Unsupervised Clustering Approaches for Domain Adaptation in Speaker Recognition Systems

Stephen H. Shum

C S A I L MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Douglas A. Reynolds

Daniel Garcia-Romero

Alan McCree

human language technology center of excellence

Unsupervised Clustering Approaches for Domain Adaptation in Speaker Recognition Systems

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Most current statistical learning techniques assume (incorrectly) that the training and test data come from the same underlying distribution.
- Labeled data may exist in one domain, but we want a model that can also perform well on a related, but not identical, domain.
- Hand-labeling data in a new domain is difficult and expensive.
- What can we do to leverage the original, labeled, "out-of-domain" data when building a model to work on new, unlabeled, "in-domain" data?

[2] Hal Daume III and Daniel Marcu, "Domain adaptation for statistical classifiers," Journal of Artificial Intelligence Research, 2006.

Unsupervised Clustering Approaches for <u>Domain Adaptation</u> in Speaker Recognition Systems

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Segment-length independent, low-dimensional, vectorbased summary representation of audio
- Allows the use of large amounts of previously collected and labeled audio to characterize and exploit speaker and channel (i.e., all non-speaker) variabilities.

- 1000's of speakers making 10's of calls

 Unrealistic to expect that most applications will have access to such a large set of labeled data from matched conditions.

Data usage (labeled & unlabeled) in an i-vector system

- Enroll and score
 - SRE10 telephone speech
- Matched, "in-domain" SRE data
 - All telephone calls from all speakers from SRE 04, 05, 06, and 08 collections
- Mismatched "out-of-domain" SWB data
 - All calls from all speakers from Switchboard-I and Switchboard-II collections

Summary statistics for SRE & SWB lists

Hyper	# Spkrs	# Males	# Females	# Calls	Avg #	Avg #
list					calls/spkr	phone_num/spkr
SWB	3114	1461	1653	33039	10.6	3.8
SRE	3790	1115	2675	36470	9.6	2.8

8

Baseline / Benchmark Results (Equal Error Rate – EER)

UBM & T	Whitening	WC & AC	JHU	ΜΙΤ
SWB	SWB	SWB	6.92%	7.57%
SWB	SRE	SWB	5.54%	5.52%
SWB	SRE	SRE	2.30%	2.09%
SRE	SRE	SRE	2.43%	2.48%

- Focus on the performance gap caused by using SRE instead of SWB labels (SWB/SRE) for WC & AC
 - Continue using SWB for UBM&T and SRE for Whitening

- Allowed to use SWB data and their labels
- Allowed to use SRE data but <u>not</u> their labels
- Evaluate on SRE10.

- Speaker ages?
- Languages spoken?
 - SWB contains only English
 - SRE contains 20+ different languages

[11] Carlos Vaquero, "Dataset Shift in PLDA-based Speaker Verification," in *Proceedings of Odyssey*, 2012.

- SWB subsets
 - SWPH0 (1992)
 - SWPH1 (1996)
 - SWPH2 (1997)
 - SWPH3 (1997-1998)
 - SWCELLP1 (1999)
 - SWCELLP2 (2000)

WC & AC	EER (%)
SWCELLP1/2	4.67%
+ SWPH3	3.51%
+ SWPH1/2	4.85%
+SWPH0	5.54%

[13] Hagai Aronowitz, "Inter-Dataset Variability Compensation for Speaker Recognition," in *Proceedings of ICASSP*, 2014.

Naïve "adaptation" via automatic subset selection

Unsupervised Clustering Approaches for <u>Domain Adaptation</u> in <u>Speaker Recognition Systems</u>

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Begin with Σ_{SWB} (WC) and Φ_{SWB} (AC).
- Use PLDA and Σ_{SWB} , Φ_{SWB} to compute pairwise affinity matrix, A, on SRE data.
- Cluster A to obtain hypothesized speaker labels.
- Use labels to obtain Σ_{SRE} and Φ_{SRE}
- Linearly interpolate (via α_{WC} and α_{AC}) between prior (SWB) and new (SRE) covariance matrices to obtain final hyper-parameters:

$$\Sigma_{\rm F} = \alpha_{\rm WC} \cdot \Sigma_{\rm SRE} + (1 - \alpha_{\rm WC}) \cdot \Sigma_{\rm SWB}$$

$$\Phi_{\rm F} = \alpha_{\rm AC} \cdot \Phi_{\rm SRE} + (1 - \alpha_{\rm AC}) \cdot \Phi_{\rm SWB}$$

Iterate?

- Agglomerative hierarchical clustering (AHC)
 - Requires as input the number of clusters at which to stop
- Graph-based random walk algorithms
 - Infomap [24]
 - Markov Clustering (MCL) [25]

[24] Martin Rosvall and Carl T. Bergstrom, "Maps of Random Walks on Complex Networks Reveal Community Structure", in *Proceedings of the National Academy of Sciences*, 2008.

[25] Stijn van Dongen, <u>Graph Clustering by Flow Simulation</u>, Ph.D. Thesis, University of Utrecht, May 2000.

• In the presence of interpolation ($0 < \alpha < 1$), an imperfect clustering is forgivable.

18

EER on 1000 speakers EER on 1000 speakers (re-scaled) 2.8 0.2 0.2 4 3.8 2.75X:2Y:3 0.4 0.4 alpha (Within Gass) alpha (Within Gazs) Index: 2.554 3.6 RGB:0,0,0.562 2.7 3.4 0.6 0.6 3.2 2.650.8 0.8 3 2.62.8 1.0 1.0 2.60.2 0.4 0.6 0.8 1.0 1.0 0 alpha (Across Class) alpha (Across Class)

ER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Initial Findings

- Automatic estimation of a^*
 - Open and unsolved, but not a huge problem

Via clustering and optimal adaptation

	Ŕ	Perfect	Hypothesized	Gap (%)
AHC	3790*	2.23	2.58	16%
Infomap+AHC	3196		2.53	13%
MCL+AHC	3971		2.61	17%

Initial baseline and benchmark

UBM & T	Whitening	WC & AC	JHU
SWB	SRE	SWB	5.54%
SWB	SRE	SRE	2.30%

- In the presence of interpolation, α, an imprecise estimate of the number of clusters is forgivable.
- Range of adaptation parameters yield decent results.
 The selection of optimal values is still an open question.
- Best automatic system so far obtains SRE10 performance that is within 15% of a system that has access to all speaker labels.

- Telephone Telephone domain mismatch
 - Simple solutions work well already.
 - Explicitly identifying the source of the performance degradation via metadata analysis, etc.
- Telephone Microphone domain mismatch
 - Expected to be a more difficult problem
- Out-of-domain detection
 - Not unlike outlier/novelty detection

Telephone vs. Telephone

[--] Laurens van der Maaten and Geoffrey Hinton, "Visualizing data using t-SNE," Journal of Machine Learning Research, 2008.

Telephone vs. Telephone

Telephone vs. Microphone

 $IEL = {SWB, SRE};$ MIC = {SRE 05, 06, 08 microphone}

