Overcoming Resource Limitations in
the Processing of Unlimited Speech:

Applications to Speaker and Language Recognition



Motivation

e Unlimited access to data

remeeting &8 GoroMeeting

* Limited access to proper tagging and annotation



Motivation

* Need for adaptation

e Hard to scale!



Perspective

C-3PO

> 6 million forms of communication B

World
> 7,000 living languages

~400 languages with > 1 million speakers

Speech technology
< 100 languages

Thesis
< 30 languages




Extracting Information from Speech

Speech

Recognition

Language
Recognition

Speaker
Recognition

Emotion

Recognition

Words
“How are you?”

Language Name
English

Speaker Name
James Wilson

Emotion category
Happy, angry ...



Tasks

e Speaker verification

— Determine whether or not a test utterance was
spoken by a particular speaker

* Language identification

— Determine, from a known set of target languages,
the spoken language of a test utterance

Is this Bob’s voice? Which language is )
this? :




Themes

* Domain adaptation

Supervised domain adaptation!




Themes

* Unsupervised domain adaptation
— Access to many test preparation resources,
— but no access to their answer keys!

— Tests and test conditions change continuously;

— we’d like to be able to adapt to these changes
without needing a new study guide (and
corresponding answer key!) every time.



Overview
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Adapt system to changes in
Speaker recording technology by applying
Verification existing models to new, unlabeled
data sets

Augment existing volumes of
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scale, unsupervised discovery of
acoustic units on untranscribed,
multilingual data

Language
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Themes

* Learning from weak supervision
— Active learning

learn a model machine learning

model

labeled
training set
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Burr Settles, “Active Learning Literature Survey,” Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2010.
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Themes

Learning from weak supervision

— Active learning

* Choosing what gets labeled yields a dramatic reduction in the
number of Iabels needed to achleve de5|red performance

EER using all labels = 2.52%

Just 5000 queries gets us to within
25% of the performance obtained
usmg all 36 000 speaker labels.
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S. Shum, N. Dehak, J. Glass, “Limited Labels for Unlimited Data: Towards Active Learning for Speaker Recognition,” Proceedings of Interspeech, 2014.
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Themes

* Learning from weak supervision
— Active learning
— Top-down equivalence constraints

% ..... . G

*
o . C

C
.*” . - o
Can we utilize these constraints in a

way that alleviates the need for
expensive, expert-level knowledge?
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Speaker

R. Hammer, T. Hertz, Shaul Hochstein, and Daphna Weinshall, “Category learning from equivalence constraints,” Cognitive Processing, 2008.
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Domain Adaptation for Speaker Recognition

Labeled Data Unlabeled Data Result
SWB none 5.54%
SRE none 2.30%

Results shown are the Equal Error Rate (EER) and can be interpreted as a measure of error.

e Caused by changes in recording technology?
— SWB collected from 1992 — 2000 (mostly landline)
— SRE collected from 2004 — 2008 (mostly cellular)
— EVAL collected in 2010



Domain Adaptation for Speaker Recognition

* Challenge Task
— SWB with speaker labels
— SRE without speaker labels
— Evaluate on EVAL

* Proposed “bootstrap” framework
— Use labeled data to model unlabeled data
— Cluster unlabeled data using a combination of

 random walk-based graph clustering (Infomap)
* agglomerative hierarchical clustering

— Interpolate between resulting hyper-parameters



Proposed (Bootstrap) Framework

Use speaker labels and SWB to obtain {X, @},

Use {X, @}, to represent SRE in the form of a pairwise
affinity matrix, A

Cluster A to obtain (hypothesized) speaker labels for SRE
Use speaker labels and SRE obtain {2, O} ..

Linearly interpolate (via {0, 0,.}) between {X, @}z
and {Z, D} to obtain

Yr = awc - Bsre + (1 — awe) - Xsws

Op = aac - Psre + (1 — aac) - Psws



Domain Adaptation for Speaker Recognition

Labeled Data Unlabeled Data Result
SWB none 5.54%
SWB SRE 2.53%
SRE none 2.30%

SWB + SRE none 2.23%

Results shown are the Equal Error Rate (EER) and can be interpreted as a measure of error.

* Our proposed adaptation system achieves
EVAL performance that is within 15% of a
system that has access to all speaker labels.

S. Shum, D. Reynolds, D. Garcia-Romero, and A. McCree, “Unsupervised Clustering Approaches for Domain Adaptation in Speaker Recognition Systems,”
Proceedings of Odyssey, 2014. [Best Student Paper]
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Acoustic Unit Discovery
for Language ldentification

* Language recognition using i-vectors
— Spectral feature baseline
— DNN bottleneck feature benchmark

* Parallelizing a Bayesian nonparametric model for
large-scale acoustic unit discovery

* Experiments
— The usefulness of context-dependent modeling
— The magic of fusion
— The impact of improved acoustic features
— The generalizability of language-specific perspectives



NIST Language Recognition Evaluation
2011

e 24 |anguages

— Arabic (Iraqi, Levantine, Maghrebi, MSA), Bengali,
Czech, Dari, English (American, Indian), Farsi,
Hindi, Laotian, Mandarin, Pashto, Polish, Punjabi,
Russian, Slovak, Spanish, Tamil, Thai, Turkish,
Ukrainian, Urdu

* |dentify language from 30s / 10s / 3s segments



Building a Language ID System

Training Phase
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Overview of Spectral Features

* We capture speech information via a time sequence of
spectral features (100 / second)
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The i-vector approach

Adapt to obtain target model

Extract sequence of
vectors from utterance

Target — Background =

= O +~ 0 O < 1

A GMM ,

>
Start from existing
background model

Summarize changes in
low-dimensional i-vector




Notes about i-vectors

* Utterance length-independent, low-
dimensional summary representation of audio

* Not particularly informative by themselves

* Convenient for incorporating information
from labeled data



Acoustic i-vector system for
language recognition (baseline)

Test audio

‘ Spectral
#;.—» Feature
Extraction

Scores
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N. Dehak, P. Torres-Carrasquillo, D. Reynolds, and R. Dehak, “Language Recognition via i-vectors and dimensionality reduction”, Proc. Interspeech, 2011.




Incorporating transcribed English

English

100 hours of
transcribed

‘ Spectral
%—» Feature

Extraction

Feature
Stacking

transcription
labels

corresponding

to input audio

F. Richardson, D. Reynolds, and N. Dehak, “Deep Neural Network Approaches to Speaker and Language Recognition”, IEEE Signal Processing Letters, 2015.



Transcribed English-based bottleneck
i-vector system (benchmark)

-

@ Spectral Feature Baseline 5.3

Transcribed English Benchmark 2.6

' Spectral Feature I I
%—’ Feature _'I I I II I]’ Stacking | I I II T .

‘ Extraction I II I]

Bottleneck Features
GMM i-vector : — . Scores
II II —_— (2048) —_— (600) —_— Scoring

F. Richardson, D. Reynolds, and N. Dehak, “Deep Neural Network Approaches to Speaker and Language Recognition”, IEEE Signal Processing Letters, 2015.



Why this works

* [ncreasing phonetic awareness
— Language comes naturally to humans
— Analogy

* A computer identifying spoken language without
phonetic awareness (i.e., from spectral features)

* A human identifying birds by their respective song




Comments

* Incorporating transcribed English effectively
cuts the error rate in half.

— But there are 23 other languages!

* |ncorporating transcribed data from other
languages helps even more.

— Can we make good use of untranscribed data?

R. Fer, P. Matejka, F. Grezl, O. Plchot, and J. Cernocky, “Multilingual Bottleneck Features for Language Recognition,” Proceedings of Interspeech, 2015.



Transcribed English-based bottleneck
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F. Richardson, D. Reynolds, and N. Dehak, “Deep Neural Network Approaches to Speaker and Language Recognition”, IEEE Signal Processing Letters, 2015.



Acoustic unit discovery-based
bottleneck i-vector system (proposed)
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S. Shum, D. Harwath, N. Dehak, and J. Glass, “On the Use of Acoustic Unit Discovery for Language Recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, 2016. [To Appear]
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Motivation

Standard speech recognition systems rely on
— Transcribed speech

— Language models

— Pronunciation dictionaries

Usually only available for a subset of languages
Can we discover what we need automatically?

Unsupervised methods allow us to work directly
on the (untranscribed) data pertaining to the
evaluation at hand



Assessing the usefulness of acoustic
unit discovery for language 1D
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Bayesian acoustic unit discovery
(BAUD)

b & nja n;a <—— unknown
— Pronunciation [b]| [ax] | [n] | [ae] |[n]]| [ax]
Frame index  (f) 11234|56[78|9 (1011 < observed
Speech feature (x;) x| |x5 x5 X, St 95 g Xio %y
Boundary variable (b)) 1{001[01(01]1]|01
. ' ' . ' _ ‘ <—— segmentation
Segment (pj,k) pll,l P;A p;,s p;,s pé,9 pllo,n

—_— HMM (6.) 0, 0, 0, 6, 10, 6,
) . <—— clustering

Hidden state (s;) 1(123(13[13]1(13

Mixture ID 1 (16837528128

Chia-ying Lee and James R. Glass, “A Nonparametric Bayesian Approach to Acoustic Model Discovery,” Proceedings of ACL, 2012.



Approximate Distributed BAUD

e Based off of work in (Lee & Glass, 2012)

* Not quite fully Bayesian

— Specify number of acoustic units to learn (100)

— Parallelization only approximates Gibbs sampling
 Serial Gibbs sampling takes much longer to converge
* But scalable to larger datasets (200+ hours) than TIMIT

— Maximum likelihood model updates

A. lhler and D. Newman, “Understanding Errors in Approximate Distributed Latent Dirichlet Allocation,”
IEEE Transactions on Knowledge and Data Engineering, May 2012.



Assessing the usefulness of acoustic
unit discovery for language 1D
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Roadmap

* Experiments
— The usefulness of context-dependent modeling
— The magic of fusion
— The impact of improved acoustic features
— The generalizability of language-specific perspectives



Acoustic unit discovery-based
bottleneck i-vector system (proposed)
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S. Shum, D. Harwath, N. Dehak, and J. Glass, “On the Use of Acoustic Unit Discovery for Language Recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, 2016. [To Appear]
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Per-frame label sequences

Frame index (?) 11234(56|7 8]9 |10 11
Speech feature (x;) x| T8 i 75 35 % | iy
Boundary variable (bti) 1{001{01|{01]|1]0°1
Segment (plj,k) p1i,1 p;,4 p;,6 p;,s p;g p1io,11

HMM (6,) 6| 0, 6, 06, 0, 6, <—— unit sequence

Hidden state (Sf) 11 23(13[13]1(13 <—— state sequence
Mixture ID 1116837528128

Chia-ying Lee and James R. Glass, “A Nonparametric Bayesian Approach to Acoustic Model Discovery,” Proceedings of ACL, 2012.



Exploiting context-dependence

* Treat unit sequences as transcriptions and
train a unit recognizer

— Relaxes boundary variable-based segmentation
— Allows for context-dependent modeling of units

* Use resulting context-dependent HMM state
sequences (i.e., “senones”) as per-frame
labels for DNN training



Initial experiments and results

 Run BAUD on 240hrs of multilingual audio

— 10 hours from each of 24 languages represented

100 units (Cl) 300 states (Cl) 4000 senones (CD)
Multilingual BAUD
(240 hrs) 9.0 6.7 ‘ 5.2
Spectral Feature Baseline 5.3
Transcribed English Benchmark 2.6

Results shown are the Average Detection Cost * 100 and can be interpreted as a measure of error.




Finding complementarity

* BAUD system was barely better than baseline
— But what if we fused the two systems together?

Detection Cost (30s Segments)

[*] Spectral Feature Baseline 5.3
[*] BAUD(LRE), senones 5.2
Score-level fusion of [*] above 3.8
Transcribed SWB Benchmark 2.6




Can we do better with improved features?

* Unsupervised methods make assumptions
about the distribution of the data

— |s there a representation that better fits these
assumptions?

* Experiment

— Run BAUD using bottleneck features trained on 100
hours of transcribed English

— No longer fully unsupervised, but neither
unreasonable nor unrealistic



Vanilla BAUD
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Transcribed English-based bottleneck
features for BAUD
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Train a new DNN from scratch

Multilingual
training audio

‘ Spectral
“‘.—b Feature

Extraction

Feature
Stacking

.
.
.

.
.
.

E

labels from
discovered
acoustic units

(9




English-inspired acoustic unit discovery-
based bottleneck i-vector system
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Transcribed English-inspired improvements

Detection Cost (30s Segments)

[*] Spectral Feature Baseline 5.3
[*] BAUD(LRE, MFCC), senones 5.2
Score-level fusion of [*] above 3.8
[**] BAUD(LRE, SWB-BN), senones 2.9
[**] Transcribed SWB Benchmark 2.6
Score-level fusion of [**] above 2.1




Roadmap

* Experiments
— The usefulness of context-dependent modeling
— The magic of fusion
— The impact of improved acoustic features



Roadmap

* Experiments

— The generalizability of language-specific perspectives



NIST Language Recognition Evaluation
2015

e 20 languages, 6 clusters

— Arabic
* Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard
— Chinese
* Cantonese, Mandarin, Min, Wu
— English
* British, American, Indian
— French
* West African, Haitian Creole

— |berian

e Caribbean Spanish, European Spanish, Latin American Spanish,
Brazilian Portuguese

— Slavic
* Polish, Russian



NIST Language Recognition Evaluation
2015

e Different evaluation protocol

— Identify individual languages within their
respective language clusters

* Same performance trends

* Language-specific perspectives
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NIST LRE 2015
(Vanilla BAUD)

Cluster # hrs Arabic Chinese English Iberian Slavic  Average
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NIST LRE 2015
(English-inspired BAUD)

Cluster #hrs Arabic Chinese English Iberian Slavic  Average
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Summary

* Language recognition using i-vectors
— Spectral feature baseline
— DNN bottleneck feature benchmark

* Parallelizing a Bayesian nonparametric model for
large-scale acoustic unit discovery

* Experiments
— The usefulness of context-dependent modeling
— The magic of fusion
— The impact of improved acoustic features
— The generalizability of language-specific perspectives
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Can we improve acoustic unit discovery
using equivalence constraints?

* Find repeated acoustic segments
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Can we improve acoustic unit discovery
using equivalence constraints?

* Find repeated acoustic segments

* Verify that these segments match

* Constrain unit discovery process to learn
similar unit sequences for matched segments



Proposed Methods

* Assumption

— Given sets of pronunciation-equivalent utterances
(e.g., words, phrases, or sentences)

e DTW-based segmentation consolidation
* Equivalence-constrained clustering



Transcription:
“really”
(not known)
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DTW-based segmentation consolidation

* For each set of pronunciation-equivalent
utterances:

* Pick an utterance to use as an exemplar
* Obtain landmark segmentation from exemplar

* Use dynamic time warp (DTW) alignment
between exemplar and all other utterances to
map exemplar segmentation to all the other
utterances



Equivalence-constrained clustering

* For each set of pronunciation-equivalent
utterances:

* Pick an utterance uniformly at random;
e Sample acoustic unit sequence (as in BAUD);

* Pretend as though every other utterance in
the set also sampled the exact same acoustic
unit sequence and update models accordingly.



Key Takeaways

* Experiments on TIMIT
— Run constrained BAUD on training subset
— Evaluate models on test subset

e Evaluation metrics and results
— Normalized mutual information (NMI)
* ~“5% relative increase (vs. unconstrained BAUD)

— Defined a word error rate-based metric to measure
inconsistency between equivalent sequences

* ~10% relative decrease (vs. unconstrained BAUD)
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Future Work

* Domain adaptation
— Telephone = Microphone
— Out-of-domain detection

 Weak supervision
— Noisy labels
— Improved feature representations

— Towards crowd-supervised development of
speech technologies
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