Dual Decomposition
for Natural Language Processing

Alexander M. Rush and Michael Collins

Decoding complexity

focus: decoding problem for natural language tasks

y* = argmaxf(y)
y

motivation:

e richer model structure often leads to improved accuracy

¢ exact decoding for complex models tends to be intractable

Decoding tasks

many common problems are intractable to decode exactly

high complexity
e combined parsing and part-of-speech tagging (Rush et al.,
2010)
e “loopy” HMM part-of-speech tagging
e syntactic machine translation (Rush and Collins, 2011)
NP-Hard
e symmetric HMM alignment (DeNero and Macherey, 2011)
o phrase-based translation (Chang and Collins, 2011)

¢ higher-order non-projective dependency parsing (Koo et al.,
2010)

in practice:
* approximate decoding methods (coarse-to-fine, beam search,
cube pruning, gibbs sampling, belief propagation)
* approximate models (mean field, variational models)

Motivation

cannot hope to find exact algorithms (particularly when NP-Hard)
aim: develop decoding algorithms with formal guarantees

method:
e derive fast algorithms that provide certificates of optimality

e show that for practical instances, these algorithms often yield
exact solutions

e provide strategies for improving solutions or finding
approximate solutions when no certificate is found

dual decomposition helps us develop algorithms of this form

Lagrangian relaxation (Held and Karp, 1971)

important method from combinatorial optimization

initially used for traveling salesman problems

optimal tour - NP-Hard

Dual decomposition (Komodakis et al., 2010; Lemaréchal, 2001)

goal: solve complicated optimization problem

y* = argmaxf(y)
y

method: decompose into subproblems, solve iteratively

benefit: can choose decomposition to provide “easy” subproblems

aim for simple and efficient combinatorial algorithms

dynamic programming
minimum spanning tree
shortest path

min-cut

bipartite match

etc.

Related work

there are related methods used NLP with similar motivation
related methods:

o belief propagation (particularly max-product) (Smith and
Eisner, 2008)

* factored A* search (Klein and Manning, 2003)
e exact coarse-to-fine (Raphael, 2001)

aim to find exact solutions without exploring the full search space

Tutorial outline

focus:
e developing dual decomposition algorithms for new NLP tasks
e understanding formal guarantees of the algorithms
e extensions to improve exactness and select solutions
outline:
1. worked algorithm for combined parsing and tagging
. important theorems and formal derivation
. more examples from parsing, sequence labeling, MT

2
3
4. practical considerations for implementing dual decomposition
5. relationship to linear programming relaxations

6

. further variations and advanced examples

1. Worked example

aim: walk through a dual decomposition algorithm for combined
parsing and part-of-speech tagging

e introduce formal notation for parsing and tagging

e give assumptions necessary for decoding

e step through a run of the dual decomposition algorithm

Combined parsing and part-of-speech tagging

S

/\

NP VP

‘ /\

N——V NP

| I N

United flies D——A——N

some large jet

goal: find parse tree that optimizes
score(S — NP VP) + score(VP — V NP) +

... + score(N — V) 4 score(N — United) + ...

Constituency parsing
notation:

e) is set of constituency parses for input
e y €Y is avalid parse
o f(y) scores a parse tree
goal:
arg max f
gmaxf(y)

example: a context-free grammar for constituency parsing

S
/\
NP VP
‘ /\
N OV NP

I =

United flies D A N

some large jet

Part-of-speech tagging
notation:
e Z is set of tag sequences for input
e z € Z is a valid tag sequence
* g(z) scores of a tag sequence

goal:

arg max g(2)

example: an HMM for part-of speech tagging

N—V—D—A—N

e

United; flies; somes large; jets

|dentifying tags

notation: identify the tag labels selected by each model

e y(i,t) =1 when parse y selects tag t at position i
y y g

e z(i,t) = 1 when tag sequence z selects tag t at position i

example: a parse and tagging with y(4,A) =1 and z(4,A) =1

S
A
NP VP
‘ A
N Vv NP

I =

United flies D A N

some large jet

y

N—V—D—A—N

I

United; fliess somez large; jets

z

Combined optimization

goal:

arg max f(y) -+
g max (v)+&(2)

such that forall i=1...n, t€ T,

y(i,t) = z(i, 1)
i.e. find the best parse and tagging pair that agree on tag labels

equivalent formulation:

arg max fly) +g((y))

where | : Y — Z extracts the tag sequence from a parse tree

Dynamic programming intersection
can solve by solving the product of the two models
example:

e parsing model is a context-free grammar
e tagging model is a first-order HMM

e can solve as CFG and finite-state automata intersection

S
A
replace S — NP VP NP VP
with T

N V NP

SN — NPnNVPy N | | T

United flies D A N

some large jet

Parsing assumption
the structure of Y could be CFG, TAG, etc.

assumption: optimization with u can be solved efficiently

argmaxf +Z (i, t)y

generally benign since u can be incorporated into the structure of f

example: CFG with rule scoring function h

f)= Y. hX—=YZ)+ > hX—w)

X=Y Zey (ihX)ey

where
argmax,ecy f(y)+ Z u(i, t)y

argmaxyey > h(X =Y 2Z)+ Y (h(X = w)+ u(i, X))
XY Zey (i,X)ey

Tagging assumption
we make a similar assumption for the set Z

assumption: optimization with u can be solved efficiently

argmaxg(z) — Z u(i, t)z(i, t)

zEZ -
1,t

example: HMM with scores for transitions T and observations O

gz)=) T(t—=t)+ > O(t—w)

t—t'ez (i,t)ez

where

arg maxzcz g ZUI t lt

it
arg maxzcz Z T(t—t) Z (O(t = w;) — u(i, t))

t—t'ez (i,t)ez

Dual decomposition algorithm

Set uM(i,t)=0foralli,teT
For k=1to K

y (k) argmaxf +Z k) (i, t)y(i, t) [Parsing]

(k) _ (k) ' '
zV argr;eagg(z) Zu (i,t)z(i, t) [Tagging]

it
If y)(i, £) = 2 (i, t) for all i, t Return (y(K), 2(K))

Else u((i 1)« (i t) — (YW (i, 1) — 2 (i, 1))

CKY Parsing

y" = argmax(f(y) + > u(i t)y(i, 1))

it

Viterbi Decoding

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG
Y < Parse Trees
y(i,t)=1 if y contains tag t at position i

g(z) < HMM

zZ

< Taggings

Penalties

u(i, t) =0 for all i,t

Penalties

CKY Parsing S
. . .
NP VP u(i, t) =0 for all i,t
—— |
A N D A \
| | | | |
United flies some large jet

y" = argmax(f(y) + > u(i, £)y(i, 1))

Viterbi Decoding

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) <« HMM

y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

Penalties

CKY Parsing S
. . .
NP VP u(i, t) =0 for all i,t
—— |
A N D A \
| | | | |
United flies some large jet

y" = argmax(f(y) + Z u(i, t)y(i, t))

Viterbi Decoding
N—V—D—A—=N

T

United; flies; somes larges jets

z¥ =arg Teag(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) <« HMM

y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

Penalties

CKY Parsing S
. . .
NP VP u(i, t) =0 for all i,t
— |
A N D A \
| | | | |
United flies some large jet

y" = argmax(f(y) + Z u(i, t)y(i, t))

Viterbi Decoding
N—V—D—A—=N

T

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) < HMM

y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

———

NP VP u(i, t) =0 for all it

e v Iteration 1

! w w ! w ulL,A) 1
United flies some large jet :

u(1, N) 1
.] u(2, N) -1
y" = argmax(f(y) + Xt: u(i,)y (i, £)) W2,V 1
’ u(5,V) -1
Viterbi Decoding u(5, N) 1

N—V-—D—A—N

T

United; flies; somes larges jets

z" =arg r;neazx(g(z) - ; u(i, t)z(i, t))
Key
f(y) < CFG g(z) < HMM

y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing Penalties
u(i, t) =0 for all i,t

Mteration 1
u(1,A) -1
u(1, N) 1
. ' ' u(2, N) -1
y" = argmax(f(y) + Xt: u(i, t)y (i, t)) u2,v) 1
u(5, V) -1
Viterbi Decoding u(5, N) 1

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) <« HMM
y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

NP/\VP u(i, t) =0 for all it
N v [teration 1
! ! — u(1,A) -1
United flies D A N
‘ \ | u(1, N) 1
some large jet
. . U(2, N) -1
y" = argmax(f(y) + Zt u(i.)y (i, 1)) W2 v) 1
’ u5,Vv) -1
Viterbi Decoding u(5, N) 1

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) <« HMM
y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

NP/\VP u(i, t) =0 for all it
N v [teration 1
! ! — u(1,A) -1
United flies D A N
‘ \ | u(1, N) 1
some large jet
') u(2, N) -1
y" = argmax(f(y) + Xt: u(i,)y (i,)) W2 v) 1
’ u5,Vv) -1
Viterbi Decoding u(5, N) 1

A—N-—D—A—N

T

United; flies; somes larges jets

z¥ =arg Teag(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) < HMM
y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S

N W
N v W
United flies 5 A N
solne Iar‘ge jt‘et

y" = argmax(f(y) + Xt: u(i, t)y(i, t))
Viterbi Decoding
AeeN-—sD—wA—"N

T

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG
y < Parse Trees zZ
y(i,t)=1 if y contains tag t at position i

g(z) < HMM

Penalties
u(i, t) =0 for all i,t

Iteration 1

u(1,A) -1
u(1, N) 1
u(2, N) -1
u(2,V) 1
u(5, V) -1
u(5,N) 1
Iteration 2

u(5,V) -1
u(5, N) 1

CKY Parsing Penalties
u(i, t) =0 for all i,t

Iteration 1

u(1,A) -1

u(1, N) 1

. '] u(2, N) -1

y" = argmax(f(y) + Xt: u(i, £)y(i, 1)) W2,V 1

u(5, V) -1

Viterbi Decoding u(5, N) 1
Iteration 2

United; fliesp somes large; jets u(5, V) -1

u(5, N) 1

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) <« HMM
y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S

N W
N v W
United flies 5 A N
solne Iar‘ge jt‘et

y" = argmax(f(y) + > (i t)y(i. 1))

Viterbi Decoding

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG
y < Parse Trees zZ
y(i,t)=1 if y contains tag t at position i

g(z) < HMM

Penalties
u(i, t) =0 for all i,t

Iteration 1

u(1,A) -1
u(1, N) 1
u(2, N) -1
u(2,V) 1
u(5, V) -1
u(5,N) 1
Iteration 2

u(5, V) -1
u(5, N) 1

CKY Parsing S

VP

N v W
United flies 5 A N
solne Iar‘ge jt‘et

y" = argmax(f(y) + Xt: u(i, t)y(i, t))
Viterbi Decoding
Nee VoD AN

T

United; flies; somes larges jets

z¥ =arg Teag(g(z) - Z u(i, t)z(i, t))

it

Key

< CFG

< Parse Trees

if y contains tag t at position i

f(y)
Y
y(i.t)=1

g(2)
z

< HMM
< Taggings

Penalties
u(i, t) =0 for all i,t
Iteration 1

u(1,A) -1

u(5, V) -1
u(5,N) 1
Iteration 2

u(5, V) -1
u(5, N) 1

CKY Parsing

VP

‘ v W

United flies 5 A N
solne Iar‘ge jt‘et

y" = argmax(f(y) + Xt: u(i, t)y(i, t))
Viterbi Decoding
Nee VoD AN

T

United; flies; somes larges jets

z" =arg r;neazx(g(z) - Z u(i, t)z(i, t))

it

Key

< CFG

< Parse Trees

if y contains tag t at position i

f(y)
Y
y(i.t)=1

g(2)
z

Penalties
u(i, t) =0 for all i,t

Iteration 1

u(1,A) -1
u(1, N) 1
u(2, N) -1
u(2, V) 1
u(5, V) -1
u(5,N) 1
Iteration 2

u(5, V) -1
u(5, N) 1
Converged

y* =argmaxf(y) +g(y)
yey
< HMM
< Taggings

Main theorem

theorem: if at any iteration, for all i, t € T
y (i, 1) =219,)

then (y(k),z(k)) is the global optimum

proof: focus of the next section

% examples converged

Convergence

\v" V\\& N \‘20 \\eo N\ >
number of iterations

2. Formal properties

aim: formal derivation of the algorithm given in the previous
section

e derive Lagrangian dual

e prove three properties

» upper bound
> convergence

» optimality

e describe subgradient method

Lagrangian
goal:

f h that y(i, t) = z(i, t
arg max f(y) +&(z) such that y(i, t) = z(i, t)

Lagrangian:

L(u.y,z) = f(y) + &(z) + Z u(i, t) (y(i, t) = z(i, 1))
redistribute terms "

L(u,y,z) = (f(y) + Z u(i, t)y (i, t)) + (g(z) = u(i, t)z(i, t))

it

Lagrangian dual

Lagrangian:
L(u,y,z) = (f(y) - Z u(i,)y (i, t)) - (g(z) —~ Z u(i, t)z(i, t))
Lagrangian dual:

L — L(u,y,
(u) L (u,y,2)

= r}peaJ)}((f(y) + Z U(i7 t)y(iv t)) +

it

max (g(z) = (i, £)z(i, t))

Theorem 1. Upper bound

define:

e y* z* is the optimal combined parsing and tagging solution
with y*(i,t) = z*(i, t) for all i, t

theorem: for any value of u
L(u) = £(y*) + g(2")
L(u) provides an upper bound on the score of the optimal solution

note: upper bound may be useful as input to branch and bound or
A* search

Theorem 1. Upper bound (proof)

theorem: for any value of u, L(u) > f(y*) + g(z*)

proof:

L(u)

max L(u,y,z
ye;)i,zez(y)

L
yey,TEaz)’(:y:z (U7 Y Z)

f
oy, (v) +&(2)

fly*) +g(z")

Formal algorithm (reminder)

Set uM(i,t)=0forall i, teT
For k=1to K

(k) « ar max f(y) + k) (i, t)y(i, t) [Parsin
y gmax f(y Z) [Parsing]

(k) (k) [t [t) [T, 1
— argrzneagg(z) — ’Zt:u (i,t)z(i, t) [Tagging]

Iy (i, t) = 20 (i, t) for all i, t Return (y¥, 2(¥))

Else u((i 1) « Wi, t) — (Wi, t) — 2 (i, 1))

Theorem 2. Convergence
notation:
o kDG 1) uB(1) + ar(y® (i, £) — Z9(i, t)) is update
o 4 is the penalty vector at iteration k

e «y is the update rate at iteration k

theorem: for any sequence at,a?, a3, ... such that
[o.¢]
lim o' =0 and a' = oo,
t—00
t=1
we have
lim L(u') = minL(u
t—o0 () u ()

i.e. the algorithm converges to the tightest possible upper bound

proof: by subgradient convergence (next section)

Dual solutions

define:

e for any value of u

=argmax | f(y) + u(i,t)y(i, t
yu = argmax | f(y) ;()y (i, t)

and

z, = argmax | g(z) — Z u(i, t)z(i, t)

zeZ -
1t

e y, and z, are the dual solutions for a given u

Theorem 3. Optimality

theorem: if there exists u such that
yulis t) = z,4(i, t)
for all i, t then
f(yu) + 8(2u) = F(y*) + &(z")
i.e. if the dual solutions agree, we have an optimal solution

(Yu, Zu)

Theorem 3. Optimality (proof)
theorem: if u such that y,(i,t) = z,(i, t) for all i, t then

flyu) +&(20) = f(y") + g(2%)

proof: by the definitions of y, and z,

(o) = F0)+ &) + 30 uli D0l) — 200, 1)
e
since L(u) > f(y*) + g(z*) for all values of u
F) + £(20) = Fy°) + (=)

but y* and z* are optimal

fyu) +&g(zu) < F(y*) +g(z%)

Lagrangian dual:

L(u) =

goal: dual problem

Dual optimization

L
,nax (u,y,2)

max [f(y) + Z u(i,)y (i, t) | +

yey

max | g(z) — Z u(i, t)z(i, t)

zeZ -
1t

is to find the tightest upper bound

muin L(u)

Dual subgradient

it

Lu) = max (f(y) + Z u(i, t)y(i, t)) + max (g(z) - Z u(i, t)z(i, t))

properties:
e L(u) is convex in u (no local minima)
 L(u) is not differentiable (because of max operator)

handle non-differentiability by using subgradient descent

define: a subgradient of L(u) at u is a vector g, such that for all v

L(v) > L(u) +gu- (v —u)

Subgradient algorithm
Lu) = max(+Z i,t)y) +max (g() — Z:u(;7 t)z(i, t))

recall, y, and z, are the argmax’s of the two terms

subgradient:
gu(ia t) = }/u("a t) - Zu(ia t)

subgradient descent: move along the subgradient

(i t)=u(ist) —a(yu(is t) — zu(i, t))

guaranteed to find a minimum with conditions given earlier for «

3. More examples

aim: demonstrate similar algorithms that can be applied to other
decoding applications

e context-free parsing combined with dependency parsing
e corpus-level part-of-speech tagging

e combined translation alignment

Combined constituency and dependency parsing
(Rush et al., 2010)

setup: assume separate models trained for constituency and
dependency parsing

problem: find constituency parse that maximizes the sum of the
two models

example:

e combine lexicalized CFG with second-order dependency parser

Lexicalized constituency parsing

notation:
e) is set of lexicalized constituency parses for input
e y €) is a valid parse
o f(y) scores a parse tree
goal:
argmax f)

example: a lexicalized context-free grammar
S(flies)

/\

NP(United) VP(flies)

‘ /\

N Vv NP (jet)

| T

United flies D A N

some large jet

Dependency parsing

define:

e Z is set of dependency parses for input
e z € Z is a valid dependency parse

* g(z) scores a dependency parse

example:

AN AN

*o United; fliesy somes larges jets

Identifying dependencies

notation: identify the dependencies selected by each model

e y(i,j) =1 when word i modifies of word j in constituency

parse y

e z(i,j) = 1 when word i modifies of word j in dependency

parse z

example: a constituency and dependency parse with y(3,5) =1

and z(3,5) =1

S(flies)

NP(United) VP(flies)

N Y NP(jet)

| R N

United flies D A N

some large jet

A A

*o United; fliess somes larges jets

Combined optimization

goal:

arg max f(y) -+
g max (v)+&(2)

such that foralli=1...n,j=0...n,

y(i,J) = 2(i,J)

Penalties

CKY Parsing
u(i,j)=0forall i j

y* =arg r;?))}((f(y) + ,XJ: u(i, j)y(i,J))

Dependency Parsing
*s United; flies; somes larges jets

z* =arg Teazx(g(Z) - %: u(i, j)z(i, j))

Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing S(flies)
u(i,j) =0 for all i,j

NP VP(flies)
N \ D NP(jet)
| | | — T
United flies some A N
|
large jet

y* =arg Tga;(f(y) + Z u(i, j)y(i,J))
ij

Dependency Parsing

*s United; flies; somes larges jets

z* =arg Teazx(g(Z) - Z u(i,j)z(i,Jj))

s
Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing S(flies)
u(i,j) =0 for all i,j

NP VP(flies)
N \ D NP(jet)
| | | — T
United flies some A N
|
large jet
y* = argmax(F(y) + > u(i.)y (i.)))
i

Dependency Parsing

*s United; flies; somes larges jets

2" = argmax(g(z) — 3 u(i.})2(0.1))
ij

Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing S(flies)
u(i,j) =0 for all i,j

NP VP(flies)
N \ D NP(jet)
| | | — T
United flies some A N
|
large jet
y* = argmax(F(y) + > u(i.)y (i.)))
i

Dependency Parsing

*s United; flies; somes larges jets

z* =arg Teazx(g(Z) - Z u(i,j)z(i,Jj))

s
Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

CKY Parsing

S(flies) Penalties
NP VP(flies) u(i,j)=0forall i
N v NPGet) teration 1.
! ! ‘ T u(2,3) 1
United flies some A N ’
! | u(5,3) 1
large jet

y* =arg r;?))}((f(y) + ,XJ: u(i, j)y(i,J))

Dependency Parsing

*s United; flies; somes larges jets

2" = argmax(g(2) — Y _ u(i,)2(i.)))
iJ
Key
f(y) < CFG g(z) <« Dependency Model
y < Parse Trees Z < Dependency Trees
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing
u(i,j) =0 for all i,j
Iteration 1
u(2,3) -1

u(5,3) 1
y* =arg r;g)}((f(y) + ,XJ: u(i, j)y(i,J))

Dependency Parsing
*s United; flies; somes larges jets

z* =arg Teazx(g(Z) - %: u(i, j)z(i, j))

Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing S(flies)
u(i,j) =0 for all i,j

NP VP(flies)
/\ .
N NP(et) _Mteration1
| | N -
United flies D A N u(2,3) 1
| u(5,3) 1
some large jet

y* =arg r;1€ay>‘<(f(y) + Z u(i, j)y(i,J))
ij

Dependency Parsing
*s United; flies; somes larges jets

z* =arg Teazx(g(Z) - %: u(i, j)z(i, j))

Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing S(flies)
u(i,j) =0 for all i,j

NP VP(flies)
/\ .
N NP(et) _Mteration1
| | N -
United flies D A N u(2,3) 1
| u(5,3) 1
some large jet

y* =arg r;?))}((f(y) + ,XJ: u(i, j)y(i,J))

Dependency Parsing

*s United; flies; somes larges jets

2" = argmax(g(z) — 3 u(i.})2(0.1))
isj

Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties

CKY Parsing S(flies)
u(i,j) =0 for all i,j

NP VP(flies)
vV e Mteration 1
| | N\ -
United flies D A N u(2,3) 1
) u(5,3) 1
some large Jjet
y" =argmax(f(y) + > (i)y(isf) Converged
Y y* =argmaxf(y)+g(y)
yey

Dependency Parsing
*s United; flies; somes larges jets

z* =arg Teazx(g(Z) - %: u(i, j)z(i, j))

Key
g(z) <« Dependency Model

f(y) < CFG
< Dependency Trees

Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

% examples converged

Convergence

R AN \ N
> 24 R >

number of iterations

2
Vi

Integrated Constituency and Dependency Parsing: Accuracy

92

Collins
Dep m===
Dual

91

90

89

88

87

F1 Score
» Collins (1997) Model 1
» Fixed, First-best Dependencies from Koo (2008)

» Dual Decomposition

Corpus-level tagging

setup: given a corpus of sentences and a trained sentence-level
tagging model

problem: find best tagging for each sentence, while at the same

time enforcing inter-sentence soft constraints

example:
e test-time decoding with a trigram tagger
e constraint that each word type prefer a single POS tag

Corpus-level tagging

O

English first langauge
studies language arts now

© © O O

Language makes us human beings

Sentence-level decoding

notation:

e) is set of tag sequences for input sentence i
e V=V X...xX Yy is set of tag sequences for the input corpus
e Y € Y is a valid tag sequence for the corpus
e F(Y)= Z f(Y;) is the score for tagging the whole corpus
)

gOal.

example: decode each sentence with a trigram tagger

®©@ &6 &6 @ 6

English is my first language

© & © 6 ©

He studies language arts now

| nter-sentence constra I nts
notation:

e Z is set of possible assignments of tags to word types
e z € Z is a valid tag assignment

e g(z) is a scoring function for assignments to word types

example: an MRF model that encourages words of the same type
to choose the same tag

21 22

language language language language language language

g(z1) > g(z)

Identifying word tags

notation: identify the tag labels selected by each model

e Yi(i,t) = 1 when the tagger for sentence s at position i
selects tag t
» z(s,i,t) = 1 when the constraint assigns at sentence s

example: a parse and tagging with Y1(5, N) =1 and
z(1,5,N) =1

position /i the tag t

© O O

English

is

my

© O O

He

studies

language

Y

)

first

)

arts

language

@)

now

language

language

language

Combined optimization

goal:

arg max F (Y) +&(2)

such that foralls=1...m,i=1...n, t €T,

Ys(i, t) = z(s, i, t)

Penalties
u(s,i,t) =0 for all s,i,t

Tagging
MRF
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties
Tagging u(s,i,t) =0 forall s,i,t
®: ® ® ® ®
English is my first language
®

® @

@
@®

He studies language arts now
Language makes us human beings
MRF
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position

Penalties
Tagging u(s,i,t) =0 forall s,i,t
®: ® ® ® ®
English is my first language
®

® @

@
@®

He studies language arts now
Language makes us human beings
MRF
language language language
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties
Tagging u(s,i,t) =0 forall s,i,t
®»: ® ® ® @®
English is my first language
®

® @

@
@®

He studies language arts now
Language makes us human beings
MRF
language language language
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
® ©@ ® ® ® eaton 1
u(1,5,N) -1
English is my first language
u(1,5,A) 1
® © ® ® ® u31LN) 1
He studies language arts now u(3, 1, A) 1
Language makes us human beings
MRF °
language language language
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
Iteration 1
u(1,5,N) -1
u(1,5,A) 1
u(3,1,N) -1
u(3,1,A) 1

MRF

Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
®» ® ® ® ® erstion 1
u(1,5,N) -1
English is my first language
u(1,5,A) 1
® © ® ® ® u31LN) 1
He studies language arts now u(3, 1, A) 1
Language makes us human beings
MRF
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
® @ ® ® ® ey
u(1,5,N) -1
English is my first language
u(1,5,A) 1
® © ® ® ® u31LN) 1
He studies language arts now u(3, 1, A) 1
Language makes us human beings
MRF m
language language language
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
® @ ® ® ® ey
u(1,5,N) -1
English is my first language
u(1,5,A) 1
® © ®&® ® ® u31LN) 1
He studies language arts now u(3, 1, A) 1
Language makes us human beings
MRF m
language language language
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
® @ ® ® ® restin1
u(1,5,N) -1

English is my first language
u(1,5,A) 1
® ®© &6 ® ® u31LN) 1
He studies language arts now u(3, 1, A) 1
® ©® @ ® ® 2
u(1,5,N) -1

Language makes us human beings
u(1,5,A) 1
MRF u3,1,N) -1
(W) u3.1,A) 1
u(2,3,N) 1

o ® W u2,3,4) 1

language language language
Key
F(Y) < Tagging model g(z) < MRF

Yy < Sentence-level tagging Z < Inter-sentence constraints
Ys(i,t)=1 if sentence s has tag t at position i

Penalties

Tagging u(s,i,t) =0 forall s,i,t
@ @ @ @ Iteration 1
u(1,5,N) -1
English is my first language
u(1,5,A) 1
® @ ® ® ® u3,LN) 1
He studies language arts now U(:")7 1, A) 1
® ® ® ® ® eionz
u(1,5,N) -1
Language makes us human beings
u(1,5,A) 1
MRF u3,1,N) -1
u(3,1,A) 1
u(2,3,N) 1
u(2,3,A) -1
Key
F(Y) < Tagging model g(z) < MRF
Yy < Sentence-level tagging Z < Inter-sentence constraints

Ys(i,t)=1 if sentence s has tag t at position

Penalties

Tagging u(s,i,t) =0 forall s,i,t
® @ ® ® ® erton 1
u(1,5,N) -1

English is my first language
u(1,5,A) 1
® ® ® ® ® w3 L) 1
He studies language arts now U(:")7 1, A) 1
® @ @ ® @ eionz
u(1,5,N) -1

Language makes us human beings
u(1,5,A) 1
MRF u3,1,N) -1
(N) u3,1,4) 1
u(2,3,N) 1

o @ W u2,3.4) 1

language language language
Key
F(Y) < Tagging model g(z) < MRF

Yy < Sentence-level tagging Z < Inter-sentence constraints
Ys(i,t)=1 if sentence s has tag t at position i

Combined alignment (DeNero and Macherey, 2011)

setup: assume separate models trained for English-to-French and
French-to-English alignment

problem: find an alignment that maximizes the score of both
models

example:

e HMM models for both directional alignments (assume correct
alignment is one-to-one for simplicity)

English-to-French alignment

define:

e) is set of all possible English-to-French alignments
e y €Y is avalid alignment
* f(y) scores of the alignment

example: HMM alignment

Le; — laidg — chieny —— a4, — rougeg - fourrures

! ! ! ! ! !

The; uglys dogs hasy reds furg

¥ o‘? boq K\'g) (Q'b &
- le
. chien
[laid

] a
.fourrure
- rouge

French-to-English alignment
define:

e Z is set of all possible French-to-English alignments
e z € Z is a valid alignment
 g(z) scores of an alignment

example: HMM alignment

The; — uglys — dogs hasy furg reds
Leq chiensy laidg ay fourrures; rougeg

¥ \@\\ on *(\@9 &b N
le
chien
laid
a
fourrure
rouge

Identifying word alignments
notation: identify the tag labels selected by each model
e y(i,j) =1 when e-to-f alignment y selects French word / to
align with English word j

e z(i,j) = 1 when f-to-e alignment z selects French word i to
align with English word j

example: two HMM alignment models with y(6,5) =1 and
z(6,5) =1

S)
¥ \Q boq \o?? @b & ¥ o& b‘p ~<\7>6 &b o
[le le

. chien chien
Il laid laid

| a a
.fourru re fourrure
- rouge rouge

Combined optimization

goal:

arg max f(y) -+
g max (v)+&(2)

such that foralli=1...n,j=1...n,

y(i,J) = 2(i,J)

English-to-French Penalties
u(i,j) =0 forall i,j

y* =arg Tga})}((f(y) + Z u(i, f)y(i,J))

French-to-English

z* = argmax(g(2) - Z u(i,j)z(i.4))

iJ

Key

f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model zZ < French-to-English model
y(i,j)=1 if French word i aligns to English word j

English-to-French Penalties
¥ 0‘5{ N I .o ..
M e u(i,j) =0 for all 7,j
. chien
[| laid

[a
.fourrure
. rouge

y* =arg }rpeaﬁg(f(y) + Z u(i, j)y(i,J))

French-to-English

z* =arg rzneag(g(z) - Z u(i,)z(i,J))
iJ

Key

f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model Z < French-to-English model
y(i,j)=1 if French word i aligns to English word j

English-to-French
il 0‘5{ N I

-
. e
chien

. laid

[a
.fourrure
. rouge

y" = argmax(f(y) + > u(i f)y(i.4))
iJ

French-to-English
¥ o‘}* b"q ‘oé’ &b &

le

chien

laid

a

fourrure

rouge

z* = argmax(g(z) — Z u(i,)2(7.J))

z€Z I
Key
f(y) < HMM Alignment g(z)

y < English-to-French model Z
y(i,j)=1 if French word i aligns to English word j

Penalties
u(i,j) =10 for all ij

< HMM Alignment
< French-to-English model

English-to-French
¢ o&{ SN IC N
. le
chien
B laid
[| a
.fourrure
. rouge
y" =argmax(f(y) + > (i)y (i)
W
French-to-English

¢ S S

le
chien

[] laid
a
fourrure
rouge

z* = argmax(g(2) - Z u(i,j)z(i.4))

iJ

Key

f(y) < HMM Alignment g(z)
y < English-to-French model zZ
y(i,j)=1 if French word i aligns to English word j

Penalties
u(i,j) =0 for all i,j

< HMM Alignment
< French-to-English model

English-to-French Penalties
© o&{ SRS

i le u(i,j) =0 forall i ,j
L chien teration 1
. laid U(3 2) -1
. - 2,2 1
.fourrure u()
B ouwe u(2,3) -1
u(3,3) 1

y" = argmax(f(y) +Z (1, 1)y(i.4))

French-to-English

¢ S S

le
. chien
[] laid
a
fourrure
rouge

z* = argmax(g(2) - Z u(i,j)z(i.4))

Key

f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model zZ < French-to-English model
y(i,j)=1 if French word i aligns to English word j

English-to-French Penalties
u(i,j) =0 for all i,j

Iteration 1
u(3,2) -1
u(2,2) 1
u(2,3) -1
. u(3,3) 1
y" =argmax (F) + Y uli)y(i.f))
inj
French-to-English
z" = argmax(g(z) — Z u(i, j)z(i,j))
inj
Key
f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model zZ < French-to-English model

y(i,j)=1 if French word i aligns to English word j

English-to-French Penalties

N

& PS¢
M e u(i,j) =0 for all 7,j
[} chien Iteration 1
[| laid u(3,2) -1
| - u(2,2) 1
.fourrure
B ouge u(2,3) -1
u(3,3) 1

y* =arg }rpea;g(f(y) + Z u(i, j)y(i,J))

French-to-English

z* =arg rzneag(g(z) - Z u(i,)z(i,J))
iJ

Key

f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model Z < French-to-English model
y(i,j)=1 if French word i aligns to English word j

English-to-French
il 0‘5{ N I

kS
- le
. chien
[| laid

[a
.fourrure
. rouge

y* =arg Teaﬁ(f(y) + Z,: u(i, j)y(i,J))
French-to-English
X

© o& IS & &b &

le
chien
laid
a
fourrure
rouge
z" = argmax(g(z) — Z u(i,f)z(i.j))
irj
Key
f(y) < HMM Alignment g(z)
y < English-to-French model Z

y(i,j)=1 if French word i aligns to English word j

Penalties

u(i,j) =10 for all ij

Iteration 1
u(3,2)
u(2,2)
u(2,3)
u(3,3)

< HMM Alignment
< French-to-English model

-1
1
-1
1

English-to-French Penalties

© P @ P
-\> e e u(i,j) =0 for all 7,j
[] chien Iteration 1
) laid u(3,2) -1
| - u(2,2) 1
.fourrure
B ouge u(2,3) -1
u(3,3) 1
v = agmax(f(y) + Y uli. (0.)
ij
French-to-English
© P& P
le
chien
laid
a
fourrure
rouge
2" = argmax(g(2) = D_ u(i.j)z(i.}))
iJ
Key
f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model zZ < French-to-English model

y(i,j)=1 if French word i aligns to English word j

English-to-French Penalties

© P @ P
-\> e e u(i,j) =0 for all 7,j
[] chien Iteration 1
) laid u(3,2) -1
| - u(2,2) 1
.fourrure
B ouge u(2,3) -1
u(3,3) 1
v = agmax(f(y) + Y uli. (0.)
ij
French-to-English
© P& P
le
chien
laid
a
fourrure
rouge
2" = argmax(g(2) = D_ u(i.j)z(i.}))
iJ
Key
f(y) < HMM Alignment g(z) < HMM Alignment
y < English-to-French model zZ < French-to-English model

y(i,j)=1 if French word i aligns to English word j

4. Practical issues

aim: overview of practical dual decomposition techniques

e tracking the progress of the algorithm

choice of update rate ay

lazy update of dual solutions

e extracting solutions if algorithm does not converge

Optimization tracking

at each stage of the algorithm there are several useful values
track:

. y(k) z(K) are current dual solutions
L(u®™) is the current dual value
oy (y®)Yis a potentlal primal feasible solution

f(y")) + g(I(y™®))) is the potential primal value

Tracking example

_13 T T
14 S - i
14 ‘A
LY
.15 + AT i
s,
[} \—\I'~~
= S - -
< -16 - i
>

-17

-18 Current Primal = |

‘ Current Qual -

-19 I I I
0 10 20 30 40 50 60

Round
example run from syntactic machine translation (later in talk)
e current primal
F(y™) +g(1(y™)

e current dual
L(u(k))

Optimization progress

useful signals:
o L(u™®)) = L(u*1)) is the dual change (may be positive)
. mkin L(u(®)) is the best dual value (tightest upper bound)
° max F(y") + g(I(yR)) is the best primal value

the optimal value must be between the best dual and primal values

Value

Value

Progress example

-13
14 |=
[}
-
-15 | T,
-
SN N
16 |]
e ——
17 +
18 Best Primal s |
Best Dual = = =
19 f .
0 10 20 30 40 50 60
Round
4 T T
Gap m—
35 1

10 20 30
Round

40 50 60

best primal
max f(y)) + g(1(y')
best dual

i (k)
min L(u'™)

gap
. k _
min L(u")

max fF(y9) + g(I(y™®)

Update rate
choice of ay has important practical consequences

e «y too high causes dual value to fluctuate

e ay too low means slow progress

-13

' 0.01 =—
0.005 = = =
135 ¢ 0.0005 = = = =
-14
3
2 145
>
.15
155
-16 ! ! ! ! ! ! !

Update rate

practical: find a rate that is robust to varying inputs

e ay = c (constant rate) can be very fast, but hard to find
constant that works for all problems

c : .
C ok = (decreasing rate) often cuts rate too aggressively,
lowers value even when making progress
e rate based on dual progress

c . . .
> oy = 1 where t < k is number of iterations where dual

value increased
» robust in practice, reduces rate when dual value is fluctuating

Lazy decoding

idea: don't recompute y(k) or z(¥) from scratch each iteration

lazy decoding: if subgradient uk) s sparse, then y(k) may be
very easy to compute from y(k_l)
use:

e helpful if y or z factor naturally into independent components

e can be important for fast decompositions

Lazy decoding example

®®®®
@@@@
® © & @

Language makes us human

P

®

language

@

recall corpus-level tagging
example

at this iteration, only
sentence 2 receives a
weight update

with lazy decoding

v ylkD
vy kD

Lazy decoding results

lazy decoding is critical for the efficiency of some applications

30 T T T T

% recomputed, g+s "
o5 % recomputed, sib m—
20
15

10

% of Head Automata Recomputed

0 1000 2000 3000 4000 5000
Iterations of Dual Decomposition

recomputation statistics for non-projective dependency parsing

Approximate solution

upon agreement the solution is exact, but this may not occur
otherwise, there is an easy way to find an approximate solution

choose: the structure y(k/) where
K = argmax f(y) + g(1(y')

is the iteration with the best primal score

guarantee: the solution yk/ is non-optimal by at most

(min L(u)) = (FG/0) + g1y)

there are other methods to estimate solutions, for instance by
averaging solutions (see Nedi¢ and Ozdaglar (2009))

Choosing best solution

0 ‘ ‘
A Best Primal
5 i
1 ves
| \
-10 F \- " S i
o \~~t\~~ -
% a5 L 4 24 -—\~---\ ’—_‘"
>
-20
25 Current Primal = |
Current Dual = = =
_30 Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70
Round

non-exact example from syntactic translation

best approximate primal solution occurs at iteration 63

Early stopping results

early stopping results for constituency and dependency parsing

100 et EE 8 R0k e et e ot et et
ot "_—_
DR
90 =7 i
s U
g P
g 8ofi,’ |
5 Y
<) =1
e 70 E' |
60 " f score E
.l' % certificates = = =
9% match K=50 srsssiu
50 L !
0 10 20 30 40 50

Maximum Number of Dual Decomposition Iterations

Early stopping results

early stopping results for non-projective dependency parsing

100 ‘|.u||u|nuu||||||||nnnnnnnl-l-l-lnnnnnnnnnnn.u
»“ =--——--—--------------
90 s .: ¢” T
® : e
D < ’
It 80 | H 'I ,
5 H)
1< =1
o 70F: 1 i
o)
|
60 [z 1 % validation UAS =
: " % certificates m m .
50 :' %match K:SQOO I
400 600 800 1000

0
Maximum Number of Dual Decomposition Iterations

Tightening

instead of using approximate solution, can tighten the algorithm
may help find an exact solution at the cost of added complexity

this technique is the focus of the next section

5. Linear programming

aim: explore the connections between dual decomposition and
linear programming

e basic optimization over the simplex
e formal properties of linear programming
e full example with fractional optimal solutions

e tightening linear program relaxations

Simplex
define:
* A, C Rl s the simplex over) where v € A, implies

ay, > 0 and Zayzl
y
e « is distribution over Y
e A, is the simplex over Z
* 4, 1Y — A, maps elements to the simplex

example: 5, (1)
Y ={y1,y2,y3} ‘
vertices
* dy(y1) = (1,0,0)
* dy(y2) =(0,1,0) » -

* 6,(y3) = (0,0,1) dy(y2) dy(y3)

Theorem 1. Simplex linear program
optimize over the simplex A, instead of the discrete sets)

goal: optimize linear program
ma E ayf
aGA); y 4 (y)

theorem:
max f(y) = max E ay f(
yey a€,

proof: points in) correspond to the exteme points of simplex

{6y(y):y €V}
linear program has optimum at extreme point

note: finding the highest scoring distribution « over Y

proof shows that best distribution chooses a single parse

Combined linear program

optimize over the simplices A, and A, instead of the discrete sets
Yand Z

goal: optimize linear program

max S a,f(y) + 3 Bgl(z)

a€Ay,BEA,

such that for all i, t
Zay)/(iy t) = Z/BZZ(ia t)
y z

note: the two distributions must match in expectation of POS tags

the best distributions o*,3* are possibly no longer a single parse
tree or tag sequence

Lagrangian

Lagrangian:

M(u, o, B)

Zayf(y) + Zﬁzg(z) + Z u(i, t) <Z ayy(i,t) — Z/BZZ("» t))
(Z ay,f(y)+ Z u(i, t) Z ayy(i, t)> +
<Z B-g(z) — Z u(i, t) Z Bzz(1, t))

it

Lagrangian dual:

M(u) = M
()= _max, M(u.0.5)

Theorem 2. Strong duality

define:

e, 3% is the optimal assignment to «, 3 in the linear program

theorem:

mlnM Za f(y —i—Zﬁ:g(z)

proof: by linear programming duality

Theorem 3. Dual relationship

theorem: for any value of v,

note: solving the original Lagrangian dual also solves dual of the
linear program

Theorem 3. Dual relationship (proof sketch)

focus on Y term in Lagrangian

Lu) = max (f(y)+Zu(i,t)y(i,t))+...

M(u) = organy (Zayf(y)+Zu(i,t)2ayy(i,t)) +...

by theorem 1. optimization over) and A, have the same max

similar argument for Z gives L(u) = M(u)

Summary

f(y) +g(2) original primal objective
L(u) original dual

>, ayf(y)+22,8:8(z) LP primal objective
M(u) LP dual

relationship between LP dual, original dual, and LP primal objective

muin M(u) = m|n L(u Za f(y)+ Zﬁig(z)

Primal relationship
define:

* QC A, x A, corresponds to feasible solutions of the original
problem

Q = {(5}’(}/)752(2)): y € y,Z € Z’
y(i,t) = z(i,t) for all (i,t)}

e O C Ay, x A, is the set of feasible solutions to the LP

Q, = {(OZ?B): o€ A)}aﬁ S AZa
Zy ayy(it) =, B.z(i,t) for all (i,t)}

cQC¢

solutions:

h(q) < max h(q) f h
max (q)_géaés (q) for any

Concrete example

° y: {ylay27y3}
© Z={z,2,2}
« A, CR? A, CR?

Y1 Y2 Y3
b'e X b'e
PN PN PN
y a a b b c c
| | | | | |
He is He is He is
zZ1 z2 z3
Z a—b b—-a c—c
¥ ¥ v ¥ ¥ ¥

He is He is He is

Simple solution

Y1 Y2 Ys

X X X
PN PN PN
y a a b b c c
| | | | | |
He is He is He is

Z1 zZ9 z3
Z a—b b—+a c—c
¥ v v v ¥ ¥

He is He is He is

choose:
« oV =(0,0,1) € A, is representation of y3
« B =(0,0,1) € A, is representation of z

confirm: .
S oMyl t) =37 a0z, 1)
y z

o) and gV satisfy agreement constraint

Fractional solution

n Y2 Ys
X e x
PN PN PN
y a a b b c c
| | | | | |
He is He is He is
z1 V) zZ3
Z a—Db b—a c—c
v ¥ v ¥ v v

He is He is He is

choose:
e a® =(0.5,0.5,0) € A, is combination of y; and y»
) =(0.5,0.5,0) € A, is combination of z and z

confirm: , ,
S Py) =" 8Pz 1)
y z

a® and g® satisfy agreement constraint, but not integral

Optimal solution

weights:
e the choice of f and g determines the optimal solution
« if (f,g) favors (a(2),ﬁ(2)), the optimal solution is fractional
example: f =[112]andg=[11 —2]
e f-aWiyg. W =0vsf -a®4g.52=2
a(2),5(2) is optimal, even though it is fractional

summary: dual and LP primal optimal:

min M(u) = m|n L(u Za(z)f)+ 25(2)

original primal optimal:

fly*)+g(z")=0

round 1

dual solutions:

¥3 Z2
iS b
c ¢ b
o He is
He is

dual values:
y() 2.00
z(1) 1.00
L(u™) 3.00

previous solutions:
Y3 22

round 2 dual values:

vy 2.00
dual solutions: z(® 1.00
L(u®) 3.00
Y2 z]
X a—b previous solutions:
T
b b i l y3 z2
| L He is Yo 1
He is

round 3

dual solutions:

n z]
iS 2 b
a a b
o He is

He is

dual values:
y(3) 2.50
zB3) 0.50
L(u®) 3.00

previous solutions:
Y3 22
Y2 21
yi 21

round 4 dual values:

y@) 2.17
dual solutions: z(*) 0.17
L(u®) 233
1 z]
X a—b previous solutions:
- | | 3 2
a a
| L He is Yo 1
He is n
57 n oz

round 5 dual values:

y(%) 2.08
dual solutions: z(%) 0.08
L(u®) 217
Y2 Z2
X b —» 3 previous solutions:
T
b b i l y3 z2
| L He is Yo 1
He is n
57 n oz
44 Y2 2

round 6 dual values:

y(6) 2.12
dual solutions: z(0) 0.12
L(u®) 223
1 z]
X a—b previous solutions:
- | | 3 2
a a
| L He is Yo 1
He is n
57 n oz
4 Yo 22

i 1

round 7 dual values:

y(2.05
dual solutions: z(M) 0.05
L) 210
Y2 Z2
X b —» 3 previous solutions:
T
b b i l y3 z2
| L He is Yo 1
He is n
57 n oz
4 Yo 22

i 1

3,
m Y2 22

round 8 dual values:

y(8) 2.09
dual solutions: z(®) 0.09
L(u®) 219
1 z]
X a—b previous solutions:
- | | 3 2
a a
| L He is Yo 1
He is n
57 n oz
4 Yo 22
3] i 1
% 2 2
“1 yi 1
1 4
0

round 9 dual values:

y(© 2.03
dual solutions: z(%) 0.03
L(u®) 2.06
Y2)
X b —» 3 previous solutions:
b b | | i 2
| | He is Y2 z1
He is yi oz
57 i oz
44 Y2 2
34 yi 1
m Yo
2 yi oz
1 2
0

Tightening (Sherali and Adams, 1994; Sontag et al., 2008)

modify:
e extend YV, Z to identify bigrams of part-of-speech tags
e y(i,ti,)=1+w y(i,t1)=land y(i+1,t) =1
e z(i,t1,) =14 z(i,t1) =1land z(i+ 1,t5) =1

all bigram constraints: valid to add for all /, t;,tr € T

Zayy(i, t, b)) = ZBZZ(i, t1, t2)
y z

however this would make decoding expensive

lterative tightening

single bigram constraint: cheaper to implement

Z ay)/(]-v a, b) = Z Bzz(la a, b)
y z

the solution a(l), 6(1) trivially passes this constraint, while
a(2),6(2) violates it

Y1 Y2 Y3
X X X
PN PR PN
y a a b b c ¢
| | | | | |
He is He is He is
zZ1 Z2 z3
Z a—>b b—>a c—~c
v ¥ v ¥ v ¥
He is He is He is

Dual decomposition with tightening

tightened decomposition includes an additional Lagrange multiplier

yuv—argmaxf +Z i,t)y(i,t) + v(1,a,b)y(1,a,b)

z,, = arg Teagg(z) — Z u(i,t)z(i,t) — v(1,a, b)z(1,a, b)

it
in general, this term can make the decoding problem more difficult
example:

e for small examples, these penalties are easy to compute

e for CFG parsing, need to include extra states that maintain
tag bigrams (still faster than full intersection)

round 7 dual values:

y™ 2.00
dual solutions: z(M 1.00
L(u™) 3.00
y3 22
X b —» 23 previous solutions:
- ys 2
c < b
b He is
He is

Round

round 8

dual solutions:

Y2 Z3
X c—c¢
T
b b b
Lo He is
He is
7 é é fO fl lé 15 1# 15 16

Round

dual values:

y(8) 3.00
z(®) 2.00
L(u®) 5.00

previous solutions:
Y3 2z
Y2 Z3

round 9

dual solutions:

i V)
X b— a
T
a a b
Lo He is
He is
7 é é fO fl lé lé lﬁ 15 16

Round

dual values:

y(9) 3.00
z(9) -1.00
L(u®) 2.00

previous solutions:
Y3 2z
Y2 Z3
nn

round 10

dual solutions:

y3 4]
X a—b
T
c ¢ b
b He is
He is
5,
4,
3,
2,
1,
0 : : : : : : : : i
7 8 9 10 11 12 13 14 15 16

Round

dual values:
y(10) 2.00

z(10) 1.00
L(u(1®) 3.00

previous solutions:
Y3 2z

Yo Z3
yi
y3

round 11

dual solutions:

Y2 Z3
X c—c¢
T
b b b
b He is
He is
5,
4,
3,
2,
1,
0 : : : : : : : : i
7 8 9 10 11 12 13 14 15 16

Round

dual values:
y(11) 3.00
z(11) 2.00
L(uM)) 5.00

previous solutions:
Y3 2z

Y2 3
yn 2
3 a1
Y2 Z3

round 12 dual values:

y(12) 3.00
PSR (12) -1.00
dual solutions: z .
L(u() 2.00
i V)
X b —» 23 previous solutions:
- i 2
2 s Lo noo
H‘e i; He 15 o2
5- 3 21
Yo Z3
41 n

Round

round 13

dual solutions:

y3 4]
ES b
c ¢ b
b He is

He is

Round

16

dual values:
y(13) 2.00

z(13) -1.00
L(u™)) 1.00

previous solutions:
Y3 2z

Y2 3
yn 2
3 a1
Y2 Z3
nn
3

round 14 dual values:

y(14) 3.00
PSR (14) 2.00
dual solutions: z .
L(u(™) 5.00
Y2 Z3
X c— ¢ previous solutions:
- i 2
b b S P
! ! He is
He is o2
5- 3 21
Yo Z3
41 n
3 ¥3 z1
Y2 z3

Round

round 15

dual solutions:

i V)
ES b
a a b
b He is
He is

Round

16

dual values:
y(15) 3.00

z(15) -1.00
L(u() 2.00

previous solutions:
Y3 2z

Y2 3
yn 2
3 a1
Y2 Z3
nn
3
Yo Z3
yi 2

round 16

dual solutions:

y3 Z3
ES e
c ¢ b
b He is
He is

Round

dual values:
y(16) 2.00

z(16) -2.00
L(u(1®)) 0.00

previous solutions:
Y3 2z

Y2 3
yn 2
3 a1
Y2 Z3
nn
3
Yo Z3
yi 2
y3 Z3

6. Advanced examples

aim: demonstrate some different relaxation techniques

e higher-order non-projective dependency parsing

e syntactic machine translation

Higher-order non-projective dependency parsing

setup: given a model for higher-order non-projective dependency
parsing (sibling features)

problem: find non-projective dependency parse that maximizes the
score of this model

difficulty:

e model is NP-hard to decode

e complexity of the model comes from enforcing combinatorial
constraints

strategy: design a decomposition that separates combinatorial
constraints from direct implementation of the scoring function

Non-Projective Dependency Parsing

*o Johny sawp, a3 movieg todays thats he; likedg

l
N A N TN

*o John; sawp, a3 movieg todays thatg he; likedg

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.

Dual Decomposition
A classical technique for constructing decoding algorithms.
Solve complicated models
y" = argmax f(y)
by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.
Dynamic programming
Minimum spanning tree

>

>

» Shortest path
» Min-Cut

>

Non-Projective Dependency Parsing

*o Johny sawp, a3 movieg todays thats he; likedg

l
N NN

o John; sawp a3 moviegs todays thatg hey likedg

» Starts at the root symbol *
» Each word has a exactly one parent word
» Produces a tree structure (no cycles)

» Dependencies can cross

Arc-Factored

N A NN A

*o Johny sawp a3 movieg todays thatg he; likedg

fly) =

Arc-Factored

N A ST

*o Johny sawp, a3 movieg todays thatg he; likedg

f(y) = score(head =x(, mod =sawy)

Arc-Factored

N D

*o Johny sawp, a3 movieg todays thatg he; likedg

f(y) = score(head =x¢, mod =saws) +score(saws, John;)

Arc-Factored

N A NN

*o Johny sawp, a3 movieg todays thatg he; likedg

f(y) = score(head =, mod =saws) +score(sawz, John;)

+score(sawy, movies)

Arc-Factored

N A NN

*o Johny sawp, a3 movieg todays thatg he; likedg

f(y) = score(head =, mod =saws) +score(sawz, John;)

+score(sawsy, moviey) +score(saws, todays)

Arc-Factored

N ST

*o Johny sawp, a3 movieg todays thatg he; likedg

f(y) = score(head =, mod =saws) +score(sawz, John;)
+score(sawy, moviey) +score(saws, todays)

+score(moviey, ag) + ...

Arc-Factored

N A NN

*o Johny sawp a3 movieg todays thatg he; likedg

f(y) = score(head =, mod =saws) +score(sawz, John;)
+score(sawy, moviey) +score(saws, todays)

+score(moviey, ag) + ...

e.g. score(xp,sawy) = log p(sawsa|*g) (generative model)

Arc-Factored

N A NN

*o Johny sawp a3 movieg todays thatg he; likedg

f(y) = score(head =, mod =saws) +score(sawz, John;)
+score(sawy, moviey) +score(saws, todays)

+score(moviey, ag) + ...

e.g. score(xp,sawy) = log p(sawsa|*g) (generative model)

or score(x*q,sawa) = w - ¢(sawsa, *9) (CRF/perceptron model)

Arc-Factored

N A NN A

*o Johny sawp, a3 movieg todays thatg he; likedg

f(y) = score(head =, mod =saws) +score(sawz, John;)
+score(sawy, moviey) +score(saws, todays)

+score(moviey, ag) + ...

e.g. score(xp,sawy) = log p(sawsa|*g) (generative model)

or score(x*q,sawa) = w - ¢(sawsa, *9) (CRF/perceptron model)

y* =argmaxf(y) < Minimum Spanning Tree Algorithm
y

Sibling Models

N A NN

*o John; sawp, a3 movies todays thatg he; likedg

fly) =

Sibling Models

N A NN

*o John; sawp, a3 movies todays thatg he; likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)

Sibling Models

N A NN

*0 Johny sawy as moviey todays thatg hes likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)
+score(sawy, NULL, John;)

Sibling Models

N A NN

*0 Johny sawy as moviey todays thatg hes likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)

+score(sawy, NULL, John;) +score(sawy, NULL, moviey)

Sibling Models

N A TN A

*0 Johny sawy as moviey todays thatg hes likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)
+score(sawy, NULL, John;) +score(sawa, NULL, moviey)

+score(sawg,moviey, todays) + ...

Sibling Models

N A NN

*0 Johny sawy as moviey todays thatg hes likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)
+score(sawy, NULL, John;) +score(sawa, NULL, moviey)

+score(sawg,moviey, todays) + ...

e.g. score(sawq, moviey, todays) = log p(todays|saws, moviey)

Sibling Models

N A NN

*0 Johny sawy as moviey todays thatg hes likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)
+score(sawy, NULL, John;) +score(sawa, NULL, moviey)

+score(sawg,moviey, todays) + ...

e.g. score(sawq, moviey, todays) = log p(todays|saws, moviey)

or score(sawg, moviey, todays) = w - ¢(saws, moviey, todays)

Sibling Models

N A NN

*0 Johny sawy as moviey todays thatg hes likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)
+score(sawy, NULL, John;) +score(sawa, NULL, moviey)

+score(sawg,moviey, todays) + ...

e.g. score(sawq, moviey, todays) = log p(todays|saws, moviey)

or score(sawg, moviey, todays) = w - ¢(saws, moviey, todays)

y* =argmaxf(y) < NP-Hard
y

Thought Experiment: Individual Decoding

*o Johny saw, a3 movieg todays thatg he; likedg

Thought Experiment: Individual Decoding
TN /_\
*o Johny saw, a3 movieg todays thatg he; likedg

score(sawq, NULL, John;) + score(sawz, NULL, moviey)
+score(sawg, moviey, todays)

Thought Experiment: Individual Decoding
V SN
John; sawp, a3 movies todays thatg hey likeds

score(sawq, NULL, John;) + score(sawz, NULL, moviey)
+score(sawg, moviey, todays)

score(sawg, NULL, John;) + score(sawy, NULL, thatg)

*

0

Thought Experiment: Individual Decoding

John1

sawp a3 movieg todays thatg he; likedg

score(sawq, NULL, John;) + score(sawz, NULL, moviey)
+score(sawg, moviey, todays)

score(sawg, NULL, John;) + score(sawy, NULL, thatg)

score(sawe, NULL, a3) + score(saws, ag, her)

Thought Experiment: Individual Decoding

*o JOhnl

2n71
possibilities

sawp a3 movieg todays thatg he; likedg

score(sawq, NULL, John;) + score(sawz, NULL, moviey)
+score(sawg, moviey, todays)

score(sawg, NULL, John;) + score(sawy, NULL, thatg)

score(sawe, NULL, a3) + score(saws, ag, her)

Thought Experiment: Individual Decoding

*o JOhnl

2n71
possibilities

sawp a3 movieg todays thatg he; likedg

score(sawq, NULL, John;) + score(sawz, NULL, moviey)
+score(sawg, moviey, todays)

score(sawg, NULL, John;) + score(sawy, NULL, thatg)

score(sawe, NULL, a3) + score(saws, ag, her)

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment Continued

R

*o Johny sawp a3 movieg todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

SN

*o Johni sawp a3 movieg todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

A N\

*o Johny saw, a3 movieg todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

A N\

*o Johny sawp a3 moviegs todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

SN N TN

*o Johny sawp a3 movies, todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

N A ST

*o Johny sawp a3 movieg todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

N N TN

*o Johny sawp a3 moviegs todays thats he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

AN AN NN

*o Johny sawp a3 moviegs todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

NN N

*o Johny sawp a3 moviegs todays thatg he; likedg

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

But we might violate some constraints.

Dual Decomposition Idea

No Tree
Constraints Constraints

Arc-
Factored

Sibling
Model

Dual Decomposition Idea

No Tree
Constraints Constraints

Arc-
Factored

Sibling
Model

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

Rewrite as argmax f(z) + g(y)
zEe Z, ye y

such that z=y

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

Rewrite as argmax f(z) + g(y)
zEe Z, ye y

All Possible

such that z=y

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

Rewrite as argmax f(z) + g(y)
zEe Z, ye y

*
| Al Poss/:ble | | Valid Trees |

such that z=y

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

Rewrite as argmax f(z) + g(y)

ze Z,ye Y

*
| Al Poss/:ble | | Valid Trees |

such that z=y

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

| Sibling || Arc-Factored |

Rewrite as argmax f(z) + g(y)
zEe Z, ye y

*
| Al Poss/:ble | | Valid Trees |

such that z=y

Dual Decomposition Structure

Goal y* = argmax f
y gmax (v)

| Sibling || Arc-Factored |

Rewrite as argmax f(z) + g(y)
zEe Z, ye y

*
| Al Poss/:ble | | Valid Trees |

such that z=y

Algorithm Sketch

Set penalty weights equal to O for all edges.

For k=1to K

Algorithm Sketch

Set penalty weights equal to O for all edges.
For k=1to K

2(K) « Decode (f(z) + penalty) by Individual Decoding

Algorithm Sketch

Set penalty weights equal to O for all edges.
For k=1to K
2(K) « Decode (f(z) + penalty) by Individual Decoding

y) < Decode (g(y) — penalty) by Minimum Spanning Tree

Algorithm Sketch

Set penalty weights equal to O for all edges.
For k=1to K
2(K) « Decode (f(z) + penalty) by Individual Decoding
y) < Decode (g(y) — penalty) by Minimum Spanning Tree

If y((i, j) = 2, j) for all i, j Return (y9), (k)

Algorithm Sketch

Set penalty weights equal to O for all edges.

For k=1to K
2(K) « Decode (f(z) + penalty) by Individual Decoding
y) < Decode (g(y) — penalty) by Minimum Spanning Tree
If y((i, j) = 2, j) for all i, j Return (y9), (k)

Else Update penalty weights based on y(k)(i,j) — z(k)(i,j)

Individual Decoding Penalties
u(i,j) =0 for all i,/

*o John; sawp a3 movies todays thats he; likedg
z —argmax —|—Zu(/ Nz(i,)))

Minimum Spanning Tree

*o John; sawp a3 movies todays thats he; likedg

y* = argmax(g(y) — > u(i.j)y(i,)))

yey —
1J
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties

o N N

*o John; sawp a3 movies todays thats he; likedg

u(i,j) =0 for all i j

z* 7argma>< +Z u(i, j)z(i,J))

Minimum Spanning Tree

*o John; sawp a3 movies todays thats he; likedg

y* = argmax(g(y) — > u(i.j)y(i,)))

yey —
1J
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties

o N N

*o John; sawp a3 movies todays thats he; likedg

u(i,j) =0 for all i j

z* =arg rzneazx(f(z) + Z u(i, j)z(i,j))
iJ

Minimum Spanning Tree

mm

*o John; sawp a3 movies todays thats he; likedg

y*=arg ryrg(g(y) = > ui, j)y(i.J))
i
f(2) < Sibling Model g(y) <« Arc-Factored Model

zZ < No Constraints Yy « Tree Constraints
y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties

o N TN N

*o John; sawp a3 movies todays thats he; likedg

u(i,j) =0 for all i j

z* =arg rzneazx(f(z) + Z u(i, j)z(i,j))
iJ

Minimum Spanning Tree

mm

*o John; sawp a3 movies todays thats he; likedg

y' = argmax(g(y) =) uli-j)y(i.)))
i
f(2) < Sibling Model g(y) <« Arc-Factored Model

zZ < No Constraints Yy < Tree Constraints
y(i,j)=1 if y contains dependency i,

Penalties
u(i,j) =0 for all i j

Individual Decoding

Iteration 1
s PN TN P
Y 7N u(4,6) 1
*o John; sawp a3 movies todays thats he; likedg
u(2,6) 1
z —argmax —|—Zu(l Nz(i,))) u(8,7) !
Minimum Spanning Tree
A m
*o John; sawp a3 movies todays thats he; likedg
y" = argmax(g(y) = > u(i.j)y(i.)))
y i
Key
f(z) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy < Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties
u(i,j) =0 for all i j

Iteration 1
TN T u(4,6) -1
*o John; sawp a3 movies todays thats he; likedg
u(2,6) 1
z* 7argma>< +Z u(i, j)z(i,J)) u(8,7) 1
Minimum Spanning Tree
*o John; sawp a3 movies todays thats he; likedg
y" = argmax(g(y) = > u(i.j)y(i.)))
y i
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties
u(i,j) =0 for all i j

Iteration 1
TN T u(4,6) -1
*o John; sawp a3 movies todays thats he; likedg
u(2,6) 1
* . P U(87 7) 1
2" —argmax(F(2) + Y u(i)z(i.)
ioj
Minimum Spanning Tree
/—A //@
*o John; sawp a3 movies todays thats he; likedg
y*=arg ryrg(g(y) = > ui, j)y(i.J))
iy
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties

u(i,j) =0 for all i j
Iteration 1

u(81) -1
/A@T\/A

*, Joh d hats he; liked u(4.6) B
i t that i
o John; sawp a3 movie; todays ats hey likeds u(2,6) 1
z" =arg max —|—Zu(/ Nz(i,))) u(8,7) 1
Iteration 2
Minimum Spanning Tree u(8, 1) -1
u(4,6) -2
m u(2,6) 2
AT A TN ugn 1
*o John; sawp a3 movies todays thats he; likedg
y' = argmax(g(y) =) uli-j)y(i.)))
i
Key
f(z) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties
u(i,j) =0 for all i j

Iteration 1
u(8,1) -1
%y Joh d h her liked u(.6) !
i t that, i
0 ohn; sawp, a3 movieg odays atg e7 ikedg u(2,6) 1
z" =arg max —|—Zu(/ Nz(i,))) u(8,7) 1
Iteration 2
Minimum Spanning Tree u(8, 1) -1
u(4,6) -2
u(2,6) 2
u(8,7)
*o John; sawp a3 movies todays thats he; likedg
y" = argmax(g(y) = > ulirj)y(i.))
iJ
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding Penalties
u(i,j) =0 for all i j

Iteration 1
TN T u(4,6) -1
*o John; sawp a3 movies todays thats he; likedg
u(2,6) 1
z* 7argma>< +Z l_j u(8,7) 1
Iteration 2
Minimum Spanning Tree u(8,1) -1
u(4,6) -2
u(2,6) 2
u(8,7)
*o John; sawp a3 movies todays thats he; likedg
y' = argmax(g(y) =) uli-j)y(i.)))
iJ
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding

Penalties
u(i,j) =0 for all i j

Iteration 1
/?i_\ u(8,1) -1
TN T T u(4,6) -1
*o John; sawp a3 movies todays thats he; likedg
u(2,6) 1
LN 1
z* = arg max(f(z u(i,j)z(i u(8,7)
g max(f()+Z (1,)z(i,j))
1 Iteration 2
Minimum Spanning Tree u(8,1) -1
u(4,6) -2
u(2,6) 2
SN N N TN u(8.7)
*o John; sawp a3 movies todays thats he; likedg
y*=arg ryrg(g(y) = > ui, j)y(i.J))
iJ
Key
f(2) < Sibling Model g(y) <« Arc-Factored Model
zZ < No Constraints Yy « Tree Constraints

y(i,j)=1 if y contains dependency i,

Individual Decoding

/A/A?T\/A

*o John; sawp a3 movies todays thats he; likedg
¥ =arg rzneazx(f(z) + Z u(i, j)z(i,)))
ioj

Minimum Spanning Tree

/A/A?T\/A

*o John; sawp a3 movies todays thats he; likedg

y* = argmax(g(y) — Z u(i, j)y(i,J))
yey i
f(z) < Sibling Model

zZ < No Constraints Yy
y(i,j)=1 if y contains dependency i,

Penalties
u(i,j) =0 for all i j

Iteration 1

u(8,1) 1
u(4,6) -1
u(2,6) 1
u(8,7) 1
Iteration 2

u(8,1) 1
u(4,6) -2
u(2,6) 2
u(8,7) 1
Converged

*=argmaxf(y) +
y g max (v) +&(y)

g(y) <« Arc-Factored Model
< Tree Constraints

Guarantees

Theorem
If at any iteration y(K) = z(K) then (y(k),z(k)) is the global
optimum.

In experiments, we find the global optimum on 98% of examples.

Guarantees

Theorem
If at any iteration y(K) = z(K) then (y(k),z(k)) is the global
optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Extensions

» Grandparent Models

A~ O\

*o Johny saw, a3 movieg todays thatg he; likedg

f(y) =...+ score(gp =+, head = saws, prev =movies, mod =todays)

» Head Automata (Eisner, 2000)
Generalization of Sibling models

Allow arbitrary automata as local scoring function.

Experiments
Properties:

» Exactness

> Parsing Speed

» Parsing Accuracy

» Comparison to Individual Decoding
» Comparison to LP/ILP

Training:
» Averaged Perceptron (more details in paper)

Experiments on:
» CoNLL Datasets
» English Penn Treebank
» Czech Dependency Treebank

How often do we exactly solve the problem?

» Percentage of examples where the dual decomposition finds
an exact solution.

Parsing Speed

25

% % 2 % %

Sibling model Grandparent model

» Number of sentences parsed per second

» Comparable to dynamic programming for projective parsing

Accuracy

Arc-Factored | Prev Best | Grandparent
Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes
» Approximate search (McDonald and Pereira, 2006)
» Loop belief propagation (Smith and Eisner, 2008)
» (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems

93

92

91

90

89

88

Individual —
MST
Dual

F1 for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

» LP (1)
» LP (2)
> ILP

Use an LP/ILP Solver for decoding

We compare:
» Accuracy
» Exactness
> Speed

Both LP and dual decomposition methods use the same model,
features, and weights w.

Comparison to LP/ILP: Accuracy

100
LP(1)
LP(2) m===

ILP
Dual

95

85

80

Dependency Accuracy

> All decoding methods have comparable accuracy

100

95

90

85

80

Comparison to LP/ILP: Exactness and Speed

Percentage with exact solution

14

12

10

Sentences per second

Syntactic translation decoding

setup: assume a trained model for syntactic machine translation

problem: find best derivation that maximizes the score of this
model
difficulty:

e need to incorporate language model in decoding

e empirically, relaxation is often not tight, so dual
decomposition does not always converge

strategy:
e use a different relaxation to handle language model

e incrementally add constraints to find exact solution

Syntactic Translation

Problem:
Decoding synchronous grammar for machine translation

Example:

<s> abarks le dug </s>

!

<s> the dog barks loudly </s>

Goal:
y* =argmaxf(y)
y

where y is a parse derivation in a synchronous grammar

Hiero Example

Consider the input sentence
<s> abarks le dug </s>

And the synchronous grammar

S = <s> X </s>, <s> X </s>
X — abarks X, X barks loudly
X — abarks X, barks X

X — abarks X, barks X loudly
X — le dug, the dog

X — le dug, a cat

Hiero Example

Apply synchronous rules to map this sentence

S S
%\ /\\
<s> X <[fs> <s> X <[s>

/R
abaé\X X barks loudly
leAdug thﬁog

Many possible mappings:

<s> the dog barks loudly </s>
<s> a cat barks loudly </s>
<s> barks the dog </s>

<s> barks a cat </s>

<s> barks the dog loudly </s>
<s> barks a cat loudly </s>

Translation Forest

Rule Score
1 —<s> 4 </s> -1
4 — 5 barks loudly 2
4 — barks 5 0.5
4 — barks 5 loudly 3
5 — the dog -4
5 — a cat 25

Example: a derivation in the translation forest

@
@ @
&) @
OBNC)

Scoring function

Score : sum of hypergraph derivation and language model

f(y) = score(5 — a cat)

Scoring function

Score : sum of hypergraph derivation and language model

[=======-

f(y) = score(5 — a cat) + score(4 — 5 barks loudly)

Scoring function

Score : sum of hypergraph derivation and language model

f(y) = score(5 — a cat) + score(4 — 5 barks loudly) + . ..

+score(<s>, the)

Scoring function

Score : sum of hypergraph derivation and language model

f(y) = score(5 — a cat) + score(4 — 5 barks loudly) + . ..

+score(<s>,a) + score(a, cat)

Exact Dynamic Programming

To maximize combined model, need to ensure that bigrams are
consistent with parse tree.

O,
=) O, &=
(&) @ @
ONNC

Exact Dynamic Programming

To maximize combined model, need to ensure that bigrams are
consistent with parse tree.

Original Rules
5 — the dog
5 —a cat

New Rules

<s>5cat - <s> thethe thedogdog
barks5cat — barks thethe the dogdog
<s>Dcat = <s>aa aCatcat
barksDcat = barksda aCalcat

Lagrangian Relaxation Algorithm for
Syntactic Translation

Outline:

e Algorithm for simplified version of translation
e Full algorithm with certificate of exactness

e Experimental results

Thought experiment: Greedy language model

Choose best bigram for a given word

e score(<s>, barks)

Thought experiment: Greedy language model

Choose best bigram for a given word

|
|
= L [

e score(<s>, barks)

* score(dog, barks)

Thought experiment: Greedy language model

Choose best bigram for a given word

e score(<s>, barks)
* score(dog, barks)

* score(cat, barks)

Thought experiment: Greedy language model

Choose best bigram for a given word

e score(<s>, barks)
* score(dog, barks)

* score(cat, barks)

Can compute with a simple maximization

arg max score(w, barks)
w:(w,barks)es

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

@ dog ®

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

®» W @ ® ® O e
dog

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

@ o am ® @ 0 @

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

= s o
dog <>

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

= s o
dog <>

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

= s o
dog <> <>

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

® ®» 9
dog <s> <s> B

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

@ dog ®
e = =

Step 2. Find the best derivation with fixed bigrams

-1®

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

@ dog ®
e = =

Step 2. Find the best derivation with fixed bigrams

-1®

Thought Experiment Problem

May produce invalid parse and bigram relationship

Greedy bigram selection may conflict with the parse derivation

Thought Experiment Problem

May produce invalid parse and bigram relationship

Greedy bigram selection may conflict with the parse derivation

Formal objective
Notation: y(w,v) = 1 if the bigram (w,v) € Bisin y

Goal:

arg max f
g max §2

such that for all words nodes y, @

Formal objective
Notation: y(w,v) = 1 if the bigram (w,v) € Bisin y

Goal:

arg max f
g max §2

such that for all words nodes y, @

**@ YWw = Z)/(Wv V)

wi(w,v)eB

(1)

Formal objective
Notation: y(w,v) = 1 if the bigram (w,v) € Bisin y

Goal:

arg max f
g max §2

such that for all words nodes y, @

wh--(v) o= Y y(wy) (1)

wi(w,v)eB

> ylv,w) (2)

wi{v,w)eB

Yv

Formal objective
Notation: y(w,v) = 1 if the bigram (w,v) € Bisin y

Goal:

arg max f
g max §2

such that for all words nodes y, @

wh--(v) o= Y y(wy) (1)
wi(w,v)eB
v

> ylv,w) (2)

wi{v,w)eB

Formal objective
Notation: y(w,v) = 1 if the bigram (w,v) € Bisin y

Goal:
argmax f
gyGy (y)

such that for all words nodes y, @

wh--(v) w o= Y ywv) (1)
wi{w,v)eB
K ONST

> ylviw) (2)
Lagrangian: Relax constraint (2), leave constraint (1)

wi{v,w)EB

L(u,y):ryeagf(y)ﬂLZU(V) W= Y ylv.w)

wi(v,w)eB

For a given u, L(u,y) can be solved by our greedy LM algorithm

Algorithm
Set uM(v) =0 forallve v,

For k=1to K
(k) L)
y arg max L' (u, y)
F 0 = 3" y®(v,w) for all v Return (y()
wi{v,w)eB

Else
() e u(v) — oy (yé” > y“)(v,w))

wi(v,w)eB

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

l ;L]

e score(<s>, barks) — u(<s>) + u(barks)

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

|
|
= [

e score(<s>, barks) — u(<s>) + u(barks)

* score(cat, barks) — u(cat) + u(barks)

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

e score(<s>, barks) — u(<s>) + u(barks)
* score(cat, barks) — u(cat) + u(barks)

* score(dog, barks) — u(dog) + u(barks)

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

e score(<s>, barks) — u(<s>) + u(barks)
* score(cat, barks) — u(cat) + u(barks)

* score(dog, barks) — u(dog) + u(barks)

Can still compute with a simple maximization over

arg max score(w, barks) — u(w) + u(barks)
w:(w,barks)es

Penalties

Algorithm example

u(v)

</s>
0

barks
0

loudly
0

the
0

dog
0

a
0

cat
0

Greedy decoding

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 0 0 0 0 0 0
Greedy decoding
O,
<s> the <s>

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 0 0 0 0 0 0

Greedy decoding

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 0 0 0 0 0 0

Greedy decoding

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 -1 1 0 -1 0 1

Greedy decoding

Penalties

Algorithm example

u(v)

</s>
0

barks
-1

loudly
1

the
0

dog
-1

a
0

cat
1

Greedy decoding

HEY

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 -1 1 0 -1 0 1

Greedy decoding

dog ®
[ed] w e w

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 -1 1 0 -1 0 1

Greedy decoding

Algorithm example

Penalties
v </s> barks loudly the dog a «cat
u(v) 0 -1 1 0 -1 0 1
Greedy decoding
dog

-©®

<s>

-1-®

loud],

HEY

Algorithm example

Penalties
v </s> barks loudly the dog a cat
u(v) 0 -1 1 0 -05 0 05
Greedy decoding
Cog ®
<s> <s>

Penalties

Algorithm example

u(v)

</s>
0

barks
-1

loudly
1

the
0

dog
-0.5

a
0

cat
0.5

Greedy decoding

loud],

HEY

Algorithm example

Penalties
v </s> barks loudly the dog a cat
u(v) 0 -1 1 0 -05 0 05
Greedy decoding
Cog ®

Algorithm example

Penalties
v </s> barks loudly the dog a cat
u(v) 0 -1 1 0 -05 0 05
Greedy decoding
Cog ®
[dog| <s> <s>

Constraint Issue
Constraints do not capture all possible reorderings

Example: Add rule (5 — cat a) to forest. New derivation

Constraint Issue
Constraints do not capture all possible reorderings

Example: Add rule (5 — cat a) to forest. New derivation

Satisfies both constraints (1) and (2), but is not self-consistent.

New Constraints: Paths

@
@ @
& a»

Fix: In addition to
bigrams, consider paths
between terminal nodes

Example: Path marker
(54,10) implies that
between two word nodes,
we move down from node
5 to node 10

New Constraints: Paths

Fix: In addition to
bigrams, consider paths
between terminal nodes

Example: Path marker
(54,10) implies that
between two word nodes,
we move down from node
5 to node 10

New Constraints: Paths

Fix: In addition to
bigrams, consider paths
between terminal nodes

Example: Path marker
(54,10) implies that
between two word nodes,
we move down from node
5 to node 10

New Constraints: Paths

Fix: In addition to
bigrams, consider paths
between terminal nodes

Example: Path marker
(54,10) implies that
between two word nodes,
we move down from node
5 to node 10

New Constraints: Paths

Fix: In addition to
bigrams, consider paths
between terminal nodes

Example: Path marker
(54,10) implies that
between two word nodes,
we move down from node
5 to node 10

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

dog ® (@)

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

@ e @ ® @ 0 @

< </s> 1] < barks 5]

‘< 41,</s> ¢>‘ ‘< 5 1, barks ¢>‘

‘< loudly 1,4 ¢>‘ ‘< cat 1,5 ¢>‘

‘< loudly T>‘ ‘< cat T>‘

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

® ® ® @ & © o

< </s> 1] < barks 15| [< loudly 1]

K at,</s> 15 [51, barks 1< loudly |, barks 1]

‘< loudly 1,4 ¢>‘ ‘< cat 1,5 ¢>‘ ‘< barks T>‘

‘< loudly T>‘ ‘< cat T>‘

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

) O, (cat)
‘< </s> ¢>‘ ‘< barks ¢>‘ ‘< loudly ¢>‘ ‘< the ¢>‘

‘< 41,</s> ¢>‘ ‘< 51, barks ¢>H< loudly |, barks ¢>‘ ‘< 51, the ¢>‘

‘< loudly 1,4 ¢>‘ ‘< cat 1,5 T>‘ ‘< barks T>‘ ‘< 41,5 L>‘

‘< loudly T>‘ ‘< cat T>‘

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

@ ® @
‘< </s> ,L>‘ ‘< barks ,L>‘ ‘< loudly ¢>‘ ‘< the ,L>‘ ‘< dog ,L>‘

‘< 41,</s> ¢>‘ ‘< 51, barks ¢>H< loudly |, barks ¢>‘ ‘< 51, the ¢>‘ ‘< the 1, dog ¢>‘

‘< loudly 1,4 ¢>‘ ‘< cat 1,5 T>‘ ‘< barks T>‘ ‘< 41,5 L>‘ ‘< the T>‘

‘< loudly T>‘ ‘< cat T>‘

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

@ ®
‘< </s> ¢>‘ ‘< barks ¢>‘ ‘< loudly ¢>‘ ‘< the ¢>‘ ‘< dog ¢>‘ ‘< a ¢>‘

‘< 41,</s> ¢>‘ ‘< 51, barks ¢>H< loudly |, barks ¢>‘ ‘< 51, the ¢>‘ ‘< the 1, dog ¢>‘ ‘< 51a ¢>‘

‘< loudly 1,4 ¢>‘ ‘< cat 1,5 T>‘ ‘< barks T>‘ ‘< 41,5 L>‘ ‘< the T>‘ ‘< 41,5 L>‘

‘< loudly T>‘ ‘< cat T>‘

Greedy Language Model with Paths
Step 1. Greedily choose best path each word

® ® ® 0 ® 9 o

‘< </s> ,L>‘ ‘< barks ,L>‘ ‘< loudly ¢>‘ ‘< the ,L>‘ ‘< dog ,L>‘ ‘< a ,L>‘ ‘< cat J,>‘
[[[[[[
at,</e 13 <51 barks 1)< loudly Lbarks 15] €5 4 the 5] [the f,dog 1>] <5 Laly] atcat i
[[[[[[
‘< loudly 1,4 ¢>‘ ‘< cat 1,5 T>‘ ‘< barks T>‘ ‘< 41,5 L>‘ ‘< the T>‘ ‘< 41,5 L>‘ ‘< a T>‘

‘< loudly T>‘ ‘< cat T>‘

Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

!
‘< loudly ¢>‘

I I
‘< a ¢>‘ ‘< cat ¢>‘ < 51, barks ¢>‘ ‘< loudly |, barks ¢>‘

‘< 51,a ¢>‘ ‘< at,cat ¢>‘ ‘< cat 1,5 T>‘ ‘< barks ¢>‘
\ \
e

|
‘< barks ¢>‘

Efficiently Calculating Best Paths

There are too many paths to compute argmax directly, but we can
compactly represent all paths as a graph

Graph is linear in the size of the grammar

e Green nodes represent leaving a word
¢ Red nodes represent entering a word

e Black nodes are intermediate paths

<21>

<271,4.1>

Best Paths

]

<61>

<4],5]> <671,51> <4],6 1> <61, 71>
<5],10 |> <5],81> <6l>

<10 /> <8|>

Goal: Find the best
path between all
word nodes (green
and red)

Method: Run
all-pairs shortest
path to find best
paths

Full Algorithm

Algorithm is very similar to simple bigram case. Penalty weights are
associated with nodes in the graph instead of just bigram words

Theorem
If at any iteration the greedy paths agree with the derivation,
then (y()) is the global optimum.

But what if it does not find the global optimum?

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge

May get stuck between solutions.

Can fix this by incrementally adding constraints to the problem

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions
A ={2,6,7,8,9,10,11}
B={}

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions
A ={2,6,7,8,9,10,11}
B={}

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions
A ={2,6,7,8,9,10,11}
B={}

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions

A ={2,6,789,1011}
B=1{}

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions

‘ A = {2,6,7,8,9,10}
loudly
B — {11}

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions

‘ A = {2,6,7,8,9,10}
loudly
B — {11}

Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.
e Initially place all words in the same partition.
e If the algorithm gets stuck, separate words that conflict

e Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

Partitions
A = {2,6,7,8,9,10}
B = {11}

Experiments

Properties:
e Exactness
e Translation Speed
e Comparison to Cube Pruning
Model:
 Tree-to-String translation model (Huang and Mi, 2010)
e Trained with MERT
Experiments:
e NIST MT Evaluation Set (2008)

100

90

80

70

60

50

Exactness

Percent Exact

LR Lagrangian Relaxation

ILP Integer Linear Programming
DP Exact Dynanic Programming
LP Linear Programming

Median Speed

Sentences Per Second

LR
1.4 ILP ==
DP
1.2 LP o |
1
0.8
0.6
0.4
0.2
0
LR Lagrangian Relaxation
ILP Integer Linear Programming
DP Exact Dynanic Programming
LP Linear Programming

Comparison to Cube Pruning: Exactness

Percent Exact
100

LR o
Cube(50) ==

|
% Cube(500)

80

70

60

50 F

40

LR Lagrangian Relaxation
Cube(50) Cube Pruning (Beam=50)
Cube(500) Cube Pruning (Beam=500)

Comparison to Cube Pruning: Median Speed

20

15

10

LR

Sentences Per Second

LR mmm
Cube(50) ===
Cube(500)

Lagrangian Relaxation

Cube(50) Cube Pruning (Beam=50)
Cube(500) Cube Pruning (Beam=500)

The Phrase-Based Decoding Problem

>

We have a source-language sentence xq,xs,..., TN
(z; is the i'th word in the sentence)

A phrase p is a tuple (s, t,e) signifying that words z; ... x;
have a target-language translation as e

E.g., p = (2,5, the dog) specifies that words x5 . .. x5 have a
translation as the dog

Output from a phrase-based model is a derivation

Yy=pip2-..-pPL

where p; for j = 1...L are phrases. A derivation defines a
translation e(y) formed by concatenating the strings

e(pi)e(p2) ... e(pL)

Scoring Derivations

» Each phrase p has a score g(p).

» For two consecutive phrases p, = (s,t,¢) and
pri1 = (8,1, €'), the distortion distance is
t,s)=1t+1—4|

» The score for a derivation is

F) = hle@) + S glo) + 3 1 % 8¢ pr). s(pesr))

where 7 € R is the distortion penalty, and h(e(y)) is the
language model score

The

v

v

v

v

Decoding Problem

Y is the set of all valid derivations
For a derivation y, y(i) is the number of times word i is
translated
A derivation y = py, po, ..., pr is valid if:
» y(i)=1fori=1...N
» For each pair of consecutive phrases py, px+1 for

k=1...L—1, we have 0(t(pr), s(pk+1)) < d, where d is the
distortion limit.

Decoding problem is to find

arg max f(y)

Exact Dynamic Programming

» We can find

arg max f (y)

using dynamic programming
» But, the runtime (and number of states) is exponential in N.

» Dynamic programming states are of the form
(wb Wa, b7 T)

where

» w1y, ws are last two words of a hypothesis

» b is a bit-string of length IV, recording which words have been
translated (2V possibilities)

» 7 is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm

» Define)’ to be the set of derivations such that:

s Yy =N

» For each pair of consecutive phrases py, px+1 for
kE=1...L—1, we have §(t(pk), s(pk+1)) < d, where d is the
distortion limit.

» Notes:

» We have dropped the y(i) = 1 constraints.
» We have Y C)/

Dynamic Programming over)’

» We can find

arg ma
gmax f(y)

efficiently, using dynamic programming

» Dynamic programming states are of the form
(wla w2, M, ’f’)

where

» w1, ws are last two words of a hypothesis
» n is the length of the partial hypothesis
» r is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm (continued)

» The original decoding problem is

arg max fy)

» We can rewrite this as

argmax f(y) such that Vi, y(i) =1
yed’

» We deal with the y(i) = 1 constraints using Lagrangian
relaxation

A Lagrangian Relaxation Algorithm (continued)

The Lagrangian is
L(u,y) = f(y) + Z u(i)(y(i) — 1)

The dual objective is then

L(u) = max L(u, y).
() max (uw,)

and the dual problem is to solve

min L(u).

u

The Algorithm

Initialization: u%(i) <~ 0 fori=1...N
fort=1...T

y' = argmax,cyy L(u'1,y)

if y!(i) =1 for i=1...N

return 3’
else
fori=1...N

ul(i) = w71 (i) — o (y'(i) = 1)

Figure: The decoding algorithm. a! > 0 is the step size at the ¢'th
iteration.

An Example Run of the Algorithm

Input German: dadurch kénnen die qualitét und die auch weiterhin werden .
t Lu'™h v (i) derivation y*

1100988 0022330020001 g qu;li?y and [aiso | e |and | e quai)iiyﬁand MRS

2 s ooro00t00sist B3| B R MR [| ”b'e” Leomneato | "> comaasto [bs grarantees |

3 1232 3312200010001 in mlayt?vay ‘;Bd ‘can ‘(1huls qué\lly ‘mthalway }(he quahly and :\so 13‘13|

4 @3 0100011330301 (T2 ‘me(:egular stibution should |also ensure |distriution should |aise ensure |distrbuton should |aiso |ensure 13‘13|
s o oo 52|50 oL 50 ok 5 ks

6 ISessE 111202000000 [t ‘(he ity of ‘!he ‘quah!y of ‘!he ‘dlsznbuno:shouw cominum to 'be guaranteed .

76102 L il ‘Ihe sty |and 16 reguiar |distribution shouid ‘condnue to ‘be guaranteed '

Tightening the Relaxation

» In some cases, the relaxation is not tight, and the algorithm
will not converge to y(i) =1fori=1...N

» Our solution: incrementally add hard constraints until the
relaxation is tight

» Definition: for any set C C {1,2,..., N},

Ve={y:ye), and VieC,y(i) =1}

» We can find

argmax f(y)
yeV,

using dynamic programming, with a 2/l increase in the
number of states

» Goal: find a small set C such that Lagrangian relaxation with
Y/ returns an exact solution

An Example Run of the Algorithm

Input German: es bleibt jedoch dabei , dass einland ist , das werden muss
t L(ut~1) yt(i) derivation y ¢
1t 00001303341100001 [TIOIOT B8 T R TI0T0 T coumay [| e | ooy nat ||
2 saeer 224020100010 n 111 [l [N Bl {7 mater, [e, mowever | [caameia | [t o cosey monorea |7]
200 TOTI2UN T oniBece ooombia | o | & |couny that | must|ve closaly meniored |
3777 T2 IT0T T nonelﬁjess, that ‘acohnzry that 'col;:bwa '1vthllcf\ "mist |oe clos:ISy’r}\Znitored ‘17117‘
s o |l % % couny tha | st [oe coselymniored |71
IS OT2U T iBeoembia couniy hat | must b closely moritored |
o o8 1o |l iy [t Joowmbia |- wien | must b cosely meiored | T+ |
L TR AU IR ERURERRRY W VAL, ‘wém '855 ‘cou?&rlyzmat ‘lr[r:ui(ﬁ 'be losely moniored |17' 17‘
3008 T2 EION i Bece T Lo oy (it looembia | which | must|oe closely menitored |
BT T il | ey [cotombia | when | s e closey monitore ||
w0 o oz bl % [oy et mist b cosely menorea | T+ |
i nnnonn oS (S8 Sy [cooma | whion | mast e cosey moniorea |||
00000 000 0000000 :;’;‘i:giglls:;n?;:g;‘o"”(w) = 105 count(i) = O forall other i
s b n (b s cor hat |t cosey monorea ||

The Algorithm with Constraint Generation

Optimize(C,u)
while (dual value still improving)
y* = argmax,cy, L(u,y)
if y*(i)=1fori=1...N return y*
elsefori=1...N
u(i) = u(i) —a(y"(i) — 1)
count(i) =0fori=1...N
fork=1... K
y* = argmax,cy, L(u,y)
ify*(i)=1fori=1...N return y*
elsefori=1...N
u(i) = ui) - a (y* (i) — 1)
count(i) = count(i) + [[y*(z) # 1]]
Let C’ = set of G i's that have the largest value for
count(i) and that are not in C
return Optimize(C UC', u)

Number of Constraints Required

cons. 1-10 words 11-20 words | 21-30 words | 31-40 words | 41-50 words All sentences

0-0 183 (98.9 %) | 511 (91.6 %)| 438 (77.4 %) | 222 (64.0 %) | 82 (48.8%)| 1,436 (78.7%)| 78.7%
1-3 2 (11%)| 45 (8.1%)| 94 (16.6%)| 87 (25.1%)| 50 (29.8%)| 278 (152%)| 94.0%
4-6 0 (0.0%) 2 (04%)| 27 (48%)| 24 (69%)| 19 (113 %) 72 (39%)| 97.9%
7-9 0 (0.0%) 0 (0.0%) 7 (12%)| 13 (37%)| 12 (7.1 %) 32 (18%)| 99.7%
X 0 (0.0%) 0 (0.0%) 0 (0.0%) 1(03%)| 5 (3.0%) 6 (03%)| 100.0%

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

Time Required

1-10 words | 11-20 words | 21-30 words | 31-40 words 41-50 words All sentences
A* w/o A* w/o A* wlo A* w/o A* w/o A* w/o
0-0 0.8 0.8 97 107 | 470 537 | 153.6 178.6 402.6 4924 | 646 76.1
1-3 2.4 29232 280 80.9 102.3 | 2774 360.8 686.0 877.7 | 241.3 309.7
4-6 0.0 0.0 | 282 388 | 111.7 163.7 | 309.5 5752 | 1,552.8 1,709.2 | 555.6 699.5
7-9 0.0 00 | 0.0 0.0 | 166.1 500.4 | 361.0 1,467.6 | 1,167.23,222.4 | 620.7 1,914.1
mean | 0.8 09 | 109 123 572 72.6 | 2034 299.2 679.9 9534 | 1209 168.9
median| 0.7 0.7 8.9 9.9 | 483 54.6 | 169.7 202.6 484.0 606.5 352 400

cons.

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*,

Comparison to LP/ILP Decoding

method ILP LP
set | length mean median mean median | % frac.
N 1-10 2752 1329 10.9 44 | 124 %

11-15 2,707.8 1,138.5 177.4 66.1 | 40.8 %
16-20 | 20,583.1 3,692.6 | 1,374.6 637.0 | 59.7 %
V' 1-10 2572 1577 18.4 8.9 1.1 %
11-15 N/A N/A 476.8 161.1 3.0 %

Table 4: Average and median time of the LP/ILP solver (in
seconds). % frac. indicates how often the LP gives a fractional
answer.)’ indicates the dynamic program using set)’ as de-
fined in Section 4.1, and)"’ indicates the dynamic program us-
ing states (w1, w2, n, r). The statistics for ILP for length 16-20
is based on 50 sentences.

Number of Iterations Required

#iter. | 1-10words | 11-20 words | 21-30 words | 31-40 words | 41-50 words | All sentences

0-7 166 (89.7%)| 219 (392%)| 34 (60%)| 2 (06%)| 0 (0.0%)| 421 23.1%)| 23.1%
8-15 17 (192%)| 187 (33.5%)| 161 (284 %)| 30 (86%)| 3 (1.8%)| 398 (21.8%)| 449%
16-30 1 (05%)| 93 (167 %)| 208 (36.7%)| 112 (32.3%)| 22 (13.1%)| 436 (23.9%)| 68.8%
31-60 1 (05%)| 52 (93%)| 105 (18.6%)| 99 (28.5%)| 62 (36.9%)| 319 (17.5%)| 86.3%
61-120 0 (00%)| 7 (13%)| 54 (95%)| 89 (25.6%)| 45 (268%)| 195 (10.7%)| 97.0%
121250 | 0 (00%)| 0 (00%)| 4 (07%)| 14 (40%)| 31 (185%)| 49 (27%)| 99.7%
X [0 (00%] 0(00%| 0(00%]| 1 (03%]| 5(30%] 6 (03%)] 100.0%

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to
converge after 250 iterations. of the examples converge within 120 iterations.

Summary

presented dual decomposition as a method for decoding in NLP

formal guarantees
e gives certificate or approximate solution

e can improve approximate solutions by tightening relaxation

efficient algorithms
e uses fast combinatorial algorithms

e can improve speed with lazy decoding

widely applicable

e demonstrated algorithms for a wide range of NLP tasks
(parsing, tagging, alignment, mt decoding)

References |
Y. Chang and M. Collins. Exact Decoding of Phrase-based

Translation Models through Lagrangian Relaxation. In To
appear proc. of EMNLP, 2011.

J. DeNero and K. Macherey. Model-Based Aligner Combination
Using Dual Decomposition. In Proc. ACL, 2011.

Michael Held and Richard M. Karp. The traveling-salesman
problem and minimum spanning trees: Part ii. Mathematical
Programming, 1:6-25, 1971. ISSN 0025-5610. URL
http://dx.doi.org/10.1007/BF01584070.
10.1007/BF01584070.

D. Klein and C.D. Manning. Factored A* Search for Models over
Sequences and Trees. In Proc IJCAI, volume 18, pages
1246-1251. Citeseer, 2003.

N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy
minimization and beyond via dual decomposition. I[EEE
Transactions on Pattern Analysis and Machine Intelligence,
2010. ISSN 0162-8828.

http://dx.doi.org/10.1007/BF01584070

References |l
Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola,

and David Sontag. Dual decomposition for parsing with
non-projective head automata. In EMNLP, 2010. URL
http://www.aclweb.org/anthology/D10-1125.

B.H. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Verlag, 2008.

C. Lemaréchal. Lagrangian Relaxation. In Computational
Combinatorial Optimization, Optimal or Provably Near-Optimal
Solutions [based on a Spring School], pages 112-156, London,
UK, 2001. Springer-Verlag. ISBN 3-540-42877-1.

Angelia Nedi¢ and Asuman Ozdaglar. Approximate primal
solutions and rate analysis for dual subgradient methods. SIAM
Journal on Optimization, 19(4):1757-1780, 2009.

Christopher Raphael. Coarse-to-fine dynamic programming. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 23:
1379-1390, 2001.

http://www.aclweb.org/anthology/D10-1125

References Il
A.M. Rush and M. Collins. Exact Decoding of Syntactic

Translation Models through Lagrangian Relaxation. In Proc.
ACL, 2011.

A.M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On Dual
Decomposition and Linear Programming Relaxations for Natural
Language Processing. In Proc. EMNLP, 2010.

Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations
and convex hull characterizations for mixed-integer zero—one
programming problems. Discrete Applied Mathematics, 52(1):83
— 106, 1994.

D.A. Smith and J. Eisner. Dependency Parsing by Belief
Propagation. In Proc. EMNLP, pages 145-156, 2008. URL
http://www.aclweb.org/anthology/D08-1016.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss.
Tightening LP relaxations for MAP using message passing. In
Proc. UAI, 2008.

http://www.aclweb.org/anthology/D08-1016

	References

