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Domain Adaptation & Transfer Learning 

•  Most current statistical learning techniques assume 
(incorrectly) that the training and test data come from 
the same underlying distribution. 

•  Labeled data may exist in one domain, but we want a 
model that can also perform well on a related, but not 
identical, domain. 

•  Hand-labeling data in a new domain is difficult and 
expensive. 

•  What can we do to leverage the original, labeled, 
“out-of-domain” data when building a model to work 
on new, unlabeled, “in-domain” data? 

[2] Hal Daume III and Daniel Marcu, “Domain adaptation for statistical classifiers,“ Journal of Artificial Intelligence Research, 2006. 
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The i-vector approach 

•  Segment-length independent, low-dimensional, vector-
based summary representation of audio 

•  Allows the use of large amounts of previously collected 
and labeled audio to characterize and exploit speaker 
and channel (i.e., all non-speaker) variabilities. 
– 1000’s of speakers making 10’s of calls 

•  Unrealistic to expect that most applications will have 
access to such a large set of labeled data from matched 
conditions. 
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Data usage (labeled & unlabeled)  
in an i-vector system 
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Demonstrating Mismatch 

•  Enroll and score 
– SRE10 telephone speech 

•  Matched, “in-domain” SRE data 
– All telephone calls from all speakers from SRE 04, 05, 

06, and 08 collections 

•  Mismatched “out-of-domain” SWB data 
– All calls from all speakers from Switchboard-I and 

Switchboard-II collections 
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Demonstrating Mismatch 

•  Summary statistics for SRE & SWB lists 

Hyper 
list	
  

# Spkrs	
   # Males	
   # Females	
   # Calls	
   Avg # 
calls/spkr	
  

Avg # 
phone_num/spkr	
  

SWB	
   3114	
   1461	
   1653	
   33039	
   10.6	
   3.8	
  
SRE	
   3790	
   1115	
   2675	
   36470	
   9.6	
   2.8	
  

Would not expect a large performance 
difference using these two sets of data. 
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UBM & T Whitening WC & AC JHU MIT 

SWB SWB SWB 6.92% 7.57% 
SWB SRE SWB 5.54% 5.52% 
SWB SRE SRE 2.30% 2.09% 
SRE SRE SRE 2.43% 2.48% 

Demonstrating Mismatch 

•  Baseline / Benchmark Results (Equal Error Rate – EER) 

 

•  Focus on the performance gap caused by using SRE 
instead of SWB labels (SWB/SRE) for WC & AC 
– Continue using SWB for UBM&T and SRE for Whitening 
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Challenge Task Rules 

•  Allowed to use SWB data and their labels 

•  Allowed to use SRE data but not their labels 

•  Evaluate on SRE10. 
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Exploring the Domain Mismatch 

•  Speaker ages? 

•  Languages spoken? 
– SWB contains only English 
– SRE contains 20+ different languages 

[11] Carlos Vaquero, “Dataset Shift in PLDA-based Speaker Verification,” in Proceedings of Odyssey, 2012. 
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Exploring the Domain Mismatch 

•  SWB subsets 
– SWPH0 (1992) 
– SWPH1 (1996) 
– SWPH2 (1997) 
– SWPH3 (1997-1998) 
– SWCELLP1 (1999) 
– SWCELLP2 (2000) 

WC & AC EER (%) 
SWCELLP1/2 4.67% 

+ SWPH3 3.51% 
+ SWPH1/2 4.85% 
+SWPH0 5.54% 

[13] Hagai Aronowitz, “Inter-Dataset Variability Compensation for Speaker Recognition,” in Proceedings of ICASSP, 2014. 
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Exploring the Domain Mismatch 

•  Naïve “adaptation” via automatic subset selection 
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Proposed (Bootstrap) Framework 

•  Begin with ΣSWB (WC) and ΦSWB (AC). 
•  Use PLDA and ΣSWB , ΦSWB to compute pairwise 

affinity matrix, A, on SRE data. 
•  Cluster A to obtain hypothesized speaker labels. 
•  Use labels to obtain ΣSRE and ΦSRE 
•  Linearly interpolate (via αWC and αAC) between prior 

(SWB) and new (SRE) covariance matrices to obtain 
final hyper-parameters: 

 

•  Iterate? 

Fig. 1. High-level diagram of i-vector system showing all hyper-
parameters and which require labeled and unlabeled data.

SRE SWB
# spkrs (m, f) 3790 (1115, 2675) 3114 (1461, 1653)
# calls 36470 33039
Avg. # calls/spkr 9.6 10.6
Avg. # phns/spkr 2.8 3.8

Table 1. Summary statistics for the SRE and SWB training lists.

data used to train the hyper-parameters that the system will work
well, (2) collect a large amount of unlabeled data from the new do-
main and adapt the hyper-parameters using unsupervised techniques,
or (3) collect and label sufficient amounts of new domain data to al-
low re-training or supervised adaptation of the hyper-parameters. In
this paper we will explore approaches to option (2).

Using Linguistic Data Consortium (LDC) telephone corpora, we
have designed an experiment that demonstrates the effect of data
mismatch on hyper-parameters and defines the challenge task on
which we are working. In this experiment, SRE10 telephone data
is used as enroll and test sets. Specifically, we are using the com-
bined one conversation (1c) telephone data enroll and test lists from
condition 5 (normal vocal effort) [7, 8].

We have designated two datasets to be used for hyper-parameter
training: the in-domain SRE set consists of all telephone calls from
all speakers taken from the SRE 04, 05, 06, and 08 collections; this
will serve as the “matched” hyper-parameter training list. The out-
of-domain SWB set consists of all telephone calls from all speakers
taken from the switchboard-I and switchboard-II (all phases) cor-
pora; this will serve as the “mismatched” training list. Some key
statistics of the two data sets are given in Table 1.

These two datasets appear very similar and the expectation is
hyper-parameters trained from these should produce similar results.
However, the resulting equal error rates (EER’s) in Table 2 clearly
show a gap in performance on the SRE10 enroll/test set when hyper-
parameters are trained with the different sets. Similar performance
gaps were observed by other sites using independent i-vector im-
plementations, indicating that the performance gap is not a function
of particular implementation details (features, speech activity detec-
tion, hyper-parameter training algorithms, etc.).

In this paper we are primarily focused on how to effectively train
or adapt the hyper-parameters that depend on labeled data (WC, AC)
when only unlabeled data is available in the target domain. Of the
hyper-parameters which do not depend on labeled data – UBM, T ,
and W – it was found on this challenge set that the difference in
using SWB or SRE for UBM and T training was insignificant, but
using SRE (in-domain) data for training the whitening, W , gave a
significant improvement (compare rows 1 and 2 in Table 2) [9]. We
will use the system specified in row 2 of Table 2 as our starting out-
of-domain baseline and row 3 in Table 2 as our desired in-domain
optimal performance. To avoid making this a data engineering ex-
ercise, we will restrict our system to only use the labeled SWB data

# UBM & T W WC & AC 1c (EER %)
1 SWB SWB SWB 6.92%
2 SWB SRE SWB 5.54%
3 SWB SRE SRE 2.30%
4 SRE SRE SRE 2.43%

Table 2. EER’s obtained on SRE10 from hyper-parameters trained
using SWB or SRE datasets, as specified.

and unlabeled SRE data. The ultimate goal is to come up with a
recipe that can be applied in future situations where only unlabeled
data from a new domain is available.

3. GENERAL FRAMEWORK AND INITIAL SETUP

We begin our work assuming the existence of an initial set of hyper-
parameters and PLDA scoring function; implementational details
can be found in Section A.1 of the Supplementary Materials as well
as in [4, 9]. For notational convenience, we will subsequently use ⌃

to refer to the WC matrix and � to refer to the AC matrix. As such,
our initial setup begins with ⌃SWB and �SWB, which we train using
the labeled SWB data that are provided.

We propose the following approach to the domain adaptation
problem and adhere to it throughout the rest of this work:

(a) Use ⌃SWB and �SWB to compute a pairwise affinity matrix,
A, on the unlabeled SRE data. Specifically, element Aij is
the log likelihood ratio between the hypothesis that speakers
i and j are the same and the hypothesis that they are different.

(b) Use A to obtain a hypothesized speaker clustering of the SRE
data. A discussion of different clustering algorithms will be
covered in Section 4. These estimated speaker clusters can
then be used to obtain ⌃SRE and �SRE.

(c) Instead of simply using ⌃SRE and �SRE for recognition, the
work in [9] found success in linearly interpolating between
the prior (SWB) and new (SRE) covariance matrices to obtain
the final hyper-parameters, ⌃F and �F, as follows:

⌃F = ↵WC · ⌃SRE + (1� ↵WC) · ⌃SWB (1)

�F = ↵AC · �SRE + (1� ↵AC) · �SWB (2)

We denote the set of parameters as ↵ = {↵AC,↵WC}. Note that
setting ↵ = 1 corresponds to ⌃F = ⌃SRE and �F = �SRE, or the
hyper-parameters obtained using only the hypothesized speaker la-
bels obtained from clustering the unlabeled SRE data. Conversely,
setting ↵ = 0 is equivalent to not using any of the in-domain data;
this yields the 5.54% EER shown on row 2 of Table 2.

One additional possibility is to iterate this procedure, where the
⌃F and �F obtained in step (c) respectively replace the ⌃SWB and
�SWB of step (a) and the process is repeated until some form of con-
vergence criterion is met, after which we proceed to the final recog-
nition task. Coverage of these experiments is beyond the scope of
this paper, but we do see this as a fruitful avenue for future work.

4. CLUSTERING ALGORITHMS

In our experiments, we focus on a subset of the algorithms from
previous work on large-scale speaker clustering [10]. The following
algorithms are designed to work given only a (potentially sparse)
pairwise affinity matrix; that is, we need not go back to the raw data
(i-vectors); simply the relationships between them will suffice.
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(Unsupervised) Clustering 

•  Agglomerative hierarchical clustering (AHC) 
– Requires as input the number of clusters at which to stop 

•  Graph-based random walk algorithms 
–  Infomap [24] 
– Markov Clustering (MCL) [25] 

[24] Martin Rosvall and Carl T. Bergstrom, “Maps of Random Walks on Complex Networks Reveal Community Structure”, in 
       Proceedings of the National Academy of Sciences, 2008. 
[25] Stijn van Dongen, Graph Clustering by Flow Simulation, Ph.D. Thesis, University of Utrecht, May 2000. 
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Initial Findings 

•  In the presence of interpolation (0 < α < 1), an 
imperfect clustering is forgivable. 
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•  Automatic estimation of α* 
– Open and unsolved, but not a huge problem 

Initial Findings 
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Results So Far 

•  Via clustering and optimal adaptation 

 

•  Initial baseline and benchmark 

# Spkrs # Clstrs Clustering Performance ↵⇤ EER (%) ↵ = 1 EER (%)
# K ˆK Confusion Purity Frag. Perfect Hyp. Gap Perfect Hyp. Gap
1 AHC 1000 1000

⇤ 7.4% 94.9% 1.20 2.37 2.55 7.8% 2.77 3.16 14%
2 Infomap — 918 18.2% 85.9% 1.44 — 2.71 14% — 3.45 25%
3 MCL — 997 15.1% 90.3% 1.45 — 2.68 13% — 3.40 23%
4
5 Infomap+AHC 1000 918 9.0% 92.6% 1.19 2.37 2.56 8.2% 2.77 3.18 15%
6 MCL+AHC — 997 7.5% 94.9% 1.20 — 2.56 8.0% — 3.16 14%

Table 3. Results from initial experiments in domain adaptation. Clustering performance was evaluated on the entire SRE hyper-parameter
training list; recognition performance (EER’s) is reported for the 1c task in SRE10. Rows 1-3 are explained in Section 5.1, while rows 5-6
are discussed in Section 5.2.

Fig. 3. Result of stopping AHC at varying numbers of clusters.
Dash-dotted and solid lines correspond to results using hypothesized
and perfect clusters, respectively. A more detailed explanation can
be found in Section 5.2.

5.2. The Effect of Cluster Number on Recognition Performance

Figure 3 shows the result of stopping AHC at varying numbers of
clusters. These results are averaged over ten random draws of 1000
speakers, and ↵⇤ is optimized as previously discussed. The plot of
cluster confusion error, in blue, is scaled according to the y-axis on
the right and shows that clustering performance is best when AHC
is provided a number of clusters equal to the number of speakers
present. Yet, considering recognition performance alone, we can
see that the resulting EER is relatively robust to stopping AHC at
incorrect numbers of clusters. We can actually provide AHC with a
significant underestimate of the number of speakers and still do fairly
well on the SRE10. Additional experiments are necessary to better
understand this phenomenon; in particular, an underestimate seems
more forgiving than an overestimate, which implies the somewhat
counterintuitive idea that modeling multiple speakers as one cluster
is acceptable. One hypothetical explanation is that the resulting WC
matrix accounts for additional uncertainty that is somehow beneficial
to our task, but we leave this as an open thread for further analysis.

In rows 5-6 of Table 3, we show the results of using Infomap and
MCL to estimate the number of speakers and taking that estimate as
an input to AHC for clustering and recognition. We can see that both
random walk algorithms are able to provide a reasonable estimate of
the number of speakers, and the resulting recognition performance
is just about as good as the case in which AHC is given the exact
number of speakers (row 1). This is expected, as subsequent parti-
tions produced at each step of AHC differ only by a single cluster
merge and thus yield only small changes in cluster error. But more
significantly, the gap in recognition performance between knowing
and not knowing a priori the number of speakers in the unlabeled
SRE is effectively nil. Indeed, when final recognition performance

ˆK Perfect Hypothesized Gap (%)
AHC 3790* 2.23 2.58 16%

Infomap+AHC 3196 — 2.53 13%
MCL+AHC 3971 — 2.61 17%

Table 4. SRE10 results obtained using different clustering algo-
rithms on the entire unlabeled SRE dataset as well as using optimal
hyper-parameter adaptation, where ↵⇤

AC = 0.4 and ↵⇤
WC = 0.8.

is the main priority, obtaining an exact estimate of the number of
speakers may, in fact, be unnecessary.

As a final experiment, we run our proposed adaptation proce-
dure on the full SRE data, using Infomap and MCL to estimate the
number of speakers for input to AHC. Table 4 shows our final re-
sults, which were obtained with ↵⇤

AC = 0.4 and ↵⇤
WC = 0.8. Note

how Infomap+AHC severely underestimates the number of speakers
– thus obtaining the worst clustering performance of the three algo-
rithms – but manages to attain recognition performance that is even
better than when AHC is given the correct number of clusters.

5.3. Automatic Estimation of Optimal Adaptation Parameters

We have not yet addressed a way to automatically determine the op-
timal values for ↵ = {↵AC,↵AC}. An explicit undertaking of the
problem is beyond the scope of this paper, but we noticed in our ex-
periments – across sampled subsets ranging from 500 to 2000 speak-
ers – that there is actually a reasonably wide range of possible val-
ues for both ↵AC and ↵WC that yield relative EER’s within 10% of
the EER obtained using the optimal, oracle-based ↵⇤. From what
we observed3, we can obtain sufficiently good results by estimating
↵AC 2 [0, 0.4] and setting ↵WC 2 [0.4, 0.8].

6. CONCLUSION

In this paper, we motivate and define the domain adaptation chal-
lenge task for speaker recognition. Using the proposed framework
and various unsupervised clustering algorithms, we present the re-
sults of initial experiments and highlight avenues for further anal-
ysis. So far, we have seen that, in the presence of adaptation with
out-of-domain hyper-parameters, a perfect clustering is not neces-
sary for good recognition performance, and an imprecise estimate of
the number of clusters is forgivable. We demonstrate that there is a
range of adaptation parameters that yields decent results, though the
selection of their optimal values is still an open question. Lastly, our
best automatic system so far obtains recognition performance that is
within 15% of a system that has access to all speaker labels.

3We show this in Figure 5 in Section A.5 of the Supplementary Materials.

UBM & T Whitening WC & AC JHU 

SWB SRE SWB 5.54% 
SWB SRE SRE 2.30% 
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Take-home Ideas 

•  In the presence of interpolation, α, an imprecise estimate 
of the number of clusters is forgivable. 

•  Range of adaptation parameters yield decent results. 
– The selection of optimal values is still an open question. 

•  Best automatic system so far obtains SRE10 performance 
that is within 15% of a system that has access to all 
speaker labels. 
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What’s Next? 

•  Telephone – Telephone domain mismatch 
– Simple solutions work well already. 
– Explicitly identifying the source of the performance 

degradation via metadata analysis, etc. 

•  Telephone – Microphone domain mismatch 
– Expected to be a more difficult problem 

•  Out-of-domain detection 
– Not unlike outlier/novelty detection 
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Telephone vs. Telephone 

TEL = {SWB, SRE};  
MIC = {SRE 05, 06, 08 microphone} [--] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Research, 2008. 
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Telephone vs. Telephone 
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Telephone vs. Microphone 

TEL = {SWB, SRE};  
MIC = {SRE 05, 06, 08 microphone} 
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Microphone vs. Microphone 


