On Dual Decomposition
and Linear Programming Relaxations
for Natural Language Processing

Alexander M. Rush, David Sontag,
Michael Collins, and Tommi Jaakkola

Dynamic Programming

Dynamic programming is a dominant technique in NLP.
» Fast
» Exact

» Easy to implement

Examples:

» Viterbi algorithm for hidden Markov models

» CKY algorithm for weighted context-free grammars

y* = argmaxf(y) « Decoding
y

Model Complexity

Unfortunately, dynamic programming algorithms do not scale well
with model complexity.

As our models become complex, these algorithms can explode in
terms of computational or implementational complexity.

Integration:

» f «— Easy
» g «— Easy
» f +g « Hard

Integration (1)

S
A

NP VP
] T R A
Red flies D A N Red; flies, somes larges jets

some large jet

f(y) + g(2)

» Classical problem in NLP.

» The dynamic programming intersection is prohibitively slow
and complicated to implement.

Integration (2)

S
/\
NP VP

T

|

N \% NP

I N =\
Red flies D A N *, Red; fliesy somes large; jets
|

some large jet

f(y) + g(2)

» Important for improving parsing accuracy.

» The dynamic programming intersection is slow and
complicated to implement.

Dual Decomposition

A general technique for constructing decoding algorithms
Solve complicated models

y* = arg m}f]x f(y)
by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.
» Dynamic programming
» Minimum spanning tree
» Shortest path
» Min-Cut

>

Dual Decomposition Algorithms

Simple - Uses basic dynamic programming algorithms

Efficient - Faster than full dynamic programming intersections
Strong Guarantees - Gives a certificate of optimality when exact
In experiments, we find the global optimum on 99% of examples.

Widely Applicable - Similar techniques extend to other problems

Roadmap

Algorithm
Experiments

LP Relaxations

Integrated Parsing and Tagging

Red; flies; somes larges jets

l

N—V-—>D-—>A—N

20 T R A

Red; flies; somes larges jets

Red; flies; somes larges jets

S
T
NV e
Red il 5 A W

HMM

CFG

Integrated Parsing and Tagging

Red; flies; somes larges jets

l

N—V-—>D-—>A—N

20 T R A

Red; flies; somes larges jets

Red; flies; somes larges jets

S
T
NV e
Red il 5 A W

HMM

Dual Decomposition

CFG

HMM for Tagging

N—YV-—D—A—N

2 T

Red; flies; somes larges jets

» Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red;|N) + log p(VIN) + ...

HMM for Tagging

N—YV-—D—A—N

2 T

Red; flies; somes larges jets

» Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red;|N) + log p(VIN) + ...

z" = argmax g(z) < Viterbi decoding
zeZ

CFG for Parsing

S
/\
NP VP
[— T
N Vv NP

| | e
Red flies D A N
| | |
some large jet

» Let) be the set of all valid parse trees for a sentence and

f(y) be a scoring function.

e.g. f(y) =logp(S — NP VP|S) + log p(NP — N|NP) + ...

CFG for Parsing

S
/\
NP VP
| —
N Vv NP

| | e
Red flies D A N
| | |
some large jet

» Let) be the set of all valid parse trees for a sentence and

f(y) be a scoring function.
e.g. f(y) =logp(S — NP VP|S) + log p(NP — N|NP) + ...

y* =argmaxf(y) «— CKY Algorithm
yey

Problem Definition

S
T
NP VP
v e
e
solne Iar‘ge Je‘t

» Find parse tree that optimizes
score(S — NP VP) + score(VP — V NP) +
... + score(Red1, N) + score(V,N) + ...

» Conventional Approach (Bar Hillel et al., 1961)
» Replace rules like S — NP VP

with rules like Sy v — NPyv VPy N

Painful. O(t®°) increase in complexity for trigram tagging.

The Integrated Parsing and Tagging Problem

Find argmax fly) + g(2)

ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax fly) + g(2)
ye Y, ze Z

Trees

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax fly) + g(2)
ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

CFG

Find argmax fly) + g(2)
ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

o

Find argmax + g(2)
ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

o

Find argmax + g(2)
ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k=1to K

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.
For k=1to K

y(K) — Decode (f(y) + penalty) by CKY Algorithm

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.
For k=1to K
y(K) — Decode (f(y) + penalty) by CKY Algorithm

2(K) — Decode (g(z) — penalty) by Viterbi Decoding

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.
For k=1to K
y(K) — Decode (f(y) + penalty) by CKY Algorithm
2(K) — Decode (g(z) — penalty) by Viterbi Decoding

If y() (i, t) = 2 (i, t) for all i, t Return (y(K), z(K))

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.
For k=1to K
y(K) — Decode (f(y) + penalty) by CKY Algorithm
2(K) — Decode (g(z) — penalty) by Viterbi Decoding
If y() (i, t) = 2 (i, t) for all i, t Return (y(K), z(K))

Else Update penalty weights based on y(¥ (i, t) — 29 (i, t)

CKY Parsing Penalties
u(i, t) =0 for all i,t

y* —argmax +Z (i, t)y

Viterbi Decoding

Red; flies; somes larges jets

z* = argmax(g(z) — u(i,t)z(i,t
smax(a(e) — 3 uli 0201.1)
’7
Key
fy) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

Penalties

CKY Parsing s
. . .
NP P u(i, t) =0 for all i,t
——
A N D A \%
| | | | |
Red flies some large jet

y" = argmax(f(y) + Z u(i, t)y(i, 1))

Viterbi Decoding

Red; flies; somes larges jets

z" =arg rzneazx(g(z) - Z u(i, t)z(i, t))

it

Key
f(y) < CFG g(z) <« HMM

Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S

//,\
NP VP

— |
A N D A \Y

| | | | |
Red flies some large jet

y* —argmax +Z (i, t)y

Viterbi Decoding

N—V-—D—A—N

oo b

Red; flies; somes larges jets

¥ =arg r;ﬁeag(g(z) — Z u(i, t)z(i, t))

it

Key
fy) < CFG
y < Parse Trees

y(i,t)=1 if y contains tag t at position i

g(z) <« HMM

Penalties

u(i, t) =0 for all i,t

CKY Parsing S

/—//,\
NP VP

—— |
A N D A \Y

| | | | |
Red flies some large jet

y* —argmax +Z (i, t)y

Viterbi Decoding

N—V-—D—A—N

oo b

Red; flies; somes larges jets

z" =arg r;ﬁeazx(g(z) - Z u(i, t)z(i, t))

it

Key
fy) < CFG
y < Parse Trees

y(i,t)=1 if y contains tag t at position i

g(z) <« HMM

Penalties

u(i, t) =0 for all i,t

CKY Parsing S Penalties

N e u(i,t) =0 forall it

N b A v Iteration 1

[[[[[u(1,A) -1
Red flies some large jet

u(1, N) 1
u(2,N) -1
y"=arg max)+ Z it)y u(2, V) 1
u(5,V) -1
Viterbi Decoding u(5, N) 1

N—V-—D—A—N

N

Red; flies; somes larges jets

z" =arg rzneazx(g(z) - ; u(i, t)z(i, t))
Key
f(y) < CFG g(z) <= HMM

Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing Penalties
u(i, t) =0 for all i,t

Iteration 1
u(1, A) -1
u(1, N) 1
u2,N) -1
y*=arg max +Z i,t)y u(2, V) 1
u(5, V) -1
Viterbi Decoding u(5, N) 1

Red; flies; somes larges jets

z" =arg rzneazx(g(z) - ; u(i, t)z(i, t))
Key
f(y) < CFG g(z) <= HMM

Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

—

NP VP u(i, t) =0 for all i,t

| | v u(1, A) -1

Red flies D A N
| | X u(1, N) 1

some large jet
u2,N) -1

* = fly) + i t)y(i, t

arg max(f(y) Zt: u(i, t)y (i, t)) u(2,V) 1
' u(5,V) -1
Viterbi Decoding u(5, N) 1

Red; flies; somes larges jets

z" =arg Teazx(g(z) - ; u(i, t)z(i, t))
Key
f(y) < CFG g(z) <= HMM

Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

—

NP VP u(i, t) =0 for all i,t

| | v u(1, A) -1

Red flies D A N
| | X u(1, N) 1

some large jet
. u(2, N) -1

=argmax(f(y) + u(i, t)y(i, t

y' = argmax(f(y) z; (i,)y (i, 1) u2,v) 1
u(5, V) -1
Viterbi Decoding u(5, N) 1

A—N-—D—A—N

N

Red; flies; somes larges jets

z¥ =arg rzneag(g(z) — Z u(i, t)z(i, t))

It

Key
f(y) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

N u(i,t) =0 forall it
N v Iteration 1
! | — T u(1, A) -1
Red flies D A N
[[X u(1, N) 1
some large Jjet
u(2,N) -1
* = argmax(f(y) + u(i,t)y(i, t

y gyey() IZ; (i, t)y (i, t)) u(2, V) 1

u(5, V) -1

Viterbi Decoding u(5, N) 1

A—N—D—A—N
! | ! | | Iteration 2
Red; flies, somes large; jets u(5, V) -1
u(5, N) 1
* = - i, t)z(i, t
z* = argmax(g(2) Zt u(i, £)z(i, t))
1
Key
fy) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings

y(i,t)=1 if y contains tag t at position i

CKY Parsing Penalties
u(i, t) =0 for all i,t

Iteration 1
u(1, A) -1
u(1, N) 1
u(2,N) -1
y* =arg max)+ Z it)y u(2, V) 1
u(5, V) -1
Viterbi Decoding u(5, N) 1
Iteration 2
Red; flies, somes large; jets u(5,V) -1
u(5, N) 1
z* = argmax(g(2) - Zt u(i, £)z(i, t))
Key
fy) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings

y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

—

NP VP u(i, t) =0 for all i,t
N v Iteration 1
! | — u(1,A) -1
Red flies D A N
[[| u(1, N) 1
some large Jjet
' _ _ u(2,N) -1
= argmax(f(y) + Z; u(i, t)y(i, 1)) u(2, V) 1
’ u(5, V) -1
Viterbi Decoding u(5, N) 1
Iteration 2
Red; flies, somes large; jets u(5,V) -1
u(5, N) 1
z* = argmax(g(2) - Zt u(i, £)z(i, t))
Key
fy) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings

y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

—

NP VP u(i, t) =0 for all i,t
N v Iteration 1
! | — u(1,A) -1
Red flies D A N
w L u(1, N) 1
some large Jjet
) o u2,N) -1
y' = argmax(f(y) + z; u(i,)y(i, t)) w2, V) 1
u(5, V) -1
Viterbi Decoding u(5, N) 1
N—YV—D—A—N
! | ! | | Iteration 2
Red; flies, somes large; jets u(5,V) -1
u(5, N) 1

z¥ =arg rzneag(g(z) — Z u(i, t)z(i, t))

It

Key
f(y) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i

CKY Parsing S Penalties

—

NP VP u(i, t) =0 for all i,t
N v Iteration 1
! | — u(1,A) -1
Red flies D A N
[[| u(1, N) 1
some large Jjet
u(2,N) -1
* = argmax(f(y) + u(i,t)y(i, t
y gyey() lz; (i, t)y (i, t)) u(2, V) 1
u(5, V) -1
Viterbi Decoding u(5, N) 1
N—V-—D—A—N
! | ! | | Iteration 2
Red; flies, somes large; jets u(5,V) -1
u(5, N) 1
¥ =arg rzneazx(g(z) - Z u(i, t)z(i, t)) c
it onverged
Key y" = argmaxf(y) +g(y)
yey
fy) < CFG g(z) < HMM
Y < Parse Trees z < Taggings

y(i,t)=1 if y contains tag t at position i

Guarantees

Theorem

If at any iteration y(k)(i, t) = z(k)(i, t) for all i, t, then (y(k),z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.

Guarantees

Theorem
If at any iteration y(k)(i, t) = z(k)(i, t) for all i, t, then (y(k),z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.

If we do not converge to a match, we can still get a result (more in
paper).

Integrated CFG and Dependency Parsing

Red; flies; somes larges jets

Dependency Model

*o Red; flies; somes larges jets

Red; flies; somes larges jets

S(flies) l Lexicalized CFG
NP VR(es)
NV NG
Red fies D A N

Integrated CFG and Dependency Parsing

Red; flies; somes larges jets

Dependency Model
*o Red; flies; somes larges jets

Dual Decomposition

Red; flies; somes larges jets

S(flies) l Lexicalized CFG
NP VR(es)
NV NG
Red fies D A N

Dependency Parsing

AN AN

*o Red; flies; somes large; jets

> Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(somes|jets, large,) + ...

Dependency Parsing

AN AN

*o Red; flies; somes large; jets

> Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(somes|jets, large,) + ...

z" =arg magg(z) «— Eisner (2000) algorithm
ze

Lexicalized PCFG

S(flies)
/\
NP VP(flies)
| —
N V NP(jet)
| | e
Red flies D A N
I I I
some large jet

> Let) be the set of all valid dependency parses of a sentence
and f(y) be a scoring function.

e.g. f(y) = logp(S(flies) — NP(Red) VP(flies)|S(flies)) + ...

Lexicalized PCFG

S(flies)
/\
NP VP(flies)
| —
N V NP(jet)
| | e
Red flies D A N
I I I
some large jet

> Let) be the set of all valid dependency parses of a sentence
and f(y) be a scoring function.

e.g. f(y) = logp(S(flies) — NP(Red) VP(flies)|S(flies)) + ...

y* =arg ma)>}< f(y) < Modified CKY algorithm
ye

The Integrated Constituency and Dependency Parsing Problem

Find argmax fly) + g(2)

ye YV, ze Z

such that for all i,j, y(i,j) = z(i,))

Where y(i,j) = 1 if parse includes dependency from word i to j

z(i,j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax fly) + g(2)
ye YV, ze Z

Trees

such that for all i,j, y(i,j) = z(i,))

Where y(i,j) = 1 if parse includes dependency from word i to j

z(i,j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax fly) + g(2)

ye YV, ze Z
®
| Tree:| | Dependency Trees |

such that for all i,j, y(i,j) = z(i,))

Where y(i,j) = 1 if parse includes dependency from word i to j

z(i,j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

CFG

Find argmax fly) + g(2)

ye YV, ze Z
®
| Tree:| | Dependency Trees |

such that for all i,j, y(i,j) = z(i,))

Where y(i,j) = 1 if parse includes dependency from word i to j

z(i,j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

| CFG | | Dependency |

Find argmax fly) + g(2)

ye YV, ze Z
®
| Tree:| | Dependency Trees |

such that for all i,j, y(i,j) = z(i,))

Where y(i,j) = 1 if parse includes dependency from word i to j

z(i,j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

| CFG | | Dependency |

Find argmax fly) + g(2)

ye YV, ze Z
®
| Tree:| | Dependency Trees |

such that for all i,j, y(i,j) = z(i,))

Where y(i,j) = 1 if parse includes dependency from word i to j

z(i,j) = 1 if parse includes dependency from word i to j

CKY Parsing Penalties
u(i,j) =0 for all i,/

y* —argmax +Z

Dependency Parsing

*o Red; flies; somes larges jets

2" = argmax(g(2) — Y u(i.j)2(i.]))
ij
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees
y(i,j)=1 if y contains dependency i,

CKY Parsing S(flies)

/\
NP VP(flies)
|
N \Y D NP(jet)
| | | — T
Red flies some A N
| |
large jet

y" = argmax(f(y) + Z u(i, j)y(i,f))

Dependency Parsing

*o Red; flies; somes larges jets

7" = argmax(g(2) = >_ u(i,)z(7.)))
ij
Key
f(y) < CFG g(2)
Y < Parse Trees yat
y(i,j)=1 if y contains dependency i,

Penalties
u(i,j) =0 for all i,j

< Dependency Model
< Dependency Trees

CKY Parsing S(flies)

NP VP(flies)
N \Y D NP(jet)
| | | — T
Red flies some A N
large jet

y' = argmax(f(y) + Z u(i, j)y(i.J))

Dependency Parsing

*o Red; flies; somes larges jets

7" = argmax(g(2) = >_ u(i,)z(7.)))
inj
Key
f(y) < CFG g(2)
Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties
u(i,j) =0 for all i,j

< Dependency Model
< Dependency Trees

CKY Parsing S(flies) Penalties

/\ .. _ ..
NP VP(flies) u(i,j) =0 for all i,
| Y
N v D NP(jet)
| | | — T
Red flies some A N
| |
large jet

y' = argmax(f(y) + Z u(i, j)y(i.J))

Dependency Parsing

*o Red; flies; somes larges jets

z* = argmax(g(z) — u(i, j)z(i,j
gmax(g(z) = >_ u(i,)z(i.)))
ij
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees
y(i,j)=1 if y contains dependency i,

CKY Parsing S(flies) Penalties

NP VP(flies) u(i,j) =10 for all i
vV o W Meration 1
| | | o u(2, 3)]
Red flies some A N ’
! [u(5,3) 1
large jet

y' = argmax(f(y) + Z u(i, j)y(i.J))

Dependency Parsing

*o Red; flies; somes larges jets

2" = argmax(g(2) — Y u(i.j)2(i.]))
ij
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees
y(i,j)=1 if y contains dependency i,

CKY Parsing

y* —argmax +Z

Dependency Parsing

*o Red; flies; somes larges jets

7" = argmax(g(2) = >_ u(i,)z(7.)))
ij
Key
f(y) < CFG g(2)
Y < Parse Trees yat
y(i,j)=1 if y contains dependency i,

Penalties
u(i,j) =0 for all i,j

teration 1
u(2,3) -1
u(5,3) 1

< Dependency Model
< Dependency Trees

CKY Parsing S(flies) Penalties
NP VP (flies) u(i,j) =0 for all i
/\ .
l\‘l V] NP(jet) Iteration 1
[[N -
Red flies D A N u(2’ 3) 1
‘ | | u(5,3) 1
some large Jjet
y* =arg r;ea}X,(f(y) + > u(i)y(i4))
ij
Dependency Parsing
*o Red; flies; somes larges jets
7" = argmax(g(2) = >_ u(i,)z(7.)))
inj
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees

y(i,j)=1 if y contains dependency i,

CKY Parsing S(flies) Penalties

NP VP (flies) u(i,j) =0 for all i
/\ .
l\‘l V] NP(jet) Iteration 1
[[N -
Red flies D A N u(2’ 3) 1
! ! | u(5,3) 1
some large Jjet
y* = argmax(F(y) + > (i)y (i)
ij
Dependency Parsing
*o Red; flies; somes larges jets
7" = argmax(g(2) = >_ u(i,)z(7.)))
inj
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees

y(i,j)=1 if y contains dependency i,

CKY Parsing S(flies) Penalties

NP VP(flies) u(i,j) =10 for all i
T heration 1
| | N -
Red flies b A N u(2,3) 1
‘ | | u(5,3) 1
some large Jjet
y" = argmax(f(y) + > u(ij)y(i.4)) Converged
ij

y" =argmaxf(y) +g(y)
Dependency Parsing 4

*o Red; flies; somes larges jets

z* = argmax(g(z) — u(i, j)z(i,j
gmax(g(z) = >_ u(i,)z(i.)))
ij
Key
f(y) < CFG g(z) <« Dependency Model
y < Parse Trees Z < Dependency Trees
y(i,j)=1 if y contains dependency i,

Roadmap

Algorithm
Experiments

LP Relaxations

Experiment

Properties:

» Exactness

» Parsing Accuracy

Experiments on:
» English Penn Treebank

Models

» Collins (1997) Model 1
» Semi-Supervised Dependency Parser (Koo, 2008)
» Trigram Tagger (Toutanova, 2000)

% examples converged

How quickly do the models converge?

v Y V\\"o “\\90
number of iterations

Integrated Dependency Parsing

% examples converged

TN Y, Ny

number of iterations

NN

Integrated POS Tagging

Integrated Constituency and Dependency Parsing: Accuracy

92

Collins
Dep ===
Dual m—

91

90

89

88

87

F1 Score
» Collins (1997) Model 1
» Fixed, First-best Dependencies from Koo (2008)

» Dual Decomposition

Integrated Parsing and Tagging: Accuracy

92 -
Fixed

Dual ===

91

920

89

88 I
87
F1 Score

> Fixed, First-Best Tags From Toutanova (2000)
» Dual Decomposition

Roadmap

Algorithm
Experiments

LP Relaxations

Dual Decomposition and Linear Programming Relaxations

Theorem

» If the dual decomposition algorithm converges, then
(y'¥), 2(K)Y is the global optimum.

Questions
» What problem is dual decomposition solving?

» How come the algorithm doesn't always converge?

Dual decomposition searches over a linear programming relaxation
of the original problem.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y €).
y(A— B C,i,j,k)=1if rule A— B C is used at span i, J, k.

Yy
[
|
[[
]
Parsing

» If f is linear, arg max_f(y) is a linear program.
y€conv(Y)

» The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y €).
y(A— B C,i,j,k)=1if rule A— B C is used at span i, J, k.

y

Parsing

» If f is linear, arg max_f(y) is a linear program.
y€conv(Y)

» The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y €).
y(A— B C,i,j,k) =1 if rule A— B C is used at span i, J, k.

conv())

Parsing

» If fis linear, arg max_f(y) is a linear program.
y€conv(Y)

» The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y €).
y(A— B C,i,j,k) =1 if rule A— B C is used at span i, J, k.

conv()))
y
./
W/’
Parsing

» If fis linear, arg max_f(y) is a linear program.
y€conv(Y)

» The best point in an LP is a vertex. So CKY solves this LP.

Combined Problem
Q={(y,z2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Combined Problem
Q={(y,z2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Q

Combined Problem
Q={(y,2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

conv(Q)

Combined Problem
Q={(y,2):yel,zeZ,
y(i,t) = z(i, t) for all (i,t)}

Q/

Q' = {(u,v): p € conv(Y),v € conv(Z),
wu(iyt) = v(i,t) for all (i,t)}

Dual decomposition searches over Q’

Combined Problem
Q={(y,2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Q conv(Q)
> /

Q' = {(u,v): p € conv(Y),v € conv(Z),
wu(iyt) = v(i,t) for all (i,t)}

Dual decomposition searches over Q’

Combined Problem
Q={(y,2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Q' conv(Q)
> z Possible (y*, z*)

v

9 ={(p,v): p € conv(Y), v € conv(Z),
(i, t) = v(i, t) for all (i, t)}
Dual decomposition searches over Q’

Depending on the weight vector, (y*,z*) € @' could be in Q or in
the strict outer bound.

Combined Problem
Q={(y,2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Q' conv(Q)
o /

Possible (y*, z*)

w
—_

9 ={(p,v): p € conv(Y), v € conv(Z),
(i, t) = v(i, t) for all (i, t)}
Dual decomposition searches over Q’

Depending on the weight vector, (y*,z*) € @' could be in Q or in
the strict outer bound.

Are there points strictly in the outer bound?

Q,

Possible (y*, z*)?

A—A—>A A—-B—B
Taggings 05« { 4 } +05¢ § {4 } Best result can be a
wi o ow2ows wiowz o ows fractional solution.
Convex
X X C L
Ay Ay crc:mblnatlon of
A X A X
Parses 05x |~ wosx &+ 2 these structures.
W1 A B W1 B A

Summary

A Dual Decomposition algorithm for integrated decoding

Simple - Uses only simple, off-the-shelf dynamic programming
algorithms to solve a harder problem.

Efficient - Faster than classical methods for dynamic programming
intersection.

Strong Guarantees - Solves a linear programming relaxation which
gives a certificate of optimality.

Finds the exact solution on 99% of the examples.

Widely Applicable - Similar techniques extend to other problems

Appendix

Percentage

100 T LR ke et it et e]
o=

90

80 4

70 |

60 | f score -
% certificates == m =

50 ‘ ‘ _ % match K=50 »rreere

Iterative Progress

0 10 20 30 40

Maximum Number of Dual Decomposition Iterations

50

Deriving the Algorithm
Goal: Rewrite:
y* = argmax(y) arg_max_f(2) +g(y)
yey Z,yey

s.t. z(i,j) = y(i,j) for all i,j

Lagrangian: L(u,y,z) = f(z)+ Z i.j) = 2(i,j))

Deriving the Algorithm

Goal: Rewrite:

* = argmaxf ar max f(z) +
y g max () g, max (z) +&(y)

s.t. z(i,j) = y(i,j) for all i,j
Lagrangian: L(u,y,z) = f(z)+ Z i.j) = 2(i,j))

The dual problem is to find min L(u) where

u

L L =
()= yevzez (u,y:2) Teazx(+Z ’J))

+ r}pea;; g()/) - Z u(’a]))/(’hl))

ij

Dual is an upper bound: L(u) > f(z") + g(y™) for any u

A Subgradient Algorithm for Minimizing L(u)
L(u) = max ()+ Z) + max (g(y) ZJ: U(i,j)Z(i,j))

L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector g, such that for all v,

L(v) > L(u) + gu- (v —u)

Subgradient methods use updates v’ = u — ag,

In fact, for our L(u), gu(i,j) = z"(i,j) — y*(i.J)

Related Work

» Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

» Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

» Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

» Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)

