component (it will switch to the first component even
otherwise as only rules in the first component are enabled and we are working
in the terminating mode). Let t be the moment when neuron lh fires. Suppose
the number stored in the register 1 of M is n.

At step t + 1, neuron σout fires for the first time sending its spike to the
environment. The number of steps from this spike to the next one is the number
computed by the system. Since no rule is enabled in the first component, the
system switches to the second component. Now the neuron σ1 spikes during
the next n steps. The neuron σout will become active only after 2n spikes are
removed from σ1. So at time t + n + 1, the system again switches to the first
component and the neuron σout fires for the second time. The interval between
the two spikes emitted by σout is (t+ n+ 1)− (t+ 1) = n, which is the number
stored in the register 1 of M . The system halts after n−1 steps with all neurons
empty except neuron σ1 which contains a spike. ⊓⊔

Theorem 3 can easily be extended by allowing more output neurons and then
simulating a v-output register machine, producing in this way sets of vectors of
natural numbers.

Theorem 4. PsC2Spik2P
sseq
∗ (unb) = PsRE.

One more observation is that the module given in Fig. 4 works even if the
system is asynchronous. It is now possible to construct a new system with ADD
module shown in Fig. 1 without the rule 2 : a → λ in the neuron σr, the SUB

280



module given in Fig. 4 and the FIN module given in Fig. 3 without the rule
2 : a → λ in the neuron σ1 which would be unbounded and work correctly in the
case of an asynchronous system. Hence, we have the following two theorems.

Theorem 5. NC2SpiktotP
nsyn
∗ (unb) = NRE.

Theorem 6. PsC2SpiktotP
nsyn
∗ (unb) = PsRE.

Finally, the system constructed in Section 4 with the FIN module in Fig. 5
would work for sequential systems. Hence, we have the following two theorems.

Theorem 7. NC2Spik2P
sseq
∗ (gene) = NRE.

Theorem 8. PsC2Spik2P
sseq
∗ (gene) = PsRE.

6 Conclusion and discussion

The usual SN P systems operate in a maximally parallel manner. This model
was shown to be computationally complete even with a variety of additional re-
strictions on the rule types [8, 11]. In this paper, we introduced a spiking neural
P system with cooperating rules. Computational completeness has been proved
for asynchronous as well as sequential cooperating SN P systems with two com-
ponents using unbounded as well as general neurons working in the terminating
mode. This suggests that cooperating SN P systems are indeed more powerful
by offering seamless synchronization without the use of any delays. Further work
would include the construction of small universal systems. It would also be in-
teresting to consider the languages generated by these systems using different
number of components. Further, this paper considers only the terminating mode,
which is known to be more powerful than others in the case of CD grammar sys-
tems. A discussion on if the same result holds for cooperating SN P systems
working in other models would be worthwhile.

Acknowledgements The work was supported by EU project Development of
Research Capacities of the Silesian University in Opava (CZ.1.07/2.3.00/30.0007)
and European Regional Development Fund in the IT4Innovations Centre of Ex-
cellence project (CZ.1.05/1.1.00/02.0070).

References

1. Cavaliere, M., Ibarra, O.H., Păun, Gh., Egecioglu, Ö., Ionescu, M., Woodworth,
S.: Asynchronous spiking neural P systems, Theoretical Computer Science, 410
(24-25), 2352–2364 (2009).

2. Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems, Jour-
nal of Information Processing and Cybernetics (EIK), 26, 49–63 (1990).

3. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation, Gordon and Breach, London,
(1994).

281



4. Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On spiking neural P systems and
partially blind counter machines, Natural Computing 7(1), 3–19 (2008).

5. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems, Fundamenta
Informaticae, 71, 279–308 (2006).

6. Meersman, R., Rozenberg, G.: Cooperating grammar systems, Proceedings of
Mathematical Foundations of Computer Science, LNCS 64, 364–374 (1978).

7. Minsky, M.: Computation – Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, (1967).

8. Pan, L., Păun, Gh.: Spiking Neural P Systems: An Improved Normal Form, The-
oretical Computer Science, 411, 906–918 (2010).

9. Păun, Gh., Rozenberg, G., Salomaa, A. (eds): Handbook of Membrane Computing,
Oxford University Press, Oxford (2010).

10. Rozenberg, G., Salomaa, A. (eds): Handbook of Formal Languages. 3 volumes,
Springer, Berlin, (1997).

11. Zeng, X., Zhang, X., Pan, L.: Homogeneous Spiking Neural P Systems, Fundamenta
Informaticae, 97, 1–20 (2009).

282




