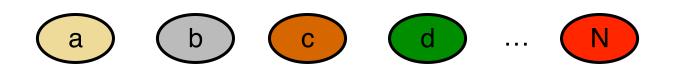


Limited Labels for Unlimited Data: Active Learning for Speaker Recognition

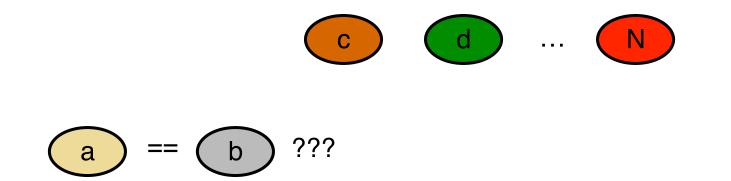
Stephen Shum, Najim Dehak, Jim Glass

How much labeled data do we *really* need to build a state-of-the-art speaker recognition system?

Shum, Dehak, and Glass -- Spoken Language Systems Group

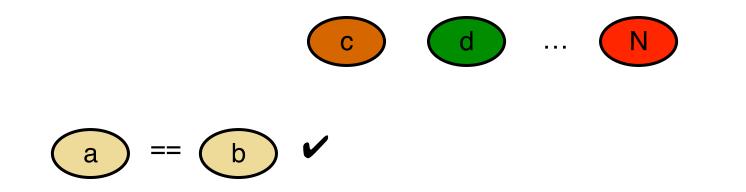


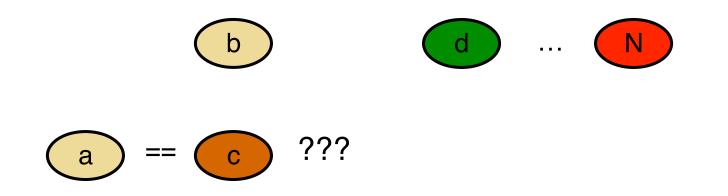
Shum, Dehak, and Glass -- Spoken Language Systems Group



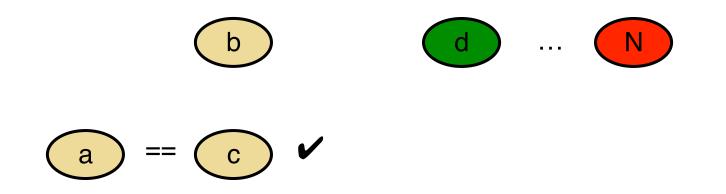
September 15, 2014

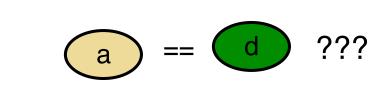
N unlabeled utterances

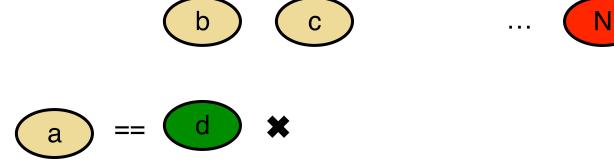




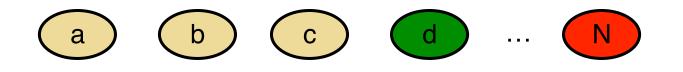
Shum, Dehak, and Glass -- Spoken Language Systems Group







• O(N²) queries is expensive!



Problem Statement

- Lots of unlabeled utterances
 - NIST 2004, 2005, 2006, 2008 Speaker Recognition Evaluations (SRE)
- Evaluate on 2010 NIST SRE
- Similar to previous work on domain adaptation
 - * Aronowitz, 2014; Brummer, 2014; Garcia-Romero, 2014; Glembek, 2014; Shum, 2014; et cetera
 - Here, NO previously labeled data is allowed
- Allow pairwise queries to some noiseless oracle
 - "Do utterances A and B contain the same speaker?"

Problem Statement

• Objectives

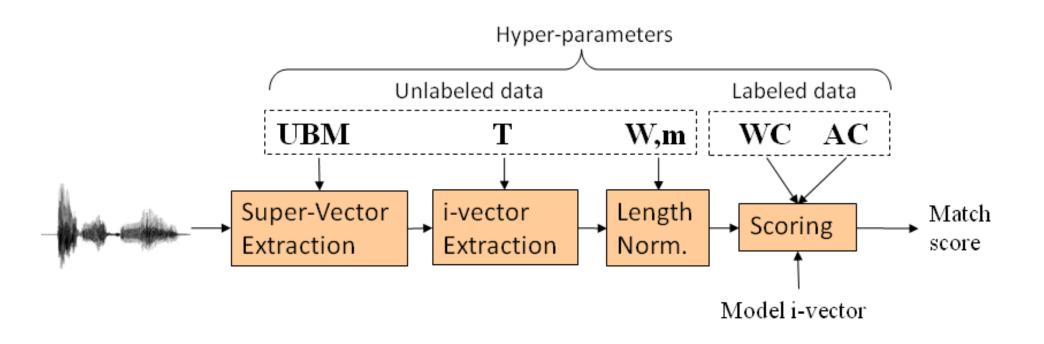
- Minimize number of pairwise queries
- Maximize performance on speaker recognition

• Take-away

 The actual number of pairwise labels needed to obtain state-of-the-art results is a mere fraction of the queries needed to exhaustively label an entire set of utterances from scratch.

Experiment Setup

- 600-dimensional i-vectors
- Gender-independent UBM (2048 Gaussians)



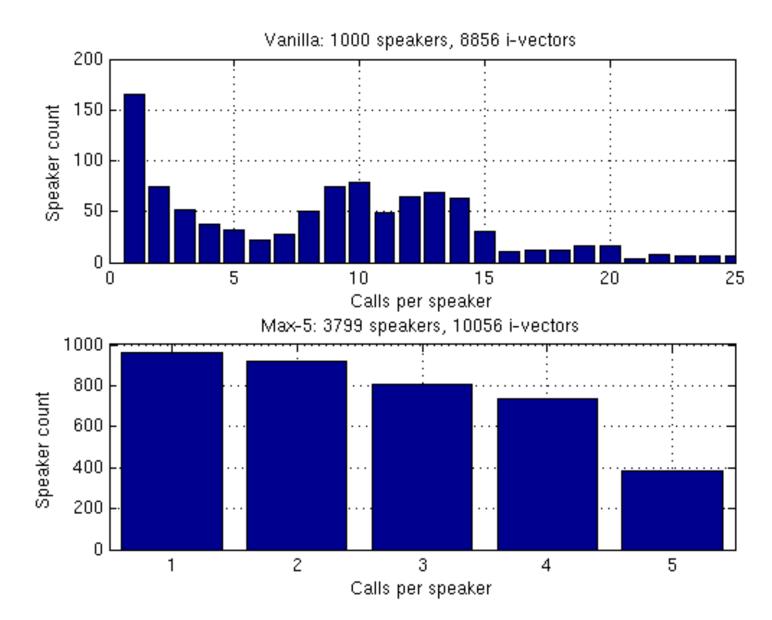
Sampling from the NIST Data

- 3800 unique speakers
 - 1100 male, 2700 female
- 33,000 phone calls
 - Calls per speaker = 8.7
 - Phone numbers per speaker = 2.8

Sampled subsets from the data

 Lets us explore how performance might vary under datasets that have different distributions of utterances per speaker

Sampling from the NIST Data



Shum, Dehak, and Glass -- Spoken Language Systems Group

Roadmap

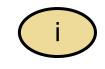
- Motivation
- Problem Statement
- Experiment Setup
 - Sampling from the NIST data
- Algorithm
 - Practical implementation details
 - Other design choices
- Results
- Discussion

Roadmap

- Motivation
- Problem Statement
- Experiment Setup
 - Sampling from the NIST data
- Algorithm
 - Practical implementation details
 - Other design choices
- Results
- Discussion

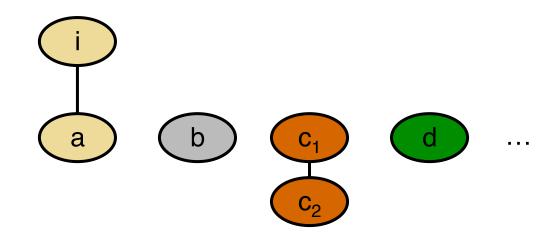
- Compare between i-vectors via the cosine similarity
- Graph terminology
 - Each utterance (or i-vector) is represented as a **node**
 - Connect two i-vectors with an edge if they are from the same speaker
- Initialization
 - Completely disconnected graph (i.e., no edges!)

• Pick an i-vector, i.

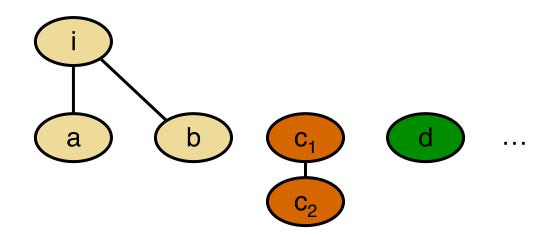


Shum, Dehak, and Glass -- Spoken Language Systems Group

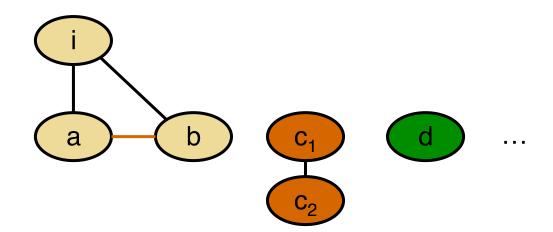
- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.



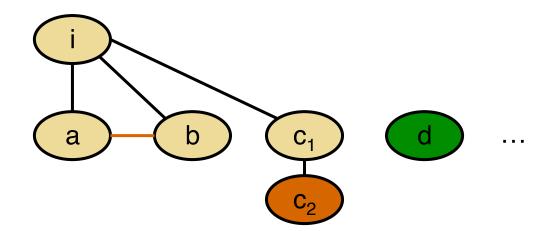
- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.



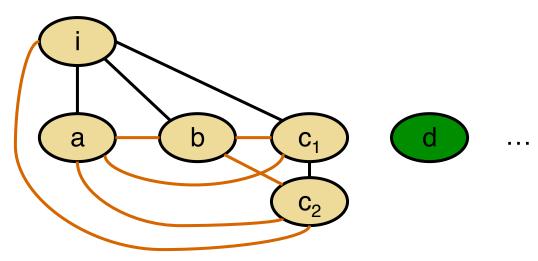
- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.
 - Automatically turn all "same" pairs into fully connected cliques.



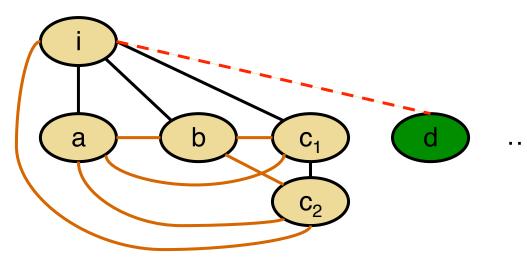
- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.
 - Automatically turn all "same" pairs into fully connected cliques.



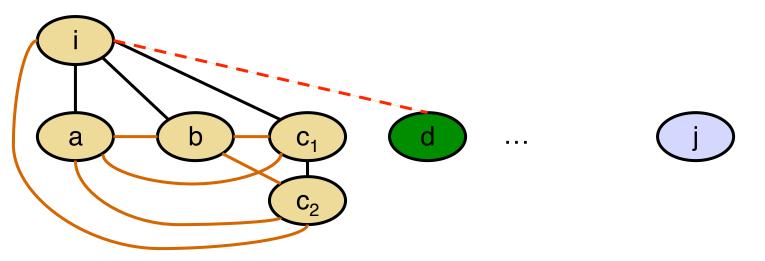
- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.
 - Automatically turn all "same" pairs into fully connected cliques.



- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.
 - Automatically turn all "same" pairs into fully connected cliques.
- Stop when oracle returns "different" for some pair (i, d).



- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine similarity.
 - Automatically turn all "same" pairs into fully connected cliques.
- Stop when oracle returns "different" for some pair (i, d).
- Pick another i-vector that is as far away as possible.



Practical Implementation

- All pairwise cosine similarities \rightarrow affinity matrix
 - Single matrix multiplication
- Finding neighbors to query
 - Sort each row of the affinity matrix

• Finding an i-vector that is as "far away" as possible

 Average relevant rows of the affinity matrix and pick the index corresponding to the minimal value

Some Other Design Choices

- Just presented the "greedy coverage" approach
- Experiments compare against "uniform coverage" approach
 - Query every unique i-vector's 1st nearest neighbor, then 2nd, and so on
 - Every i-vector is considered at least once every N queries
 - Slow to obtain reasonable estimate of speaker within-class variability

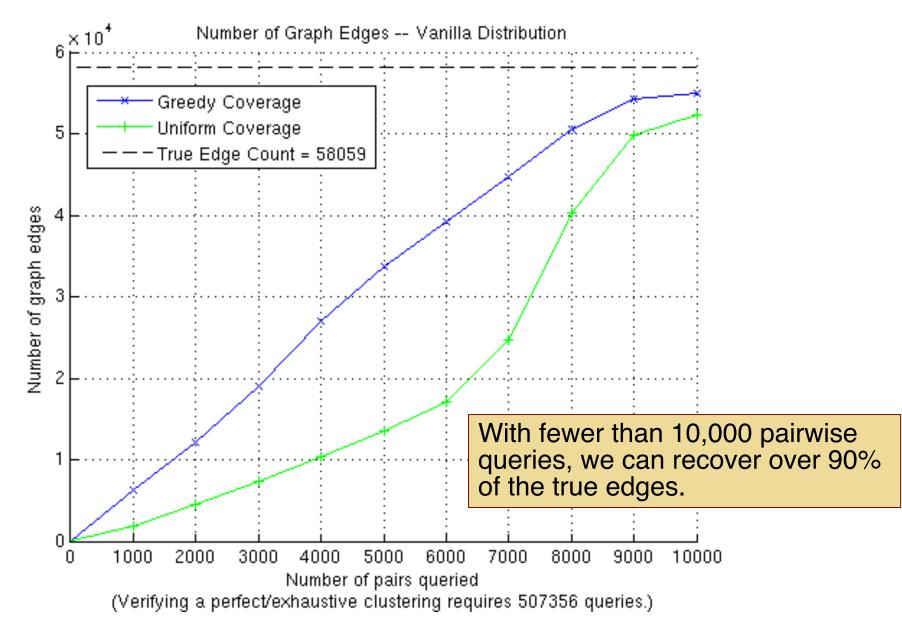
Also tried "global score sort"

- Pool together all similarity scores, globally
- Query individual pairs in order of decreasing score
- Higher similarity scores indicated denser neighborhoods of i-vectors, not necessarily regions of strong within-speaker similarity

Roadmap

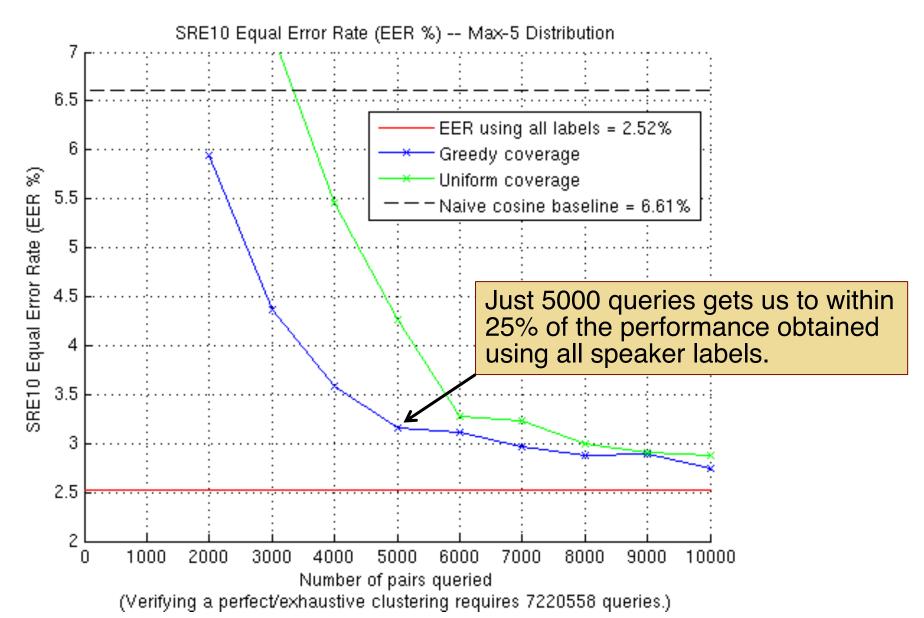
- Motivation
- Problem Statement
- Experiment Setup
 - Sampling from the NIST data
- Algorithm
 - Practical implementation details
 - Other design choices
- Results
- Discussion

Graph Edges vs. Pairs Queried



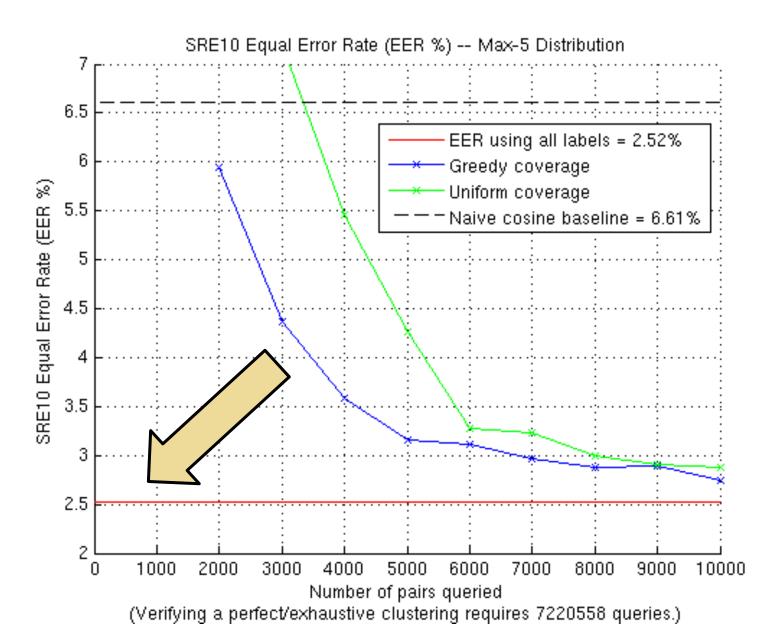
Shum, Dehak, and Glass -- Spoken Language Systems Group

Speaker Recognition Performance



Shum, Dehak, and Glass -- Spoken Language Systems Group

Speaker Recognition Performance



Shum, Dehak, and Glass -- Spoken Language Systems Group

Ongoing Investigations

- Data re-representation
 - Key element in active learning
- Incorporating prior knowledge
 - Domain adaptation challenge gave us labels to Switchboard data
- Extrapolating labels via semi-supervised clustering
- Noisy labels
 - A noiseless oracle is a big assumption!
 - Humans, both expert and naïve listeners, are not perfect (Shen, 2011).

Conclusion

- Attempted to quantify the amount of labeled data needed to build a speaker recognition system.
 - The actual number of pairwise labels needed to obtain state-of-the-art results is a mere fraction of the queries required to fully label an entire set of utterances.

- What are other ways in which we can leverage the power of pairwise comparisons?
 - "Do utterances A and B contain the same _____?"