
•  Estimate number of speakers by fitting an exponential to decaying eigenvalues; 
then K0 is the smallest value where the derivative ≥ θ. [4] 
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•  Viterbi Re-segmentation 
 Apply the Viterbi algorithm at the 

acoustic feature level to re-formulate 
segment boundaries and re-assign 
frames to each speaker cluster. 

•  Final Pass Refinements [1] 

 Extract a single i-vector for each 
respective speaker 

 Re-assign each segment i-vector to 
the speaker whose i-vector is closer 
in cosine distance 

 Essentially K-means, where the 
“means” are computed as i-vectors. 

•  Speaker Diarization 
 “Who is speaking when?” 
 Model Selection + Clustering + Re-segmentation 

• Previous Work [1] 

 Model Selection + Clustering + Re-segmentation  

• Proposed Work 
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•  From K-means to a more probabilistic 
clustering approach (e.g. GMMs, etc.) 
 Consider variational methods for model selection 

•  Temporal modeling of conversations [6] 

VII. Future Work    

VIII. References   

•  Summed-channel Telephone Speech 
 2000 NIST SRE subset of multilingual CallHome data 
 500 recordings, 2-5 minutes each, 2-7 speakers each 
 Benchmark for comparison  Castaldo 2008 [5] 

I. Introduction   VI. Experiments 

V. Iterative Optimization 

II. Speaker Representation 
•  From GMMs to Factor Analysis 
 Model a speaker’s distribution of acoustic features 

(AF) using a Gaussian Mixture Model (GMM). 
 Create a speaker supervector by concatenating all 

mixture mean components in a GMM. 
 20 dim (AF) x 1024 mix (GMM) ≈ 20,000 dim 

•  Total Variability Subspace [2] 

 Assume all pertinent speaker variabilities lie in some 
low-dimensional subspace T of the supervector space  

M = m + Tw 
  w is 100-dimensional i-vector 
 Use cosine distance to compare two i-vectors 

•  Use the K largest eigenvectors of normalized affinity matrix (N x N) to project data 
onto lower-dimensional space (i.e. K-dimensions) before running K-means. [3] 

IV. Spectral Clustering Explained 

III. Algorithm Details 
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•  Utilize multiple 
levels of information 
 Clustering on i-vectors 

provides good resolution 
for speaker identity. 

 Re-segmentation using 
acoustic features provides 
better temporal resolution 
for speaker changes. 

 Alternate between both 
until “convergence” (in the 
DER sense). 

•  Final System Outline 
 Model selection via spectral estimation 
 K-means clustering (cosine distance) 
 Iterative optimization of segment boundaries – using 

Viterbi Re-segmentation – and cluster assignments 
 Final Pass Refinements (“i-vector K-means”) 


