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Abstract
In this paper, we motivate and define the domain adaptation
challenge task for speaker recognition. Using an i-vector sys-
tem trained only on out-of-domain data as a starting point, we
propose a framework that utilizes large-scale clustering algo-
rithms and unlabeled in-domain data to adapt the system for
evaluation. In presenting the results and analyses of an empiri-
cal exploration of this problem, our initial findings suggest that,
while perfect clustering yields the best results, imperfect clus-
tering can still provide recognition performance within 15% of
the optimal. We further present a system that achieves recogni-
tion performance comparable to one that is provided all knowl-
edge of the domain mismatch, and lastly, we outline throughout
this paper some of the many directions for future work that this
new task provides.

1. Introduction
With the ubiquity, connectivity, and expansive storage of data-
recording devices (smart phones, embedded sensors, etc.), we
are in an era with almost unlimited access to data. Neverthe-
less, we often struggle to make sense – much less make effec-
tive use – of most of it. Much of these data that we have such
convenient access to are unlabeled and thus useless in many of
the traditionally supervised machine learning scenarios that re-
quire explicit labeled examples. Because the process of using
humans to tag and annotate is expensive and time-consuming,
we’d like to develop methods that utilize existing, previously
labeled examples in ways that can make use of the many unla-
beled examples at hand. This is the problem of transfer learning
and domain adaptation [1, 2].

In this paper, we consider such a scenario in the context
of speaker recognition. Over the past 5 years, the i-vector ap-
proach to speaker recognition has proven to be the best per-
forming system as demonstrated in NIST speaker recognition
evaluations (SRE) [3]. One of the keys to this success is a
framework that easily allows the use of large amounts of pre-
viously collected and labeled audio to characterize and exploit
speaker and channel variability. In the SRE scenario, data from
thousands of speakers each making over 10 calls from at least
2 different handsets, collected in a consistent manner, has been
readily available from previous years. However, it is unrealistic
to expect a large set of labeled data from matched conditions
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when applying such a system to a new domain. In this paper,
we describe a challenge task using SRE data that demonstrates
the effect of a subtle domain mismatch and design experiments
that allow for an empirical exploration of unsupervised domain
adaptation techniques on i-vector speaker recognition systems.

The rest of this paper is organized as follows. In the follow-
ing section we discuss the use of prior data in an i-vector system
and describe an experiment that demonstrates the effect of do-
main mismatch. We then outline a domain adaptation challenge
task for exploring techniques to mitigate performance degrada-
tions due to such mismatch; this was one of the topics explored
at the Johns Hopkins University (JHU), Center for Language
and Speech Processing (CLSP) Summer Workshop 2013. Sec-
tion 3 presents some initial experiments that attempt to quantify,
at least to some extent, the difference between the two domains
in question and, to first order, shed some insight on how the
domain adaptation problem can be approached. In Section 4,
we propose our general experimental framework and describe
how it fits into an i-vector speaker recognition system. Section
5 outlines the various clustering algorithms we explore, while
in Section 6, we present our initial experiments, results, and
analysis. Finally, Section 7 concludes this paper.

2. Domain Adaptation Challenge Task
To distinguish our explorations from those of the NIST i-vector
Challenge [4], we first explain the domain adaptation problem
at hand. As mentioned previously, this task may also be referred
to as the 2013 JHU CLSP Summer Workshop Challenge.

While a detailed description of the i-vector system and
theory is beyond the scope of this paper (but can be found
in [3, 5, 6]), it is worth providing a high-level overview to
note where labeled and unlabeled data is required. In Fig-
ure 1 we show a simplified block diagram of i-vector extrac-
tion and scoring. A speech utterance (e.g., one side of a tele-
phone call in SREs) is first represented by how its acoustic
features (MFCC+deltas) are distributed relative to a Univer-
sal Background Model (UBM), which is a Gaussian mixture
model (GMM) characterizing speaker-independent speech fea-
ture distributions. This representation consists of the zeroth-
order (counts) and first-order (means) sufficient statistics of
the speech utterance. These sufficient statistics are then trans-
formed into an i-vector, typically of 600 dimensions, using a
total variability matrix T . The i-vector is then whitened by sub-
tracting a global mean,m, and scaling by the inverse square root
of a global covariance matrix, W , and then length-normalized
to unit length [5]. Finally, a scoring function between a model
and test i-vector is computed; this requires a within-class (WC)
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Figure 1: High-level diagram of i-vector system showing all
hyper-parameters and which, respectively, require labeled and
unlabeled data to train.

SRE SWB
# spkrs (m, f) 3790 (1115, 2675) 3114 (1461, 1653)
# calls 36470 33039
Avg. # calls/spkr 9.6 10.6
Avg. # phns/spkr 2.8 3.8

Table 1: Summary statistics for the SRE and SWB training lists.

matrix, characterizing how i-vectors from a single speaker vary,
and an across class (AC) matrix, characterizing how i-vectors
between different speakers vary. The scoring function most
often used is called Probablistic Linear Discriminant Analysis
(PLDA) [5, 7].

Collectively, the UBM, T , W , m, WC, and AC are known
as the system’s hyper-parameters and must be trained before a
system can enroll and/or score any data. The UBM, T , W ,
and m represent general feature distributions and total variance
of statistics and i-vectors, so they only require unlabeled data
for training. The WC and AC matrices, however, require la-
beled data to learn within speaker (calls from the same speaker)
and across speaker (calls from different speakers) variabilities.
While all hyper-parameters are susceptible to mismatch, those
requiring labeled data to train are more difficult to handle.

When porting a system to a new domain, we are faced with
three options: (1) assume the new domain data is sufficiently
close to the data used to train the hyper-parameters that the
system will work well, (2) collect a large amount of unlabeled
data from the new domain and adapt the hyper-parameters us-
ing unsupervised techniques, or (3) collect and label sufficient
amounts of new domain data to allow re-training or supervised
adaptation of the hyper-parameters. In this paper we will ex-
plore approaches to option (2).

Using Linguistic Data Consortium (LDC) telephone cor-
pora, we have designed an experiment that demonstrates the
effect of data mismatch on hyper-parameters and defines the
challenge task on which we are working. In this experiment,
SRE10 telephone data is used as enroll and test sets. Specifi-
cally, we are using the one conversation (1c) telephone data en-
roll and test lists from condition 5 (normal vocal effort) [8, 9].
We designate two datasets to be used for hyper-parameter train-
ing: the in-domain SRE set consists of all telephone calls from
all speakers taken from the SRE 04, 05, 06, and 08 collections;
this will serve as the “matched” hyper-parameter training list.
The out-of-domain SWB set consists of all telephone calls from
all speakers taken from the switchboard-I and switchboard-II
(all phases) corpora; this will serve as the “mismatched” train-
ing list. Some key statistics of the two data sets are given in
Table 1.

These two datasets appear very similar and the expectation
is hyper-parameters trained from these should produce similar
results. However, the resulting equal error rates (EER’s) in

# UBM & T W & m WC & AC 1c EER (%)
1 SWB SWB SWB 6.92%
2 SWB SRE SWB 5.54%
3 SWB SRE SRE 2.30%
4 SRE SRE SRE 2.43%

Table 2: EER’s on SRE10 from hyper-parameters trained using
the SWB or SRE datasets, as specified.

Table 2 clearly show a gap in performance on the SRE10 en-
roll/test set when hyper-parameters are trained with the different
sets.1 Similar performance gaps were observed by other sites
using independent i-vector implementations, indicating that the
performance gap is not a function of particular implementa-
tion details (features, speech activity detection, hyper-parameter
training algorithms, etc.).

In this paper we are primarily focused on how to effectively
train or adapt the hyper-parameters that depend on labeled data
(WC, AC) when only unlabeled data is available in the target do-
main. Of the hyper-parameters which do not depend on labeled
data – UBM, T , W , and m – it was found on this challenge set
that the difference in using SWB or SRE for UBM and T train-
ing was insignificant, but using SRE (in-domain) data for train-
ing the whitening, W and m, gave a significant improvement
(compare rows 1 and 2 in Table 2) [10]. We will use the sys-
tem specified in row 2 of Table 2 as our starting out-of-domain
baseline and the result in row 3 as our desired in-domain bench-
mark. To avoid making this a data engineering exercise, we
restrict our system to only use the labeled SWB data and unla-
beled SRE data. The ultimate goal is to develop a recipe that
can be applied in future situations where only unlabeled data
from a new domain is available.

3. Exploring the Domain Mismatch
Before attempting to compensate for the mismatch in perfor-
mance between the SWB and SRE corpora, we attempt to
explain, anecdotally, some of the difference between the two
datasets. An analysis of respective age distributions and lan-
guages spoken – SWB includes only English, while SRE con-
tains speech from over 20 different languages – yielded no fruit-
ful insights. This came as a surprise; the work in [11] seemed
to demonstrate that a discrepancy in languages spoken would
introduce a dataset shift. However, we did notice that using dif-
ferent subsets of SWB produced different recognition results.

In particular, the entire SWB set can be broken down into
six subsets that approximately correspond to their chronological
release. Follow the labeling convention of [12], these subsets
are: SWPH0 (1992), SWPH1 (1996), SWPH2 (1997), SWPH3
(1997), SWCELLP1 (1999), and SWCELLP2 (2000). We ob-
served initially that, upon training a simple linear classifier to
separate between the SRE and SWB i-vectors, the subsets of
SWB that shared the most overlap with the SRE data were
SWCELLP1 and SWCELLP2, while those that were easiest
to separate were SWPH0, SWPH1, and SWPH2.2 In light of
this, we ran another set of baseline experiments using the var-
ious subsets of SWB in reverse chronological order. That is,
we first use the labels from just SWCELLP2 and SWCELLP1,
which are the two most recent subsets of SWB. Then we add in
SWPH3, followed by SWPH2 and SWPH1, before finally in-

1We provide our implementation details in Section A.1 of the Sup-
plementary Materials.

2Conversely, the 04, 05, 06, and 08 collections composing the SRE
data seem to be more homogenous and do not exhibit similar trends.
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cluding SWPH0. These results are shown in Table 3. For these
experiments, we only varied the data used to train our WC &
AC matrices; our UBM & T were always trained using the en-
tirety of SWB (all subsets), while W & m were obtained using
all of SRE. As such, row 4 of Table 3 displays exactly the same
result as row 2 of Table 2.

# WC & AC 1c EER (%)
1 SWCELLP1/2 4.67%
2 + SWPH3 3.51%
3 + SWPH1/2 4.85%
4 + SWPH0 5.54%

Table 3: EER’s on SRE10 using various subsets of SWB to train
the WC & AC hyper-parameters. Each of rows 2-4 implies the
use of the SWB subset specified as well as all the data in the
rows above. Per Section 3, the UBM & T were trained using all
of SWB, while W & m were obtained from all of SRE.

From these results, we can see that the SWB data is not
homogenous and that there certainly exist subsets of our out-of-
domain SWB data that are more suited to the in-domain SRE
data. Similar findings were reported in [13], where the mis-
match caused by different SWB subsets was compensated via
a Nuisance Attribute Projection (NAP) before applying PLDA.
These observations also seem to support a conjecture that the
mismatch is, in part, driven by the progress in telephone tech-
nology moving from landline to cellular. A more detailed anal-
ysis of the meta-data, however, would be required before any
more assertions can be made.

We ran two additional experiments to test whether the do-
main mismatch can be overcome simply by selecting a subset
of the out-of-domain SWB i-vectors for WC & AC training in
some clever way. This sort of a strategy is known more for-
mally in the literature as covariate shift adaptation and revolves
around techniques such as importance sampling or weighting
[14, 15]. Our initial experiments described below are not as so-
phisticated or well-developed, but we would like to point out
that an initial attempt at the covariate shift problem in the con-
text of closed-set speaker identification (i.e., as opposed to our
problem of open-set speaker verification) was done in [15] and
demonstrated some improvement using the techniques devel-
oped by [16, 17]. Some possible reasons why the work in [15]
did not seem to achieve more significant improvements – de-
spite demonstrating significant gains on the tasks evaluated in
[16, 17] – may have been due to their evaluating on a closed-
set speaker identification test set consisting of only ten speakers
as well as their choice to identify speakers using a mere 1.5 s
of observed speech, which is orders of magnitude less data than
the 150 s of speech that we typically use to build speaker models
for our task. In light of this, an investigation of these methods
under a more appropriate context may be a fruitful avenue for
further analysis.

Figure 2 shows the result of our first approach in blue,
where SRE10 EER is plotted as a function of the proportion,
x, of SWB i-vectors that were the closest in likelihood to the
marginal distribution of the in-domain SRE i-vectors. When
x = 1.0, we are using all of SWB, so the result is, correspond-
ingly, the same as both row 4 of Table 3 and row 2 of Table
2. Similarly, in green is the set of results obtained using the
proportion, x, of SWB i-vectors that were closest to the SRE
i-vectors in a linear discriminant sense. That is, we trained a
simple linear classifier between the SWB and SRE corpora and
used the subset of SWB i-vectors whose scores were closest to

Figure 2: SRE10 results obtained using various subsets of the
SWB data for WC & AC.

those of the SRE i-vectors.
The results shown in Figure 2 suggest that there exist ways

in which we can improve our baseline results by selecting,
in unsupervised fashion, subsets of our out-of-domain data to
match our in-domain data as closely as possible. However, our
analysis is incomplete in two ways: (a) our methods for sub-
set selection are still unable to attain performance comparable
to the 3.51% EER obtained using SWCELLP1/2 + SWPH3 on
row 2 of Table 3 and shown in red on Figure 2; and (b) we are
still unable to explain why this aforementioned subset of SWB
is able to obtain such an outstanding baseline result.

Upon implementing the domain adaptation framework out-
lined in Section 4, our experimental results still demonstrate that
using all of the SWB data for WC & AC still provides the best
speaker recognition performance. Indeed, despite the ability of
subset selection to improve the initial baseline, there really is
“nothing better than more data.” Thus, the rest of this paper
does not discern between different SWB subsets; we will use
all of SWB as our labeled, out-of-domain data. We do, how-
ever, plan to return to a deeper analysis of domain mismatch as
part of future work.

4. General Framework and Initial Setup
We begin our work assuming the existence of an initial set of
hyper-parameters and PLDA scoring function [5, 10]; exact im-
plementational details are consistent with our parallel work in
[18] and can be found in the Supplementary Materials. For no-
tational convenience, we will subsequently use Σ to refer to the
WC matrix and Φ to refer to the AC matrix. As such, our ini-
tial setup begins with ΣSWB and ΦSWB, which we train using the
labeled SWB data that are provided.

We propose the following approach to the domain adapta-
tion problem and adhere to it throughout the rest of this work:

(a) Use ΣSWB and ΦSWB to compute a pairwise affinity ma-
trix, A, on the unlabeled SRE data. Specifically, element
Aij is the log likelihood ratio between the hypothesis
that i-vectors i and j are from the same speaker and the
hypothesis that they come from different speakers.

(b) Use A to obtain a hypothesized speaker clustering of
the SRE data. A discussion of different clustering al-
gorithms will be covered in Section 5. These estimated
speaker clusters can then be used to obtain ΣSRE and
ΦSRE.

(c) The work in [10] found success in linearly interpolating
between the prior (SWB) and new (SRE) covariance ma-
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trices to obtain the final hyper-parameters:

ΣF = αWC · ΣSRE + (1− αWC) · ΣSWB (1)

ΦF = αAC · ΦSRE + (1− αAC) · ΦSWB (2)

To simplify notation, we denote the set of parameters as α =
{αAC, αWC}. Note that setting α = 1 corresponds to ΣF =
ΣSRE and ΦF = ΦSRE, or the hyper-parameters obtained using
only the hypothesized speaker labels obtained from clustering
the unlabeled SRE data. Conversely, settingα = 0 is equivalent
to not using any of the in-domain data; this yields the 5.54%
EER shown on row 2 of Table 2.

Another possibility is to iterate this procedure, where the
ΣF and ΦF obtained in step (c) respectively replace the ΣSWB

and ΦSWB of step (a) and the process is repeated until some
form of convergence criterion is met, after which we proceed
to the final recognition task. Extensive coverage of these ex-
periments is beyond the scope of this paper, but we did observe
from some pilot experiments that, assuming a reasonable choice
of clustering algorithm in step (b), iterating can have a positive
effect on both clustering and recognition performance. These
improvements were also relatively inexpensive to obtain, as the
results tended to converge within just a few (≤ 5) iterations of
this algorithm, which suggests that further investigation along
these lines may be a fruitful avenue for future work.

5. Clustering Algorithms
Our experiments focus on a subset of the algorithms from pre-
vious work on speaker clustering [19], which were chosen to
work given only a (potentially sparse) pairwise affinity matrix.
That is, we need not go back to the raw data (i-vectors); simply
knowing the relationships between them will suffice.

The well-known and widely-used agglomerative hierarchi-
cal clustering (AHC) is a simple and greedy algorithm that
works in bottom-up fashion, initializing each i-vector as its own
cluster and iteratively merging two clusters at a time via some
cluster-similarity metric – we use the unweighted group aver-
age score [20] – until some stopping criterion (e.g., BIC [21],
maximum distance [22], number of clusters [19], etc.) is met
[23]. In our implementation, the number of clusters is provided
as an input; Section 6.2 discusses how that stopping criterion
can be estimated automatically.

We also evaluate the performance of various random walk
algorithms explored in earlier work [19]. Both Infomap and
Markov Clustering (MCL) are explained in [24] and [25], re-
spectively. Here, each i-vector can be thought of as a node
on a large graph, and each edge is weighted according to the
affinity between the two associated i-vectors. In agreement with
our previous observations, both methods worked well assuming
some reasonable choice of a sparse graph (i.e., affinity matrix).
As such, we implemented the local node pruning algorithm out-
lined in both the Supplementary Materials and in Section 5.2 of
[19] to automatically sparsify the affinity matrix.3

6. Experiments and Results
6.1. Initial Results and Observations

For each clustering algorithm, we report the following measures
of clustering performance: number of speakers estimated (K̂),
cluster confusion error as detailed in Section 4.2 of [19] and

3Sections A.2, A.3 of the Supplementary Materials also provide an
outline of these methods.

implemented in the evaluation of “speaker confusion error” the
NIST Speaker Diarization scoring script [26],4, average cluster
purity, and average speaker fragmentation, which we define as
the average number of clusters used to represent all utterances
of a single speaker.

For recognition performance, we present the EER’s ob-
tained using various values of α. In addition to both α = 0
EER and α = 1 EER introduced in Section 4, we also consider
α∗ EER, which is the SRE10 performance of hyper-parameters
trained using both the hypothesized speaker labels obtained
from clustering on SRE and combined (via some α) with the
hyper-parameters from the labeled SWB data, as is represented
in Eqns. (1) and (2). In this scenario, we report the best result
obtained across all values α ∈ [0, 1] × [0, 1], though for sim-
plicity, our experiments sample α in intervals of 0.2.

In addition to reporting the results from our hypothesized
(Hyp.) clusters, we also show the results of a perfect clustering,
which is the SRE10 performance using hyper-parameters ob-
tained from the use of exact speaker labels and the selection of
the optimal values for α∗. Since we only use sampled subsets of
the SRE data in this experiment, this result represents the best
we can do. Admittedly, the “α∗ EER” is an oracle-based ex-
periment that assumes knowledge of some best-case scenario.
We report our results this way so as to establish performance
bounds in a controlled environment.

The results from our initial experiments are shown in rows
1-3 of Table 4. Instead of simply obtaining ΣSRE and ΦSRE by
clustering just once on the entire SRE dataset, we strove to at-
tain some form of statistical significance by sampling just a sub-
set of the SRE data ten different times. For each sample, we
randomly select all utterances from K = 1000 out of the orig-
inal 3790 speakers, cluster all their utterances using the various
algorithms described in Section 5, and then obtain the corre-
sponding hyper-parameters for the speaker recognition task.

We can see that AHC provides the best clustering and
recognition results by a significant margin. Yet, despite a rather
wide range of clustering performances, the resulting range in
speaker recognition performance is not nearly as dramatic. This
could be specific to the SWB and SRE datasets; we know that
the EER is upper-bounded at 5.5% using just the SWB hyper-
parameters. When α = 1, a better clustering algorithm yields
better recognition results; however, the impact of clustering on
recognition performance is attenuated by the presence of adap-
tation (i.e., when α ∈ (0, 1)× (0, 1)).

Figure 3 shows a summary of AHC clustering and subse-
quent recognition results as we vary the number of speakers
sampled from the SRE data. The top plot shows, in red and
green lines respectively, the α∗ EER and α = 1 EER, while
the results obtained via hypothesized versus perfect clusters are
denoted by dash-dotted and solid lines, respectively. In black is
the α = 0 EER line, while the blue line, whose corresponding
y-axis is on the right side of the plot, denotes cluster confusion
error. Despite cluster error increasing as we sample larger and
larger speaker subsets, we can see that recognition EER’s con-
tinue to decrease, though the rate of decline seems to slow after
2500 speakers.

The values of α∗ given perfect clusters may be different
from the values of α∗ under the hypothesized clusters. In our
experiments, we observed that α∗

WC for hypothesized clusters
was consistently similar to α∗

WC for perfect clusters. However,
the bottom plot of Figure 3 shows that the difference between
α∗

AC for hypothesized (red) and perfect (blue) clusters increases

4Section A.4 of the Supplementary Materials reiterates the specifics.
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# Spkrs # Clstrs Clustering Performance α∗ EER (%) α = 1 EER (%)
# K K̂ Confusion Purity Frag. Perfect Hyp. Gap Perfect Hyp. Gap
1 AHC 1000 1000∗ 7.4% 94.9% 1.20 2.37 2.55 7.8% 2.77 3.16 14%
2 Infomap — 918 18.2% 85.9% 1.44 — 2.71 14% — 3.45 25%
3 MCL — 997 15.1% 90.3% 1.45 — 2.68 13% — 3.40 23%
4
5 Infomap+AHC 1000 918 9.0% 92.6% 1.19 2.37 2.56 8.2% 2.77 3.18 15%
6 MCL+AHC — 997 7.5% 94.9% 1.20 — 2.56 8.0% — 3.16 14%

Table 4: Results from initial experiments in domain adaptation. Clustering performance was evaluated using labels from the SRE data;
recognition performance (EER’s) is reported for the 1c task in SRE10. Section 6.1 explains rows 1-3; Section 6.2 discusses rows 5-6.

Figure 3: Summary of clustering (AHC) and recognition
(SRE10) results as a function of the number of speakers sam-
pled from the SRE data. A detailed explanation can be found in
Section 6.1.

with the number of speakers sampled. For reference, we also
plot the value of α̂AC (black), which is the value that reflects
the relative proportion of the number of speakers between the
SRE data used and the SWB data. While values for α∗

WC ∈
[0.4, 0.8] for the most part, we see that α∗

AC ∈ [0.2, 0.6]. This
may suggest that adapting to the SRE WC matrix is of higher
relative importance than adapting to the SRE AC matrix.

From rows 1-3 of Table 4, it is clear that AHC, when given
the number of speakers, provides the best clustering and recog-
nition results. Nevertheless, Infomap and MCL are able to do
a reasonable job in detecting the number of speakers, which we
did not explicitly explore with AHC. Instead, we could simply
consider running MCL or Infomap to obtain an estimate of the
number of speakers, K̂, and use that estimate as an input to the
AHC algorithm. This brings to bear the question of how robust
AHC is to error in estimating the number of speakers. In par-
ticular, if MCL/Infomap do not provide an exact estimate of the
number of speakers as an input to AHC, how much does that
affect subsequent recognition results?

6.2. Effect of Cluster Number on Recognition Performance

Figure 4 shows the result of stopping AHC at varying numbers
of clusters. These results are averaged over ten random draws
of 1000 speakers, and α∗ is optimized as previously discussed.
The plot of cluster confusion error, in blue, is scaled according

Figure 4: Effect of stopping AHC at varying numbers of clus-
ters. Dash-dotted and solid lines correspond to results using
hypothesized and perfect clusters, respectively. A more detailed
explanation can be found in Section 6.2.

to the y-axis on the right and shows that clustering performance
is best when AHC is provided a number of clusters equal to the
number of speakers present. Yet, considering recognition per-
formance alone, we can see that the resulting EER is relatively
robust to stopping AHC at incorrect numbers of clusters. We
can actually provide AHC with a significant underestimate of
the number of speakers and still do fairly well on the SRE10.
Additional experiments are necessary to better understand this
phenomenon; in particular, an underestimate seems more for-
giving than an overestimate, which implies the somewhat coun-
terintuitive idea that modeling multiple speakers as one cluster
is acceptable. One hypothetical explanation is that the resulting
WC matrix accounts for additional uncertainty that is somehow
beneficial to our task, but we leave this as an open thread for
further analysis.

In rows 5-6 of Table 4, we show the results of using In-
fomap and MCL to estimate the number of speakers and taking
that estimate as an input to AHC for clustering and recogni-
tion. We can see that both random walk algorithms are able to
provide a reasonable estimate of the number of speakers, and
the resulting recognition performance is just about as good as
the case in which AHC is given the exact number of speakers
(row 1). This is expected, as subsequent partitions produced at
each step of AHC differ only by a single cluster merge and thus
yield only small changes in cluster error. But more significantly,
the gap in recognition performance between knowing and not
knowing a priori the number of speakers in the unlabeled SRE
is effectively nil. Indeed, when final recognition performance is
the main priority, obtaining an exact estimate of the number of
speakers may, in fact, be unnecessary.

As a final experiment, we run our proposed adaptation pro-
cedure on the full SRE data, using Infomap and MCL to esti-
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K̂ Perfect Hypothesized Gap (%)
AHC 3790* 2.23 2.58 16%

Infomap+AHC 3196 — 2.53 13%
MCL+AHC 3971 — 2.61 17%

Table 5: SRE10 results obtained using the entire unlabeled SRE
dataset and optimal hyper-parameter adaptation, with α∗

AC =
0.4 and α∗

WC = 0.8. It should be noted that the 2.23% EER
given a perfect clustering is different from the 1c EER of 2.30%
shown in row 3 of Table 2 because of the adaptation with SWB
hyper-parameters. The latter result is obtained with no adapta-
tion, or α∗

AC = α∗
WC = 1.

mate the number of speakers for input to AHC. Table 5 shows
our final results, which were obtained with α∗

AC = 0.4 and
α∗

WC = 0.8. Note how Infomap+AHC severely underestimates
the number of speakers – thus obtaining the worst clustering
performance of the three algorithms – but manages to attain
recognition performance that is even better than when AHC is
given the correct number of clusters. We hope to better under-
stand this phenomenon in future work.

6.3. Automatic Estimation of Adaptation Parameters

We have not yet addressed a way to automatically determine the
optimal values for α = {αAC, αAC}. While a complete under-
taking of the problem is beyond the scope of this paper, Figure
5 shows the result of independently optimizing both αAC and
αWC, averaged over ten sampled subsets of 1000 speakers; the
color scaling is shown to the right of each subplot, and blue
indicates a relatively low EER, while red indicates a relatively
high EER. The plot on the left suggests that there is a reason-
ably wide range of possible values for α that yield EER’s less
than 3%; this fact is consistent for sampled subsets that contain
different numbers of speakers as well (e.g., 500, 1500, 2000,
etc.). The heatmap on the right, in which the color scaling is
limited to only the values that are within 10% of the optimal
EER of 2.55% shown on the left, further confirms this notion. It
seems as though we can obtain sufficiently good results simply
by erring on the low side (i.e., [0, 0.4]) in our estimate of αAC

and using a moderate value of αWC (i.e., [0.4, 0.8]), but more
experiments are needed to better understand this phenomenon
and how it might generalize to other datasets.

Figure 5: Heatmaps showing the result of independently opti-
mizing the adaptation parameters, α. Both plots involve the
same raw data but different color scalings to illustrate the range
of α that is appropriate for domain adaptation.

7. Conclusion
In this paper, we motivate and define the domain adaptation
challenge task for speaker recognition. Using the proposed
framework and various unsupervised clustering algorithms, we

present the results of initial experiments and highlight avenues
for further analysis. We have seen that both an imperfect
clustering and an imprecise estimate of the number of speak-
ers are forgivable in the presence of adaptation with out-of-
domain hyper-parameters. And although the optimal selection
of their values remains an open question, we observe that a
range of adaptation parameter values yields decent results. Fi-
nally, our best system so far obtains recognition performance
that is within 15% of a system that has access to all speaker
labels.
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A. Supplementary Materials
In this section, we provide more extended explanations that are
relevant to our discussion in the main paper. With the excep-
tion of Part A.1, in which we provide the details of our i-vector
system implementation, much of this section is a reiteration of
our previous work [19]. Although this is mostly a reiteration
of previously published research, we feel that this would be a
convenient way for the interested reader to obtain a necessary
understanding of the essentials. To that end, Part A.2 refers
to the clustering algorithms discussed in Section 5, while Part
A.3 explains the local node pruning algorithm also mentioned
in Section 5. And lastly, Part A.4 provides more detail on our
choice of clustering performance metric.

A.1. System Implementation

In this section, we give an overview of the i-vector system im-
plementation used in our experiments. Both the UBM, which
is a Gaussian mixture model (GMM) characterizing speaker-
independent speech feature distributions [27], and the total vari-
ability matrix, T [3], were trained using just SWB. Before ob-
taining any PLDA hyperparameters for either SWB or SRE, we
obtain a whitening transform (global mean subtraction and scal-
ing by the inverse square root of the global covariance matrix,
W ) from just the unlabeled SRE data;5 note that whitening is an
unsupervised procedure and does not require any speaker labels
[5]. This whitening transform is applied to both the i-vectors
from the SWB and SRE, and finally, all the i-vectors are length-
normalized to unit length. The initial PLDA hyperparameters,
ΦSWB and ΣSWB, are then obtained using the speaker labels from
SWB and their respective pre-processed i-vectors.

A.2. Graph Clustering Algorithms

In this section, we provide a summary of the random walk al-
gorithms we explored in [19] and utilized in this paper.

Markov Clustering (MCL) [25] As summarized in [28], this
algorithm converts a graph affinity matrix to a stochastic matrix
by dividing the elements of each row by their sum and then it-
erates between two steps. During expansion, we compute an
integer power of this matrix (usually a square), which yields
the probability matrix of a random walk after that number of
steps (e.g., 2). During inflation, each element of the matrix is
raised to some power, α, artificially enhancing the probability
of a random walker being trapped within a community. These
steps are iterated until we obtain the stochastic matrix of a forest
(i.e., disconnected clusters), whose components are the commu-
nities. By solely iterating on the stochastic matrix, this method
satisfies the Markov property, and we obtain clusters of sepa-
rated communities upon convergence. We run this algorithm
according to the implementation provided by [25] using the de-
fault settings for the parameter α = 2.

Infomap [24] The problem of finding the best cluster struc-
ture of a graph can be seen as the problem of optimally com-
pressing its associated random walk sequence. The goal of In-
fomap is to arrive at a two-level description that exploits both
the network’s structure and the fact that a random walker is sta-
tistically likely to spend long periods of time within certain clus-
ters of nodes. More specifically, we look for a module partition
M (i.e., set of cluster assignments) of N nodes into m clusters

5The only time we used SWB data for whitening was to obtain the
results in row 1 of Table 2.



272

that minimizes the following expected description length of a
single step in a random walk on the graph:

L(M) = qyH(Q) +

m∑
i=1

pi�H(Pi). (3)

This equation comprises two terms: first is the entropy of the
movement between clusters, and second is the entropy of move-
ments within clusters, both of which are weighted respectively
by the frequency with which it occurs in the particular par-
titioning. Here, qy is the probability that the random walk
switches clusters on any given step, and H(Q) is the entropy
of the top-level clusters. Similarly, H(Pi) is the entropy of
the within-cluster movements and pi� is the fraction of within-
cluster movements that occur in cluster i.

Ultimately, Eqn. (3) serves as a criterion for a bottom-up
agglomerative clustering search. The implementation provided
by [24] uses Eqn. (3) to repeatedly merge the two clusters
that give the largest decrease in description length until further
merging gives an increase. Results are further refined using a
simulated annealing approach, the specifics of which can be
found in [24]. Our work in this paper, however, did not use
this algorithm according to the exact implementation from [24];
rather, we used the modified version detailed below.

Infomap-λ Although the original formulation of Infomap in
[24] involves no tuneable parameters, the minimization crite-
rion presented in Eqn. (3) implicitly assigns equal weight to
the between-cluster and within-cluster entropies. As such, our
previous work introduced a parameter, λ, into the equation as
follows [19]:

L(M) = qyH(Q) + λ

m∑
i=1

pi�H(Pi). (4)

The original Infomap corresponds to λ = 1. Letting λ → ∞
increases our relative sensitivity to within-cluster entropy and
yields more clusters that are smaller in size. Conversely, letting
λ → 0 favors larger and fewer clusters. We ran this algorithm
with λ = 1.5, as that was the value that gave us the most con-
sistent results in our previous experiments [19].

A.3. Local Node Refinements [19]

Figure 6: Example histogram of within- and between-speaker
score distributions for one particular node, as well as the cutoff
thresholds discussed in Section A.3.

Figure 6 shows the distribution of the top 100 PLDA
log likelihoods between an arbitrary utterance A produced by
speaker sA and the rest of the utterances in the data. These

scores are separated into two different histograms: red “within-
speaker” scores and blue “between-speaker” scores. The com-
bined score distribution, including both within- and between-
speaker scores, which is what the clustering algorithms see, has
a right skew. Assuming, per the speaker recognition literature,
that both within- and between-speaker scores can be modeled
using respective Gaussian distributions [27], we can use simple
measures of symmetry and kurtosis to arrive at the following
heuristic to prune away between-speaker edges.

LetZA denote the combined distribution of scores for some
node A. We keep the subset of scores Z+

A , or edges, that are
greater than some threshold θmm (i.e., Z+

A = {z ∈ ZA|z >
θmm}), where θmm is the largest value such that for the subset of
scores Z−

A = {z ∈ ZA|z ≤ θmm}, mean(Z−
A ) ≤ median(Z−

A ).
This method assumes that the mean should be greater than the
median in a combined score distribution with a right skew,
but without the tail of within-speaker scores, the remaining
between-speaker score distribution should be symmetric.

Taking the assumption of between-speaker score Gaussian-
ity a step further, we introduce kurtosis into our local-node
pruning. In this case, we choose θkurt to be the largest score
value such that kurtosis(Z−

A ) ≤ 3, where 3 is the kurtosis of
a normal distribution. Figure 6 shows the cutoff found by kur-
tosis in magenta, as well as the cutoff, in green, found by the
mean-median method above.

In our implementation of this heuristic, we take our full
affinity matrix, consisting of all the pairwise PLDA log like-
lihoods between all of the i-vectors in the data, and sparsify it
such that only the top 100 scores for each row (i.e., utterance)
have non-zero entries, thus turning it into a 100-NN graph.
Then, for each row of the sparse matrix, we use the threshold
θ̃ = max {θmm, θkurt}. An edge was pruned away if either node
in the edge-pair deemed the connection unnecessary.

A.4. Evaluating Cluster Error

Section 6.1 mentions the use of “speaker confusion error” as
a metric to measure clustering performance in addition to the
more standard measures of average cluster purity and average
speaker fragmentation. We also show plots of the speaker con-
fusion error in Figures 3 and 4. Admittedly, there exist a num-
ber of different metrics for evaluating cluster quality, including
Precision and Recall, Normalized Mutual Information, F-score,
B-cubed, et cetera [29]. We describe the one we chose below,
which met our desire for a single number that summarizes the
essential aspects of precision, recall, cluster confusion and pu-
rity and allows us to seamlessly compare performance across all
algorithms and their parameters.

Let our r hypothesized clusters be indexed by i and our s
true clusters be indexed by j. We evaluate our clustering out-
put by considering all possible alignments that assign each hy-
pothesized cluster i to exactly one true cluster j. Given such
an alignment, say i ↔ j, we define cluster error as the num-
ber of elements in hypothesized cluster i whose true cluster is
not actually j. Furthermore, any of the |r − s| extra hypoth-
esized or true clusters that did not receive an assignment are
also counted as errors. Every possible alignment is considered,
and the alignment that provides the smallest clustering error is
used. In enforcing a one-to-one assignment of hypothesized-to-
true clusters, we are able to summarize both the precision and
recall of our clustering output. The procedure described above
is equivalent to the evaluation procedure of “speaker confusion
error” in the NIST Speaker Diarization task [26].


