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Abstract—In speaker diarization, standard approaches typically
perform speaker clustering on some initial segmentation before
refining the segment boundaries in a re-segmentation step to
obtain a final diarization hypothesis. In this paper, we integrate
an improved clustering method with an existing re-segmentation
algorithm and, in iterative fashion, optimize both speaker cluster
assignments and segmentation boundaries jointly. For clustering,
we extend our previous research using factor analysis for speaker
modeling. In continuing to take advantage of the effectiveness
of factor analysis as a front-end for extracting speaker-specific
features (i.e., i-vectors), we develop a probabilistic approach to
speaker clustering by applying a Bayesian Gaussian Mixture
Model (GMM) to principal component analysis (PCA)-processed
i-vectors. We then utilize information at different temporal res-
olutions to arrive at an iterative optimization scheme that, in
alternating between clustering and re-segmentation steps, demon-
strates the ability to improve both speaker cluster assignments
and segmentation boundaries in an unsupervised manner. Our
proposed methods attain results that are comparable to those of
a state-of-the-art benchmark set on the multi-speaker CallHome
telephone corpus. We further compare our system with a Bayesian
nonparametric approach to diarization and attempt to reconcile
their differences in both methodology and performance.

Index Terms—Bayesian nonparametric inference, factor anal-
ysis, HDP-HMM, i-vectors, principal component analysis, speaker
clustering, speaker diarization, spectral clustering, variational
Bayes.

I. INTRODUCTION

A UDIO diarization is defined as the task of marking
and categorizing the different audio sources within an

unmarked audio sequence. The types and details of the audio
sources are application specific, but can include particular
speakers, music, background noise sources, et cetera. This
paper concerns speaker diarization, or “who spoke when,” the
problem of annotating an unlabeled audio file where speaker

Manuscript received November 06, 2012; revised January 18, 2013 and May
02, 2013; accepted May 10, 2013. Date of publication May 22, 2013; date of
current version nulldate. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Steve Renals.
S. H. Shum, N. Dehak, and J. R. Glass are with the MIT Computer Science

and Artificial Intelligence Laboratory, Cambridge, MA 02139 USA (e-mail:
sshum@csail.mit.edu; najim@csail.mit.edu; glass@csail.mit.edu).
R. Dehak is with the Laboratoire de Recherche et de Développement de

l’EPITA, Paris 94276, France (e-mail: reda.dehak@lrde.epita.fr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASL.2013.2264673

changes occur (segmentation) and then associating the different
segments of speech belonging to the same speaker (clustering)
[1].
There exists a large amount of previous work on the diariza-

tion problem, much of which is reviewed in [1]–[3]. Because
of its relative simplicity, the Bayesian Information Criterion
(BIC) has served as a backbone and an inspiration for the de-
velopment of a number of initial approaches involving speaker
change detection and bottom-up hierarchical clustering [4], [5].
Bottom-up approaches in general, where a number of clusters or
models are trained and successively merged until only one re-
mains for each speaker, are easily the most popular in the com-
munity and consistently tend to achieve the state-of-the-art [6],
[7]. A more integrated, top-down method that has achieved suc-
cess is based on an evolutive Hidden Markov Model (HMM),
where detected speakers help influence the detection of other
speakers as well as their transitions and boundaries [8], [9]. An-
other approach was developed based on the “Infinite HMM,”
where a Hierarchical Dirichlet Process (HDP) was introduced
on top of an HMM (hence, an HDP-HMM), thus allowing for
up to a countably infinite number of HMM states (i.e., speakers)
[10], [11]. The authors of [10] enhanced the modeling ability of
the HDP-HMM by introducing a sticky parameter, which allows
for more robust learning of smoothly varying dynamics. Subse-
quently, the work in [11] further extends the model to allow for
explicit modeling of speaker duration.
In one sense, HDPs have become well-known in field of

Bayesian nonparametric statistics, and the use of Markov Chain
Monte Carlo (MCMC) sampling methods have enabled the
practical application of these methods to a variety of problems
[12], including diarization. However, variational inference
is another useful technique for approximate inference that
was first applied to the diarization problem in [5] and further
extended in [13]. These methods, alongside the successful
application of factor analysis as a front-end for extracting
speaker-specific features [13], [14], serve as a basis for much
of the work discussed in this paper.
Our previous work in [15] developed an approach to diariza-

tion based on the successes of factor analysis-based methods
in speaker recognition [16], as well as diarization [13], [14].
Inspired by the ability of the Total Variability subspace to ex-
tract speaker-specific features on short segments of speech [16],
[17], we proposed a method for performing speaker clustering
directly in the low-dimensional Total Variability subspace. By
evaluating the performance of our system on the same summed-
channel telephone data from the 2008 NIST Speaker Recogni-
tion Evaluation (SRE), we showed that our resulting work is not
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only simpler than the Variational Bayes system formulated pre-
viously in [13], but can also achieve the same state-of-the-art
performance.
The success achieved in [15], however, was limited to the

task in which we knew there were exactly two speakers in the
given conversation. To solve the diarization problem in gen-
eral, we must address the setting in which the number of par-
ticipating speakers is unknown a priori. Our work in [18] ap-
proached this problem in incremental fashion. First, we moti-
vated the use of a spectral clustering algorithm as an alternative
to the previous approach involving K-means clustering based
on the cosine distance. More importantly, we adapted a heuristic
from previous work applying spectral clustering to diarization
and used it to determine the number of clusters (i.e., speakers)
[19]. Second, we verified that there exists a symbiotic relation-
ship between clustering and segmentation; that is, better ini-
tial segmentations yield better speaker clusters, and conversely,
better speaker clusters aid in providing cleaner speaker seg-
ments. Ultimately, our system performed competitively against
the state-of-the-art benchmark set by [14] on a corpus of multi-
speaker telephone conversations.
This paper continues the story of [15], [18] and extends upon

a number of explorations put forth in [20]. We posit that every
method considered—by us and others—for speaker diarization
has its advantages and disadvantages; as such, it becomes our
goal to design a system that can effectively combine the advan-
tages of different approaches and let them benefit each other
with minimal supervision. To be sure, this is not a method about
the combination or fusion of independently-operating systems.
Rather, we extend the algorithm proposed in [18], which it-
eratively refines its diarization hypotheses until some form of
convergence is obtained, to complement our consideration for a
more probabilistic approach to speaker clustering.
There exist a number of attempts at using factor anal-

ysis-based methods for speaker diarization. The inspirations
for our current saga, [13] and [14], also independently led to
the work presented in [21], which uses PCA and K-means for
two-speaker diarization in a way similar to our methods in [15].
Factor analysis-based features are used in [22] alongside the
Cross Likelihood Ratio as a criterion for hierarchical clustering,
while [23] performs clustering using PLDA as inspired by its
recent success in speaker verification. Moreover, the work in
[24] defines the assignment of speech segments—each repre-
sented using a factor analysis-based feature vector—to speaker
clusters in terms of an Integer Linear Program. And along the
lines of nonparametric methods for statistical inference, use
of the mean-shift algorithm for clustering these vectors was
explored in [25].
Although more detailed explanations can be found

throughout the rest of this paper, we first summarize the
novel contributions presented in our work below:
1) Demonstrate how applying principal component analysis
(PCA) on length-normalized (i.e., cosine similarity-based)
i-vectors renders them appropriate for analysis in a Eu-
clidean space (Section IV-B-1).

2) Utilize variational inference on a Bayesian Gaussian
Mixture Model (GMM) and an iterative component-death

process (Section IV-B-2) to simultaneously cluster and
detect the number of speakers in a given conversation.

3) Follow up on the work in [18] to further demonstrate and
explain the effectiveness of iteratively optimizing segment
boundaries and cluster assignments, thus taking advantage
of multiple levels of information (i.e., at different temporal
scales) to improve diarization hypotheses in unsupervised
fashion. (Section V-B).

4) Introduce a technique to utilize the uncertainty—that is,
the covariance—of an i-vector estimate, which involves
drawing a number of samples from each segment’s i-vector
posterior distribution that is proportional to the length of
the segment used to extract that i-vector (Section V-C).

In addition to presenting our proposed system in its entirety,
we hope this paper can also serve to establish the notion that
a factor analysis-based front-end is effective for extracting
speaker-specific features from a given speech segment regard-
less of its length. And lastly, we hope this work can serve
as an initial, though certainly not final, comparison between
our proposed clustering approach using variational inference
and the HDP-HMM approach using Bayesian nonparametric
methods [10].
The rest of this paper is organized as follows. Section II pro-

vides some background on the Total Variability approach as
a factor analysis-based front-end for extracting i-vectors, and
Section III outlines the basic setup of our diarization system.
At the theoretical heart of the paper, Section IV motivates a
speaker clustering approach based on the use of PCA and a
Bayesian GMM. In Section V, we outline a number of possible
refinements that can be made to the system, including an exten-
sion to the iterative re-segmentation/clustering algorithm that
was originally proposed in [18] and a concept known as dura-
tion-proportional sampling of the i-vector posterior distribution.
The results of our experiments are analyzed and explained in
Section VI, while Sections VII and VIII conclude our discus-
sion of this work and look ahead to future possibilities.

II. FRONT-END FACTOR ANALYSIS

At the heart of speaker diarization lies the problem of speaker
modeling; logically, successful techniques in speaker modeling
should also be capable of producing good results in diariza-
tion [13]. In recent years, methods in factor analysis, where a
low-dimensional space of “factors” is used to statistically model
a higher dimensional “feature space,” have proven to be very
effective in speaker recognition, the task of verifying whether
two utterances are spoken by the same speaker [16]. We pro-
vide some intuition on how factor analysis serves as a front-end
to extract relevant information from an audio sequence; more
technical expositions can be found at [16], [20], [26], [27].

A. Acoustic Features

We first assume that the incoming audio has been transformed
into a sequence of acoustic feature vectors. Specifically, we use
raw Mel-Frequency Cepstral Coefficients (MFCCs) extracted
every 10 ms over a 25 ms window. These MFCCs are 20-di-
mensional vectors and are the basis for our subsequent mod-
eling. In practice, a number of variants can be used; for example,



SHUM et al.: UNSUPERVISED METHODS FOR SPEAKER DIARIZATION: AN INTEGRATED AND ITERATIVE APPROACH 3

many speaker recognition systems also include first and second
derivatives into their feature vector, cepstral mean subtraction,
as well as a Gaussianization feature warping step that can nor-
malize for short-term channel effects [28]. However, in order to
follow the footsteps of previous work as closely as possible, we
limit our consideration to just the use of raw cepstral features,
as that provided the best results in [13]. The rest of this paper
assumes that all audio has been transformed into a sequence of
acoustic feature vectors.

B. The Total Variability Approach

To enhance the classical method of modeling speakers using
Gaussian Mixture Models (GMMs) [29], recently developed
methods apply factor analysis to supervectors—a vector con-
sisting of stacked mean vectors from a GMM—in order to better
represent speaker variabilities and compensate for channel (or
session) inconsistencies [16]. One such approach is Total Vari-
ability, which decomposes a speaker- and session-dependent su-
pervector as

(1)

where is still the speaker- and session-independent super-
vector taken from the Universal Background Model (UBM),
which is a large GMM trained to represent the speaker-inde-
pendent distribution of acoustic features [29]. is a rectan-
gular matrix of low rank that defines the new total variability
space and is a low-dimensional random vector with a nor-
mally distributed prior . The remaining variabilities not
captured by are accounted for in a diagonal covariance ma-
trix, . The vector can be referred to as a “total
factor vector” or an i-vector, short for “Intermediate Vectors”
for their intermediate representation between an acoustic fea-
ture vector and a supervector.
One way to interpret (1) is to see the columns of as a limited

set of directions from which can deviate from , the latter
of which is a starting point, or bias, taken from the UBM. Ul-
timately, for some utterance , its associated i-vector can
be seen as a low-dimensional summary of the speaker’s distri-
bution of acoustic features with respect to the UBM.
To avoid getting bogged down in the mathematics, we omit

the details regarding the training and estimation of and
via an Expectation-Maximization (EM) algorithm. A thorough
treatment can be found in Subsection 3.3.1 of [20] as well as
in [26]. For convenience throughout the rest of this paper, we
use the term “i-vector extraction” to denote estimation of the
posterior distribution of (mean and covariance). Moreover,
the term “i-vector” refers specifically to the posterior mean of ,
while “i-vector covariance”will refer to its posterior covariance.
Lastly, the cosine similarity metric has been applied success-

fully in the Total Variability subspace to compare two speaker
i-vectors [16]. Given any two i-vectors and , the cosine
similarity score is given as

(2)

Equivalently, this means we can normalize the i-vectors by their
respective magnitudes such that they all live on the unit hyper-
sphere and the measure of the distance between two i-vectors is
given by their angle.

III. SYSTEM SETUP

We set up the various components of our diarization system
to be consistent with those of our previous work in [15], [18].
The rest of this section outlines the various parts of the system.

A. Evaluation Protocol

Before diving into the specifics, it is helpful to better un-
derstand how our system will be evaluated. Set up by NIST
[30], the Diarization Error Rate (DER) is the primary perfor-
mance measure for the evaluation of diarization systems and
is given as the time-weighted sum of the following three error
types: Miss (M)—classifying speech as non-speech, False
Alarm (FA)—classifying non-speech as speech, and Confusion
(C)—confusing one speaker’s speech as from another [30]. The
reference segmentation is a transcript of speech and speaker
boundaries as given by the corpus. Following the conventions
for evaluating diarization performance, the evaluation code
ignores intervals containing overlapped speech as well as errors
of less than 250 ms in the locations of segment boundaries
[30]. Although overlapped speech intervals do not count in
evaluating DER’s, the diarization systems do have to contend
with overlapped speech in performing the speaker segmentation
and clustering.

B. Segmentation

In order to focus solely on the speaker confusion portion of
the Diarization Error Rate (DER) and not be misled by mis-
matches between the reference speech/non-speech detector and
our own (i.e., miss and false alarm errors), we follow the con-
vention of previous works [13], [14] and use the provided refer-
ence boundaries to define our initial speech/non-speech bound-
aries. Within these boundaries, we restrict each speech segment
to a maximum length of one second, and an i-vector is extracted
from each. It should be noted that this rather crude initial seg-
mentation may result in segments that contain speech frommore
than one speaker.

C. Clustering

The clustering stage involves grouping the previously-ex-
tracted segment i-vectors together in such a way that one cluster
contains all the segments spoken by a particular speaker. And
unless given a priori, the number of speakers (clusters)
must also be determined at this stage. Because it is known that
we are strictly diarizing conversations (involving two or more
participants), we require that , where is our estimate
of . There exist many different ways to perform clustering;
Section IV provides an in-depth look at our choice of clustering
method.

D. Re-Segmentation

Given a set of segments with associated cluster labels, we
use the exact same re-segmentation algorithm discussed in both
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[13], [15] to refine our initial segmentation boundaries. At the
acoustic feature level, this stage initializes a 32-mixture GMM
for each of the clusters (Speakers and non-
speech NS) defined by the previous clustering. Posterior proba-
bilities for each cluster are then calculated given each feature
vector (i.e., ). Pooling
these across the entire conversation provides a set of weighted
Baum-Welch statistics from which we can re-estimate each re-
spective speaker’s GMM. To prevent this unsupervised proce-
dure from going out of control, the non-speech GMM is never
re-trained. During the Viterbi stage, each frame is assigned to
the speaker/non-speech model with the highest posterior prob-
ability. This algorithm runs until convergence but is capped
at 20 Viterbi iterations, each of which involves 5 iterations of
Baum-Welch re-estimation.

E. Final Pass Refinements

As in [15], we can further refine the diarization output by ex-
tracting a single i-vector for each respective speaker using the
(newly-defined) segmentation assignments. The i-vector corre-
sponding to each segment (also newly extracted) is then re-as-
signed to the speaker whose i-vector is closer in cosine simi-
larity. We iterate this procedure until convergence—when the
segment assignments no longer change. This can be seen as a
variant of K-means clustering, where the “means” are computed
according to the process of i-vector estimation detailed in [16].

IV. SPEAKER CLUSTERING

Our previous work has shown that K-means clustering using
the cosine distance is capable of achieving good clustering re-
sults on conversations containing any number of speakers [15],
[18], [20]. Unfortunately, K-means requires as input the number
of clusters to find. In [18], we adapted the use of a heuristic to
estimate the number of speakers in a conversation by using a
spectral clustering method, which analyzes the eigen-structure
of an affinity matrix. This technique gave reasonable perfor-
mance; however, its success as a heuristic only served to further
inspire the development of a more principled approach.
The explorations of [20] touched upon the use of Bayesian

model selection as an analog for determining the number of
speakers in a conversation. Bayesian methods have the advan-
tage of naturally preferring simpler models for explaining data.
At least in theory, they are not subject to the overfitting prob-
lems which maximum likelihood methods are prone to [13].

A. The Bayesian GMM and Its Variational Approximation

Let us consider the graphical model of a Bayesian GMM
as depicted in Fig. 1. Suppose each observed i-vector ,

, is generated by some latent speaker , which is
drawn according to some Dirichlet distribution (parametrized
by a vector ) over the mixing coefficients . By symmetry, we
choose the same parameter for each component of ; and as
we will further discuss in Section VI-D, a small value of will
cause the resulting posterior distribution of to be influenced
primarily by the observed data rather than by the prior [31].
We also introduce a Gaussian-Wishart prior to govern the

mean and covariance of the th Gaussian component.

Fig. 1. A directed acyclic graphical model representing a Bayesian GMM.
The dotted plate representation denotes a set of repeated occurrences, while
the shaded node denotes an observation. For the parameters, represents

and represents , while the hyperparameters are
shown in boxes.

Specifically, we assume , thus illustrating
the dependence of on . We typically choose ; a
more in-depth discussion of this model can be found in [31].
In applying this model, we ignore the time indices by which

the i-vectors are created and treat each as an independent and
identically distributed (i.i.d.) observation generated by some un-
known (latent) speaker and attempt to identify the number of
clusters (i.e., speakers) in addition to associating each i-vector
(i.e., segment) with a cluster. The number of clusters can be seen
as the number of mixing coefficients in that are numerically
non-trivial, though we also consider an iterative re-initializa-
tion heuristic in Section IV-B-2. And lastly, we can simply as-
sociate each i-vector to the cluster that has the highest posterior
probability.
Unfortunately, the richness of Bayesian theory often renders

exact probabilistic inference computationally intractable. To
that end, we drew upon previous work on variational inference
and applied it to the speaker clustering problem [5]. The basic
idea of variational inference is to formulate the computation
of a marginal or conditional probability distribution in terms
of an optimization problem [12], [31]. This (generally still
intractable) problem is then “relaxed,” yielding a simplified
optimization of a lower bound to the marginal log-likelihood1

known as the free energy. To maximize this free energy, it is
possible to derive an iterative Expectation-Maximization (EM)
algorithm known as Variational Bayesian EM (VBEM). For
the exact algorithmic details, we refer the interested reader to
[5], [31], [32] for a more complete treatment of this topic.

B. VBEM-GMM Clustering

We turn to VBEM to perform tractable, albeit approximate,
inference on a Bayesian GMM. The derivation is straight-
forward, and the exact parameter updates for this resulting
VBEM-GMM algorithm can be found in Section 6.3 of [20] as
well as in [5], [31]. Yet upon rote application of VBEM-GMM
to a “bag” of i-vectors extracted from an utterance, it was clear
that Gaussians are not an adequate representation for data that
live on the unit hypersphere. We subsequently applied varia-
tional inference to mixtures of von Mises-Fisher distributions
(Mix-vMF), but its performance did not provide sufficient gains

1i.e., , where is the data and is some
given model.
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Fig. 2. (Top left) A visualization of the first two principal components of the
i-vectors in a three-speaker conversation. The rest of the plots show the result
of VBEM-GMM clustering after a single iteration (top right), three iterations
(bottom right), and the final results (bottom left). After iterations 1 and 3, we
can see that the Gaussians that do not model any significant amount of data
have collapsed to the origin (i.e., their prior distribution). The clustering of the
i-vectors in this utterance ultimately resulted in a DER of 6%.

to justify its increased complexity over the use of VBEM-GMM
[20]. Ideally, there would exist some way to map our data from
the unit hypersphere into a reasonable Euclidean space in which
a rote application of VBEM-GMM would yield good results.
1) Dimensionality Reduction: A typical five-minute conver-

sation is segmented into approximately 300 i-vectors, each of
which lives on a 100-dimensional hypersphere. However, we
should also note that each conversation in our evaluation set
contains nomore than seven speakers,2 so clustering these i-vec-
tors by speaker should not require that our data be represented
in such a high dimensional space. The plot on the top left of
Fig. 2 shows the first two principal components of the i-vectors
in a three-speaker conversation after applying Principal Com-
ponent Analysis (PCA). These points no longer lie on a unit
hypersphere; rather, the Euclidean distance is now a reasonable
metric for our data. Lastly, we can see that the clusters are in-
deed distinct despite such a limited representation, thus further
supporting the validity of applying VBEM-GMM as previously
mentioned.
2) An Iterative Component-Death Process: Ultimately,

we would like the output of VBEM-GMM to attribute the
responsibility of each i-vector to a single Gaussian; thus, how
we determine the exact number of Gaussians necessary for
our VBEM-GMM warrants consideration. In a so-called “birth
process,” we might begin with a single Gaussian and continu-
ally split components along some direction of maximal variance
until the free energy is maximized [32]. Another possibility is
to consider the entire range of possible cluster numbers, run
VBEM on each of them, and select the result that achieves
the largest free energy [31]. Empirically, we obtained our best
results using a “component-death process,” where we over-ini-

2To be sure, this fact is not used as an input to our diarization system.

tialized the number of cluster components (e.g., ,
although another initialization heuristic will be discussed in
Section V-A) and ran VBEM. Often upon convergence of our
free energy optimization, only a strict subset of those clusters

will actually model any reasonable portion of the
variability within the data. As such, we subsequently remove
the Gaussians that are not responsible for modeling any data
and randomly re-initialize VBEM with clusters. To be
sure, this means we completely restart the VBEM clustering
procedure as though this were the first time we have ever
seen the data; the only difference is that we initialize with
clusters instead of . This process continues until
for some , at which point the number of clusters has
converged and we have the result of our clustering.3

Viewed clockwise from the top right, Fig. 2 shows the
intermediate results of this clustering on the first three prin-
cipal components of the same three-speaker conversation as
mentioned in the preceding section. After the first iteration
of VBEM-GMM (top right), seven Gaussian components
remain. After the third iteration (bottom right), four compo-
nents remain. At the end, we see that iterative VBEM-GMM
correctly detects and clusters the three-speaker conversation
accordingly (bottom left). The intermediate iterations (top
and bottom right) show how the VBEM-GMM clustering free
energy can get stuck in local optima, a feat not uncommon
in many approximate inference methods. For this reason, the
random re-initializations give the clustering method additional
opportunities to find a global optimum.

V. SYSTEM REFINEMENTS

The previous section explained our proposed method for
speaker clustering; however, there also exist many areas in
which a speaker diarization system can refine and optimize its
performance. In this section, we consider a number of other
possible techniques for improving our performance at the
system level, the feature representation level, and the initializa-
tion level.

A. Initialization With Spectral Clustering

For our baseline experiment, the VBEM-GMM clustering
method is initialized using K-means clustering (standard Eu-
clidean distance) with . This value of was chosen
arbitrarily so as to significantly over-initialize the number of
clusters without being unreasonably large. A better initializa-
tion, however, would allow the algorithm to converge faster. In
[18], we obtained reasonable estimates of speaker number by
adapting the use of a heuristic based on a spectral clustering al-
gorithm [19]. The details of the algorithm itself as well as an
intuitive explanation for why it works is given in [18]; here, we
simply outline the steps of the algorithm needed to estimate the
number of clusters.
Assume we are given i-vectors (each

corresponding to a speech segment 1 sec in length).

3We should admit that this is not at all a fully Bayesian solution, nor did
we intend for it to be. We chose to use a Bayesian GMM and, hence, efficient
variational inference, because in contrast to maximum likelihood, such methods
are less likely to overfit the data when presented with an over-initialization of
the number of clusters.
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Form the affinity matrix , where
when and . Here,

, where is
given by (2). For reasons explained in Section 4.1 of [18], the
scaling factor is set to be 0.5. Define to be the diagonal
matrix whose -element is the sum of ’s -th row, and
construct the matrix [33].
It was seen experimentally that the sorted eigenvalues of
, say , exhibit exponential decay and that
the number of speakers in a conversation correspond consis-
tently to when the gradient of these eigenvalues exceeds some
threshold . As such, to determine the number of clusters, we
can fit, in a way that minimizes the mean squared error, a smooth
exponential to , where and

. We then take to be the smallest value whose deriva-
tive [18].
Because of the non-increasing nature of our iterative

VBEM-GMM clustering (i.e., ), we need to en-
sure that the spectral clustering-based initialization is, with
high probability, greater than the actual number of speakers
in the conversation . Indeed, we want a more informed
initialization than , but it would be far worse to
initialize the clustering with an underestimate that forces some
clusters to model speech from more than one speaker, thereby
irreversibly corrupting our speaker models. Upon looking at
the error distribution of —the number of speakers estimated
via spectral clustering—over development data, we introduce a
bias such that our initialization , where
is the standard deviation of the error distribution of and the
ceiling function ensures that is an integer.

B. Iterative Optimization

It was shown in [18] that when the number of speakers needs
to be estimated, improved results are obtained via an iterative
optimization procedure, which alternates between clustering
and re-segmentation until the diarization hypothesis converges.
Similar to the notion of giving the iterative VBEM-GMM
clustering method more opportunities to find a global optimum,
the iterative optimization procedure gives the system more
opportunities to re-estimate the number of speakers using
(hopefully) cleaner and more refined speech segments. We
follow the explanation provided in [18] to reiterate the intuition
behind this idea.
The use of factor analysis for speaker diarization allows us to

take advantage of multiple levels of speaker information. I-vec-
tors are designed to provide information specific to speaker (and
channel) identity, which is important for clustering; however,
the effectiveness of an i-vector is proportional to the length of
the speech segment from which it is extracted, thus it is not as
well-suited for issues requiring finer temporal resolution (e.g.,
speaker change detection). By contrast, lower-level acoustic
features such as MFCCs are not quite as good for discerning
speaker identities, but can provide sufficient temporal resolu-
tion to witness local speaker changes and segment boundaries.
To that end, we formulate an algorithm that optimizes both

segmentation boundaries and segment cluster assignments
in iterative fashion. More specifically, we can alternate be-
tween VBEM-GMM clustering (done at the i-vector level) as

described in Section IV-B and applying the re-segmentation
method (done at the acoustic feature level) as described in
Section III-D until successive diarization hypotheses “con-
verge.” In general, this iterative concept was proposed initially
in [34] and then adopted by other systems in practice [6], [9].
Our exact approach was inspired by the work in [13]—they
began with a crude initial segmentation and ran factor anal-
ysis-based clustering followed by Viterbi re-segmentation and
then a second pass of the clustering (using the new segmenta-
tion) to obtain a final diarization hypothesis—we have simply
formalized this idea and introduced the notion of convergence.
Let us approximate a “distance” between two diarization
hypotheses and by running it through a diarization
evaluation script as provided by NIST [30]. Then we can define
a “convergence” to be when this error rate (i.e., )
between the hypotheses from the previous two iterations is
below some threshold . In our experiments, we set
and allow a maximum of 20 total iterations.4 These values were
set to optimize a combination of both system performance and
run-time on the development set. Ultimately, our test results
required an average of 3.7 iterations per conversation; the
numbers varied widely by conversation,5 however, and were
independent of both the number of speakers present and the
resulting DER.
It should be noted that the re-segmentation output from

Section III-D includes both segment boundaries and cor-
responding cluster assignments. During this iterative opti-
mization process, however, the assignment labels from the
re-segmentation output are not provided as input to the clus-
tering stage—only the segment boundaries are considered.
Lastly, the number of speakers is also re-estimated at the
start of each clustering stage. By requiring that the clustering
and re-segmentation steps are run in this completely disjoint
fashion, we ensure that information from different temporal
resolutions is used only for its designed purpose; that is, only
information at the i-vector level will be used for the clustering
of segments, and only information at the acoustic feature level
will be used to determine segment boundaries.

C. Duration-Proportional Sampling

Our discussion thus far has been restricted to the use of
i-vectors as point estimates. During clustering, all i-vectors are
treated as independent, identically distributed i.i.d. samples
from some underlying distribution. This assumption, however,
is not necessarily true. For example, a segment that is five
seconds long gives a much better representation of the speaker
than a segment 0.5 s in length; yet, both segments yield i-vec-
tors of the same dimensionality and are treated equally during
clustering.
Recall from Section II-B that the “i-vector” is merely the pos-

terior mean of as given by (1). There is also an associated
posterior covariance of , which we termed “i-vector covari-
ance,” whose determinant (i.e., “volume”) is actually inversely

4Setting tighter convergence threshold, i.e., smaller values of , brought little
improvement to overall performance at the expense of significantly increased
computation time.
5Standard deviation iterations, and 4% of diarization hypotheses did

not converge after 20 iterations.
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proportional to the number of acoustic frames used to estimate
the posterior distribution [20], [26]. Thus, the longer the seg-
ment used to obtain an i-vector, the smaller its posterior covari-
ance (uncertainty), and the more robust the speaker estimate.
To make use of durational and covariance information, we

consider the following sampling scheme. For a given i-vector
and its covariance , we draw a number of samples

from this distribution proportional to the time duration of the
segment used to estimate . This technique makes
use of durational information in two ways: (a) a shorter segment
results in relatively fewer i-vector samples, and (b) a shorter
segment results in a covariance that is relatively large,
thus its samples will range more widely. Conversely, a long seg-
ment will have a lot of samples concentrated in a small part of
the space. This takes advantage of the difference in uncertainty
between segments of different length by increasing the relative
importance of longer, more reliable segments for the estimation
of our respective speaker clusters.
In our experiments, we sample from our i-vectors at a rate

of four samples per second of conversation; our original ap-
proach using one-second segments resulted in approximately
one i-vector per second. Similar to the convergence criterion
in Section V-B, this sample rate was chosen to optimize be-

tween increased system performance and run-time, as a higher
sampling rate requires more computation for the clustering al-
gorithm. Given these samples, we apply PCA and put them
through the VBEM-GMMclustering as usual, resulting in an as-
signment of each sample to some corresponding GMM cluster.
We then assign a cluster to the respective i-vector from which
each of these samples was drawn by picking the GMM cluster
that represents the majority of its samples.

VI. EXPERIMENTS

In order to use the same telephone-based Total Variability
framework from [15], [18] and utilize the state-of-the-art re-
sults from [14] as a benchmark for comparison, we evaluate our
system on the 2000 NIST SRE subset of the multilingual Call-
Home data, a corpus of multi-speaker telephone conversations.
This amounts to 500 recordings, each 2–5 minutes in length,
containing between two and seven participants [35]. Also as-
sociated with this test set is a development set,6 which consists
of 42 conversations, each at least five minutes in length, fea-
turing between two and four speakers. With the exception of
Japanese, all the languages present in the CallHome test set are
also represented in the development set. Table I provides a sum-
mary of the CallHome corpus, including both the development
set (in parentheses) and the test set, broken down by number of
speakers and language spoken. We will break down our results
to show diarization performance on conversations involving the
different numbers of speakers.

A. Implementation Details

We obtain our i-vectors using the same Total Variability ma-
trix of rank 100 that achieved the best reported results in both
[15] and [18]. This matrix was trained from a gender-indepen-
dent UBM of 1024 Gaussians built on 20-dimensional MFCC

6We would like to thank Craig Greenberg of NIST for making this available.

TABLE I
SUMMARY OF CALLHOME CORPUS BROKEN DOWN BY NUMBER OF
PARTICIPATING SPEAKERS AND LANGUAGE SPOKEN. THE NUMBERS IN
PARENTHESES REPRESENT THOSE IN THE DEVELOPMENT SET, WHILE THE

VALUES NOT ENCLOSED IN PARENTHESES REPRESENT THOSE IN THE TEST SET

feature vectors without derivatives. Both the UBM and were
built using the Switchboard (English) and Mixer (multilingual)
Corpora; the latter was used during the 2004, 2005, and 2006
NIST SREs. Overall, these data include over 1000 hours of
speech from a variety of different languages and, for the most
part, match the data used to train the models in [13].
A primary goal of designing this system was to require the

tuning of as few parameters as possible. Of course, some were
unavoidable—for example, defining the threshold for diariza-
tion hypothesis convergence (Section V-B), or estimating the
bias term in the spectral clustering initialization of the number
of speakers (Section V-A)—but even those required only coarse
adjustments. The Bayesian structure of our speaker clustering
method further limited the number of hyperparameters that re-
quire consideration; in fact, the only exception was choosing the
Dirichlet concentration parameter on the distribution of mixture
weights for VBEM-GMM.
There exist a number of methods for choosing hyperparam-

eter values. To obtain an empirical prior, Section 3.1.3 of [5]
outlines an EM-like algorithm that converges on values of the
hyperparameters which maximize the variational free energy.
An even more principled way to approach this would be to as-
sume a prior distribution on the hyperparameters and sample
them accordingly [10]. For simplicity, we chose to use the hy-
perparameters that achieve the best result (in the DER sense) on
the associated development set. We should note immediately,
however, that there is a significant mismatch between the devel-
opment set and the test dataset; in particular, test conversations
feature up to seven speakers and can be as short as two minutes.
We demonstrate in Section VI-D that our proposed methods are
relatively robust to this mismatch; the subsequent results we re-
port in Sections VI-B and VI-C are based on the parameters that
achieve the best DER performance on the development dataset.
We make use of an existing MATLAB implementation of

VBEM-GMM provided in [36] and build our VBEM-GMM
clustering as described in Section IV-B.We run PCA on a per-ut-
terance basis using our length-normalized i-vectors and keep
only the first three principal components to perform clustering
in the manner depicted by Fig. 2. There exist many ways to re-
fine this method of dimensionality reduction; however, that is
beyond the scope of this paper, and we postpone further discus-
sion of this topic until Section VIII.
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B. System Comparisons

The plot at the top of Fig. 3 shows the results of our
VBEM-GMM clustering in comparison with our proposed
system refinements as well as the state-of-the-art benchmark
set on this task in 2008 by Castaldo, et al. [14], which we show
in black. Shown in magenta are the results of our initial baseline
system, in which we implement the VBEM-GMM clustering

on 3-dimensional, PCA-projected, and length-nor-
malized i-vectors. After clustering, we run a single iteration
of the re-segmentation algorithm discussed in Section III-D
and finish with a set of final pass refinements (Section III-E).
We can see from the plot that our baseline achieves results
similar to that of [14] on conversations involving four or more
speakers. However, our system does not perform as well on
conversations containing only two or three speakers, which
make up the overwhelming majority of the dataset. A similar
story unfolds when we initialize using the spectral clustering
heuristic discussed in both Section V-A and [18]. Shown in
blue, this method of initialization provides slightly better results
in the two-speaker case and similar results otherwise compared
to the initial baseline system .
1) Regarding Diarization Error: One of the reasons that can

be attributed to this large error deviation is that of over-esti-
mating the number of speakers. This effect is most prominent
in the case of two-speaker conversations. For example, suppose
a two-speaker conversation is segmented such that all the seg-
ments attributed to speaker A are assigned to cluster I, but the
segments attributed to speaker B are assigned arbitrarily to clus-
ters II and III. On one hand, our diarization system has done a
reasonable job of distinguishing between two speakers; on the
other, it has failed to realize that two separate clusters (II and
III) actually belong to one speaker. Such an error is forgivable
and, in fact, can be easily remedied in a post-processing step
by the use of a more powerful speaker recognition system, such
as in [16]; conversely, it would have been much worse to com-
bine two different speakers into a single cluster. Unfortunately,
the less-forgiving Diarization Error Rate (DER) penalizes both
types of errors equally heavily: If cluster I represents half of
the conversation time and each of clusters II and III represent a
quarter of the conversation time, then the DER would be 25%,
which is a bit unreasonable given that each of these clusters are
nevertheless pure representations of exactly one speaker.
In light of this, it might be reasonable in subsequent work to

consider another performance metric for judging our methods,
such as Average Cluster Purity (ACP) [5]. This, of course, has
yet its own set of advantages and disadvantages—namely that
we can obtain perfect cluster purity (i.e., 100%) by letting each
segment be its own cluster—but for the sake of providing ad-
ditional perspective in contrast to DER, we display the ACP of
our diarization results at the bottom of Fig. 3. In general, if a
particular cluster represents the speech of different speakers
speaking seconds of speech, then its purity is the proportion
of corresponding to the speaker that speaks the most in that
cluster. Whereas a one-to-one mapping is required in the com-
putation of DER, cluster purity allows for many clusters to rep-
resent a single speaker. We compute ACP by taking a time-

Fig. 3. (Top) results comparing the baseline initialization of VBEM-GMM
using , in magenta, with an initialization using the spectral clustering
heuristic described in Section V-A, in blue. (Middle) results obtained after in-
corporating the various system refinements proposed in Section V. In blue is
our baseline that initializes VBEM-GMM using the spectral clustering heuristic
(same as the plot on top). We show the state-of-the-art benchmark results from
[14] in black. (Bottom) for each of the systems whose DER results we show
above, we also show its Average Cluster Purity (ACP) using the same line color
coordination and similar marker type.

weighted average of each cluster’s purity such that a cluster rep-
resenting a larger proportion of the conversation will contribute
more to the ACP.
2) Evaluating System Refinements: Confirming our hypoth-

esis from Section V-A, the spectral clustering initialization
gives slightly better results than the baseline initialization
with speakers. Its most prominent effect was on
two-speaker conversations, where a more informed initial-
ization gives the VBEM-GMM clustering a better chance of
properly detecting two speakers, thus driving down the DER.
Our subsequent experiments use the spectral initialization as
the new starting point (baseline).
The two lower plots on Fig. 3 show the results obtained

after incorporating the various system refinements proposed in
Section V. We can see that the iterative re-segmentation/clus-
tering optimization (Section V-B) has a mostly positive effect
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Fig. 4. Final system diagram.

Fig. 5. (Top) final results comparison between our current final system (in red),
the system from our previous work in [18] (in blue), and the state-of-the-art
benchmark system proposed in [14] (in black). Also shown are results from the
initial system in [15] that always assumes the presence of only two speakers

from our initial work (in light blue) as well as results from the same
system where we provide the number of speakers, i.e., is given (in green).
(Bottom) we also provide a comparison between the resulting average cluster
purity of these systems. Note that the points labeled “Interspeech 2011” corre-
spond to the case in which the number of speakers is given.

on both DER and ACP, as does the duration-proportional
sampling (Section V-C), which we implemented at a rate of
four (i-vector) samples per second. Incorporating all of these
system refinements gives our best overall performance.

C. Final System

To facilitate understanding, a block diagram of our final
system is shown in Fig. 4. Given some initial speech/non-speech
segmentation, this system extracts length-normalized i-vectors
and then, in parallel with estimating the number of clusters

TABLE II
SYSTEM PARAMETERS AND THEIR VALUES USED TO OBTAIN THE RESULTS
SHOWN THROUGHOUT THIS PAPER. UNLESS EXPLICITLY STATED, NONE
OF THESE VALUES WERE OPTIMIZED ON THE CALLHOME TEST SET;

THEY WERE EITHER INHERITED FROM PREVIOUS WORKS [13], [15], [18]
OR OPTIMIZED ON THE CALLHOME DEVELOPMENT SET

using our modified spectral clustering heuristic, performs both
duration-proportional sampling and a PCA-projection to three
dimensions. At this point, we run VBEM-GMM clustering and
Viterbi re-segmentation. This process iterates until successive
diarization hypotheses meet our convergence criterion, after
which we run the hypothesis through a final pass of refinements
as discussed in Section III-E to obtain our final result.
We also compare this final system to the system proposed in

[18], where the setup is analogous to the one proposed in this
paper; the difference is that our previous method used only the
spectral clustering heuristic to determine the number of speakers
and K-means (based on the cosine distance) to obtain the ac-
tual cluster assignments without the need for dimensionality re-
duction via PCA. Otherwise, the iterative re-segmentation/clus-
tering optimization and final pass refinements are common to
both approaches. Fig. 5 shows this comparison, and we can see
that our current system in question (shown in red) provides a
noticeable improvement from our previous approach in [18] (in
blue) on conversations involving four or more speakers while
displaying no substantial difference in performance on conver-
sations involving two or three speakers. Similarly, our current
system performs better than the state-of-the-art benchmark (in
black) in all settings except for conversations involving just two
speakers.7

Table II summarizes the hyperparameters that were used to
generate our final results, while the bottom of Fig. 5 shows the
resultingACP of these final systems. The green-dashed line with
inverted triangular markers labeled “Interspeech 2011” corre-
sponds to the case in which the number of speakers is given,
and we can see that our final system (red line, circular markers)
also provides the purest clusters overall. Across all the conver-
sations in the CallHome test set, our Interspeech 2011 system
provides an ACP of 89.8%, the Interspeech 2012 system pro-
vides an ACP of 90.8%, and the system we propose in this paper
gives an overall ACP of 91.2%.

7We discuss the results obtained using “Interspeech 2011 ” (dashed
light blue line, upright triangular markers) as well as “Interspeech 2011
(K=given)” (dashed green line, inverted triangular markers) in Section VI-E.
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With regard to computational requirements, we did not run
a controlled benchmark test on the amount of time it took to
complete an evaluation, nor did we take any measure to opti-
mize the performance of our implementation to ensure its effi-
ciency. As such, our mix of MATLAB, Perl, and Bash scripts
required around 60 hours to evaluate the CallHome test set (500
recordings, 2–5 minutes each 30 hours) on a single quad-core
machine. We should note, however, that while the methods dis-
cussed here are designed more for optimal performance than to
obtain a lightweight diarization system, they can be tuned and
modified to work much more quickly. For example, the main
computational bottleneck lies in the convergence of our iterative
optimization scheme, which can—and in 4% of conversations,
did—require up to 20 as long as a one-pass, sequential diariza-
tion system. For each subsequent iteration, new i-vectors need to
be extracted for each segment of speech; a pairwise affinity ma-
trix and its eigenvalues need to be computed for spectral anal-
ysis; then VBEM-GMM clustering is run followed by the entire
Viterbi re-segmentation process on acoustic features. In general,
each of these individual steps can run reasonably quickly, but the
fact that iterative optimization may require these steps to repeat
a variable number of times inevitably increases the computation
time significantly.We reserve for future analysis the effect of re-
laxing our DER convergence threshold, (Section V-B), on the
resulting system performance.

D. Parameter Robustness

To evaluate the robustness of our system, we explore the sen-
sitivity of our test results to different values of the Dirichlet con-
centration parameter, . This parameter quantifies a prior be-
lief of how evenly the responsibility should be shared amongst
the various components of our mixture model. In particular, let-
ting will yield clustering solutions in which more and
more of the mixing coefficients are zero; that is, more and more
mixture components will not model any data. This makes sense
for our purposes, as we deliberately over-initialize the number
of clusters in order to prune them away via an iterative compo-
nent-death process as described in Section IV-B-2.
To arrive at the results shown in Figs. 3 and 5, we picked

the value of that achieved best results (in the DER sense) on
the CallHome development set. Upon experimenting with dif-
ferent values of , however, we observed that the resulting dif-
ferences in performance on the CallHome test set were mostly
minor and insignificant. Fig. 6 shows these results, which sug-
gest that our proposed system is not terribly prone to overfitting
on development data and can potentially generalize well to other
test sets, though further experimentation would be required be-
fore we can formalize this claim.

E. Discussion

Admittedly, it is rather frustrating that we are unable to
do better on two-speaker conversations. Incidentally, our
final system is based off of the same setup that obtained
state-of-the-art results in the task of two-speaker diarization on
2008 NIST SRE data, where the number of speakers is given.
In [15], our system performed at least as well as each of the
systems described in [13], one of which was actually the same

Fig. 6. Results on CallHome test set using different values for the Dirichlet
concentration parameter, .

system (Castaldo 2008 [14]) that we use as our benchmark in
this paper.
There is no easy way to reconcile the inability of our final

system to match the performance of our two-speaker diariza-
tion system in [15]. One possible explanation is that even de-
spite sweeping across different Dirichlet concentration param-
eter values on the test set, we seem prone to over-estimating the
number of speakers when diarizing two-speaker conversations.
We discussed previously in Section VI-B-1 the harshness of the
DER metric on over-estimating the number of speakers. Further
analysis shows that on the 136 out of 303 two-speaker conver-
sations in which we correctly detected two speakers, our DER
is in fact lower than the DER reported in [14] (6.5% vs. 8.7%).8

Andwhen the system is given that there are exactly two speakers
in the conversation, the DER drops even further to 4.3% [18].
These are, of course, unfair comparisons; however, they do pro-
vide some measure of consolation for the seeming inconsisten-
cies that we see in our final results.
This brings to bear the question of what results we would ob-

tain if our system were to simply assume that every conversa-
tion contained exactly two speakers. Judging by the distribu-
tion of speakers per conversation on the last row of Table I, it
is clear that two-speaker conversations make up the majority
of this test set. Just to get a better sense of the baseline stan-
dard for our proposed techniques, we run the exact system from
[15], which obtained state-of-the-art diarization results on two-
speaker conversations, on the CallHome data and show their re-
sults (in light blue) in Fig. 5. To be sure, this system extracts
an i-vector for each speech segment, runs K-means clustering
using the cosine distance, and then undergoes a single pass of the
Viterbi re-segmentation algorithm (without iterative optimiza-
tion) before going through a set of final pass refinements. Not
surprisingly, this method achieves results on two-speaker con-
versations (5.1% DER) that approach the 4.3% DER attained

8Within this subset of two-speaker conversations, we detected three speakers
97 times, four speaker 52 times, five speakers 12 times, and six or more speakers
6 times.
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after incorporating the iterative optimization of segmentation
and clustering [18]. What is more interesting, however, is that
this system also attains reasonable results on conversations in-
volving more than two speakers. This could be evidence that
telephone conversations are often dominated by only two par-
ticipants. For good measure, we also show the results (in green)
obtained by the same system from [15], but in which the pro-
vided value of corresponds to the actual number of speakers
in the conversation (i.e. an “oracle” experiment). We can see
that our proposed methods—both from [18] and those in this
paper—do significantly better than the two-speaker assumption,
and in particular, the techniques described in this paper also out-
perform the “oracle” system.

VII. FURTHER ANALYSIS

The diarization task in which we are given the number of par-
ticipating speakers is wholly different from the task in which
the number of participating speakers needs to be estimated. Our
state-of-the-art performance on two-speaker diarization in [15]
really only served to further validate that factor analysis, and
i-vectors in particular, is a viable front-end for extracting utter-
ance-specific features from the short speech segments featured
in diarization. From there, it is in the way that these features are
processed that truly defines the effectiveness of the diarization
system.

A. Towards Temporal Modeling

We pointed out in [18] that the benchmark system in [14] is,
whether intentional or incidental, actually designed to take ad-
vantage of the structure of telephone conversations. In partic-
ular, most speaker turns over the telephone involve nomore than
two participants at any given time. The system in [14] processes
these calls in causal fashion, working on 60-second slices and
assuming that each slice contains no more than three speakers.
Given the nature of the data, this makes sense; except for the
rare use of speakerphones, only during these relatively infre-
quent “hand-off” scenarios would a third speaker even exist in
any particular slice of the conversation.
By contrast, our algorithm sees and processes an entire

utterance at once and performs clustering without any regard
to the potentially restrictive temporal dynamics of a telephone
conversation. This so-called “bag of i-vectors” approach may
be slightly more general in its ability to handle scenarios in
which four or more speakers appear in any 60-second slice of
the conversation (a hypothesis not tested for in [14]); however,
it also has the inherent disadvantage that it is more prone to
missing speakers that, say, only participate in a very short
snippet of the conversation. This refers back to the problem
of data sparsity, or inadequate cluster representation, as men-
tioned in Section V-C. One way to overcome this might be
to modify our approach to process the data incrementally,
where clustering is run on shorter, say 60-second, slices of
conversation before linking clustered slices across an entire
utterance. For speakers that only participate in a limited portion
of the conversation, the shorter slice-based processing gives
them the opportunity to be better-represented when we cluster
the slice in which they are (relatively) more active. Yet another,
possibly more principled, way to approach this issue might be

to model temporal dynamics—including the entrance and exit
of a particular speaker—directly from the conversation.

B. A Sticky HDP-HMM

The sticky HDP-HMM is a Bayesian nonparametric method
for statistical inference that achieved state-of-the-art results
in meetings diarization on the NIST Rich Transcription (RT)
2004–2007 database [10]. The authors leverage the “impor-
tance of temporal dynamics captured by the HMM” as a way
to improve their baseline results obtained from a “Dirichlet
Process mixture-of-Gaussians model (ignoring the time indices
associated with the observations),” which is analogous to our
Bayesian GMM [10]. Because our work utilizes improved
speaker modeling using a factor analysis-based front-end
(instead of smoothed acoustic features; i.e., MFCCs averaged
over 250 ms [10]), we were interested to see what further gains
could be obtained by incorporating temporal modeling with
i-vectors. Moreover, one of the fundamental limitations of an
HMM in general is that observations are assumed conditionally
i.i.d. given the state sequence [10]. Even though i-vectors still
violate this property somewhat, we believe that they are better
suited than acoustic features (i.e. less temporally correlated) to
the conditional independencies assumed by the HMM genera-
tive model. The details of the HDP-HMM model itself as well
as a method to perform efficient blocked Gibbs sampling are
thoroughly explained in [10].
Using the implementation provided by [37], we explore

the performance of the sticky HDP-HMM on i-vectors ex-
tracted from the CallHome evaluation set by replacing the
VBEM-GMM module from our system depicted in Fig. 4 with
the sticky HDP-HMM. For proper and comprehensive compar-
ison with our current and previous results, we optimized the
associated hyperparameters over both the development set and
the test set in the same manner as described in Section VI-A.
Fig. 7 shows the results in terms of both DER and ACP.
The sticky HDP-HMM seems to provide a significant im-

provement over both our VBEM-GMM and Castaldo’s [14]
systems on two-speaker conversations. Such an outcome, how-
ever, is also attributed to the fact that we enforce a minimum
of two detected speakers, as mentioned in Section III-C. If
the sticky HDP-HMM clustering (or, similarly, VBEM-GMM
clustering) returns just one speaker, the system backs off to
K-means clustering where . Out of 303 two-speaker
conversations, the initial sticky HDP-HMM clustering returned
one speaker for 106 of them and returned two speakers for
143 conversations. That said, because this back-off technique
is common to both the HDP-HMM and VBEM-GMM ap-
proaches, it seems that—in spite of choosing hyperparameters
for optimal DER—the VBEM-GMM approach is prone to
overestimate the number of speakers, while the HDP-HMM
approach tends to underestimate.
As for conversations involving other numbers of speakers,

the sticky HDP-HMM is competitive, in the DER sense, with
the VBEM-GMM on conversations involving exactly three
speakers, but results start to deteriorate for both DER and ACP
as the number of speakers increases. Lastly, there seems to be
a discrepancy in test performance between the different hyper-
parameters that optimize the development set and those that
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Fig. 7. (Top) a comparison between our dev- and test-best VBEM-GMM sys-
tems (in red and magenta, respectively), the state-of-the-art benchmark system
proposed in [14] (in black), and the dev- and test-best sticky HDP-HMM sys-
tems proposed in [10] (in blue and green, respectively). (Bottom) corresponding
results in terms of average cluster purity.

optimize the test set. Because this difference involves only a
small subset of the evaluation, however, it should be considered
minor. Nevertheless, this once again highlights a fundamental
mismatch between the development set and the test set, and
perhaps the hyperparameters of the sticky HDP-HMM are more
sensitive to the mismatch than our VBEM-GMM parameters.
Further exploration on the topic of Dirichlet processes

suggests that the dependent Dirichlet process (DDP) might
be an appropriate way to model the temporal constraints of
the CallHome telephone data [38]. In this method, a DDP
changes according to a Markov chain, where the Dirichlet
process drawn at any particular time interval is dependent on
the Dirichlet process of the previous interval. In this way, each
Dirichlet process models only a local or limited portion (i.e.,
slice) of the conversation. From one slice to the next, the par-
ticipation of speakers can be introduced, removed, or modified
(e.g., the transition from a monologue to an open discussion).
Thus, if a telephone conversation were processed in slice-based
fashion [14] as described in Section VII-A, the DDP provides
an elegant framework that allows for the modeling of handset
“hand-offs” and conversation dynamics. We believe this could
be a potential avenue for future work.

VIII. CONCLUSION

In this paper, we have continued the story of our previous
work in developing a system for speaker diarization based on a
factor analysis-based front end [15], [18], [20]. Our final system
contains traces of inspiration from pioneering works in diariza-
tion using factor analysis [14], variational Bayesian inference
[5], and both in combination [13]. We have obtained results
that are comparable to the current state of the art, and more
importantly, we have demonstrated such performance with the
use of well-known, off-the-shelf machine learning techniques.
From the i-vector and its cosine similarity metric to PCA and
VBEM-GMM clustering to the use of a spectral initialization
and an iterative optimization process, each of our methods were
chosen not only to exploit various properties of the data, but also
to complement each other in the spirit of the diarization task it-
self. What results is a system that is mostly unsupervised and
reasonably robust.
We also compared our approach to a Bayesian nonparametric

method that incorporates temporal modeling in the form of a
sticky HDP-HMM [10]. This was an initial and exploratory at-
tempt at replacing smoothed acoustic features with i-vectors
and modeling the temporal dynamics explicitly. Despite the ten-
dency to underestimate the number of participating speakers,
this approach achieved very competitive performance on con-
versations involving small numbers of speakers. Nevertheless,
this warrants a more in-depth analysis to better compare these
methods.
We realized, for all systems, that the diarization hypothesis

that attains the best DER is not always the one that correctly de-
tects the number of speakers. That is, forcing the system to de-
tect an exact number of clusters would often have a detrimental
effect on the DER (except, apparently, in the case where there
are only two speakers!). One reason for this goes back to the
problem of inadequate cluster representation, where a speaker’s
contribution might be so limited that enforcing an exact number
of clusters ends up splitting another speaker into two clusters.
Because the relative amount of participation amongst present
speakers in each test conversation lacked the sort of uniformity
or predictability that would have made for an appropriate eval-
uation of accuracy in detecting the number of speakers, we in-
stead focused the efforts of this paper towards optimizing our
system for minimal DER.
There are still many ways in which we can improve and refine

the steps to our approach. For one, we do all our VBEM-GMM
clustering using just the first three principal components of our
i-vectors. This initial choice of dimensionality was primarily for
purposes of visualization; however, using a different number
of dimensions did not change results significantly. Further in-
vestigation on dimensionality choice as well as other poten-
tial methods for dimensionality reduction should yield a more
insightful understanding and, hopefully, more fruitful results
[39]–[41]. Second, our hyperparameters were determined by
trying a number of different values and observing the resulting
performance on some development set. It would be nice to see
the result of following a more principled and “Bayesian” ap-
proach to setting our prior hyperparameters as mentioned in
Section VI-A and more thoroughly discussed in [5], [10], [31].
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Finally, our evaluation was restricted to the diarization of
telephone conversations. Much of the current work in diariza-
tion has moved into the realm of broadcast news and meet-
ings, such as those of the NIST RT database [4], [10]. The
reason we limited ourselves to telephone data was to fully ex-
ploit the effectiveness of our data-driven factor analysis-based
front-end, which requires ample background data to build. But
as our ability to model microphone data approaches the current
standard of telephone data modeling [42], we look forward to
extending our methods to the diarization of meetings and seeing
whether the proposed approaches discussed in this paper can
achieve equally good performance.

ACKNOWLEDGMENT

We would like to thank the editor and reviewers for their
helpful comments and feedback in the development and re-
finement of this work. We would also like to thank Douglas
Reynolds for his insightful discussion and helpful advice
through the years.

REFERENCES
[1] S. Tranter and D. Reynolds, “An overview of automatic speaker diari-

sation systems,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14,
no. 5, pp. 1557–1565, Sep. 2006.

[2] M. H. Moattar and M. M. Homayounpour, “A review on speaker di-
arization systems and approaches,” Speech Commun., vol. 54, no. 10,
pp. 1065–1103, 2012.

[3] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and
O. Vinyals, “Speaker diarization: A review of recent research,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 2, pp. 356–370, Feb.
2012.

[4] D. Reynolds and P. Torres-Carrasquillo, “TheMIT Lincoln Laboratory
RT-04F diarization systems: Applications to broadcast audio and tele-
phone conversations,” in Proc. NIST Rich Transcript. Workshop, 2004.

[5] F. Valente, “Variational Bayesian methods for audio indexing,” Ph.D.
dissertation, Univ. De Nice-Sophia Antipolis—UFR Sciences, Nice,
France, Sep. 2005.

[6] X. Anguera, C. Wooters, and J. M. Pardo, “Robust speaker diarization
for meetings: ICSI RT06’s evaluation system,” in Proc. ICSLP, 2006.

[7] T. H. Nguyen, H. Sun, S. Zhao, S. Z. K. Khine, H. D. Tran, T. L. N.
Ma, B. Ma, E. S. Chng, and H. Li, “The IIR-NTU speaker diarization
systems for rt 2009,” in Proc. RT’09, NIST Rich Transcript. Workshop,
2009.

[8] S. Meignier, D. Moraru, C. Fredouille, J.-F. Bonastre, and L. Besacier,
“Step-by-step and integrated approaches in broadcast news speaker di-
arization,” Comput. Speech Lang., vol. 20, no. 2, pp. 303–330, Jul.
2006.

[9] S. Bozonnet, N.W.D. Evans, and C. Fredouille, “The LIA-EURECOM
RT’09 speaker diarization system: Enhancements in speaker modeling
and cluster purification,” in Proc. ICASSP, 2010, pp. 4958–4961.

[10] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “A sticky
HDP-HMM with application to speaker diarization,” Ann. Appl.
Statist., vol. 5, no. 2A, pp. 1020–1056, Jun. 2011.

[11] M. Johnson and A. Willsky, “The hierarchical dirichlet process hidden
semi-markov model,” in Proc. Conf. Uncert. Artif. Intell., 2010.

[12] D. Blei andM. Jordan, “Variational inference for dirichlet process mix-
tures,” Bayesian Anal., vol. 1, no. 1, pp. 121–144, 2006.

[13] P. Kenny, D. Reynolds, and F. Castaldo, “Diarization of telephone con-
versations using factor analysis,” IEEE J. Sel. Topics Signal Process.,
vol. 4, no. 6, pp. 1059–1070, Dec. 2010.

[14] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface, and C. Vair, “Stream-
based speaker segmentation using speaker factors and eigenvoices,” in
Proc. ICASSP, 2008, pp. 4133–4136.

[15] S. Shum, N. Dehak, E. Chuangsuwanich, D. Reynolds, and J. Glass,
“Exploiting intra-conversation variability for speaker diarization,” in
Proc. Interspeech, 2011.

[16] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 788–798, Jul. 2010.

[17] S. Shum, N. Dehak, R. Dehak, and J. Glass, “Unsupervised speaker
adaptation based on the cosine similarity for text-independent speaker
verification,” in Proc. IEEE Odyssey, 2010.

[18] S. Shum, N. Dehak, and J. Glass, “On the use of spectral and iterative
methods for speaker diarization,” in Proc. Interspeech, 2012.

[19] H. Ning, M. Liu, H. Tang, and T. Huang, “A spectral clustering ap-
proach to speaker diarization,” in Proc. ICSLP, 2006.

[20] S. Shum, “Unsupervised methods for speaker diarization,” M.S. thesis,
Mass. Inst. of Technol., Cambridge, MA, USA, Jun. 2011.

[21] C. Vaquero, A. Ortega, and E. Lleida, “Intra-session variability
compensation and a hypothesis generation and selection strategy for
speaker segmentation,” in Proc. ICASSP, 2011, pp. 4532–4535.

[22] D. Wang, R. Vogt, S. Sridharan, and D. Dean, “Cross likelihood
ratio based speaker clustering using eigenvoice models,” in Proc.
Interspeech, 2011.

[23] J. Prazak and J. Silovsky, “Speaker diarization using PLDA-based
speaker clustering,” in Proc. IDAACS, 2011.

[24] M. Rouvier and S. Meignier, “A global optimization framework for
speaker diarization,” in Proc. IEEE Odyssey, 2012.

[25] T. Stafylakis, V. Katsouros, P. Kenny, and P. Dumouchel, “Mean shift
algorithm for exponential families with applications to speaker clus-
tering,” in Proc. IEEE Odyssey, 2012.

[26] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling
with sparse training data,” IEEE Trans. Speech Audio Process., vol.
13, no. 3, pp. 345–354, May 2005.

[27] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Speaker and
session variability in GMM-based speaker verification,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 4, pp. 1448–1460, May
2007.

[28] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker ver-
ification,” in Proc. A Speaker Odyssey, 2001.

[29] D. Reynolds, T. Quatieri, and R. Dunn, “Speaker verification using
adapted gaussian mixture models,” Digital Signal Process., vol. 10,
no. 1–3, pp. 19–41, 2000.

[30] Diarization Error Rate (DER) Scoring Code. NIST, 2006 [Online].
Available: www.nist.gov/speech/tests/rt/2006-spring/code/md-eval-
v21.pl

[31] C. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[32] M. Beal, “Variational algorithms for approximate Bayesian inference,”
Ph.D. dissertation, Univ. College London, London, U.K., May 2003.

[33] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Proc. NIPS, 2001.

[34] J. Ajmera and C. Wooters, “A robust speaker clustering algorithm,” in
Proc. ASRU, 2003.

[35] A. Martin and M. Przybocki, “Speaker recognition in a multi-speaker
environment,” in Proc. Eurospeech, 2001.

[36] E. Khan, J. Bronson, and K. Murphy, Variational Bayesian EM for
Gaussian Mixture Models. 2008 [Online]. Available: http://www.cs.
ubc.ca/~murphyk/Software/VBEMGMM/index.html

[37] M. J. Johnson, PYHSMM: A Python Library for Bayesian Inference in
(HDP-)H(S)MMS. 2010 [Online]. Available: http://mattjj.github.com/
pyhsmm/

[38] D. Lin, E. Grimson, and J. Fisher, “Construction of dependent Dirichlet
processes based on Poisson processes,” in Proc. NIPS, 2010.

[39] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings
into a Hilbert space,” Contemp. Math., vol. 26, pp. 189–206, 1984.

[40] H. Xu, C. Caramanis, and S. Mannor, “Principal component analysis
with contaminated data: The high dimensional case,” in Proc. COLT,
2010.

[41] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” J.
Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[42] N. Dehak, Z. N. Karam, D. A. Reynolds, R. Dehak, W. M. Campbell,
and J. R. Glass, “A channel-blind system for speaker verification,” in
Proc. ICASSP, 2011, pp. 4536–4539.



14 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. , 2013

Stephen H. Shum is currently a Ph.D. student
in Electrical Engineering and Computer Science
(EECS) at the Massachusetts Institute of Tech-
nology (MIT). He received his B.S. in EECS at the
University of California, Berkeley, in 2009 before
joining the Spoken Language Systems Group at the
MIT Computer Science and Artificial Intelligence
Laboratory (CSAIL), where he obtained his S.M.
in 2011 and was awarded the William A. Martin
Thesis Award for his work on speaker diarization.
Although Stephen’s research has primarily revolved

around speaker recognition and diarization, his myriad interests also extend
to semi-supervised learning, computational auditory scene analysis, and
large-scale clustering of audio corpora.

Najim Dehak received his Engineering degree
in Artificial Intelligence in 2003 from Universite
des Sciences et de la Technologie d’Oran, Algeria,
and his M.S. degree in Pattern Recognition and
Artificial Intelligence Applications in 2004 from
the Universite de Pierre et Marie Curie, Paris,
France. He obtained his Ph.D. degree from Ecole de
Technologie Superieure (ETS), Montreal in 2009.
During his Ph.D. studies he was also with the Centre
de recherche informatique de Montreal (CRIM),
Canada. In the summer of 2008, he participated in

the Johns Hopkins University, Center for Language and Speech Processing,
Summer Workshop. During that time, he proposed a new system for speaker
verification that uses factor analysis to extract speaker-specific features, thus
paving the way for the development of the i-vector framework. Dr. Dehak is
currently a research scientist in the Spoken Language Systems (SLS) Group
at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).
He is also a member of IEEE Speech and Language Processing Technical
Committee. His research interests are in machine learning approaches ap-
plied to speech processing and speaker modeling. The current focus of his
research involves extending the concept of an i-vector representation into
other audio classification problems, such as speaker diarization, language- and
emotion-recognition.

Réda Dehak received his Ph.D. degree in signal and
image processing from Ecole Nationale Supérieure
des Télécommunication in 2002, his M.S degree in
Signal, Image and Speech processing in 1998 from
Institut National des Sciences Appliquées (INSA),
Lyon, France and an Engineer degree in Computer
Science in 1997 from Université des Sciences et de
la Technologie d’Oran, Algeria. He is an assistant
professor of computer science and member of the
EPITA Research and Development Laboratory
(LRDE). His research interests include speaker

recognition, decision theory, pattern recognition and statistical learning. He is
a member of the IEEE.

James R. Glass is a Senior Research Scientist at the
MIT Computer Science and Artificial Intelligence
Laboratory (CSAIL) where he heads the Spoken
Language Systems Group. He is also a Lecturer in
the Harvard-MIT Division of Health Sciences and
Technology. He received his B.Eng. in Electrical
Engineering at Carleton University in Ottawa in
1982, and his S.M. and Ph.D. degrees in Electrical
Engineering and Computer Science at MIT in
1985, and 1988, respectively. After starting in the
Speech Communication group at the MIT Research

Laboratory of Electronics, he has worked since 1989 at the Laboratory for
Computer Science, and since 2003 at CSAIL. His primary research interests
are in the area of speech communication and human-computer interaction,
centered on automatic speech recognition and spoken language understanding.
He has lectured, taught courses, supervised students, and published extensively
in these areas. He is currently a Senior Member of the IEEE, an Associate
Editor for the IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE
PROCESSING, and a member of the Editorial Board for Computer, Speech, and
Language.


