
On Dual Decomposition
and Linear Programming Relaxations

for Natural Language Processing

Alexander M. Rush, David Sontag,
Michael Collins, and Tommi Jaakkola

Dynamic Programming

Dynamic programming is a dominant technique in NLP.

I Fast

I Exact

I Easy to implement

Examples:

I Viterbi algorithm for hidden Markov models

I CKY algorithm for weighted context-free grammars

y∗ = arg max
y

f (y) ← Decoding

Model Complexity

Unfortunately, dynamic programming algorithms do not scale well
with model complexity.

As our models become complex, these algorithms can explode in
terms of computational or implementational complexity.

Integration:

I f ← Easy

I g ← Easy

I f + g ← Hard

Integration (1)

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

Red1 flies2 some3 large4 jet5

N V D A N

f (y) + g(z)

I Classical problem in NLP.

I The dynamic programming intersection is prohibitively slow
and complicated to implement.

Integration (2)

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

*0 Red1 flies2 some3 large4 jet5

f (y) + g(z)

I Important for improving parsing accuracy.

I The dynamic programming intersection is slow and
complicated to implement.

Dual Decomposition

A general technique for constructing decoding algorithms

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

I Dynamic programming

I Minimum spanning tree

I Shortest path

I Min-Cut

I ...

Dual Decomposition Algorithms

Simple - Uses basic dynamic programming algorithms

Efficient - Faster than full dynamic programming intersections

Strong Guarantees - Gives a certificate of optimality when exact

In experiments, we find the global optimum on 99% of examples.

Widely Applicable - Similar techniques extend to other problems

Roadmap

Algorithm

Experiments

LP Relaxations

Integrated Parsing and Tagging

Red1 flies2 some3 large4 jet5

Red1 flies2 some3 large4 jet5

N V D A N

Red1 flies2 some3 large4 jet5

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

HMM

Dual Decomposition

CFG

Integrated Parsing and Tagging

Red1 flies2 some3 large4 jet5

Red1 flies2 some3 large4 jet5

N V D A N

Red1 flies2 some3 large4 jet5

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

HMM

Dual Decomposition

CFG

HMM for Tagging

Red1 flies2 some3 large4 jet5

N V D A N

I Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red1|N) + log p(V|N) + ...

z∗ = arg max
z∈Z

g(z) ← Viterbi decoding

HMM for Tagging

Red1 flies2 some3 large4 jet5

N V D A N

I Let Z be the set of all valid taggings of a sentence

and g(z) be a scoring function.

e.g. g(z) = log p(Red1|N) + log p(V|N) + ...

z∗ = arg max
z∈Z

g(z) ← Viterbi decoding

CFG for Parsing

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

I Let Y be the set of all valid parse trees for a sentence and

f (y) be a scoring function.

e.g. f (y) = log p(S → NP VP|S) + log p(NP → N|NP) + ...

y∗ = arg max
y∈Y

f (y) ← CKY Algorithm

CFG for Parsing

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

I Let Y be the set of all valid parse trees for a sentence and

f (y) be a scoring function.

e.g. f (y) = log p(S → NP VP|S) + log p(NP → N|NP) + ...

y∗ = arg max
y∈Y

f (y) ← CKY Algorithm

Problem Definition
S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

I Find parse tree that optimizes

score(S → NP VP) + score(VP → V NP) +

...+ score(Red1,N) + score(V,N) + ...

I Conventional Approach (Bar Hillel et al., 1961)
I Replace rules like S → NP VP

with rules like SN,N → NPN,V VPV ,N

Painful. O(t6) increase in complexity for trigram tagging.

The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees Taggings

CFG HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees

Taggings

CFG HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees Taggings

CFG HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees Taggings

CFG

HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees Taggings

CFG HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i

The Integrated Parsing and Tagging Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , t, y(i , t) = z(i , t)

Trees Taggings

CFG HMM

Constraints

Where y(i , t) = 1 if parse includes tag t at position i

z(i , t) = 1 if tagging includes tag t at position i

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

y (k) ← Decode (f (y) + penalty) by CKY Algorithm

z(k) ← Decode (g(z)− penalty) by Viterbi Decoding

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , t)− z(k)(i , t)

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A N

N V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A N

N V D A N

A N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A N

N V D A N

A N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A N

A N D A N

A N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A N

A N D A N

N V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A N

N V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

A

Red

N

flies

D

some

A

large

VP

V

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

Red

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,t

u(i , t)y(i , t))

Viterbi Decoding

Red1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A N

N V D A N

z∗ = arg max
z∈Z

(g(z)−
∑
i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)Key

f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

Guarantees

Theorem
If at any iteration y (k)(i , t) = z(k)(i , t) for all i , t, then (y (k), z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.

If we do not converge to a match, we can still get a result (more in
paper).

Guarantees

Theorem
If at any iteration y (k)(i , t) = z(k)(i , t) for all i , t, then (y (k), z(k))
is the global optimum.

In experiments, we find the global optimum on 99% of examples.

If we do not converge to a match, we can still get a result (more in
paper).

Integrated CFG and Dependency Parsing

Red1 flies2 some3 large4 jet5

*0 Red1 flies2 some3 large4 jet5

Red1 flies2 some3 large4 jet5

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

Dependency Model

Dual Decomposition

Lexicalized CFG

Integrated CFG and Dependency Parsing

Red1 flies2 some3 large4 jet5

*0 Red1 flies2 some3 large4 jet5

Red1 flies2 some3 large4 jet5

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

Dependency Model

Dual Decomposition

Lexicalized CFG

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

I Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(some3|jet5, large4) + ...

z∗ = arg max
z∈Z

g(z) ← Eisner (2000) algorithm

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

I Let Z be the set of all valid dependency parses of a sentence
and g(z) be a scoring function.

e.g. g(z) = log p(some3|jet5, large4) + ...

z∗ = arg max
z∈Z

g(z) ← Eisner (2000) algorithm

Lexicalized PCFG

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

I Let Y be the set of all valid dependency parses of a sentence
and f (y) be a scoring function.

e.g. f (y) = log p(S(flies) → NP(Red) VP(flies)|S(flies)) + ...

y∗ = arg max
y∈Y

f (y) ← Modified CKY algorithm

Lexicalized PCFG

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

I Let Y be the set of all valid dependency parses of a sentence
and f (y) be a scoring function.

e.g. f (y) = log p(S(flies) → NP(Red) VP(flies)|S(flies)) + ...

y∗ = arg max
y∈Y

f (y) ← Modified CKY algorithm

The Integrated Constituency and Dependency Parsing Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees Dependency Trees

CFG Dependency

Constraints

Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees

Dependency Trees

CFG Dependency

Constraints

Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees Dependency Trees

CFG Dependency

Constraints

Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees Dependency Trees

CFG

Dependency

Constraints

Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees Dependency Trees

CFG Dependency

Constraints

Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j

The Integrated Constituency and Dependency Parsing Problem

Find argmax

y∈ Y, z∈ Z
f (y) + g(z)

such that for all i , j , y(i , j) = z(i , j)

Trees Dependency Trees

CFG Dependency

Constraints

Where y(i , j) = 1 if parse includes dependency from word i to j

z(i , j) = 1 if parse includes dependency from word i to j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

Red

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑
i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 Red1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑
i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

Roadmap

Algorithm

Experiments

LP Relaxations

Experiment

Properties:

I Exactness

I Parsing Accuracy

Experiments on:

I English Penn Treebank

Models

I Collins (1997) Model 1
I Semi-Supervised Dependency Parser (Koo, 2008)
I Trigram Tagger (Toutanova, 2000)

How quickly do the models converge?

 0

 20

 40

 60

 80

 100

<=1
<=2

<=3
<=4

<=10
<=20

<=50

%
 e

xa
m

pl
es

 c
on

ve
rg

ed

number of iterations

Integrated Dependency Parsing

 0

 20

 40

 60

 80

 100

<=1
<=2

<=3
<=4

<=10
<=20

<=50

%
 e

xa
m

pl
es

 c
on

ve
rg

ed

number of iterations

Integrated POS Tagging

Integrated Constituency and Dependency Parsing: Accuracy

 87

 88

 89

 90

 91

 92
Collins

Dep
Dual

F1 Score

I Collins (1997) Model 1

I Fixed, First-best Dependencies from Koo (2008)

I Dual Decomposition

Integrated Parsing and Tagging: Accuracy

 87

 88

 89

 90

 91

 92
Fixed
Dual

F1 Score

I Fixed, First-Best Tags From Toutanova (2000)

I Dual Decomposition

Roadmap

Algorithm

Experiments

LP Relaxations

Dual Decomposition and Linear Programming Relaxations

Theorem

I If the dual decomposition algorithm converges, then
(y (k), z(k)) is the global optimum.

Questions

I What problem is dual decomposition solving?

I How come the algorithm doesn’t always converge?

Dual decomposition searches over a linear programming relaxation
of the original problem.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y ∈ Y.
y(A→ B C , i , j , k) = 1 if rule A→ B C is used at span i , j , k.

Parsing

y∗

w

Y

conv(Y)

I If f is linear, arg max
y∈conv(Y)

f (y) is a linear program.

I The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y ∈ Y.
y(A→ B C , i , j , k) = 1 if rule A→ B C is used at span i , j , k.

Parsing

y∗

w

Y

conv(Y)

I If f is linear, arg max
y∈conv(Y)

f (y) is a linear program.

I The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y ∈ Y.
y(A→ B C , i , j , k) = 1 if rule A→ B C is used at span i , j , k.

Parsing

y∗

w

conv(Y)

I If f is linear, arg max
y∈conv(Y)

f (y) is a linear program.

I The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector y ∈ Y.
y(A→ B C , i , j , k) = 1 if rule A→ B C is used at span i , j , k.

Parsing

y∗

w

conv(Y)

I If f is linear, arg max
y∈conv(Y)

f (y) is a linear program.

I The best point in an LP is a vertex. So CKY solves this LP.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

Q

conv(Q)Q′Q′ conv(Q)

Possible (y∗, z∗)

w
Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

Q

conv(Q)Q′Q′ conv(Q)

Possible (y∗, z∗)

w
Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

conv(Q)

Q′Q′ conv(Q)

Possible (y∗, z∗)

w
Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

conv(Q)

Q′

Q′ conv(Q)

Possible (y∗, z∗)

w
Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

conv(Q)Q′

Q′ conv(Q)

Possible (y∗, z∗)

w
Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

conv(Q)Q′

Q′ conv(Q)

Possible (y∗, z∗)

w

Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Combined Problem

Q = {(y , z): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

conv(Q)Q′

Q′ conv(Q)

Possible (y∗, z∗)

w

Possible (y∗, z∗)

w

Q′ = {(µ, ν): µ ∈ conv(Y), ν ∈ conv(Z),

µ(i , t) = ν(i , t) for all (i , t)}

Dual decomposition searches over Q′

Depending on the weight vector, (y∗, z∗) ∈ Q′ could be in Q or in
the strict outer bound.

Are there points strictly in the outer bound?

Q′

Possible (y∗, z∗)?

Taggings 0.5x

w1 w2 w3

A A A

+ 0.5x

w1 w2 w3

A B B

Parses 0.5 x

X

A

w1

X

A

w2

B

w3

+ 0.5 x

X

A

w1

X

B

w2

A

w3

Best result can be a
fractional solution.

Convex
combination of
these structures.

Summary

A Dual Decomposition algorithm for integrated decoding

Simple - Uses only simple, off-the-shelf dynamic programming
algorithms to solve a harder problem.

Efficient - Faster than classical methods for dynamic programming
intersection.

Strong Guarantees - Solves a linear programming relaxation which
gives a certificate of optimality.

Finds the exact solution on 99% of the examples.

Widely Applicable - Similar techniques extend to other problems

Appendix

Iterative Progress

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

Maximum Number of Dual Decomposition Iterations

f score
% certificates

% match K=50

Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑
i,j

u(i , j) (y(i , j)− z(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)


+ max

y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)



Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u

Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑
i,j

u(i , j) (y(i , j)− z(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)


+ max

y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)



Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u

A Subgradient Algorithm for Minimizing L(u)

L(u) = max
z∈Z

f (z) +
∑
i,j

u(i , j)y(i , j)

 + max
y∈Y

g(y)−
∑
i,j

u(i , j)z(i , j)



L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector gu such that for all v ,

L(v) ≥ L(u) + gu · (v − u)

Subgradient methods use updates u′ = u − αgu

In fact, for our L(u), gu(i , j) = z∗(i , j)− y∗(i , j)

Related Work

I Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

I Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

I Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

I Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)

