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Abstract

This paper extends upon our previous work using i-vectors for
speaker diarization. We examine the effectiveness of spectral
clustering as an alternative to our previous approach using K-
means clustering and adapt a previously-used heuristic to es-
timate the number of speakers. Additionally, we consider an
iterative optimization scheme and experiment with its ability to
improve both cluster assignments and segmentation boundaries
in an unsupervised manner. Our proposed methods attain re-
sults similar to those of a state-of-the-art benchmark set on the
multi-speaker CallHome telephone corpus.
Index Terms: speaker diarization, factor analysis, Total Vari-
ability, spectral clustering

1. Introduction
Our previous work proposed an approach to speaker diarization
that performs speaker clustering directly in a low-dimensional
factor analysis-based subspace (i.e. the Total Variability sub-
space) [1]. We showed that this method is not only simpler than
the Variational Bayes-based system formulated in [2], but can
also achieve the same state-of-the-art diarization performance
on summed-channel telephone data from the 2008 NIST SRE.
Such success, however, was limited to the task in which we
knew there were exactly two speakers in the given conversa-
tion. To solve the diarization problem in general, we must ad-
dress the setting in which the number of participating speakers
is unknowna priori.

In this paper, we extend the previous system described in
[1] to approach the more general problem in incremental fash-
ion. First, we motivate the use of a spectral clustering algorithm
as an alternative to the previous approach involving K-means
clustering based on the cosine distance. More importantly, we
adapt a heuristic from previous work applying spectral cluster-
ing to diarization and use it to determine the number of clus-
ters (i.e. speakers) [3]. Second, we experiment with utiliz-
ing the information at different temporal resolutions to evalu-
ate the hypothesis that there exists a symbiotic relationship be-
tween clustering and segmentation; that is, better initial seg-
mentations should yield better speaker clusters, and conversely,
better speaker clusters should aid in providing cleaner speaker
segments.

The rest of this paper is organized as follows. Section 2
provides a brief review of the Total Variability approach as a
factor analysis-based front-end for extracting speaker-specific
features, and Section 3 outlines the general setup of our di-
arization system. Section 4 motivates the spectral clustering
algorithm and its associated heuristic to estimate the number of
speakers. In Section 5, we propose the use of an iterative re-
segmentation/clustering algorithm to refine speaker segments
and clusters. The results of our experiments are analyzed and

explained in Section 6, while Section 7 concludes with a dis-
cussion of future work.

2. A Review of Total Variability

To enhance the classical method of modeling speakers using
Gaussian Mixture Models (GMMs) [4], recently developed
methods apply factor analysis to supervectors - a vector con-
sisting of stacked mean vectors from a GMM - in order to better
represent speaker variabilities and compensate for channel (or
session) inconsistencies [5]. One such approach is Total Vari-
ability, which decomposes a speaker- and session-dependent su-
pervectorM as follows:

M = m + Tw (1)

wherem is the speaker- and session-independent supervector
commonly taken from a large GMM trained to represent the
speaker-independent distribution of acoustic features [4].T is
a rectangular matrix of low rank that defines the Total Variabil-
ity subspace, andw is a low-dimensional random vector with a
standard normal prior distributionN (0, I) that is referred to as
a total factor vectoror ani-vector[5]. For some speech segment
s, its associated i-vectorws can be seen as a low-dimensional
summary of the speaker’s distribution of acoustic features.

The cosine similarity metric has been applied successfully
in the Total Variability subspace to compare two i-vectors [5].
Given any two total factor vectorsw1 andw2, the cosine simi-
larity score is given as

cos score (w1, w2) =
(w1)

t (w2)

‖w1‖ · ‖w2‖
(2)

3. System Setup

We set up our diarization framework to be consistent with our
previous work in [1] with just a few modifications. The rest of
this section outlines the various parts of the system.

3.1. Segmentation

In order to focus solely on the speaker confusion portion of the
Diarization Error Rate (DER) and not be misled by mismatches
between the reference speech/non-speech detector and our own
(i.e. miss and false alarm errors), we follow the convention of
previous works [2, 6] and use the provided reference boundaries
to define our initial segmentation. Each segment is restricted to
a maximum length of one second, and an i-vector is extracted
for each segment. It should be noted that this rather crude initial
segmentation may result in segments that contain speech from
more than one speaker.



3.2. Clustering

This paper discusses two different clustering algorithms: (a) K-
means clustering based on the cosine distance and (b) spectral
clustering. Our subsequent results will specify exactly which
method is used for each experiment.

3.3. Re-segmentation

We use the exact same re-segmentation algorithm discussed in
both [1, 2] to refine our initial segmentation boundaries. At the
acoustic feature level, this stage initializes a 32-mixture GMM
for each of theK + 1 clusters (Speakers{S1, ..., SK} and
non-speech NS) defined by the previous clustering. Posterior
probabilities for each cluster are then calculated given each fea-
ture vectorxt (i.e. P (S1|xt), ..., P (SK |xt), P (NS|xt)) and
pooled across the entire conversation, providing a set of Baum-
Welch statistics from which we can re-estimate each respective
speaker’s GMM. In order to prevent this unsupervised proce-
dure from going out of control, the non-speech GMM is never
re-trained. In the Viterbi stage, each frame is assigned to the
speaker/non-speech model with the highest posterior probabil-
ity. This algorithm runs until convergence but is capped at 20
Viterbi iterations, each of which involves 5 iterations of Baum-
Welch re-estimation.

3.4. Final Pass Refinements

As in [1], we can further refine the diarization output by ex-
tracting a single i-vector for each respective speaker using the
(newly-defined) segmentation assignments. The i-vector cor-
responding to each segment (also newly extracted) is then re-
assigned to the speaker whose i-vector is closer in cosine sim-
ilarity. We iterate this procedure until convergence - when the
segment assignments no longer change. This can be seen as an-
other pass of K-means clustering, where the “means” are com-
puted according to the process of i-vector estimation.

4. Towards Spectral Clustering
Spectral clustering has the ability to handle complex and un-
known cluster shapes where other commonly-used methods
such as K-means and mixture-modeling may fail. Rather than
estimating some explicit model of data distribution, this tech-
nique relies on analyzing the eigen-structure of an affinity ma-
trix.

4.1. The Algorithm

Below, we outline a slightly modified version of the Ng-Jordan-
Weiss spectral algorithm [7]:

0. Assume we are givenn i-vectors{w1, ..., wn} (each cor-
responding to a speech segment≈1sec in length) that we
want to cluster intoK subsets.

1. Form the affinity matrixA ∈ R
n×n, whereAij =

exp
`

−d (wi, wj)
2 /σ2

´

when i 6= j and Aii = 0.
Here,d (wi, wj) = 1 − cos score (wi, wj), where
cos score is given by (2).

2. DefineD to be the diagonal matrix whose(i, i)-element
is the sum ofA’s i-th row, and construct the matrixL =

D−
1

2 AD−
1

2 .
3. Find x1, ..., xK , the K largest eigenvectors ofL and

form the matrixX = [x1, ..., xK ] ∈ R
n×K .

4. Create the matrixY from X by re-normalizing each
of X ’s rows to have unit length (i.e. Yij =

Xij/(
P

j X2

ij)
1/2).

5. Treating each row ofY as a point inRK , cluster them
into K clusters via K-means.

6. Assign the original i-vectorwi to clusterk if and only if
row i of Y is assigned to clusterk.

Instead of the Euclidean distance that is specified in Step 1 of
[7], the cosine distance is more appropriately suited for our i-
vector data. Picking a scaling factorσ2 is easy in our case be-
cause a cosine distance can be no larger than 2. As such, we
simply pick aσ2 such thatexp

`

−22/σ2
´

≤ ǫ for some rea-
sonable value ofǫ. In our experiments, we simply setσ2 = 0.5.

A more detailed analysis of the algorithm is presented in
[7]; we briefly provide some intuition as to how it works. In
the ideal case ofK clusters where all points in different clus-
ters are infinitely far apart, we would have an affinity matrixÃ
that is block-diagonal. Each of theK blocks,Ãk, is a matrix of
“intra-cluster” affinities for clusterk. Subsequently,̃L will have
the same structure, so its eigenvalues and eigenvectors will be
the union of the eigenvalues and eigenvectors of its blocks (the
latter padded appropriately with zeros) [7]. Furthermore, this
will result in K eigenvalues equal to 1 with each of their cor-
responding eigenvectors spanning one of theK distinct blocks
in L̃. We generatẽX from theseK eigenvectors of̃L and sub-
sequently obtaiñY by normalizing the rows ofX̃. Now, the
i-th row of Ỹ (corresponding to thei-th data point or i-vector)
is 1 for thek-th column if segmenti belongs in clusterk and 0
everywhere else. As such, each of the clusters will be located at
orthogonal locations on theK-dimensional hypersphere.

4.2. Estimating the Number of Clusters

To estimate the number of clusterŝK, we adapt from the work
in [3], which demonstrated the usefulness of a simple heuristic.
It was seen experimentally that then sorted eigenvalues ofL,
sayΛ = {λ1, ..., λn}, exhibit exponential decay and that the
number of speakers in a conversation correspond consistently to
when the gradient of these eigenvalues exceeds some threshold
θ. As such, to determine the number of clusters, we can fit a
smooth exponentialexp(−αk) to Λ, wherek = 1, ..., n and
α ∈ [0.1, 10]. We then takeK̂ to be the smallest value whose
derivative−α exp(−αK̂) ≥ θ.

5. Iterative Optimization
The use of factor analysis for speaker diarization allows us to
take advantage of multiple levels of speaker information. I-
vectors are designed to provide information specific to speaker
(and channel) identity, which is important for clustering; how-
ever, the effectiveness of an i-vector is proportional to the length
of the speech segment from which it is extracted, thus it is not
as well-suited for issues requiring finer temporal resolution (e.g.
speaker change detection). By contrast, lower-level acoustic
features such as MFCCs are not quite as good for discerning
speaker identities, but can provide sufficient temporal resolu-
tion to witness local speaker changes and segment boundaries.

We can evaluate the validity of this idea by formulating an
algorithm that optimizes both segmentation boundaries and seg-
ment cluster assignments in iterative fashion. More specifically,
we can alternate between clustering (done at the i-vector level)
as described in Section 3.2 and applying the re-segmentation
method (done at the acoustic feature level) as described in Sec-
tion 3.3 until successive diarization hypotheses “converge.” To
understand this notion of convergence, let us approximate a



“distance” between two diarization hypothesesD1 andD2 by
running it through a diarization evaluation script as provided by
NIST [8]. Then we can define a “convergence” to be when this
error rate (i.e. DER(D1, D2)) is below some thresholdγ. In
our experiments, we setγ = 8% and allow a maximum of 20
total iterations.

It should be noted that the re-segmentation output from Sec-
tion 3.3 includes both segment boundaries and corresponding
cluster assignments. During this iterative optimization process,
however, the assignment labels from the re-segmentation output
are not input to the clustering stage - only the segment bound-
aries are considered. Lastly, the number of speakers is also re-
estimated at the start of each clustering stage.

6. Experiments
In order to use the same telephone-based Total Variability
framework from before and utilize the state-of-the-art results
from [6] as a benchmark for comparison, we evaluate our sys-
tem on the 2000 NIST SRE subset of the multilingual CallHome
data, a corpus of multi-speaker telephone conversations. This
amounts to 500 recordings, each 2-5 minutes in length, con-
taining between two and seven participants [9]. Furthermore,
we break down our results to show diarization performance on
conversations involving the different numbers of speakers.

We obtain our i-vectors using the same Total Variability ma-
trix T of rank 100 that achieved the best results in [1]. This
matrix was trained from a gender-independent UBM of 1024
Gaussians built solely on 20-dimensional MFCC feature vec-
tors without derivatives.

6.1. First Pass Comparisons

We begin by comparing the effectivenes of K-means and spec-
tral clustering when the number of speakers is given. The plot at
the top of Figure 1 shows that K-means clustering outperforms
spectral clustering on conversations involving any number of
speakers. This is actually not too surprising; one of the moti-
vations behind spectral clustering is to address the inability of
standard K-means to separate clusters that are not linearly dis-
tinguishable in the input space [7]. In our case, however, we
have always been operating on the assumptions that i-vectors
live on the unit hypersphere and that the cosine distance be-
tween two respective i-vectors is a valid measure of their dis-
tance. Thus, as confirmed by the plot at the top of Figure 1,
there is no reason why the K-means algorithm based on the co-
sine distance would not provide a result that is at least as good
as that of spectral clustering.

It becomes quite clear, then, that what we really want out of
the spectral algorithm is an estimate of the number of speakers
based on the eigenvalues of the normalized affinity matrixL. As
such, we develop a hybrid approach that combines the respec-
tive advantages of both methods: the normalized affinity matrix
from spectral clustering provides an estimate of the number of
speakerŝK, while the K-means algorithm does the actual clus-
tering based on the cosine distance. The plot at the bottom of
Figure 1 verifies this claim. For each conversation, the number
of speakersK̂ is estimated via the method detailed in Section
4.2, which is then used as an input to both the K-means and
spectral clustering algorithms. In the DER sense,1 K-means

1Unfortunately, due to the restricted length of this paper, we are un-
able to show how accurately this method can estimate the number of
speakers. Instead, we resort to using DER as an indicator of speaker
estimation accuracy.
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Figure 1:Results obtained using first-pass clustering where the
number of speakers was given a priori (Top) or estimated as
explained in Section 4.2 (Bottom).

clustering outperforms the spectral method once again. From
now on, we exclusively use K-means as our clustering method.

6.2. Iterative Optimization

Figure 2 shows the result of evaluating the proposition ex-
plained in Section 5. Using K-means clustering, we consider
the cases in which the number of speakers is given (Top) and
estimated (Bottom). Unfortunately, the results show no obvi-
ous trends for either scenario. Upon a more detailed analysis,
we saw that the iterative optimization does improve the DER,
but only for conversations that already had reasonably good di-
arization hypotheses (e.g. calls containing two or three speak-
ers). For the conversations whose initial hypotheses were rather
poor, however, the unsupervised nature of this technique leads
to somewhat unpredictable outcomes. It looks as though a more
in-depth study of this approach is warranted.

6.3. Final System

Lastly, we integrate a final pass of refinements (Section 3.4)
to obtain our ultimate diarization result, as shown in Figure 3.
The configuration of our best-performing system depends on
the amount of information provided at the beginning. When the
number of speakers is givena priori, the best results are ob-
tained without the use of iterative optimization. However, when
the number of speakers needs to be estimated, the best results
are obtained with the iterative optimization step. It seems as
though the repeated iterations give the system more opportunity
to re-estimate the number of speakers using (hopefully) cleaner
and more refined speech segments.

Whether intentional or incidental, the system in [6] was de-
signed to take advantage of the structure of telephone conver-
sations. In particular, most speaker turns over the telephone
involve no more than two participants at any given time. The
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Figure 2: Plots comparing the results obtained by running re-
segmentation (Section 3.3) a single time (green) and running
the iterative re-segmentation/clustering method from Section 5
(red).

system in [6] processes these calls in causal fashion, working on
60-second slices and assuming that each slice contains no more
than three speakers. Given the nature of the data, this makes
sense; barring the rare use of speakerphones, only during very
infrequent “hand-offs” would a third speaker even exist in any
particular slice of the conversation.

By contrast, our algorithm sees and processes an entire
utterance at once and performs clustering without any regard
to the potentially restrictive temporal dynamics of a telephone
conversation (i.e. “bag of i-vectors”). This method may be a
slightly more general approach; however, it is prone to missing
speakers that, say, only participate in a very short snippet of the
conversation. One conceivable way to improve our system in
this regard might be to run an initial clustering on shorter, say
60-second, slices of conversation before clustering on the entire
utterance.

7. Conclusions
Our experiments evaluated the effectiveness of a spectral algo-
rithm for both clustering and estimating the number of speakers,
as well as a method for iteratively optimizing re-segmentation
and clustering. The system that performed best uses the nor-
malized affinity matrix from the spectral algorithm to estimate
the number of speakers before clustering with K-means based
on the cosine distance. Segment boundaries and cluster assign-
ments are iteratively optimized until convergence; and lastly, we
run final pass refinements to obtain our diarization output.

The methods described in this paper approach the bench-
mark results set by [6] and provide many avenues for future
work. For one, it may be fruitful to consider extending from K-
means to a more probabilistic approach to speaker clustering,
such as with a GMM or even a mixture of the von Mises-Fisher
distribution, which lies on the unit hypersphere [10]. We also
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Figure 3: Final results obtained using K-means (cosine) clus-
tering and a stage of final pass refinements.

alluded previously to the notion of using i-vectors to model the
temporal dynamics of a conversation, such as with a Hidden
Markov Model; to that end, a viable next step would be to use
i-vectors as feature inputs to the models proposed in [11, 12].
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