Exact Decoding of Syntactic Translation Models Through Lagrangian Relaxation

Alexander M. Rush and Michael Collins

Syntactic Translation

Problem:

Decoding synchronous grammar for machine translation

Example:

Goal:

$$y^* = \arg \max_{y} f(y)$$

where y is a parse derivation in a synchronous grammar

Hiero Example

Consider the input sentence

And the synchronous grammar

```
S \rightarrow \langle s \rangle \times \langle /s \rangle, \langle s \rangle \times \langle /s \rangle
```

$$X \rightarrow abarks X$$
, X barks loudly

$$X \rightarrow abarks X$$
, barks X

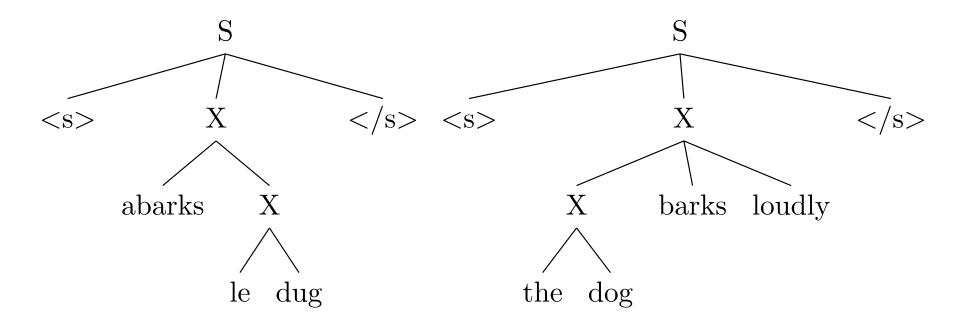
$$X \rightarrow abarks X$$
, barks X loudly

$$X \rightarrow le dug$$
, the dog

$$X \rightarrow le dug, a cat$$

Hiero Example

Apply synchronous rules to map this sentence



Many possible mappings:

<s> the dog barks loudly </s>

<s> a cat barks loudly </s>

<s> barks the dog </s>

<s> barks a cat </s>

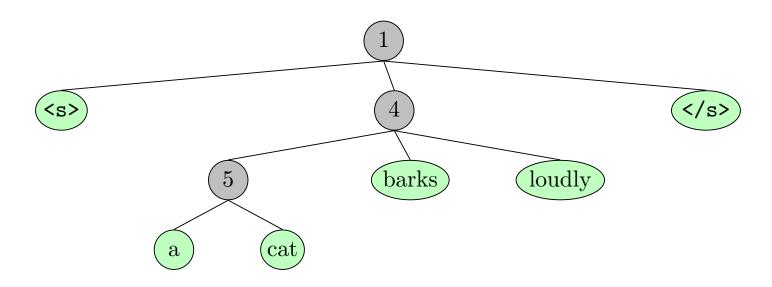
<s> barks the dog loudly </s>

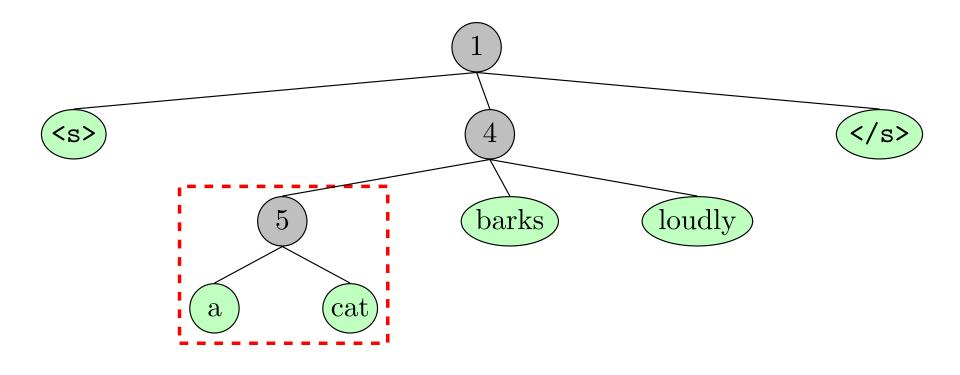
<s> barks a cat loudly </s>

Translation Forest

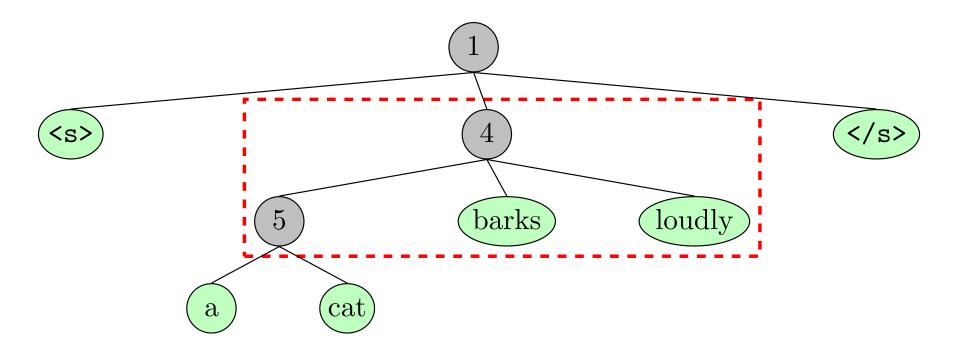
Rule	Score
$1 o ext{} ext{ 4 }$	-1
4 ightarrow 5 barks loudly	2
4 ightarrow barks 5	0.5
$4 ightarrow ext{barks}$ 5 loudly	3
$5 ightarrow ext{the dog}$	-4
5 ightarrow a cat	2.5

Example: a derivation in the translation forest

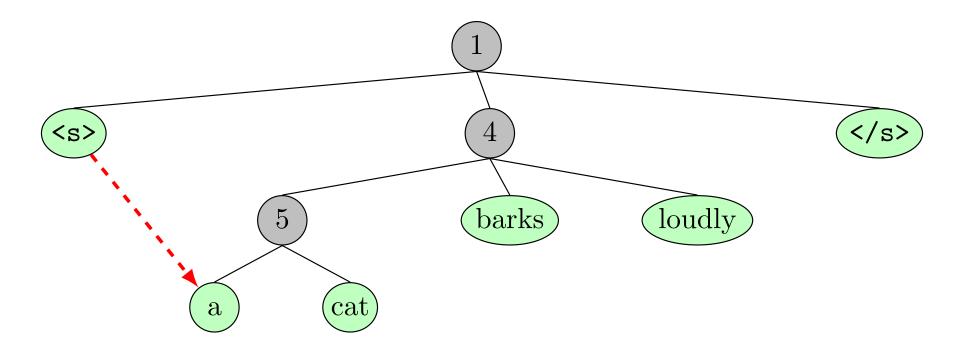




$$f(y) = score(5 \rightarrow a cat)$$

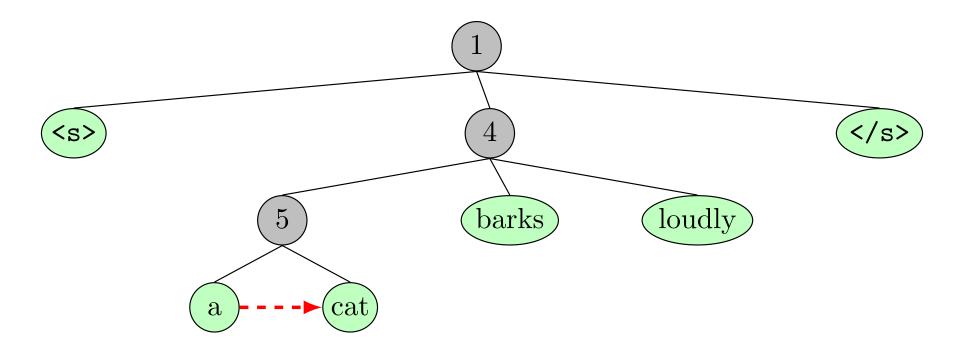


$$f(y) = score(5 \rightarrow a cat) + score(4 \rightarrow 5 barks loudly)$$



$$f(y) = score(5 \rightarrow a cat) + score(4 \rightarrow 5 barks loudly) + ...$$

+ $score(~~, the)~~$

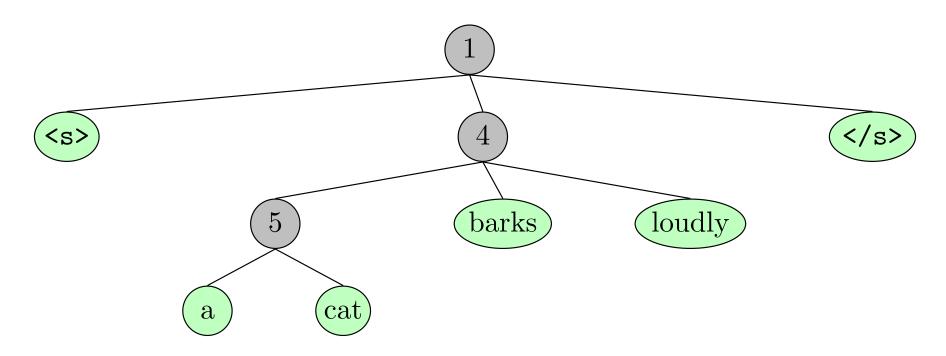


$$f(y) = score(5 \rightarrow a cat) + score(4 \rightarrow 5 barks loudly) + ...$$

 $+ score(~~, a) + score(a, cat)~~$

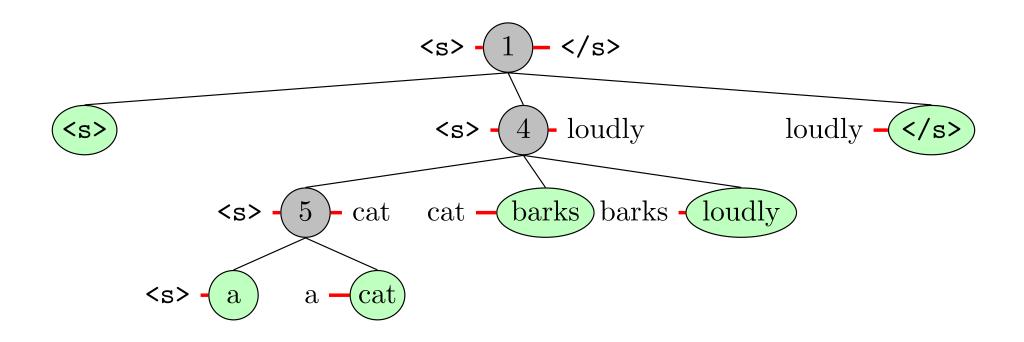
Exact Dynamic Programming

To maximize combined model, need to ensure that bigrams are consistent with parse tree.



Exact Dynamic Programming

To maximize combined model, need to ensure that bigrams are consistent with parse tree.



Original Rules

 $5 \rightarrow \text{the dog}$

 $5 \rightarrow a cat$

New Rules

$$|z_{s>}5_{cat}
ightarrow |z_{s>}the_{the}|_{the}dog_{dog}$$
 $|z_{barks}5_{cat}
ightarrow |z_{barks}the_{the}|_{the}dog_{dog}|_{the}$

$$_{ extsf{}5_{cat}
ightarrow _{ extsf{}a_{a}$$
 $_{a}$ cat $_{cat}$

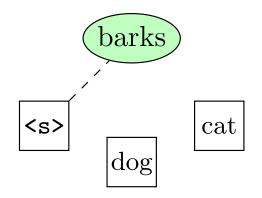
$$_{barks}5_{cat}
ightarrow _{barks}a_{a}$$
 $_{a}cat_{cat}$

Lagrangian Relaxation Algorithm for Syntactic Translation

Outline:

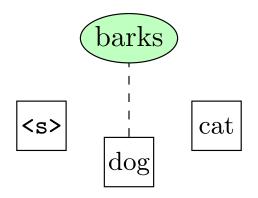
- Algorithm for simplified version of translation
- Full algorithm with certificate of exactness
- Experimental results

Choose best bigram for a given word



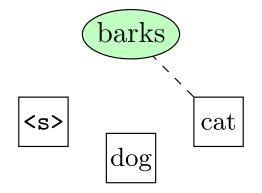
score(<s>, barks)

Choose best bigram for a given word



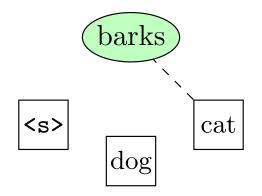
- score(<s>, barks)
- score(dog, barks)

Choose best bigram for a given word



- score(<s>, barks)
- *score*(dog, barks)
- *score*(cat, barks)

Choose best bigram for a given word



- score(<s>, barks)
- score(dog, barks)
- score(cat, barks)

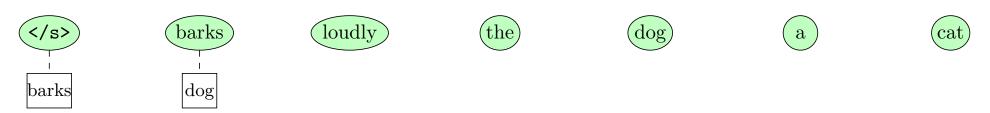
Can compute with a simple maximization

$$arg max score(w, barks)$$

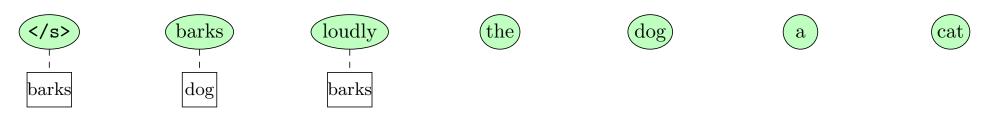
 $w:\langle w, barks \rangle \in \mathcal{B}$

Step 1. Greedily choose best bigram for each word

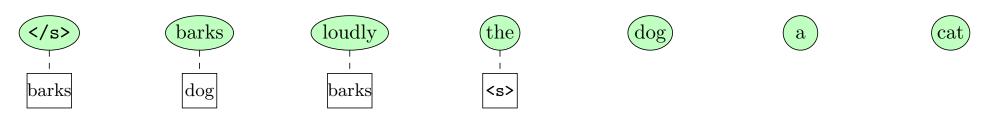
Step 1. Greedily choose best bigram for each word



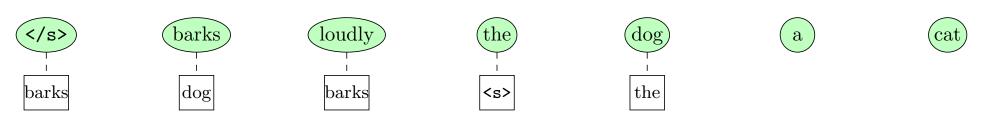
Step 1. Greedily choose best bigram for each word



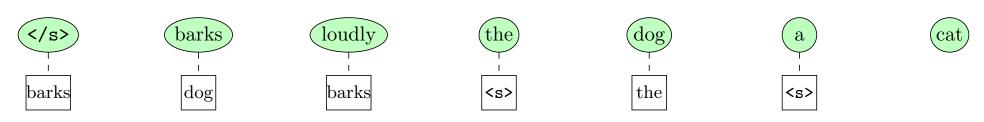
Step 1. Greedily choose best bigram for each word



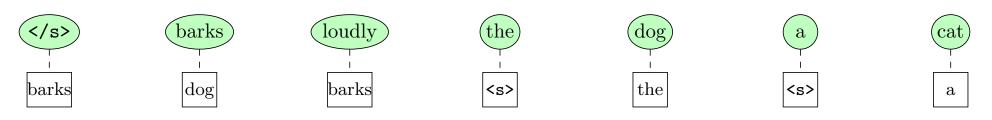
Step 1. Greedily choose best bigram for each word



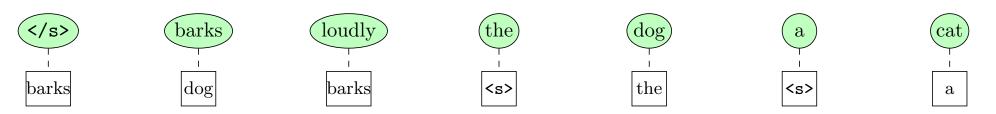
Step 1. Greedily choose best bigram for each word



Step 1. Greedily choose best bigram for each word

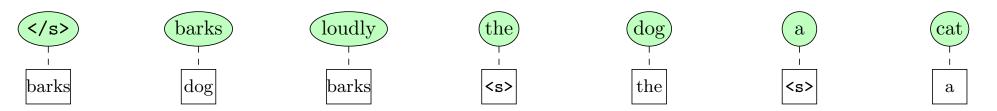


Step 1. Greedily choose best bigram for each word

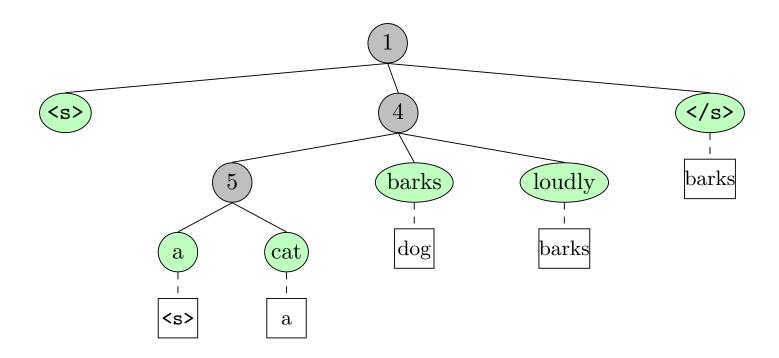


Step 2. Find the best derivation with fixed bigrams

Step 1. Greedily choose best bigram for each word

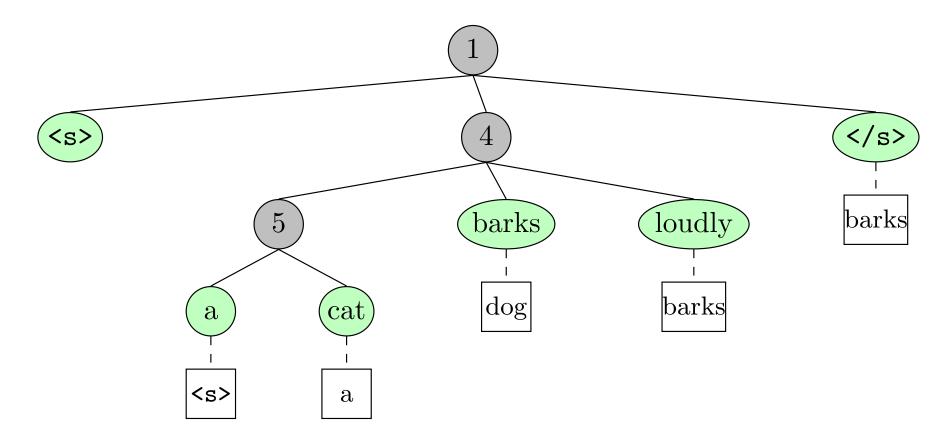


Step 2. Find the best derivation with fixed bigrams



Thought Experiment Problem

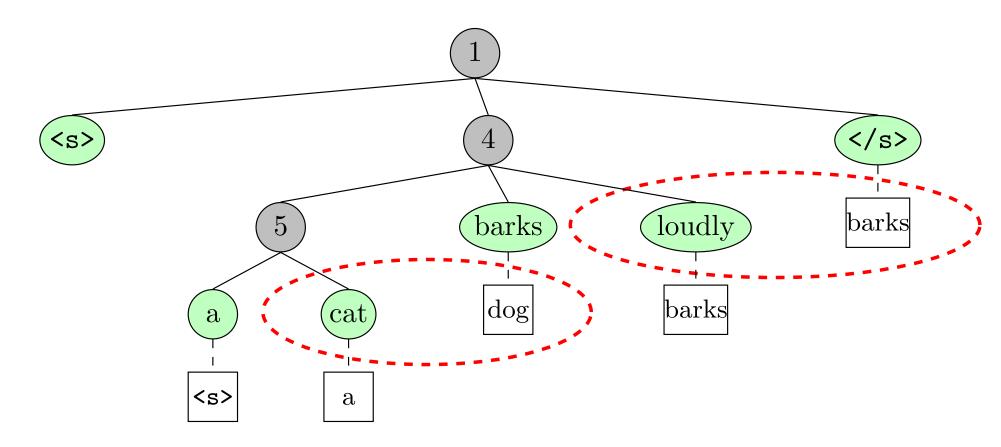
May produce invalid parse and bigram relationship



Greedy bigram selection may conflict with the parse derivation

Thought Experiment Problem

May produce invalid parse and bigram relationship



Greedy bigram selection may conflict with the parse derivation

Notation: y(w, v) = 1 if the bigram $\langle w, v \rangle \in \mathcal{B}$ is in y

Goal:

$$\arg\max_{y\in\mathcal{Y}}f(y)$$

such that for all words nodes y_v

(1)

Notation: y(w, v) = 1 if the bigram $\langle w, v \rangle \in \mathcal{B}$ is in y

Goal:

$$\arg\max_{y\in\mathcal{Y}}f(y)$$

such that for all words nodes y_v

$$\sqrt{v}$$

Notation: y(w, v) = 1 if the bigram $\langle w, v \rangle \in \mathcal{B}$ is in y

Goal:

$$\arg\max_{y\in\mathcal{Y}}f(y)$$

such that for all words nodes y_v

$$w:\langle w,v\rangle\in\mathcal{B}$$

$$y_{v} = \sum_{w:\langle v,w\rangle\in\mathcal{B}} y(v,w) \tag{2}$$

Notation: y(w, v) = 1 if the bigram $\langle w, v \rangle \in \mathcal{B}$ is in y

Goal:

$$\arg\max_{y\in\mathcal{Y}}f(y)$$

such that for all words nodes y_v

Notation: y(w, v) = 1 if the bigram $\langle w, v \rangle \in \mathcal{B}$ is in y

Goal:

$$\arg\max_{y\in\mathcal{Y}}f(y)$$

such that for all words nodes y_v

$$v - w \qquad y_v = \sum_{w: \langle v, w \rangle \in \mathcal{B}} y(v, w) \qquad (2)$$

Lagrangian: Relax constraint (2), leave constraint (1)

$$L(u,y) = \max_{y \in \mathcal{Y}} f(y) + \sum_{w,v} u(v) \left(y_v - \sum_{w: \langle v,w \rangle \in \mathcal{B}} y(v,w) \right)$$

For a given u, L(u, y) can be solved by our greedy LM algorithm

Algorithm

Set
$$u^{(1)}(v) = 0$$
 for all $v \in V_L$

For
$$k = 1$$
 to K

$$y^{(k)} \leftarrow \arg\max_{y \in \mathcal{Y}} L^{(k)}(u, y)$$

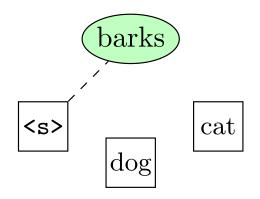
If
$$y_v^{(k)} = \sum_{w:\langle v,w\rangle\in\mathcal{B}} y^{(k)}(v,w)$$
 for all v Return $(y^{(k)})$

Else

$$u^{(k+1)}(v) \leftarrow u^{(k)}(v) - \alpha_k \left(y_v^{(k)} - \sum_{w: \langle v, w \rangle \in \mathcal{B}} y^{(k)}(v, w) \right)$$

Thought experiment: Greedy with penalties

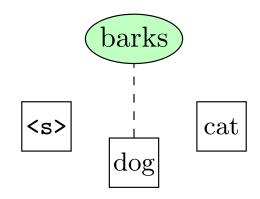
Choose best bigram with penalty for a given word



• $score(\langle s \rangle, barks) - u(\langle s \rangle) + u(barks)$

Thought experiment: Greedy with penalties

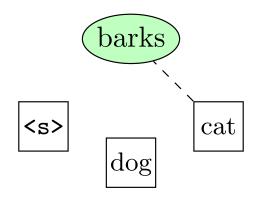
Choose best bigram with penalty for a given word



- $score(\langle s \rangle, barks) u(\langle s \rangle) + u(barks)$
- score(cat, barks) u(cat) + u(barks)

Thought experiment: Greedy with penalties

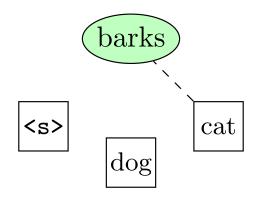
Choose best bigram with penalty for a given word



- $score(\langle s \rangle, barks) u(\langle s \rangle) + u(barks)$
- score(cat, barks) u(cat) + u(barks)
- score(dog, barks) u(dog) + u(barks)

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word



- $score(\langle s \rangle, barks) u(\langle s \rangle) + u(barks)$
- score(cat, barks) u(cat) + u(barks)
- score(dog, barks) u(dog) + u(barks)

Can still compute with a simple maximization over

$$\underset{w:\langle w, \mathsf{barks}\rangle \in \mathcal{B}}{\mathsf{max}} \underset{score(w, \mathsf{barks}) - u(w) + u(\mathsf{barks})}{\mathsf{score}(w, \mathsf{barks}) - u(w) + u(\mathsf{barks})}$$

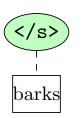
Penalties

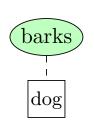
V		barks	loudly	the	dog	а	cat
u(v)	0	0	0	0	0	0	0

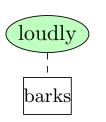
Penalties

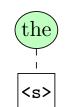
V		barks	loudly	the	dog	a	cat
u(v)	0	0	0	0	0	0	0

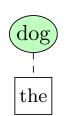
Greedy decoding



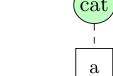






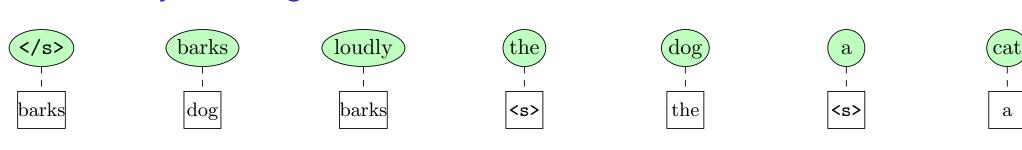


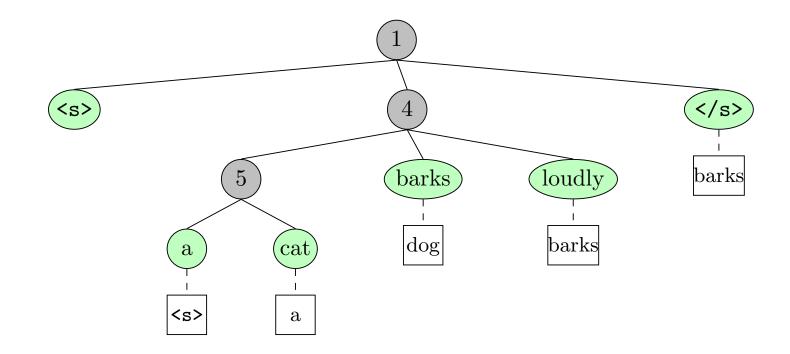
<s>



Penalties

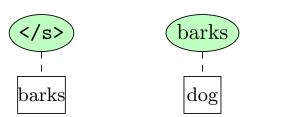
V		barks	loudly	the	dog	а	cat
			0				

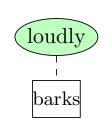


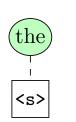


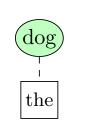
Penalties

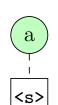
V		barks	loudly	the	dog	а	cat
u(v)	0	0	0	0	0	0	0

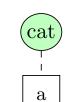


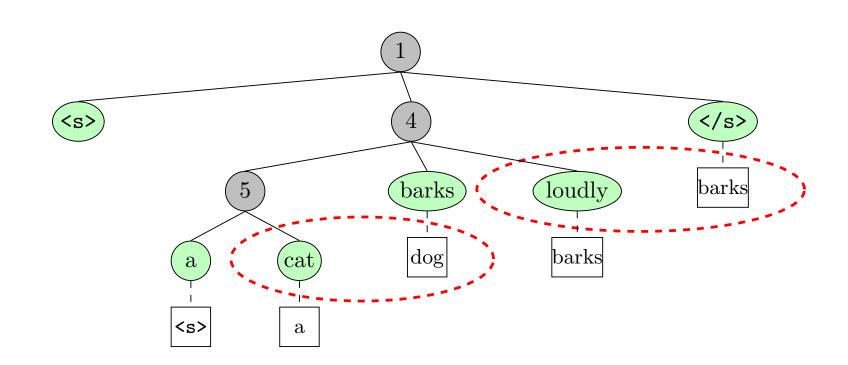






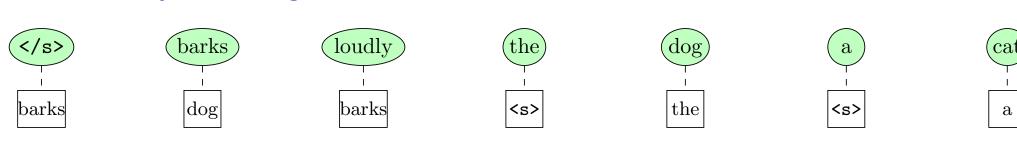


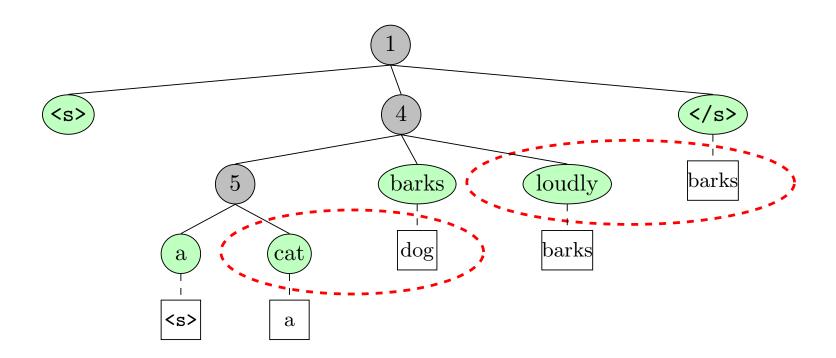




Penalties

V		barks	loudly	the	dog	а	cat
u(v)	0	-1	1	0	-1	0	1





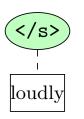
Penalties

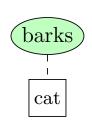
V		barks	loudly	the	dog	а	cat
u(v)	0	-1	1	0	-1	0	1

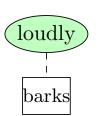
Penalties

V		barks	loudly	the	dog	a	cat
u(v)	0	-1	1	0	-1	0	1

Greedy decoding



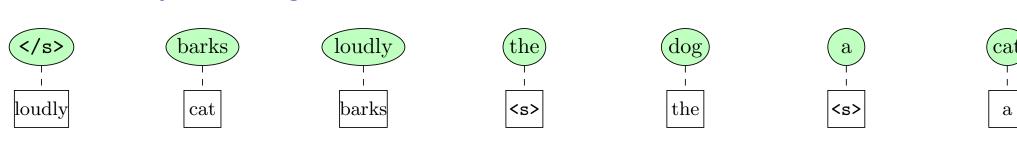


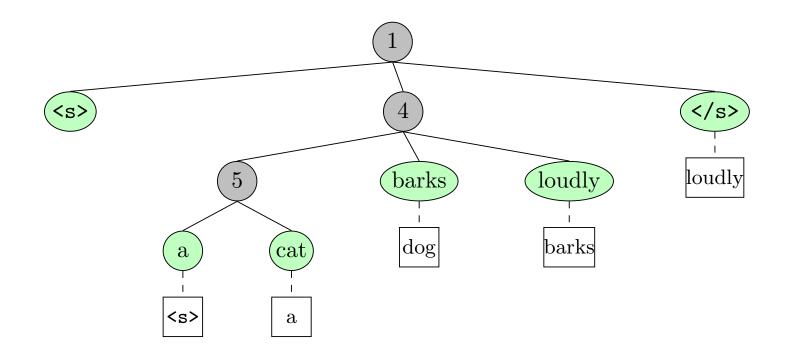


 \mathbf{a}

Penalties

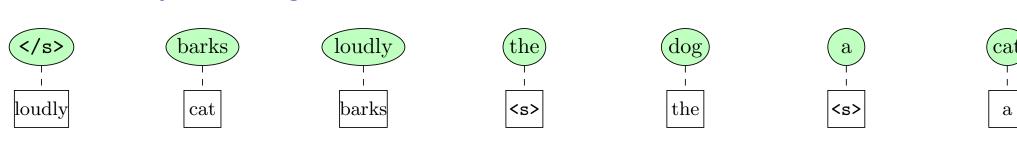
V		barks	loudly	the	dog	a	cat
u(v)	0	-1	1	0	-1	0	1

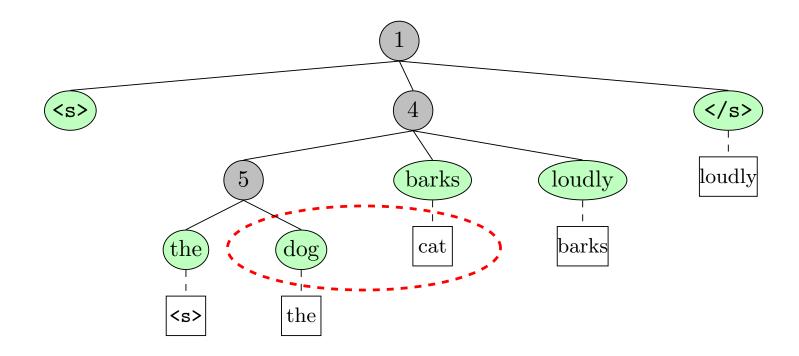




Penalties

V		barks	loudly	the	dog	a	cat
u(v)	0	-1	1	0	-1	0	1

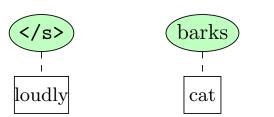


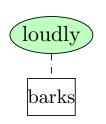


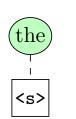
Penalties

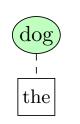
V		barks	loudly	the	dog	a	cat
u(v)	0	-1	1	0	-0.5	0	0.5

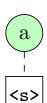
Greedy decoding



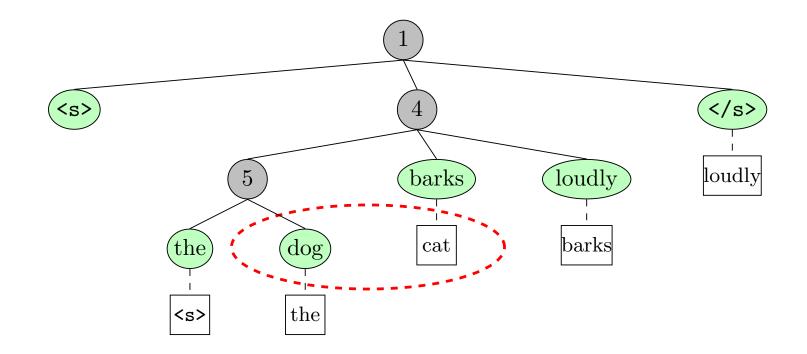








 \mathbf{a}

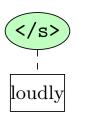


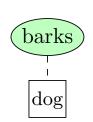
Penalties

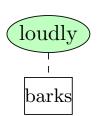
V		barks	loudly	the	dog	а	cat
u(v)	0	-1	1	0	-0.5	0	0.5

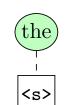
Penalties

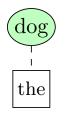
V		barks	loudly	the	dog	a	cat
u(v)	0	-1	1	0	-0.5	0	0.5

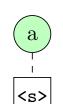






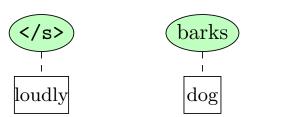


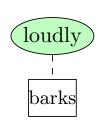


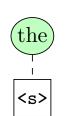


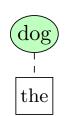
Penalties

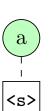
V		barks	loudly	the	dog	a	cat
u(v)	0	-1	1	0	-0.5	0	0.5

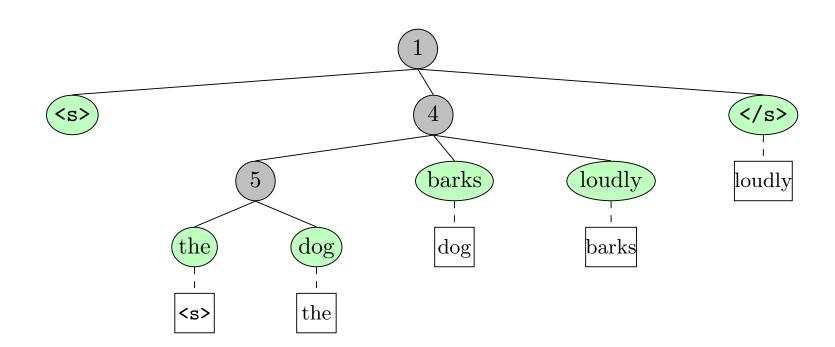












Constraint Issue

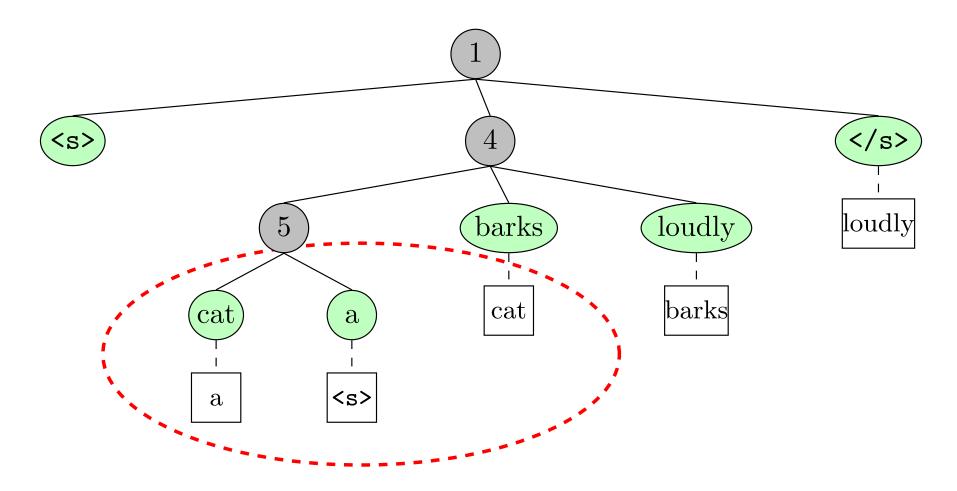
Constraints do not capture all possible reorderings

Example: Add rule $\langle 5 \rightarrow \text{cat a} \rangle$ to forest. New derivation

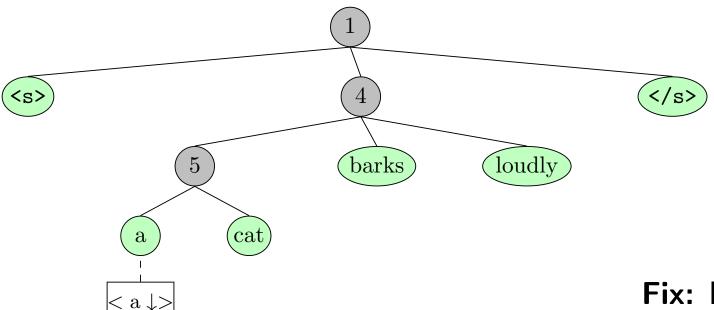
Constraint Issue

Constraints do not capture all possible reorderings

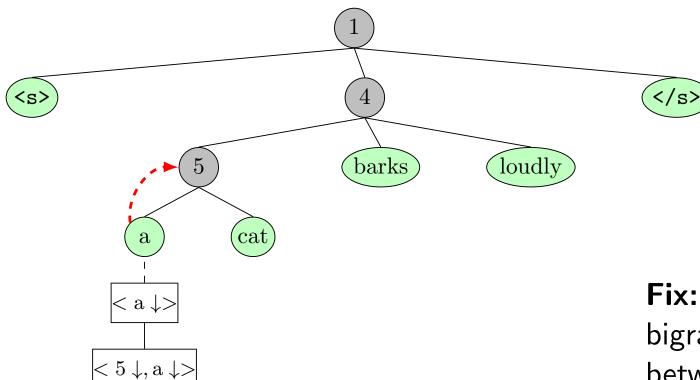
Example: Add rule $\langle 5 \rightarrow \text{cat a} \rangle$ to forest. New derivation



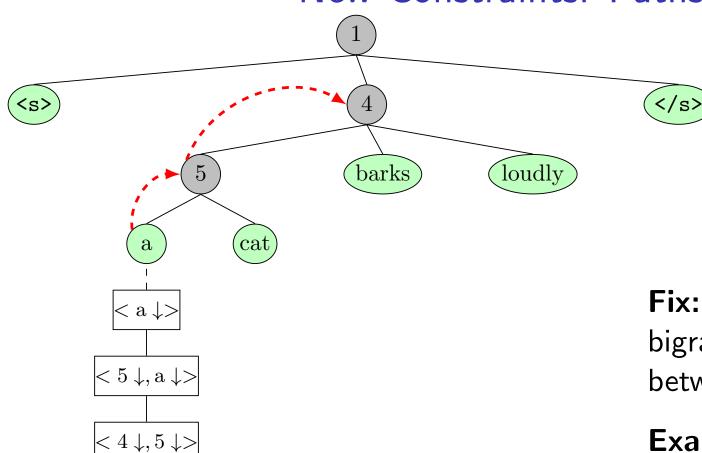
Satisfies both constraints (1) and (2), but is not self-consistent.



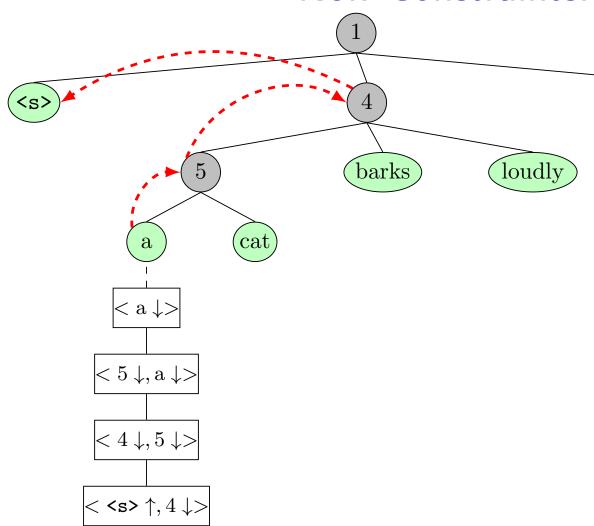
Fix: In addition to bigrams, consider paths between terminal nodes



Fix: In addition to bigrams, consider paths between terminal nodes

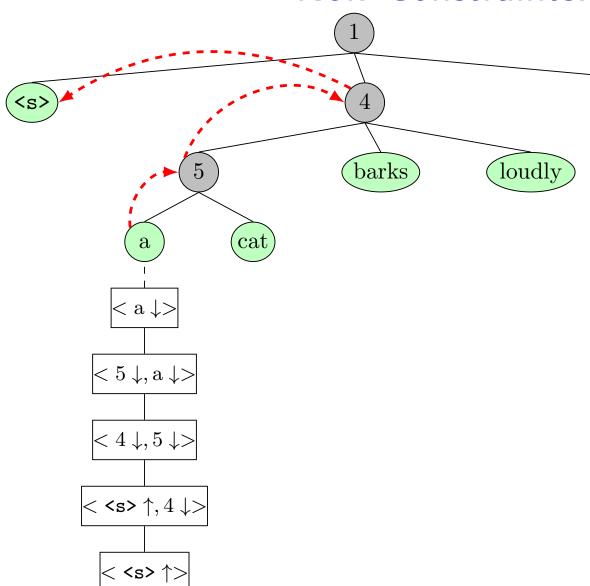


Fix: In addition to bigrams, consider paths between terminal nodes



Fix: In addition to bigrams, consider paths between terminal nodes

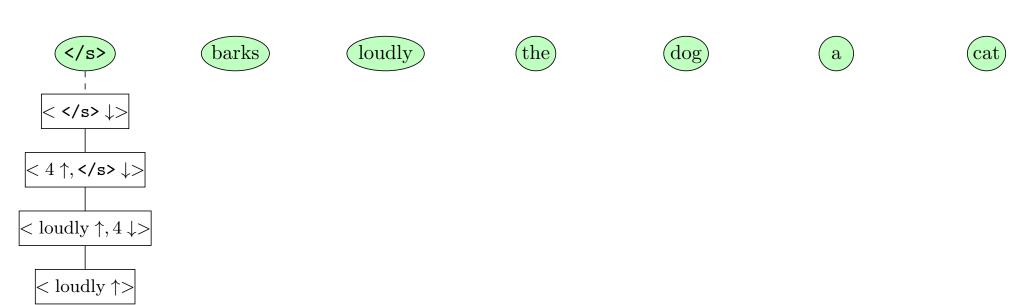
</s>



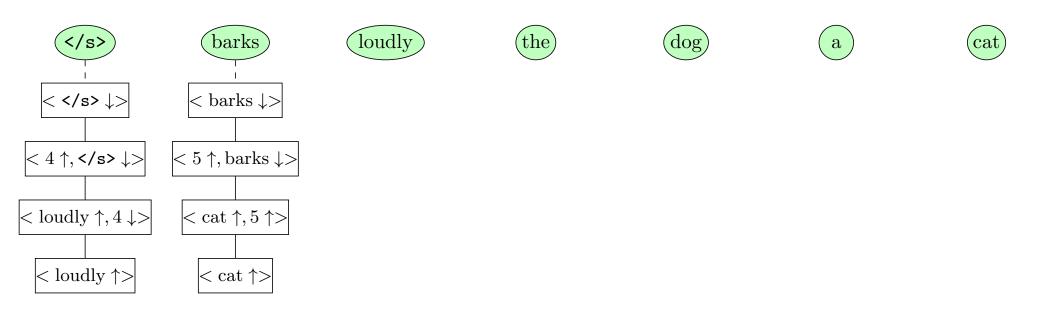
Fix: In addition to bigrams, consider paths between terminal nodes

</s>

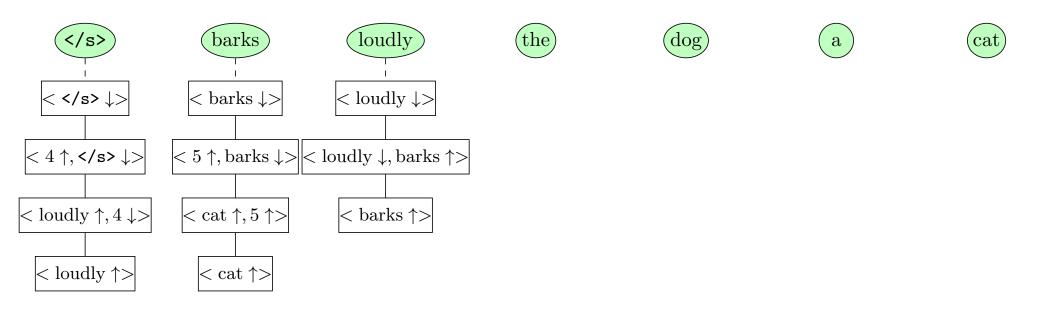
Step 1. Greedily choose best path each word



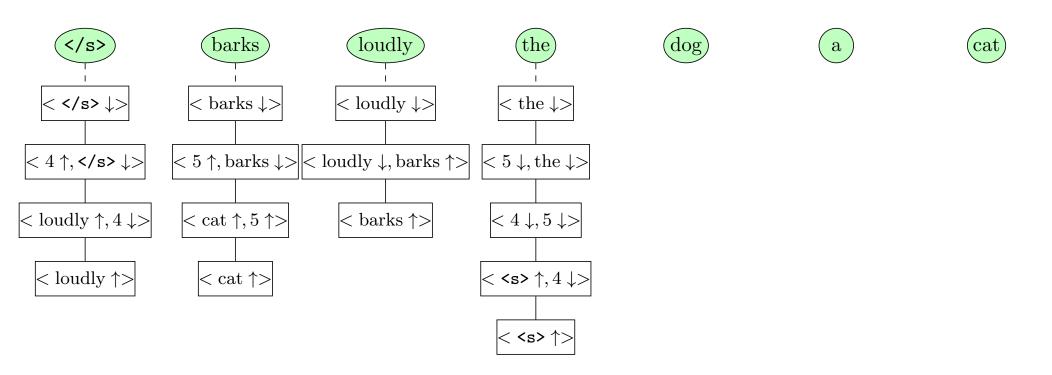
Step 1. Greedily choose best path each word



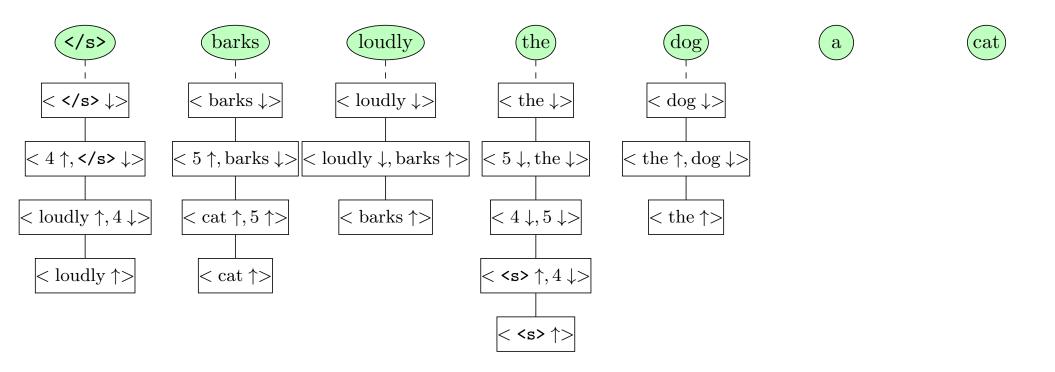
Step 1. Greedily choose best path each word



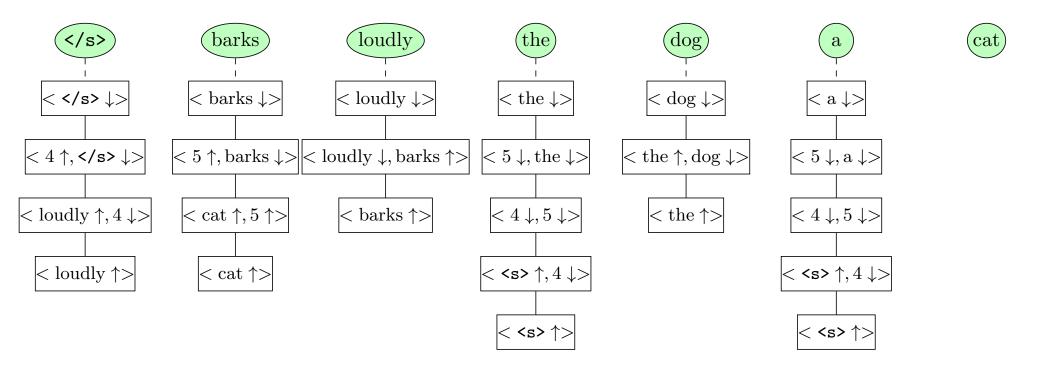
Step 1. Greedily choose best path each word



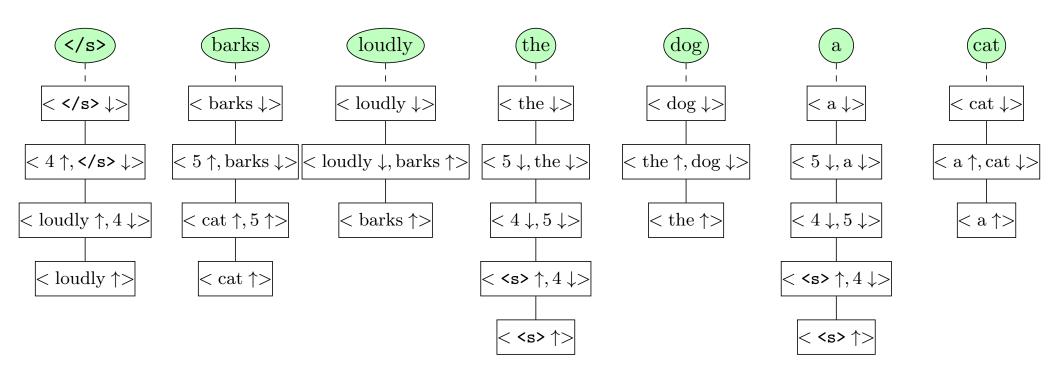
Step 1. Greedily choose best path each word



Step 1. Greedily choose best path each word



Step 1. Greedily choose best path each word

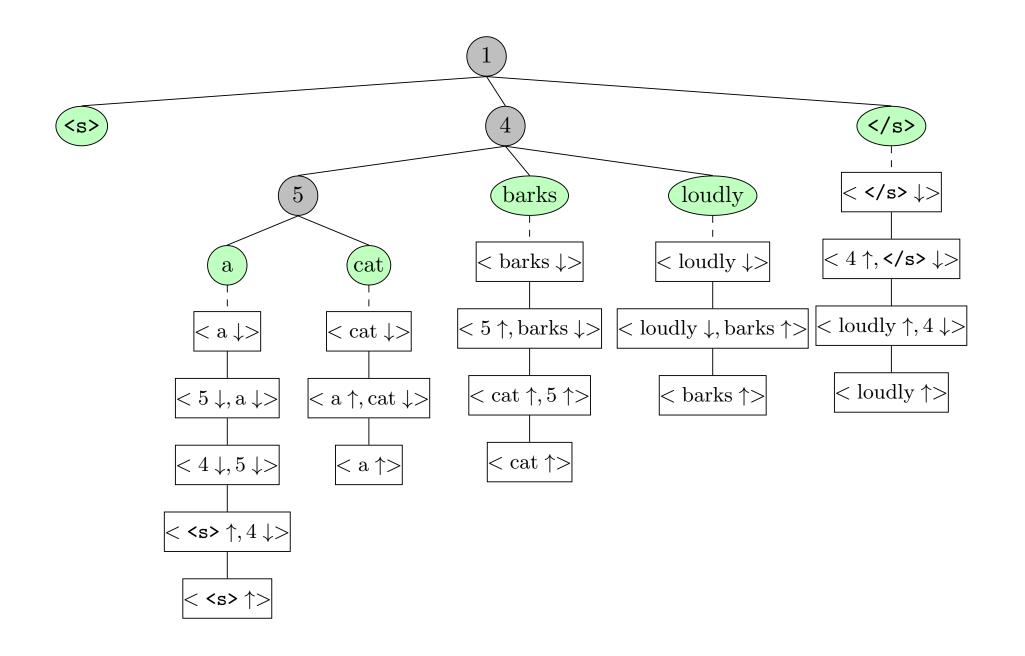


Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements



Efficiently Calculating Best Paths

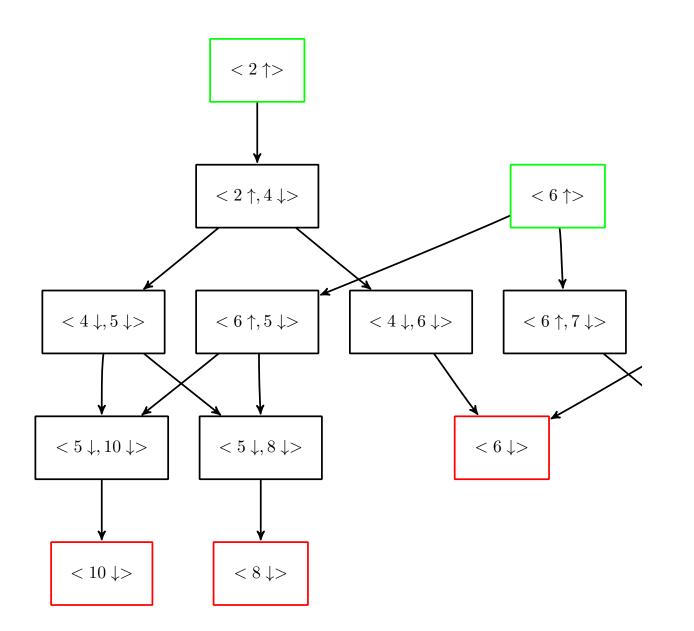
There are too many paths to compute argmax directly, but we can compactly represent all paths as a graph



Graph is linear in the size of the grammar

- Green nodes represent leaving a word
- Red nodes represent entering a word
- Black nodes are intermediate paths

Best Paths



Goal: Find the best path between all word nodes (green and red)

Method: Run all-pairs shortest path to find best paths

Full Algorithm

Algorithm is very similar to simple bigram case. Penalty weights are associated with nodes in the graph instead of just bigram words

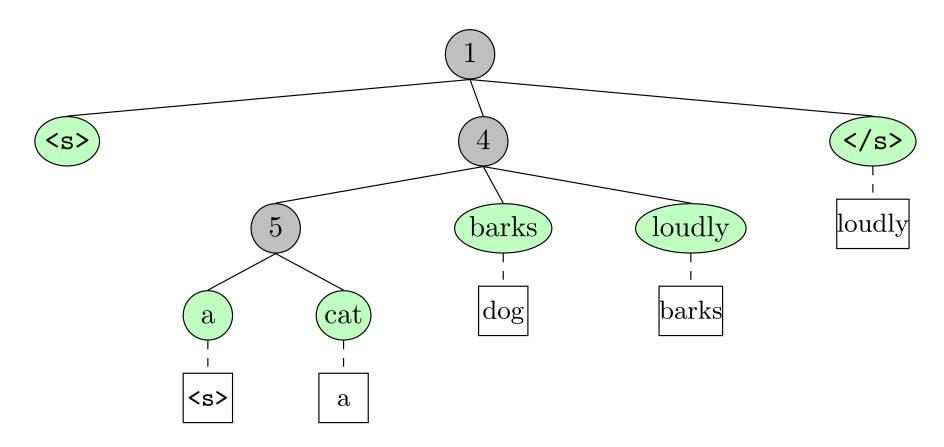
Theorem

If at any iteration the greedy paths agree with the derivation, then $(y^{(k)})$ is the global optimum.

But what if it does not find the global optimum?

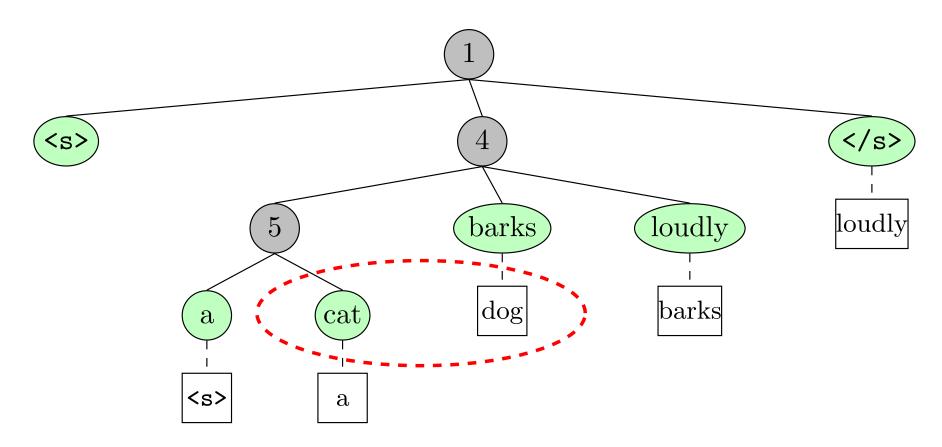
Convergence

The algorithm is not guaranteed to converge May get stuck between solutions.



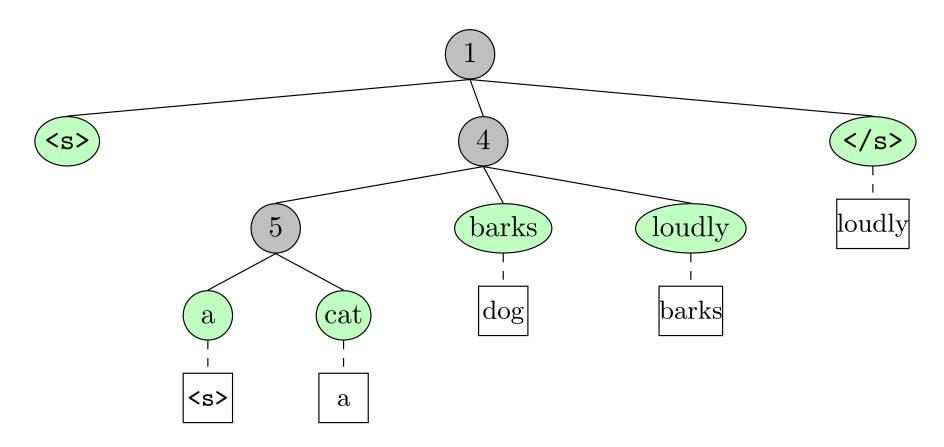
Convergence

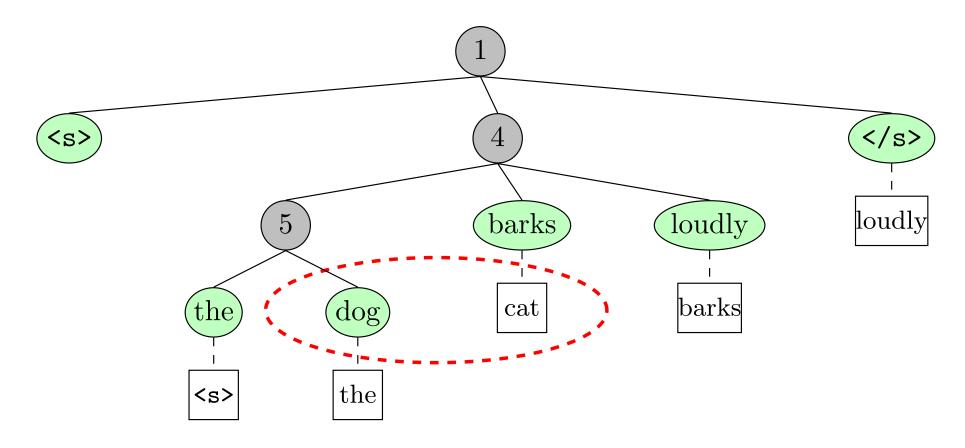
The algorithm is not guaranteed to converge May get stuck between solutions.

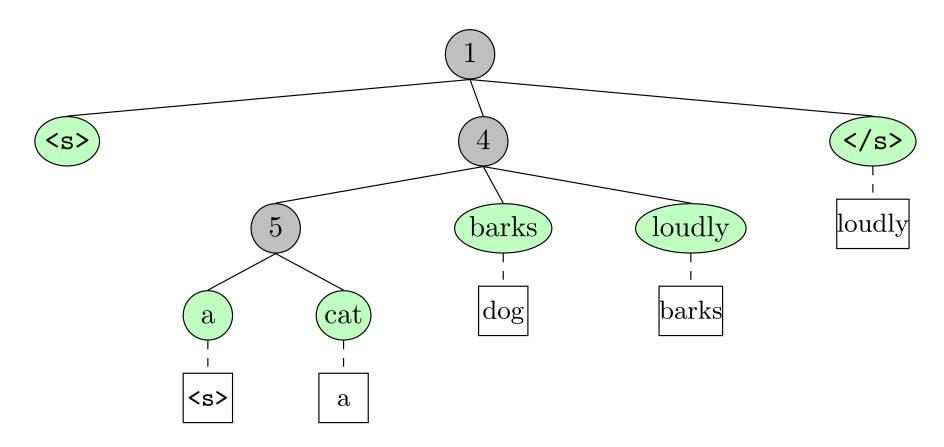


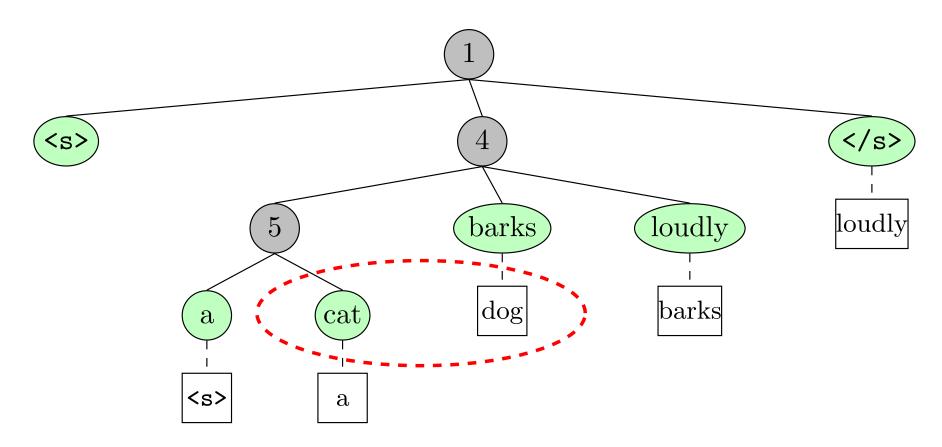
Convergence

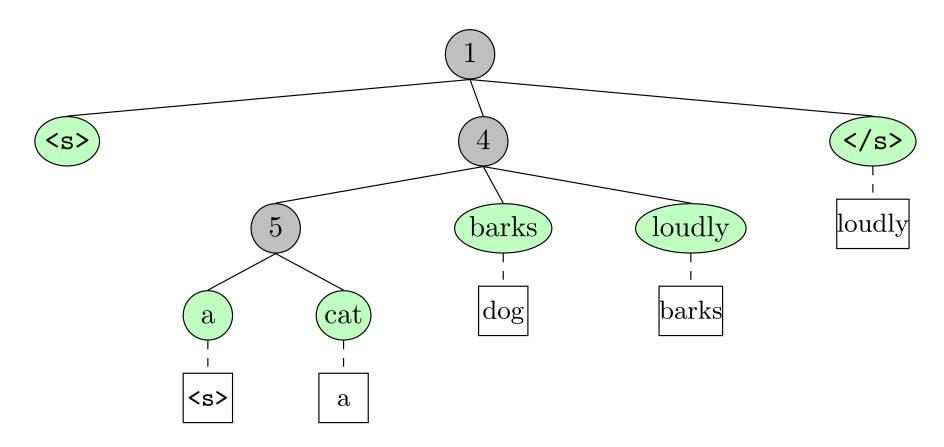
The algorithm is not guaranteed to converge May get stuck between solutions.

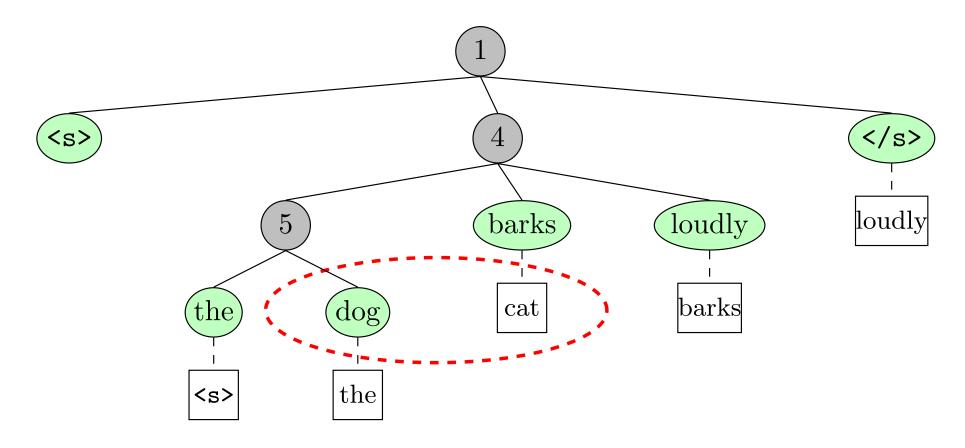




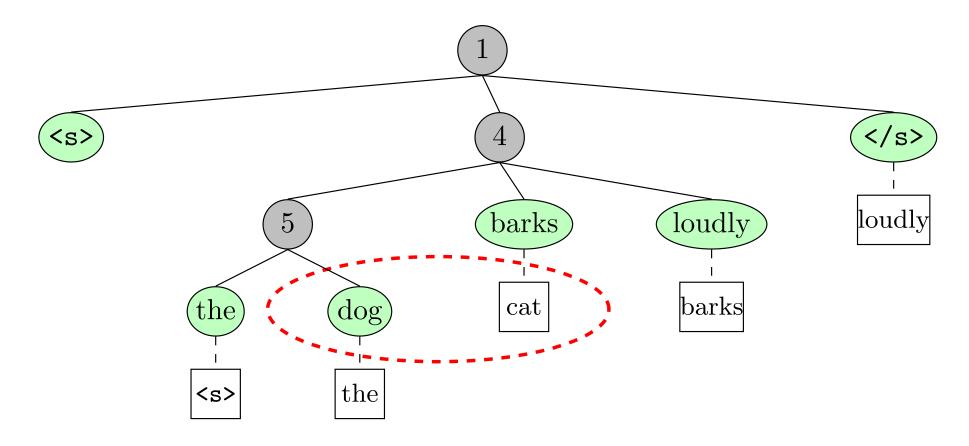








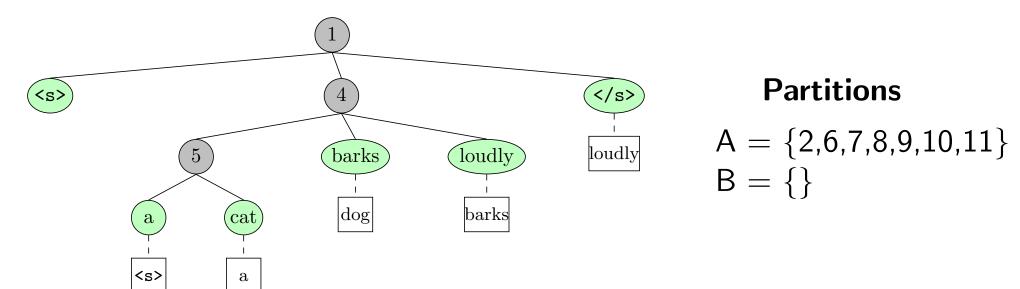
The algorithm is not guaranteed to converge May get stuck between solutions.



Can fix this by incrementally adding constraints to the problem

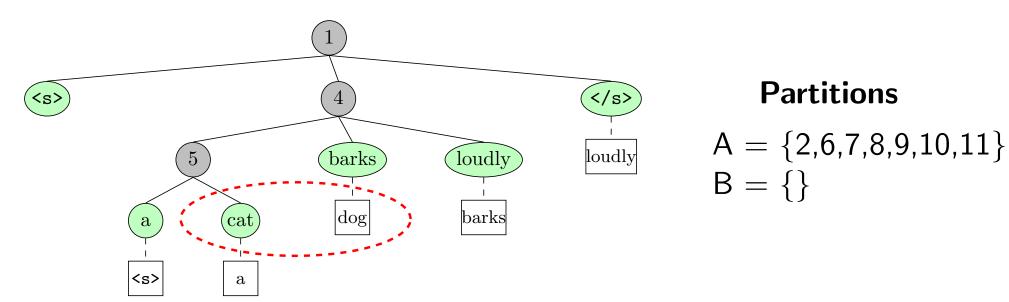
Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



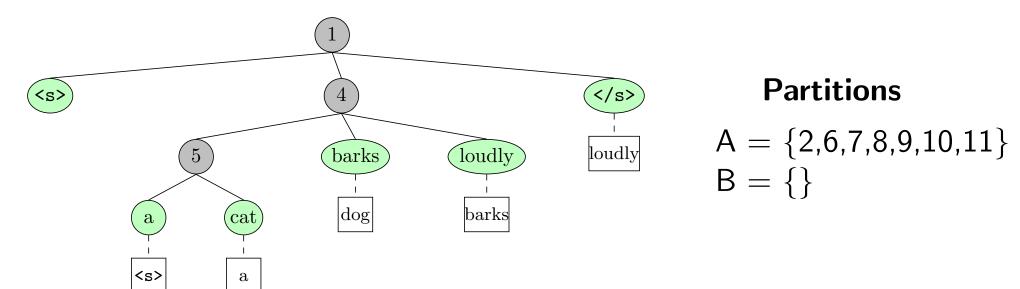
Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



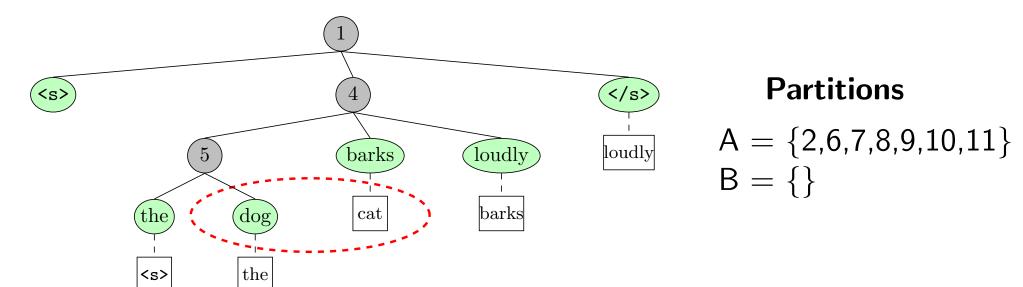
Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



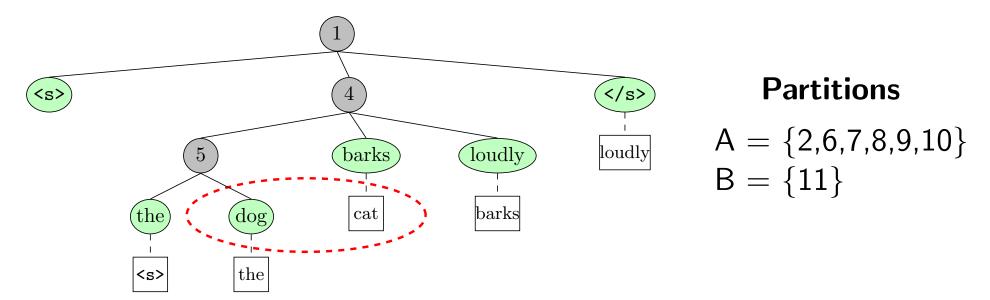
Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



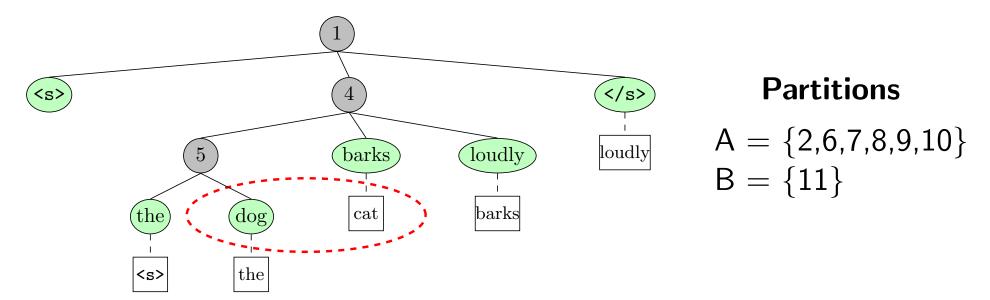
Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



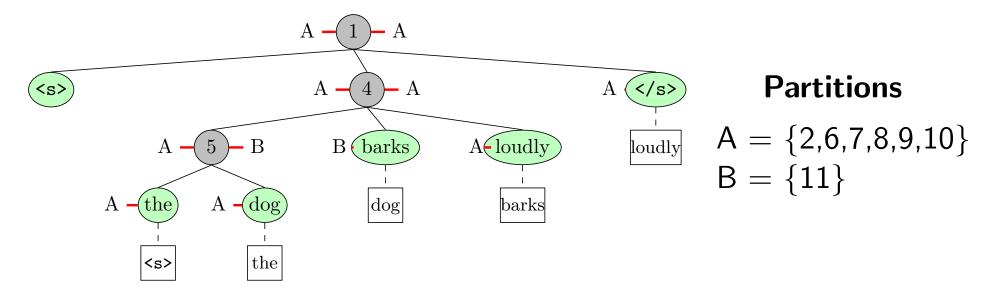
Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)



Experiments

Properties:

- Exactness
- Translation Speed
- Comparison to Cube Pruning

Model:

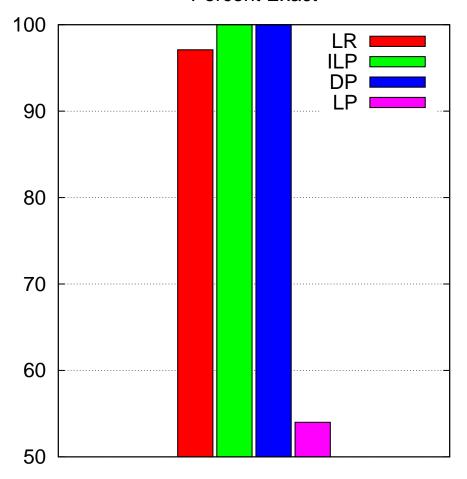
- Tree-to-String translation model (Huang and Mi, 2010)
- Trained with MERT

Experiments:

NIST MT Evaluation Set (2008)

Exactness

Percent Exact



LR Lagrangian Relaxation

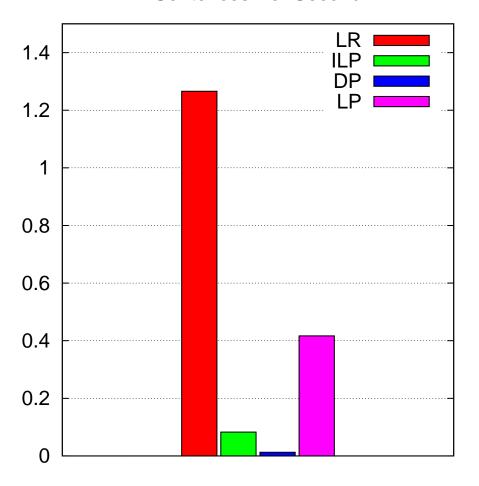
ILP Integer Linear Programming

DP Exact Dynanic Programming

LP Linear Programming

Median Speed

Sentences Per Second



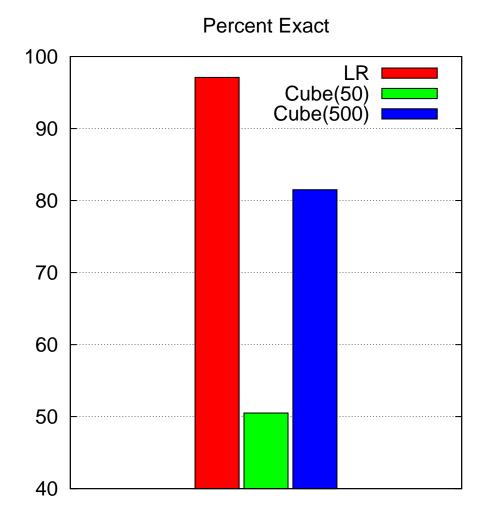
LR Lagrangian Relaxation

ILP Integer Linear Programming

DP Exact Dynanic Programming

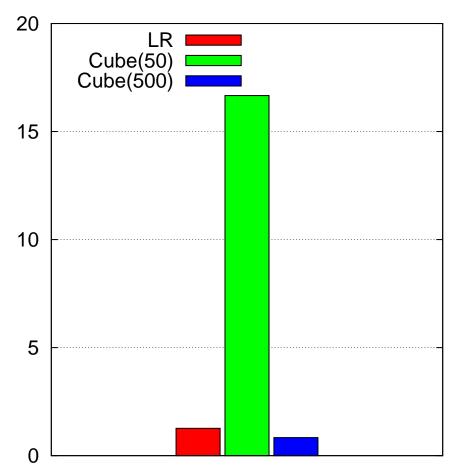
LP Linear Programming

Comparison to Cube Pruning: Exactness



LR
 Lagrangian Relaxation
Cube(50) Cube Pruning (Beam=50)
Cube(500) Cube Pruning (Beam=500)

Comparison to Cube Pruning: Median Speed



LR **Cube(50)**

Lagrangian Relaxation Cube Pruning (Beam=50) Cube(500) Cube Pruning (Beam=500)