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•  Parameter Tuning 

ü Infomap-λ 

 

ü MCL-α 
Ø  Faster convergence and more clusters 

estimated as α à ∞, and vice versa. 
Ø  Resulting performance change is insignificant. 

 
 
•  Local Node Refinements 

 

ü Knowing correct # neighbors seems to be more 
important than actual weight of edges. 

 

•  Evaluation Protocol 
ü Enforce a one-to-one mapping between reference 

and hypothesized clusters. 
ü Greedily pick the mapping that results in smallest 

amount of clustering error. 
ü Results in a single number that can be used to 

compare clustering performance across all 
algorithms and parameters. 

•  Large collections of audio data 
ü Storing and operating on O(N2) inter-utterance 

relationships does not scale well as N à ∞. 
ü Summarize data using a sparse graph, where only 

O(N) relationships are stored and operated upon. 
ü What can we learn about the structure of the data? 

•  K-NN Speaker Content Graphs [1] 

ü Nodes i, j and affinity matrix W, where 

and                 corresponds to the Euclidean distance          
between two speaker GMM supervectors,  

ü Connect m with only its top-K nearest neighbors. 

  

Selected References   

I. Motivation   V. System Refinements III. Graph Clustering Algorithms 
•  Agglomerative  
  Hierarchical  
  Clustering (AHC) 
ü Oracle benchmark, 

#clusters used as  
stopping criterion. 
 
 

•  Modularity Optimization (CNM) [2] 

ü Measure of the edge density within communities 
compared to the density between communities. 

•  Spectral Clustering (NJW) [3] 

ü Use K largest eigenvectors of normalized affinity 
matrix (N x N) to project data onto lower dimensional 
space (i.e., M dimensions) before running K-means. 

ü O(N3) for eigen-* computation is expensive. 
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Spectral Clustering Spectral clustering can produce high-quality
clusterings on small data sets, such as for speaker diarization of
single conversations [15, 16]. However, these methods have lim-
ited scalability due to the required computational cost to obtain the
eigenvectors of the data affinity matrix. Recent works have devel-
oped techniques to sparsify and simplify the procedure via the use
of representative samples [17] or parallelization [18]. For this paper
however, we simply apply the Ng-Jordan-Weiss (NJW) algorithm
[19] in vanilla fashion and discuss its performance in Section 4.

Markov Clustering (MCL) [20] As summarized in [13], this al-
gorithm converts a graph affinity matrix to a stochastic matrix by
dividing the elements of each row by their sum and then iterates be-
tween two steps. During expansion, we compute an integer power of
this matrix (usually a square), which yields the probability matrix of
a random walk after that number of steps (e.g., 2). During inflation,
each element of the matrix is raised to some power, ↵, artificially
enhancing the probability of a random walker being trapped within a
community. By solely iterating on the stochastic matrix, this method
satisfies the Markov property, and we obtain clusters of separated
communities upon convergence.

Infomap [21] The problem of finding the best cluster structure
of a graph can be seen as the problem of optimally compressing its
associated random walk sequence. The goal of Infomap is to arrive
at a two-level description that exploits both the network’s structure
and the fact that a random walker is statistically likely to spend long
periods of time within certain clusters of nodes. More specifically,
we look for a module partition M (i.e., set of cluster assignments)
of N nodes into m clusters that minimizes the following expected
description length of a single step in a random walk on the graph:

L(M) = qyH(Q) +

mX

i=1

pi�H(Pi
). (2)

This equation comprises two terms: first is the entropy of the move-
ment between clusters, and second is the entropy of movements
within clusters, both of which are weighted respectively by the fre-
quency with which it occurs in the particular partitioning. The
specifics are detailed in [21]; we provide this brief overview in
preparation for our proposed refinements in Section 5.

Ultimately, Eqn. (2) serves as a criterion for a bottom-up ag-
glomerative clustering search. The implementation provided by [21]
uses Eqn. (2) to repeatedly merge the two clusters that give the
largest decrease in description length until further merging gives an
increase. Results are further refined using a simulated annealing ap-
proach, the specifics of which can again be found in [21].

4. PRELIMINARY EXPERIMENTS

We run the algorithms described in Section 3 following the default
settings for MCL (↵ = 2) and providing the number of clusters
to both AHC and Spectral-NJW. There do exist a number of ways to
detect the number of clusters from the affinity matrix [15, 16, 19, 22];
however, the computational cost of obtaining all the eigenvalues and
eigenvectors of a 10,000-dimensional affinity matrix, albeit sparse,
is non-trivial. We settle for computing just the largest eigenvalues
and eigenvectors necessary [19].

4.1. Setup

To properly cross-validate performance, we evaluate on two sets of
speaker content graphs - one built by combining the NIST SRE data

Fig. 1. Distribution of the number of utterances per speaker on each
test dataset (NIST SRE 05+06 and NIST SRE 08+10).

from 2005 and 2006, and another built from 2008 and 2010 data.
Both sets include both genders; more detailed information regarding
the distribution of utterances per speaker is shown in Figure 1.

Each speaker utterance is modeled using a MAP-adapted GMM
supervector [23] and compared to other utterances via a Euclidean
distance metric as described in [4]. Lastly, the global scaling param-
eter � from Eqn. (1) is set to be �2

= 0.5; it was found empiri-
cally that the value of this parameter does not affect clustering per-
formance. Each respective set consists of graphs of different edge
densities, built from K = {2, 5, 10, 25, 50, 100} nearest neighbors.

4.2. Evaluation Protocol

There exist a number of different metrics for evaluating cluster qual-
ity, including Precision and Recall, Normalized Mutual Information,
F-score, B-cubed, et cetera [24]. We describe the one we chose be-
low, which met our desire for a single number that summarizes the
essentials and allows us to seamlessly compare performance across
all algorithms and their parameters.

Let our r hypothesized clusters be indexed by i and our s true
clusters be indexed by j. We evaluate our clustering output by con-
sidering all possible alignments that assign each hypothesized cluster
i to exactly one true cluster j. Given such an alignment, say i $ j,
we define cluster error as the number of elements in hypothesized
cluster i whose true cluster is not actually j. Furthermore, any of
the |r� s| extra hypothesized or true clusters that did not receive an
assignment are also counted as errors. Every possible alignment is
considered, and the alignment that provides the smallest clustering
error is used. In enforcing a one-to-one assignment of hypothesized-
to-true clusters, we are able to summarize both the precision and
recall of our clustering output. The procedure described above is
equivalent to the evaluation procedure of “speaker confusion error”
in the NIST Speaker Diarization task [25].

4.3. Initial Results

The results of our initial experiment are summarized in Figure 2.
We can immediately see a systematic dependency between cluster-
ing performance and graph edge density. From Figure 1, it makes
sense that our best results are obtained, across all algorithms, on the
5-NN and 10-NN graphs, since the 5-10 nearest neighbors of an ut-
terance spoken by a particular speaker should ideally be the rest of
the utterances spoken by that same speaker on average.

Although the performances of both AHC and Spectral-NJW are
relatively consistent across graph densities, we should realize that

Fig. 2. Initial results obtained on NIST SRE 05+06 data, using re-
spective default/standard parameter settings for all algorithms con-
sidered. Top: Cluster Error as described in Section 4.2. Bottom:
Number of speakers estimated by each algorithm; note AHC and
Spectral-NJW were both given the number of speakers as input. The
legend is common to both plots.

the number of clusters was given as input to both algorithms. In the
case of AHC, tuning the parameters of the various possible stopping
criteria is beyond the scope of this paper. For Spectral-NJW, the
number of clusters was provided to reduce the time spent computing
eigenvalues and eigenvectors1. In the absence of a baseline method
against which to evaluate our work, we use the results from AHC as
an oracle benchmark for our refinements in Section 5.

The (Un)Importance of Edge Weight The densest graphs built
using more nearest neighbors (K = 50, 100) exhibit worse cluster-
ing performance than their sparse counterparts. When the clustering
algorithms see that an edge exists between two nodes (regardless of
its weight), it assumes that their affinity is high relative to any other
two nodes between which an edge does not exist (i.e., an affinity of
0). Thus, in the absence of information regarding the exact number
of speakers (i.e., AHC and Spectral-NJW), a denser graph that has
more edges by construction will be more likely to combine clusters
that correspond to different speakers. We confirmed this hypothe-
sis by running the same set of clustering experiments on unweighted
versions of each graph and observing that the difference in cluster-
ing performance was negligible. Section 5 returns to this issue and
proposes a way to improve performance on denser graphs.

The Limits of Resolution As mentioned in Section 3, we can at-
tribute the poor performance of CNM to the resolution limit of mod-
ularity optimization methods [14]. Developing ways to overcome the
resolution limit of CNM is beyond the scope of this paper; however,
we acknowledge the development of other modularity optimization
methods devoted to this issue [26]. From here, we proceed by limit-
ing our consideration to the random walk-based algorithms of MCL
and Infomap in our subsequent analyses.

1We should further note that the spectral clustering algorithm we use re-
quires a pass of K-means clustering [19], whose complexity is NP-Hard.

5. SYSTEM REFINEMENTS

5.1. Parameter Tuning

MCL-↵ The input to MCL involves an inflation parameter, ↵,
which is the power to which each element of the stochastic matrix is
raised. An increase in ↵ results in faster convergence and the detec-
tion of more speakers, while a decrease in ↵ detects fewer speaker
clusters. We also found that the optimal value of ↵ = 2 for graphs of
all edge densities is not only independent of the density and the eval-
uation set, but is also the initial default value [20]. Figure 4 shows
virtually no change in performance as a result of tuning ↵.

Infomap-� Although the original formulation of Infomap in [21]
involves no tuneable parameters, the minimization criterion pre-
sented in Eqn. (2) implicitly assigns equal weight to the between-
cluster and within-cluster entropies. As such, we can introduce a
parameter, �, into the equation as follows:

L(M) = qyH(Q) + �

mX

i=1

pi�H(Pi
). (3)

The original Infomap corresponds to � = 1. Letting � ! 1 in-
creases our relative sensitivity to within-cluster entropy and yields
more clusters that are smaller in size. Conversely, letting � ! 0

favors larger and fewer clusters. Figure 3 shows the result of sweep-
ing across a variety of different values of � on both the 05+06 (solid
lines and x’s) and 08+10 (dash-dotted lines and o’s) graphs.

Fig. 3. Results obtained on 05+06 and 08+10 evaluation sets for
varying values of the Infomap-� parameter. For clarity, we show
only results from a subset of the graph densities, but the trends are
similar for other graphs. The legend is common to both plots.

For different graph edge densities there exist different values of
� that cause every cluster to be a singleton; furthermore, the opti-
mal value of � depends strongly on the edge density. But because
the trends are consistent across evaluation sets, it is plausible to pick
these values of � a priori, as though one of the evaluation sets were
a development set and the other a test set2. Upon doing so, Fig-

2Without further validation, we cannot state this as a claim in general.
Indeed, the respective optimality of these algorithms’ parameters may be an
incident of our datasets (SREs 05+06 and 08+10) being too similar in degree
distribution (i.e., Figure 1).

ure 4 shows the result of Infomap-original and Infomap-� alongside
other methods (MCL-original and MCL-↵) considered in this paper.
For each edge density K 2 {2, 5, 10, 25, 50, 100}, �K (as well as
↵K ) is chosen as the value that yields the best clustering error on the
05+06 graph of edge density K as seen in Figure 3. We can see that
introducing and optimizing Infomap-� results in clustering perfor-
mance (on 08+10 data) competitive with both MCL and MCL-↵.

Fig. 4. Final cluster errors obtained on SRE 08+10 data, using both
default parameters (solid lines and x’s) and graph density-optimized
parameters for Infomap-� and MCL-↵ (dash-dotted lines and o’s).

5.2. Local Node Refinements

Fig. 5. Histogram of within- and between-speaker score distribu-
tions as well as the cutoff thresholds discussed in Section 5.2.

In Section 4.3, we demonstrated that information regarding edge
weight magnitude has little impact on clustering performance. To
facilitate a more in-depth analysis, Figure 5 presents the top 100
edge weights of an arbitrary node/utterance A produced by speaker
sA. These edge weights are separated into two different histograms:
red “within-speaker” scores and blue “between-speaker” scores. The
combined score distribution, which is what the clustering algorithms
see, has a right skew. Assuming, per the speaker recognition litera-
ture, that both within- and between-speaker scores can be modeled
using respective Gaussian distributions [27], we can use simple mea-
sures of symmetry and kurtosis to arrive at the following heuristic to
prune away between-speaker edges.

Let ZA denote the combined distribution of scores for some
node A. We keep the subset of scores Z+

A , or edges, that are
greater than some threshold ✓mm (i.e., Z+

A = {z 2 ZA|z > ✓mm}),
where ✓mm is the largest value such that for the subset of scores
Z�

A = {z 2 ZA|z  ✓mm}, mean(Z�
A )  median(Z�

A ). This
method assumes that the mean should be greater than the median
in a combined score distribution with a right skew, but without the
tail of within-speaker scores, the remaining between-speaker score
distribution should be reasonably symmetric.

Taking the assumption of between-speaker score Gaussianity a
step further, we introduce kurtosis into our local-node pruning. In
this case, we choose ✓kurt to be the largest score value such that
kurtosis(Z�

A )  3, where 3 is the kurtosis of a normal distribution.
Figure 5 shows the cutoff found by kurtosis in magenta, as well as
the cutoff, in green, found by the mean-median method above.

It was found that the combination of methods worked best; in
particular, the results shown in Figure 6 were obtained using the
threshold ˜✓ = max {✓mm, ✓kurt}. An edge was pruned away if ei-
ther node in the edge-pair deemed the connection unnecessary. The
resulting average degree, or number of edges, for each (post-pruned)
node is shown on the x-axis. We can see that the pruning improves
performance for the denser graphs (i.e., 25-, 50-, and 100-NN), but
can hurt slightly for sparser graphs. This makes sense, as our pruning
methods assume a heavy presence of between-speaker scores, and a
sparser graph would contain fewer of these samples. These results
were generated using both MCL and Infomap with default parameter
settings. With this refinement method, we are able to attain cluster-
ing performance equal to that of our AHC oracle benchmark.

Fig. 6. 08+10 results obtained after pruning away scores of a 100-
NN graph using the heuristics described in Section 5.2. Both origi-
nal and new graph densities are labeled on the x-axis.

6. CONCLUSION

In this paper, we have surveyed a number of methods to perform
tractable, large-scale clustering on sparse speaker content graphs
containing over 10,000 nodes. In obtaining clustering error rates as
low as 10%, AHC provides the best results across graphs of all edge
densities; however, such performance is contingent on the number
of clusters provided as input, and it was outside the current research
scope to address less-supervised stopping criteria.

The random walk algorithms, MCL and Infomap, show promis-
ing results. MCL worked consistently and performed well without
the need for any parameter tuning. And after introducing a � param-
eter into the optimization, Infomap could be tuned to work at least
as well as MCL. Lastly, we proposed techniques to better utilize the
information provided in denser graphs, resulting in clustering per-
formance competitive with that of our AHC oracle benchmark.
Acknowledgments We would like to thank Najim Dehak and Jim
Glass for their helpful insights in the development of this work.

•  Infomap [4] 

ü Two-level compression of a random walk sequence, 
weighing between- and within-cluster entropies. 

λ 

λ > 1 yields more, 
smaller clusters. 

 

λ < 1 yields fewer, 
larger clusters. 
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6. CONCLUSION

In this paper, we have surveyed a number of methods to perform
tractable, large-scale clustering on sparse speaker content graphs
containing over 10,000 nodes. In obtaining clustering error rates as
low as 10%, AHC provides the best results across graphs of all edge
densities; however, such performance is contingent on the number
of clusters provided as input, and it was outside the current research
scope to address less-supervised stopping criteria.

The random walk algorithms, MCL and Infomap, show promis-
ing results. MCL worked consistently and performed well without
the need for any parameter tuning. And after introducing a � param-
eter into the optimization, Infomap could be tuned to work at least
as well as MCL. Lastly, we proposed techniques to better utilize the
information provided in denser graphs, resulting in clustering per-
formance competitive with that of our AHC oracle benchmark.
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•  Unimportance of edge weight! (above right) 

•  CNM hindered by resolution limit 
ü  Evidenced by how few clusters are detected. 

•  Spectral-NJW uses #clusters as input 
ü  Still worse than AHC. 

•  MCL & Infomap 
ü  Do well at finding many small clusters. 

IV. Preliminary Results 

“Iterate until 
convergence” 

•  Markov Clustering (MCL) [5] 

ü “State” of clusters stored in normalized affinity matrix. 

For different edge 
densities, there 

exists a value for λ 
that optimizes 

clustering 
performance. 

Fig. 2. Initial results obtained on NIST SRE 05+06 data, using re-
spective default/standard parameter settings for all algorithms con-
sidered. Top: Cluster Error as described in Section 4.2. Bottom:
Number of speakers estimated by each algorithm; note AHC and
Spectral-NJW were both given the number of speakers as input. The
legend is common to both plots.

the number of clusters was given as input to both algorithms. In the
case of AHC, tuning the parameters of the various possible stopping
criteria is beyond the scope of this paper. For Spectral-NJW, the
number of clusters was provided to reduce the time spent computing
eigenvalues and eigenvectors1. In the absence of a baseline method
against which to evaluate our work, we use the results from AHC as
an oracle benchmark for our refinements in Section 5.

The (Un)Importance of Edge Weight The densest graphs built
using more nearest neighbors (K = 50, 100) exhibit worse cluster-
ing performance than their sparse counterparts. When the clustering
algorithms see that an edge exists between two nodes (regardless of
its weight), it assumes that their affinity is high relative to any other
two nodes between which an edge does not exist (i.e., an affinity of
0). Thus, in the absence of information regarding the exact number
of speakers (i.e., AHC and Spectral-NJW), a denser graph that has
more edges by construction will be more likely to combine clusters
that correspond to different speakers. We confirmed this hypothe-
sis by running the same set of clustering experiments on unweighted
versions of each graph and observing that the difference in cluster-
ing performance was negligible. Section 5 returns to this issue and
proposes a way to improve performance on denser graphs.

The Limits of Resolution As mentioned in Section 3, we can at-
tribute the poor performance of CNM to the resolution limit of mod-
ularity optimization methods [14]. Developing ways to overcome the
resolution limit of CNM is beyond the scope of this paper; however,
we acknowledge the development of other modularity optimization
methods devoted to this issue [26]. From here, we proceed by limit-
ing our consideration to the random walk-based algorithms of MCL
and Infomap in our subsequent analyses.

1We should further note that the spectral clustering algorithm we use re-
quires a pass of K-means clustering [19], whose complexity is NP-Hard.

5. SYSTEM REFINEMENTS

5.1. Parameter Tuning

MCL-↵ The input to MCL involves an inflation parameter, ↵,
which is the power to which each element of the stochastic matrix is
raised. An increase in ↵ results in faster convergence and the detec-
tion of more speakers, while a decrease in ↵ detects fewer speaker
clusters. We also found that the optimal value of ↵ = 2 for graphs of
all edge densities is not only independent of the density and the eval-
uation set, but is also the initial default value [20]. Figure 4 shows
virtually no change in performance as a result of tuning ↵.

Infomap-� Although the original formulation of Infomap in [21]
involves no tuneable parameters, the minimization criterion pre-
sented in Eqn. (2) implicitly assigns equal weight to the between-
cluster and within-cluster entropies. As such, we can introduce a
parameter, �, into the equation as follows:

L(M) = qyH(Q) + �

mX

i=1

pi�H(Pi
). (3)

The original Infomap corresponds to � = 1. Letting � ! 1 in-
creases our relative sensitivity to within-cluster entropy and yields
more clusters that are smaller in size. Conversely, letting � ! 0

favors larger and fewer clusters. Figure 3 shows the result of sweep-
ing across a variety of different values of � on both the 05+06 (solid
lines and x’s) and 08+10 (dash-dotted lines and o’s) graphs.

Fig. 3. Results obtained on 05+06 and 08+10 evaluation sets for
varying values of the Infomap-� parameter. For clarity, we show
only results from a subset of the graph densities, but the trends are
similar for other graphs. The legend is common to both plots.

For different graph edge densities there exist different values of
� that cause every cluster to be a singleton; furthermore, the opti-
mal value of � depends strongly on the edge density. But because
the trends are consistent across evaluation sets, it is plausible to pick
these values of � a priori, as though one of the evaluation sets were
a development set and the other a test set2. Upon doing so, Fig-

2Without further validation, we cannot state this as a claim in general.
Indeed, the respective optimality of these algorithms’ parameters may be an
incident of our datasets (SREs 05+06 and 08+10) being too similar in degree
distribution (i.e., Figure 1).


