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How much labeled data do we really
need to build a state-of-the-art
speaker recognition system?
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N unlabeled utterances {%
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« O(N?) queries is expensive!
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Problem Statement

Lots of unlabeled utterances

L
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— NIST 2004, 2005, 2006, 2008 Speaker Recognition Evaluations (SRE)

Evaluate on 2010 NIST SRE

Similar to previous work on domain adaptation

* Aronowitz, 2014; Brummer, 2014; Garcia-Romero, 2014; Glembek,

2014; Shum, 2014; et cetera
— Here, NO previously labeled data is allowed

Shum, Dehak, and Glass -- Spoken Language Systems Group

Allow pairwise queries to some noiseless oracle
— “Do utterances A and B contain the same speaker?”
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Problem Statement {%
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- Objectives
— Minimize number of pairwise queries
— Maximize performance on speaker recognition

- Take-away

— The actual number of pairwise labels needed to obtain state-of-the-art
results is a mere fraction of the queries needed to exhaustively label an
entire set of utterances from scratch.

Shum, Dehak, and Glass -- Spoken Language Systems Group September 15, 2014



Experiment Setup {%
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- 600-dimensional i-vectors
- Gender-independent UBM (2048 Gaussians)

Hyper-parameters

N
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Sampling from the NIST Data ﬁg%
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- 3800 unique speakers
— 1100 male, 2700 female

- 33,000 phone calls
— Calls per speaker = 8.7
— Phone numbers per speaker = 2.8

- Sampled subsets from the data

— Lets us explore how performance might vary under datasets that have
different distributions of utterances per speaker
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Vanilla: 1000 speakers, 8856 i-vectors
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Roadmap {%
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 Motivation
* Problem Statement

- Experiment Setup
— Sampling from the NIST data
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Roadmap @2

Algorithm
— Practical implementation details
— Other design choices
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Algorithm {%
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- Compare between i-vectors via the cosine similarity

- Graph terminology
— Each utterance (or i-vector) is represented as a node
— Connect two i-vectors with an edge if they are from the same speaker

- Initialization
— Completely disconnected graph (i.e., no edges!)
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- Pick an i-vector, i.

G
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Algorithm {%
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- Pick an i-vector, i.

- Query i against its neighbors in order of decreasing cosine
similarity.

D
cCoee.
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- Pick an i-vector, i.

- Query i against its neighbors in order of decreasing cosine
similarity.
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Algorithm

- Pick an i-vector, i.

e
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- Query i against its neighbors in order of decreasing cosine

similarity.

— Automatically turn all “same” pairs into fully connected cliques.
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- Pick an i-vector, i.

- Query i against its neighbors in order of decreasing cosine
similarity.
— Automatically turn all “same” pairs into fully connected cliques.
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Algorithm {%

CSAIL

- Pick an i-vector, i.
- Query i against its neighbors in order of decreasing cosine
similarity.
— Automatically turn all “same” pairs into fully connected cliques.
- Stop when oracle returns “different” for some pair (i, d).
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Algorithm {%
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Pick an i-vector, |.

Query i against its neighbors in order of decreasing cosine
similarity.

— Automatically turn all “same” pairs into fully connected cliques.

Stop when oracle returns “different” for some pair (i, d).

Pick another i-vector that is as far away as possible.
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Practical Implementation ﬁg%
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- All pairwise cosine similarities = affinity matrix
— Single matrix multiplication

- Finding neighbors to query
— Sort each row of the affinity matrix

- Finding an i-vector that is as “far away” as possible

— Average relevant rows of the affinity matrix and pick the index
corresponding to the minimal value

Shum, Dehak, and Glass -- Spoken Language Systems Group September 15, 2014



Some Other Design Choices {%
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- Just presented the “greedy coverage” approach

- Experiments compare against “uniform coverage” approach
— Query every unique i-vector’s 1st nearest neighbor, then 2", and so on
— Every i-vector is considered at least once every N queries
— Slow to obtain reasonable estimate of speaker within-class variability

- Also tried “global score sort”
— Pool together all similarity scores, globally
— Query individual pairs in order of decreasing score

— Higher similarity scores indicated denser neighborhoods of i-vectors,
not necessarily regions of strong within-speaker similarity
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Roadmap E@Q

« Motivation
- Problem Statement
- Experiment Setup
— Sampling from the NIST data
 Algorithm
— Practical implementation details
— Other design choices

 Results
« Discussion
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Speaker Recognition Performance

oRE10 Equal Error Rate (EER %) -- Max-2 Distribution
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Speaker Recognition Performance
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Ongoing Investigations

Data re-representation
— Key element in active learning

Incorporating prior knowledge

e

CSAIL

— Domain adaptation challenge gave us labels to Switchboard data

Noisy labels

— A noiseless oracle is a big assumption!

Extrapolating labels via semi-supervised clustering

— Humans, both expert and naive listeners, are not perfect (Shen, 2011).
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Conclusion {%
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- Attempted to quantify the amount of labeled data needed to
build a speaker recognition system.

— The actual number of pairwise labels needed to obtain state-of-the-art

results is a mere fraction of the queries required to fully label an entire
set of utterances.

- What are other ways in which we can leverage the power of
pairwise comparisons?

— “Do utterances A and B contain the same ?”
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