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Dynamic Programming

Dynamic programming is a dominant technique in NLP.

I Fast

I Exact

I Easy to implement

Examples:

I Viterbi algorithm for hidden Markov models

I CKY algorithm for weighted context-free grammars

y∗ = arg max
y

f (y) ← Decoding



Model Complexity

Unfortunately, dynamic programming algorithms do not scale well
with model complexity.

As our models become complex, these algorithms can explode in
terms of computational or implementational complexity.

Integration:

I f ← Easy

I g ← Easy

I f + g ← Hard
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I Classical problem in NLP.

I The dynamic programming intersection is prohibitively slow
and complicated to implement.



Integration (2)
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I Important for improving parsing accuracy.

I The dynamic programming intersection is slow and
complicated to implement.



Dual Decomposition

A general technique for constructing decoding algorithms

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

I Dynamic programming

I Minimum spanning tree

I Shortest path

I Min-Cut

I ...



Dual Decomposition Algorithms

Simple - Uses basic dynamic programming algorithms

Efficient - Faster than full dynamic programming intersections

Strong Guarantees - Gives a certificate of optimality when exact

In experiments, we find the global optimum on 99% of examples.

Widely Applicable - Similar techniques extend to other problems
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Algorithm

Experiments

LP Relaxations



Integrated Parsing and Tagging
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HMM for Tagging

Red1 flies2 some3 large4 jet5

N V D A N

I Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red1|N) + log p(V|N) + ...

z∗ = arg max
z∈Z

g(z) ← Viterbi decoding
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CFG for Parsing
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I Let Y be the set of all valid parse trees for a sentence and

f (y) be a scoring function.

e.g. f (y) = log p(S → NP VP|S) + log p(NP → N|NP) + ...

y∗ = arg max
y∈Y

f (y) ← CKY Algorithm



CFG for Parsing
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I Let Y be the set of all valid parse trees for a sentence and

f (y) be a scoring function.
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Problem Definition
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I Find parse tree that optimizes

score(S → NP VP) + score(VP → V NP) +

...+ score(Red1,N) + score(V,N) + ...

I Conventional Approach (Bar Hillel et al., 1961)
I Replace rules like S → NP VP

with rules like SN,N → NPN,V VPV ,N

Painful. O(t6) increase in complexity for trigram tagging.



The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees Taggings

CFG HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i
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Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))
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Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , t)− z(k)(i , t)



CKY Parsing
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y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V ) 1

u(5,V ) -1

u(5,N) 1

Iteration 2

u(5,V ) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i
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Guarantees

Theorem
If at any iteration y (k)(i , t) = z(k)(i , t) for all i , t, then (y (k), z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.

If we do not converge to a match, we can still get a result (more in
paper).
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Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

I Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(some3|jet5, large4) + ...

z∗ = arg max
z∈Z

g(z) ← Eisner (2000) algorithm
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y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees Dependency Trees
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Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j
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Experiment

Properties:

I Exactness

I Parsing Accuracy

Experiments on:

I English Penn Treebank

Models

I Collins (1997) Model 1
I Semi-Supervised Dependency Parser (Koo, 2008)
I Trigram Tagger (Toutanova, 2000)



How quickly do the models converge?
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Integrated Constituency and Dependency Parsing: Accuracy
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I Dual Decomposition



Integrated Parsing and Tagging: Accuracy
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Dual Decomposition and Linear Programming Relaxations

Theorem

I If the dual decomposition algorithm converges, then
(y (k), z(k)) is the global optimum.

Questions

I What problem is dual decomposition solving?

I How come the algorithm doesn’t always converge?

Dual decomposition searches over a linear programming relaxation
of the original problem.



Convex Hulls for CKY

A parse tree can be represented as a binary vector y ∈ Y.
y(A→ B C , i , j , k) = 1 if rule A→ B C is used at span i , j , k.

Parsing

y∗

w

Y

conv(Y)

I If f is linear, arg max
y∈conv(Y)

f (y) is a linear program.

I The best point in an LP is a vertex. So CKY solves this LP.
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Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

Q

conv(Q)Q′Q′ conv(Q)

Possible (y∗, z∗)

w
Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.
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Are there points strictly in the outer bound?

Q′

Possible (y∗, z∗)?

Taggings 0.5x

w1 w2 w3

A A A

+ 0.5x

w1 w2 w3

A B B

Parses 0.5 x

X

A

w1

X

A

w2

B

w3

+ 0.5 x

X

A

w1

X

B

w2

A

w3

Best result can be a
fractional solution.

Convex
combination of
these structures.



Summary

A Dual Decomposition algorithm for integrated decoding

Simple - Uses only simple, off-the-shelf dynamic programming
algorithms to solve a harder problem.

Efficient - Faster than classical methods for dynamic programming
intersection.

Strong Guarantees - Solves a linear programming relaxation which
gives a certificate of optimality.

Finds the exact solution on 99% of the examples.

Widely Applicable - Similar techniques extend to other problems



Appendix
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Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑
i,j

u(i , j) (y(i , j)− z(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)


+ max

y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)



Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u
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A Subgradient Algorithm for Minimizing L(u)

L(u) = max
z∈Z

f (z) +
∑
i,j

u(i , j)y(i , j)

 + max
y∈Y

g(y)−
∑
i,j

u(i , j)z(i , j)



L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector gu such that for all v ,

L(v) ≥ L(u) + gu · (v − u)

Subgradient methods use updates u′ = u − αgu

In fact, for our L(u), gu(i , j) = z∗(i , j)− y∗(i , j)



Related Work

I Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

I Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

I Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

I Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)


