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Dynamic Programming

Dynamic programming is a dominant technique in NLP.
» Fast
» Exact

» Easy to implement

Examples:

» Viterbi algorithm for hidden Markov models

» CKY algorithm for weighted context-free grammars

y* = argmaxf(y) « Decoding
y



Model Complexity

Unfortunately, dynamic programming algorithms do not scale well
with model complexity.

As our models become complex, these algorithms can explode in
terms of computational or implementational complexity.

Integration:

» f «— Easy
» g «— Easy
» f +g « Hard



Integration (1)
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f(y) + g(2)

» Classical problem in NLP.

» The dynamic programming intersection is prohibitively slow
and complicated to implement.



Integration (2)
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» Important for improving parsing accuracy.

» The dynamic programming intersection is slow and
complicated to implement.



Dual Decomposition

A general technique for constructing decoding algorithms
Solve complicated models

y* = arg m}f]x f(y)
by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.
» Dynamic programming
» Minimum spanning tree
» Shortest path
» Min-Cut

>



Dual Decomposition Algorithms

Simple - Uses basic dynamic programming algorithms

Efficient - Faster than full dynamic programming intersections
Strong Guarantees - Gives a certificate of optimality when exact
In experiments, we find the global optimum on 99% of examples.

Widely Applicable - Similar techniques extend to other problems
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HMM for Tagging

N—YV-—D—A—N

2 T

Red; flies; somes larges jets

» Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red;|N) + log p(VIN) + ...



HMM for Tagging
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Red; flies; somes larges jets

» Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red;|N) + log p(VIN) + ...

z" = argmax g(z) < Viterbi decoding
zeZ



CFG for Parsing
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» Let ) be the set of all valid parse trees for a sentence and

f(y) be a scoring function.

e.g. f(y) =logp(S — NP VP|S) + log p(NP — N|NP) + ...



CFG for Parsing
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» Let ) be the set of all valid parse trees for a sentence and

f(y) be a scoring function.
e.g. f(y) =logp(S — NP VP|S) + log p(NP — N|NP) + ...

y* =argmaxf(y) «— CKY Algorithm
yey



Problem Definition

S
T
NP VP
v e
e
solne Iar‘ge Je‘t

» Find parse tree that optimizes
score(S — NP VP) + score(VP — V NP) +
... + score(Red1, N) + score(V,N) + ...

» Conventional Approach (Bar Hillel et al., 1961)
» Replace rules like S — NP VP

with rules like Sy v — NPyv VPy N

Painful. O(t®°) increase in complexity for trigram tagging.



The Integrated Parsing and Tagging Problem

Find  argmax fly) + g(2)

ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i
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The Integrated Parsing and Tagging Problem
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The Integrated Parsing and Tagging Problem

o

Find argmax + g(2)
ye Y, ze Z

such that for all i, ¢, y(i,t) = z(i,t)

Where y(i, t) = 1 if parse includes tag t at position i

z(i,t) = 1 if tagging includes tag t at position i



Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k=1to K
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Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.
For k=1to K
y(K) — Decode (f(y) + penalty) by CKY Algorithm
2(K) — Decode (g(z) — penalty) by Viterbi Decoding
If y() (i, t) = 2 (i, t) for all i, t Return (y(K), z(K))

Else Update penalty weights based on y(¥ (i, t) — 29 (i, t)



CKY Parsing Penalties
u(i, t) =0 for all i,t

y* —argmax +Z (i, t)y

Viterbi Decoding

Red; flies; somes larges jets

z* = argmax(g(z) — u(i,t)z(i,t
smax(a(e) — 3 uli 0201.1)
’7
Key
fy) < CFG g(z) <« HMM
Y < Parse Trees Z < Taggings
y(i,t)=1 if y contains tag t at position i



Penalties
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y(i,t)=1 if y contains tag t at position i
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Guarantees

Theorem

If at any iteration y(k)(i, t) = z(k)(i, t) for all i, t, then (y(k),z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.



Guarantees

Theorem
If at any iteration y(k)(i, t) = z(k)(i, t) for all i, t, then (y(k),z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.

If we do not converge to a match, we can still get a result (more in
paper).
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Dependency Parsing
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> Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(somes|jets, large,) + ...



Dependency Parsing

AN AN

*o  Red; flies; somes large; jets

> Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(somes|jets, large,) + ...

z" =arg magg(z) «— Eisner (2000) algorithm
ze



Lexicalized PCFG
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> Let ) be the set of all valid dependency parses of a sentence
and f(y) be a scoring function.

e.g. f(y) = logp(S(flies) — NP(Red) VP(flies)|S(flies)) + ...
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> Let ) be the set of all valid dependency parses of a sentence
and f(y) be a scoring function.

e.g. f(y) = logp(S(flies) — NP(Red) VP(flies)|S(flies)) + ...

y* =arg ma)>}< f(y) < Modified CKY algorithm
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CKY Parsing Penalties
u(i,j) =0 for all i,/

y* —argmax +Z

Dependency Parsing

*o  Red; flies; somes larges jets

2" = argmax(g(2) — Y u(i.j)2(i.]))
ij
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees
y(i,j)=1 if y contains dependency i,
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u(i,j) =0 for all i,j

< Dependency Model
< Dependency Trees



CKY Parsing S(flies)

NP VP(flies)
N \Y D NP(jet)
| | | — T
Red flies some A N
large jet

y' = argmax(f(y) + Z u(i, j)y(i.J))

Dependency Parsing

*o  Red; flies; somes larges jets

7" = argmax(g(2) = >_ u(i,)z(7.)))
inj
Key
f(y) < CFG g(2)
Y < Parse Trees Z
y(i,j)=1 if y contains dependency i,

Penalties
u(i,j) =0 for all i,j

< Dependency Model
< Dependency Trees



CKY Parsing S(flies) Penalties

/\ .. _ ..
NP VP(flies) u(i,j) =0 for all i,
| Y
N v D NP(jet)
| | | — T
Red flies some A N
| |
large jet

y' = argmax(f(y) + Z u(i, j)y(i.J))

Dependency Parsing

*o  Red; flies; somes larges jets

z* = argmax(g(z) — u(i, j)z(i,j
gmax(g(z) = >_ u(i,)z(i.)))
ij
Key
f(y) < CFG g(z) <« Dependency Model
y <« Parse Trees zZ < Dependency Trees
y(i,j)=1 if y contains dependency i,
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CKY Parsing
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CKY Parsing S(flies) Penalties
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gmax(g(z) = >_ u(i,)z(i.)))
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Experiment

Properties:

» Exactness

» Parsing Accuracy

Experiments on:
» English Penn Treebank

Models

» Collins (1997) Model 1
» Semi-Supervised Dependency Parser (Koo, 2008)
» Trigram Tagger (Toutanova, 2000)



% examples converged

How quickly do the models converge?

v Y V\\"o “\\90
number of iterations

Integrated Dependency Parsing

% examples converged

TN Y, Ny

number of iterations

NN

Integrated POS Tagging



Integrated Constituency and Dependency Parsing: Accuracy

92

Collins
Dep ===
Dual m—

91

90

89

88

87

F1 Score
» Collins (1997) Model 1
» Fixed, First-best Dependencies from Koo (2008)

» Dual Decomposition



Integrated Parsing and Tagging: Accuracy

92 -
Fixed

Dual ===

91

920

89

88 I
87
F1 Score

> Fixed, First-Best Tags From Toutanova (2000)
» Dual Decomposition
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Dual Decomposition and Linear Programming Relaxations

Theorem

» If the dual decomposition algorithm converges, then
(y'¥), 2(K)Y is the global optimum.

Questions
» What problem is dual decomposition solving?

» How come the algorithm doesn't always converge?

Dual decomposition searches over a linear programming relaxation
of the original problem.



Convex Hulls for CKY

A parse tree can be represented as a binary vector y € ).
y(A— B C,i,j,k)=1if rule A— B C is used at span i, J, k.

Yy
[
|
[ [
]
Parsing

» If f is linear, arg  max_f(y) is a linear program.
y€conv(Y)

» The best point in an LP is a vertex. So CKY solves this LP.
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A parse tree can be represented as a binary vector y € ).
y(A— B C,i,j,k) =1 if rule A— B C is used at span i, J, k.
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Convex Hulls for CKY

A parse tree can be represented as a binary vector y € ).
y(A— B C,i,j,k) =1 if rule A— B C is used at span i, J, k.

conv()) )
y
./
W/’
Parsing

» If fis linear, arg max_f(y) is a linear program.
y€conv(Y)

» The best point in an LP is a vertex. So CKY solves this LP.



Combined Problem
Q={(y,z2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}
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Combined Problem
Q={(y,2):yel,zeZ,
y(i,t) = z(i, t) for all (i,t)}

Q/

Q' = {(u,v): p € conv(Y),v € conv(Z),
wu(iyt) = v(i,t) for all (i,t)}

Dual decomposition searches over Q’
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Combined Problem
Q={(y,2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Q' conv(Q)
> z Possible (y*, z*)

v

9 ={(p,v): p € conv(Y), v € conv(Z),
(i, t) = v(i, t) for all (i, t)}
Dual decomposition searches over Q’

Depending on the weight vector, (y*,z*) € @' could be in Q or in
the strict outer bound.



Combined Problem
Q={(y,2):yeV,ze Z,
y(i,t) = z(i, t) for all (i,t)}

Q' conv(Q)
o /

Possible (y*, z*)

w
—_

9 ={(p,v): p € conv(Y), v € conv(Z),
(i, t) = v(i, t) for all (i, t)}
Dual decomposition searches over Q’

Depending on the weight vector, (y*,z*) € @' could be in Q or in
the strict outer bound.



Are there points strictly in the outer bound?

Q,

Possible (y*, z*)?

A—A—>A A—-B—B
Taggings 05« { 4 } +05¢ § {4 } Best result can be a
wi o ow2ows wiowz o ows fractional solution.
Convex
X X C L
Ay Ay crc:mblnatlon of
A X A X
Parses  05x |~ wosx &+ 2 these structures.
W1 A B W1 B A



Summary

A Dual Decomposition algorithm for integrated decoding

Simple - Uses only simple, off-the-shelf dynamic programming
algorithms to solve a harder problem.

Efficient - Faster than classical methods for dynamic programming
intersection.

Strong Guarantees - Solves a linear programming relaxation which
gives a certificate of optimality.

Finds the exact solution on 99% of the examples.

Widely Applicable - Similar techniques extend to other problems



Appendix
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Deriving the Algorithm
Goal: Rewrite:
y* = argmax(y) arg_max_f(2) +g(y)
yey Z,yey

s.t. z(i,j) = y(i,j) for all i,j

Lagrangian: L(u,y,z) = f(z )+ Z i.j) = 2(i,j))



Deriving the Algorithm

Goal: Rewrite:

* = argmaxf ar max f(z) +
y g max () g, max (z) +&(y)

s.t. z(i,j) = y(i,j) for all i,j
Lagrangian: L(u,y,z) = f(z )+ Z i.j) = 2(i,j))

The dual problem is to find min L(u) where

u

L L =
()= yevzez (u,y:2) Teazx( +Z ’J))

+ r}pea;; g()/) - Z u(’a]))/(’hl))

ij

Dual is an upper bound: L(u) > f(z") + g(y™) for any u



A Subgradient Algorithm for Minimizing L(u)
L(u) = max ( )+ Z ) + max (g(y) ZJ: U(i,j)Z(i,j))

L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector g, such that for all v,

L(v) > L(u) + gu- (v —u)

Subgradient methods use updates v’ = u — ag,

In fact, for our L(u), gu(i,j) = z"(i,j) — y*(i.J)



Related Work

» Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

» Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

» Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

» Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)



