Overcoming Resource Limitations in the Processing of Unlimited Speech:

Applications to Speaker and Language Recognition

Stephen H. Shum

4 May 2016

Motivation

Unlimited access to data

Limited access to proper tagging and annotation

Motivation

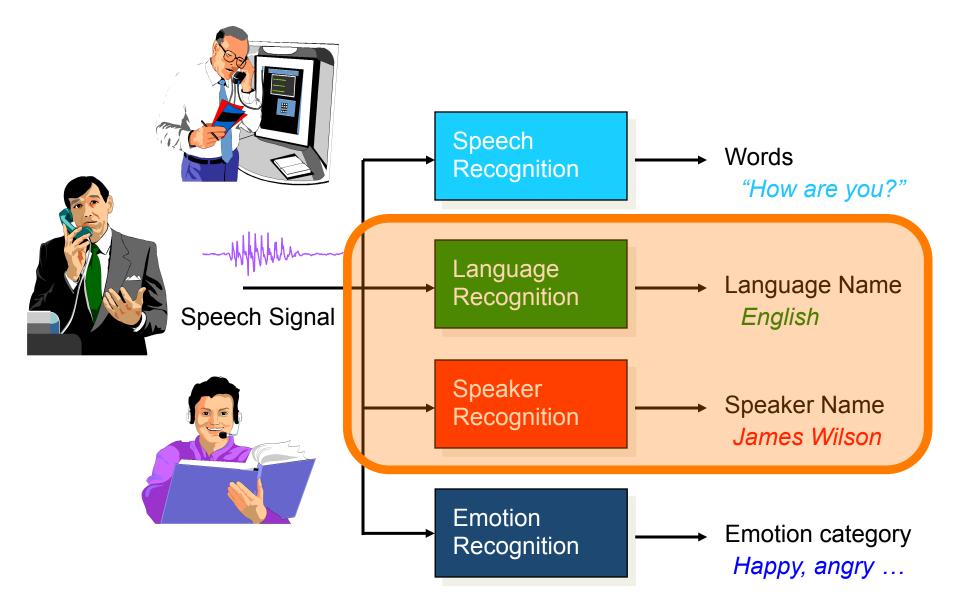
Need for adaptation

Hard to scale!

Perspective

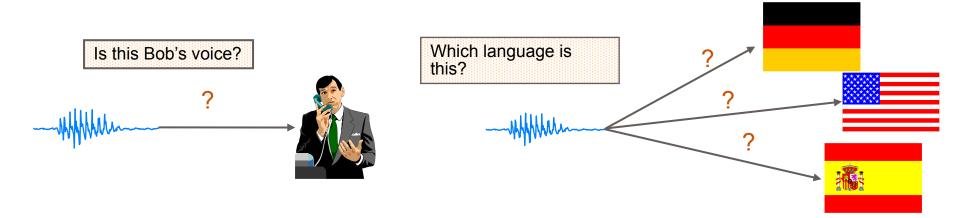
- C-3PO
 - > 6 million forms of communication
- World
 - > 7,000 living languages
 - ~400 languages with > 1 million speakers
- Speech technology
 - < 100 languages
- Thesis
 - < 30 languages

Extracting Information from Speech



Tasks

- Speaker verification
 - Determine whether or not a test utterance was spoken by a particular speaker
- Language identification
 - Determine, from a known set of target languages,
 the spoken language of a test utterance



Themes

Domain adaptation

Supervised domain adaptation!

Themes

- Unsupervised domain adaptation
 - Access to many test preparation resources,
 - but <u>no</u> access to their answer keys!

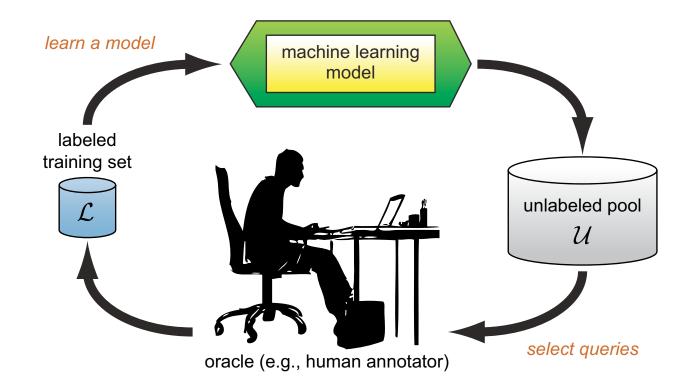
- Tests and test conditions change continuously;
- we'd like to be able to adapt to these changes without needing a new study guide (and corresponding answer key!) every time.

Overview

	Domain Adaptation	
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	
Language Identification	Augment existing volumes of transcribed speech with large-scale, unsupervised discovery of acoustic units on untranscribed, multilingual data	

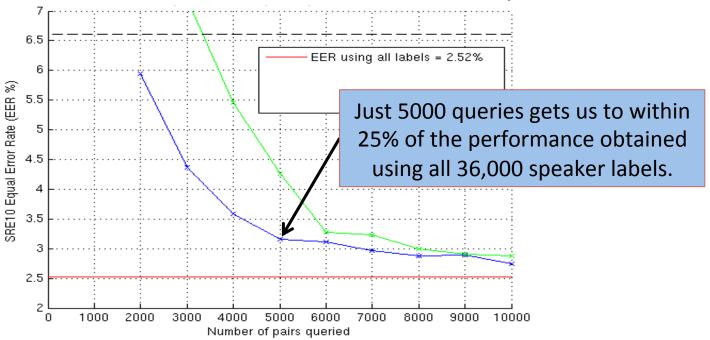
Themes

- Learning from weak supervision
 - Active learning



Themes

- Learning from weak supervision
 - Active learning
 - Choosing what gets labeled yields a dramatic reduction in the number of labels needed to achieve desired performance

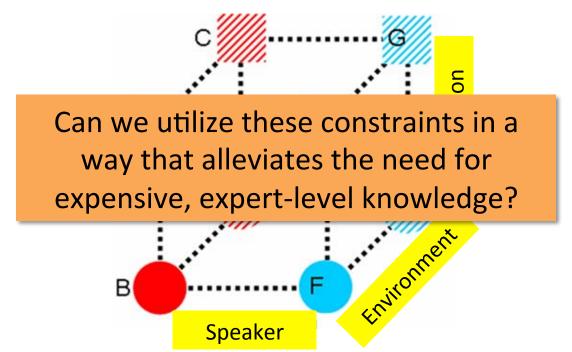


Overview

	Domain Adaptation	Weak Supervision
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints
Language Identification	Augment existing volumes of transcribed speech with large-scale, unsupervised discovery of acoustic units on untranscribed, multilingual data	

Themes

- Learning from weak supervision
 - Active learning
 - Top-down equivalence constraints



Overview

	Domain Adaptation	Weak Supervision
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units

Overview

	Domain Adaptation	Weak Supervision
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units

Domain Adaptation for Speaker Recognition

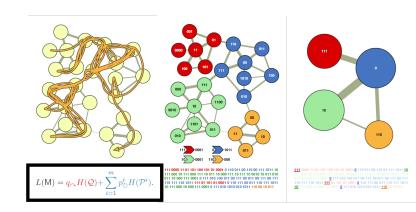
Labeled Data	Unlabeled Data	EVAL Result
SWB	none	5.54%
SRE	none	2.30%

Results shown are the Equal Error Rate (EER) and can be interpreted as a measure of error.

- Caused by changes in recording technology?
 - SWB collected from 1992 2000 (mostly landline)
 - SRE collected from 2004 2008 (mostly cellular)
 - EVAL collected in 2010

Domain Adaptation for Speaker Recognition

- Challenge Task
 - SWB with speaker labels
 - SRE without speaker labels
 - Evaluate on EVAL



- Proposed "bootstrap" framework
 - Use labeled data to model unlabeled data
 - Cluster unlabeled data using a combination of
 - random walk-based graph clustering (Infomap)
 - agglomerative hierarchical clustering
 - Interpolate between resulting hyper-parameters

Proposed (Bootstrap) Framework

- Use speaker labels and SWB to obtain $\{\Sigma, \Phi\}_{\mathsf{SWB}}$
- Use $\{\Sigma, \Phi\}_{\text{SWB}}$ to represent SRE in the form of a pairwise affinity matrix, A
- Cluster A to obtain (hypothesized) speaker labels for SRE
- Use speaker labels and SRE obtain $\{\Sigma,\Phi\}_{\mathsf{SRE}}$
- Linearly interpolate (via $\{\alpha_{WC}, \alpha_{AC}\}$) between $\{\Sigma, \Phi\}_{SWB}$ and $\{\Sigma, \Phi\}_{SRF}$ to obtain

$$\Sigma_{F} = \alpha_{WC} \cdot \Sigma_{SRE} + (1 - \alpha_{WC}) \cdot \Sigma_{SWB}$$

$$\Phi_{F} = \alpha_{AC} \cdot \Phi_{SRE} + (1 - \alpha_{AC}) \cdot \Phi_{SWB}$$

Domain Adaptation for Speaker Recognition

Labeled Data	Unlabeled Data	EVAL Result
SWB	none	5.54%
SWB	SRE	2.53%
SRE	none	2.30%
SWB + SRE	none	2.23%

Results shown are the Equal Error Rate (EER) and can be interpreted as a measure of error.

 Our proposed adaptation system achieves EVAL performance that is within 15% of a system that has access to all speaker labels.

Overview

	Domain Adaptation	Weak Supervision
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units

Overview

	Domain Adaptation	Weak Supervision
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units

Acoustic Unit Discovery for Language Identification

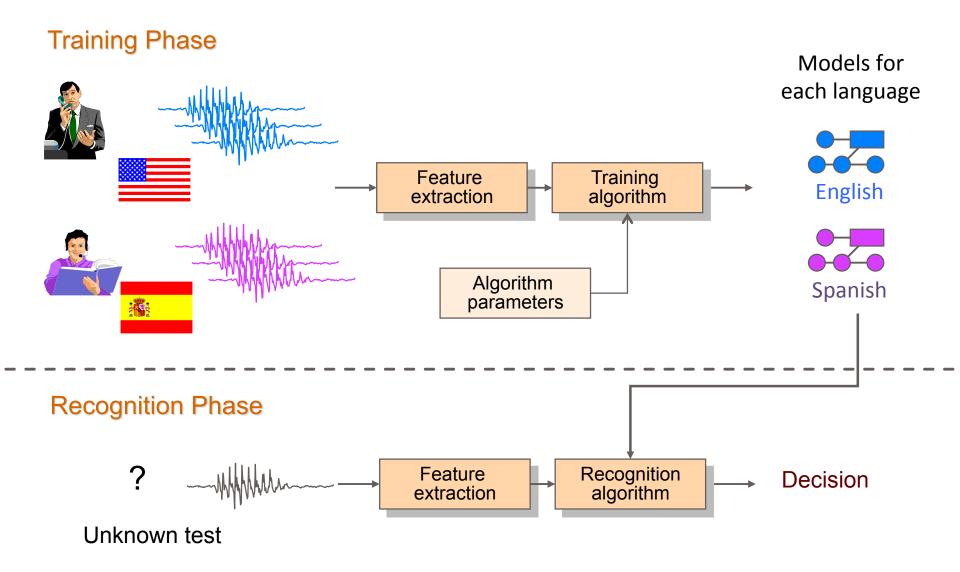
- Language recognition using i-vectors
 - Spectral feature baseline
 - DNN bottleneck feature benchmark
- Parallelizing a Bayesian nonparametric model for large-scale acoustic unit discovery
- Experiments
 - The usefulness of context-dependent modeling
 - The magic of fusion
 - The impact of improved acoustic features
 - The generalizability of language-specific perspectives

NIST Language Recognition Evaluation 2011

- 24 languages
 - Arabic (Iraqi, Levantine, Maghrebi, MSA), Bengali,
 Czech, Dari, English (American, Indian), Farsi,
 Hindi, Laotian, Mandarin, Pashto, Polish, Punjabi,
 Russian, Slovak, Spanish, Tamil, Thai, Turkish,
 Ukrainian, Urdu

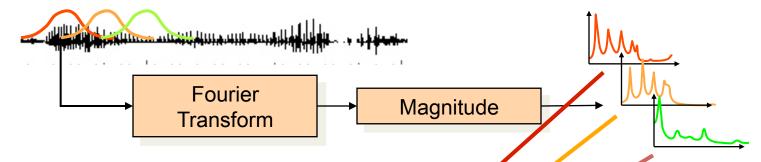
Identify language from <u>30s</u> / 10s / 3s segments

Building a Language ID System

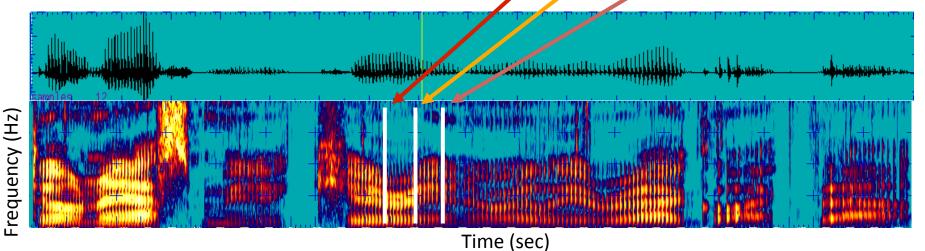


Overview of Spectral Features

 We capture speech information via a time sequence of spectral features (100 / second)

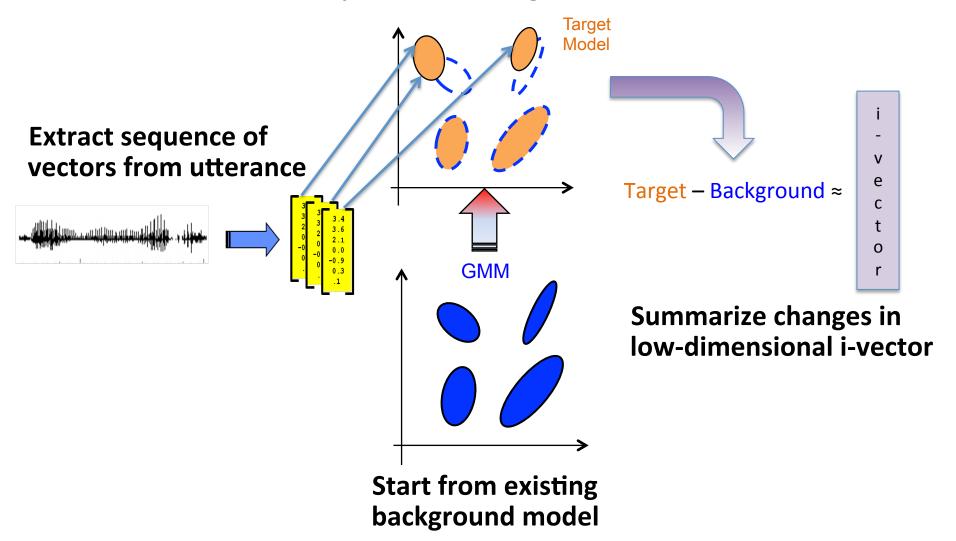


And produce a time-frequency evolution of the spectrum



The i-vector approach

Adapt to obtain target model



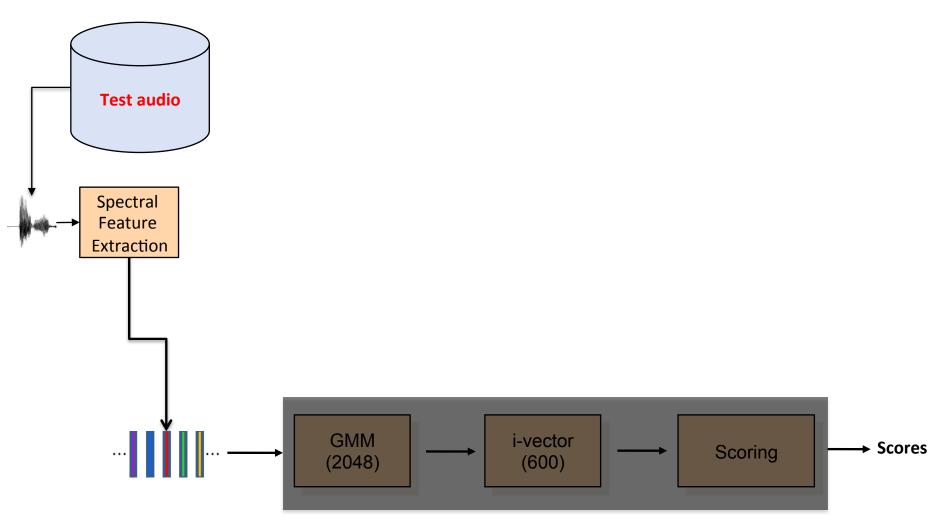
Notes about i-vectors

 Utterance length-independent, lowdimensional summary representation of audio

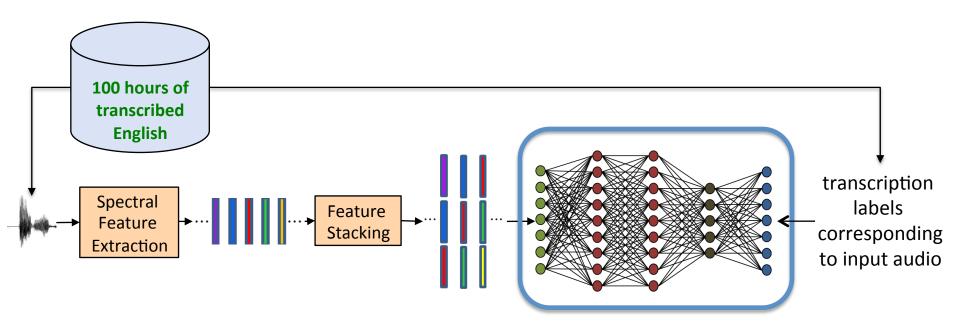
Not particularly informative by themselves

 Convenient for incorporating information from labeled data

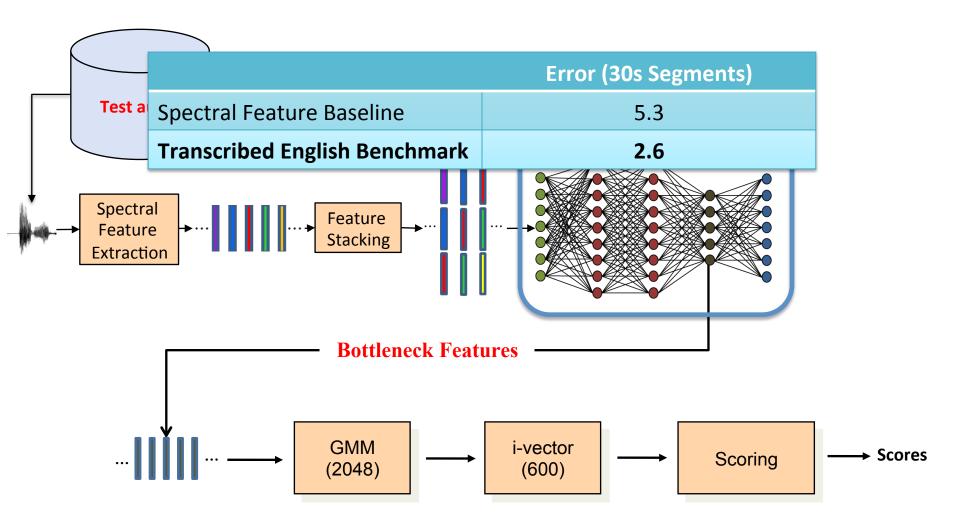
Acoustic i-vector system for language recognition (baseline)



Incorporating transcribed English



Transcribed English-based bottleneck i-vector system (benchmark)



Why this works

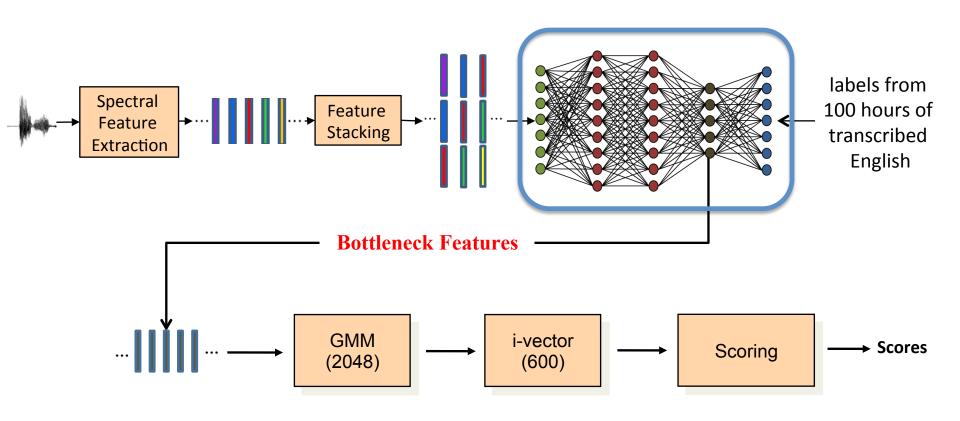
- Increasing phonetic awareness
 - Language comes naturally to humans
 - Analogy
 - A computer identifying spoken language <u>without</u> phonetic awareness (i.e., from spectral features)
 - A human identifying birds by their respective song

Comments

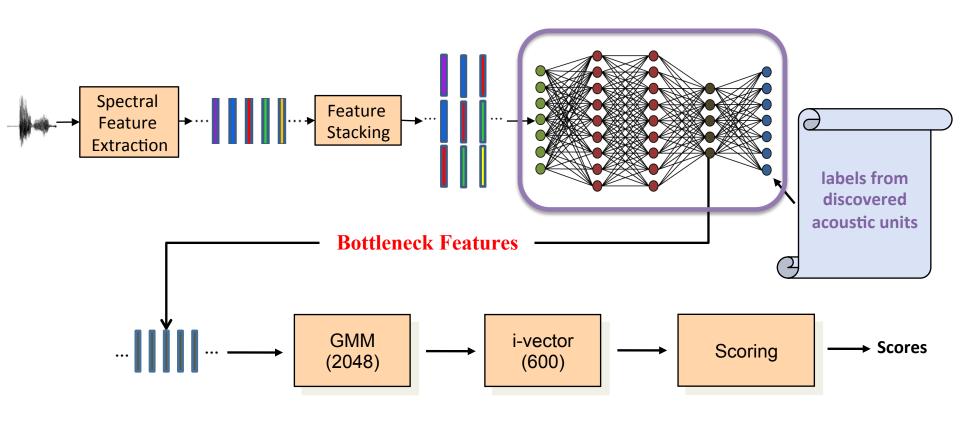
- Incorporating transcribed English effectively cuts the error rate in half.
 - But there are 23 other languages!

- Incorporating transcribed data from other languages helps even more.
 - Can we make good use of untranscribed data?

Transcribed English-based bottleneck i-vector system (benchmark)



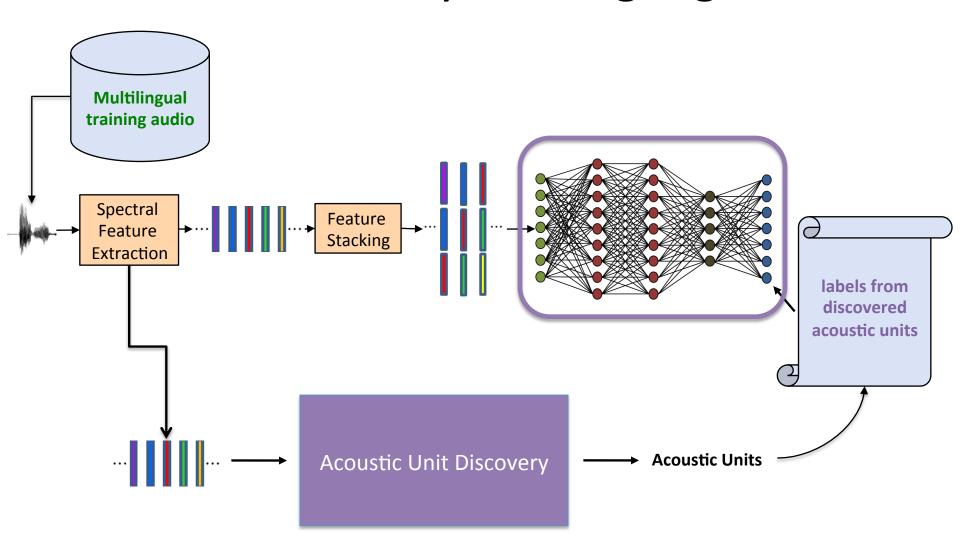
Acoustic unit discovery-based bottleneck i-vector system (proposed)



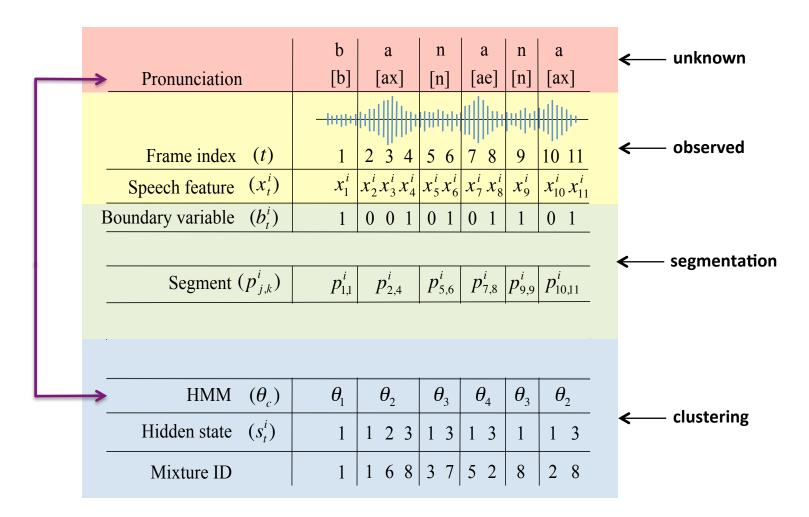
Motivation

- Standard speech recognition systems rely on
 - Transcribed speech
 - Language models
 - Pronunciation dictionaries
- Usually only available for a subset of languages
- Can we discover what we need automatically?
- Unsupervised methods allow us to work directly on the (untranscribed) data pertaining to the evaluation at hand

Assessing the usefulness of acoustic unit discovery for language ID



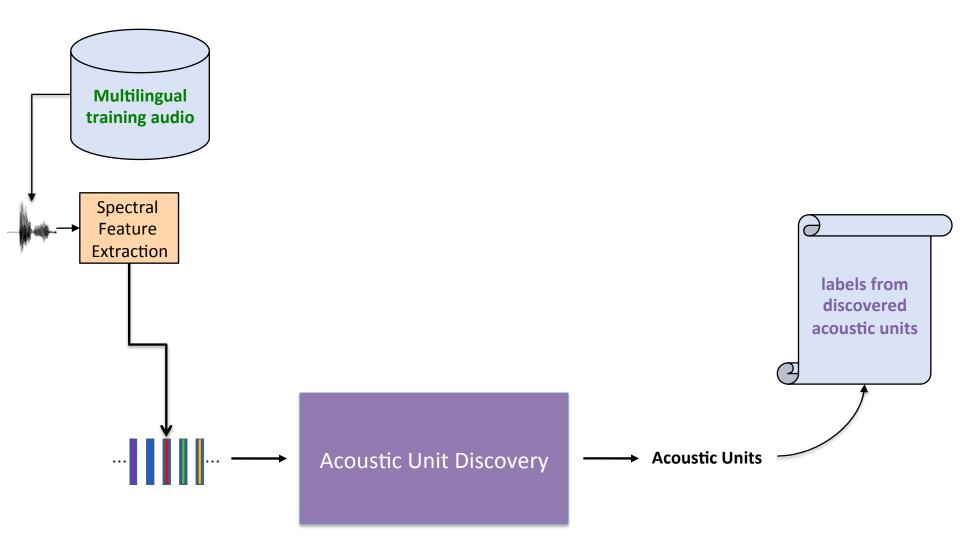
Bayesian acoustic unit discovery (BAUD)



Approximate Distributed BAUD

- Based off of work in (Lee & Glass, 2012)
- Not quite fully Bayesian
 - Specify number of acoustic units to learn (100)
 - Parallelization only approximates Gibbs sampling
 - Serial Gibbs sampling takes much longer to converge
 - But scalable to larger datasets (200+ hours) than TIMIT
 - Maximum likelihood model updates

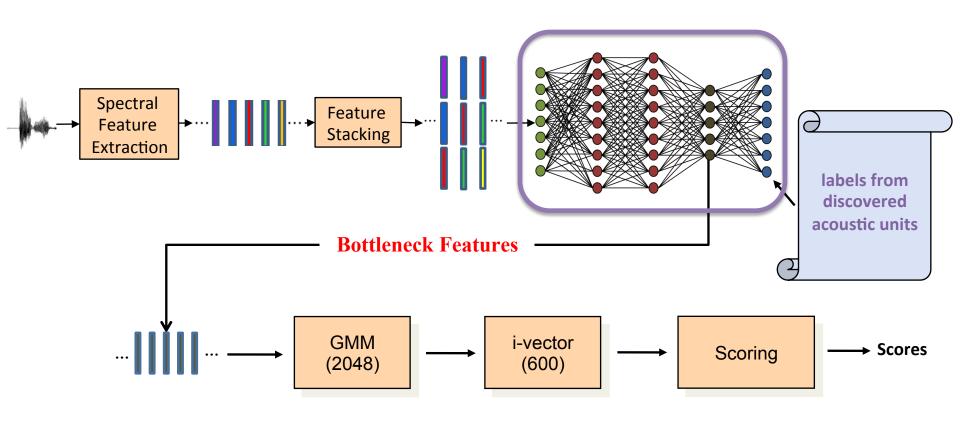
Assessing the usefulness of acoustic unit discovery for language ID



Roadmap

- Language recognition using i-vectors
 - Spectral feature baseline
 - DNN bottleneck feature benchmark
- Parallelizing a Bayesian nonparametric model for large-scale acoustic unit discovery
- Experiments
 - The usefulness of context-dependent modeling
 - The magic of fusion
 - The impact of improved acoustic features
 - The generalizability of language-specific perspectives

Acoustic unit discovery-based bottleneck i-vector system (proposed)



Per-frame label sequences

						++ - - -		
	Frame index (t)	1	2 3 4	5 6	7 8	9	10 11	
	Speech feature (x_t^i)	x_1^i	$x_2^i x_3^i x_4^i$	$x_5^i x_6^i$	$X_7^i X_8^i$	x_9^i	$x_{10}^{i} x_{11}^{i}$	
]	Boundary variable (b_t^i)	1	0 0 1	0 1	0 1	1	0 1	
	Segment $(p_{j,k}^i)$	$p_{1,1}^i$	$p_{2,4}^i$	$p_{5,6}^i$	$p_{7,8}^i$	$p_{9,9}^i$	$p_{\scriptscriptstyle 10,11}^{\scriptscriptstyle i}$	
	HMM (θ_c)	$\theta_{\!\scriptscriptstyle 1}$	θ_2	θ_3	$ heta_{\scriptscriptstyle 4}$	θ_3	θ_2	unit sequence
	Hidden state (s_t^i)	1	1 2 3	1 3	1 3	1	1 3	state sequence
	Mixture ID	1	1 6 8	3 7	5 2	8	2 8	

Exploiting context-dependence

- Treat unit sequences as transcriptions and train a unit recognizer
 - Relaxes boundary variable-based segmentation
 - Allows for context-dependent modeling of units

 Use resulting context-dependent HMM state sequences (i.e., "senones") as per-frame labels for DNN training

Initial experiments and results

- Run BAUD on 240hrs of multilingual audio
 - 10 hours from each of 24 languages represented

	100 units (CI)	300 states (CI)	4000 senones (CD)
Multilingual BAUD 9.0 (240 hrs)		6.7 5.2	
Spectral Fea	ture Baseline	5	.3
Transcribed Eng	glish Benchmark	2	.6

Results shown are the Average Detection Cost * 100 and can be interpreted as a measure of error.

Finding complementarity

- BAUD system was barely better than baseline
 - But what if we fused the two systems together?

	Detection Cost (30s Segments)
[*] Spectral Feature Baseline	5.3
[*] BAUD(LRE), senones	5.2
Score-level fusion of [*] above	3.8
Transcribed SWB Benchmark	2.6

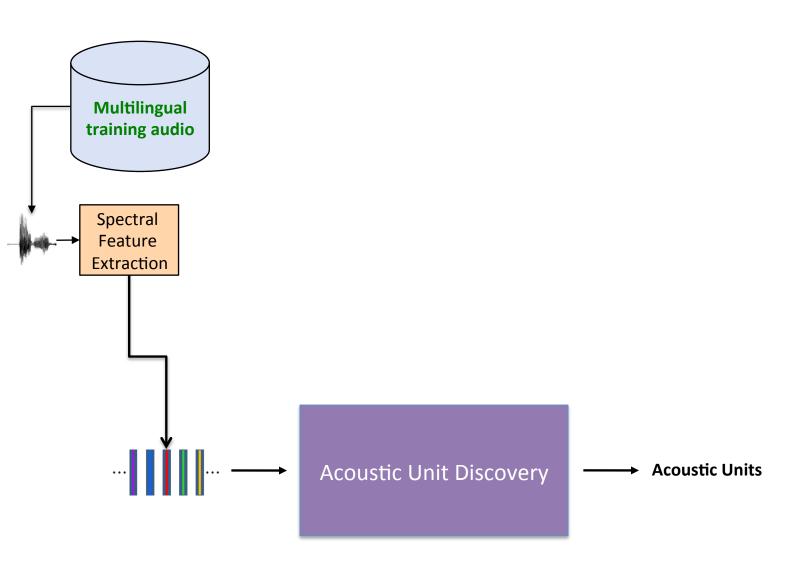
Can we do better with improved features?

- Unsupervised methods make assumptions about the distribution of the data
 - Is there a representation that better fits these assumptions?

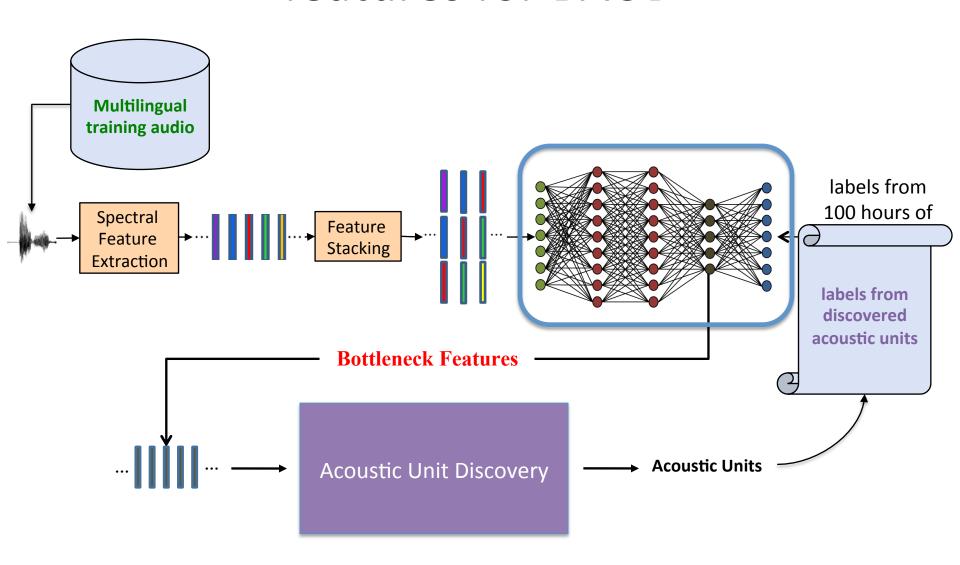
Experiment

- Run BAUD using bottleneck features trained on 100 hours of transcribed English
- No longer fully unsupervised, but neither unreasonable nor unrealistic

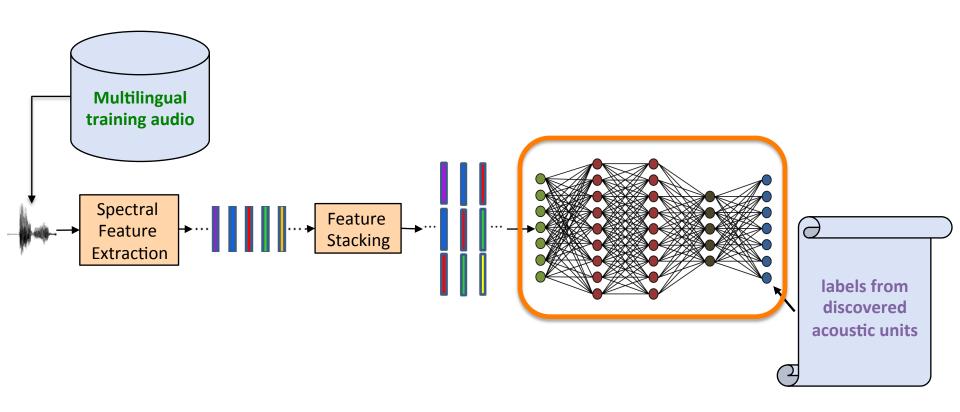
Vanilla BAUD



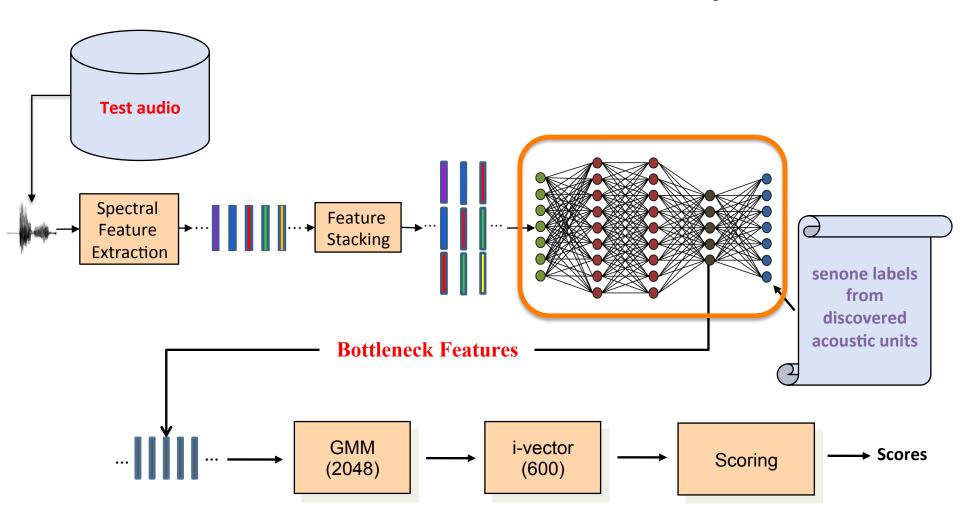
Transcribed English-based bottleneck features for BAUD



Train a new DNN from scratch



English-inspired acoustic unit discoverybased bottleneck i-vector system



Transcribed English-inspired improvements

	Detection Cost (30s Segments)
[*] Spectral Feature Baseline	5.3
[*] BAUD(LRE, MFCC), senones	5.2
Score-level fusion of [*] above	3.8
[**] BAUD(LRE, SWB-BN), senones	2.9
[**] Transcribed SWB Benchmark	2.6
Score-level fusion of [**] above	2.1

Roadmap

- Language recognition using i-vectors
 - Spectral feature baseline
 - DNN bottleneck feature benchmark
- Parallelizing a Bayesian nonparametric model for large-scale acoustic unit discovery
- Experiments
 - The usefulness of context-dependent modeling
 - The magic of fusion
 - The impact of improved acoustic features
 - The generalizability of language-specific perspectives

Roadmap

- Language recognition using i-vectors
 - Spectral feature baseline
 - DNN bottleneck feature benchmark
- Parallelizing a Bayesian nonparametric model for large-scale acoustic unit discovery
- Experiments
 - The usefulness of context-dependent modeling
 - The magic of fusion
 - The impact of improved acoustic features
 - The generalizability of language-specific perspectives

- 20 languages, 6 clusters
 - Arabic
 - Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard
 - Chinese
 - Cantonese, Mandarin, Min, Wu
 - English
 - British, American, Indian
 - French
 - West African, Haitian Creole
 - Iberian
 - Caribbean Spanish, European Spanish, Latin American Spanish, Brazilian Portuguese
 - Slavic
 - Polish, Russian

- Different evaluation protocol
 - Identify individual languages within their respective language clusters
- Same performance trends
- Language-specific perspectives

- 20 languages, 6 clusters
 - Arabic
 - Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard
 - Chinese
 - Cantonese, Mandarin, Min, Wu
 - English
 - British, American, Indian
 - French
 - West African, Haitian Creole
 - Iberian
 - Caribbean Spanish, European Spanish, Latin American Spanish, Brazilian Portuguese
 - Slavic
 - Polish, Russian

- 20 languages, 6 clusters
 - Arabic
 - Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard
 - Chinese
 - Cantonese, Mandarin, Min, Wu
 - English
 - British, American, Indian
 - French
 - West African, Haitian Creole
 - Iberian
 - Caribbean Spanish, European Spanish, Latin American Spanish, Brazilian Portuguese
 - Slavic
 - Polish, Russian

NIST LRE 2015 (Vanilla BAUD)

Cluster	# hrs	Arabic	Chinese	English	Iberian	Slavic	Average
Arabic	23	25.8	21.4	18.6	22.9	8.84	19.5
Chinese	23	26.7	21.0	175	22.9	10.2	19.6
English	23	26.5	21.8	15.7	23.0	9.37	19.3
Iberian	23	27.3	21.5	19.8	22.5	9.71	20.2
Slavic	23	26.1	21.2	19.1	22.5	8.69	19.5
Fused	(115)	<u>24.9</u>	18.4	<u>14.2</u>	<u>20.7</u>	<u>7.00</u>	<u>17.0</u>
All	115	25.3	<u>18.2</u>	16.4	22.0	7.89	18.0

NIST LRE 2015 (English-inspired BAUD)

Cluster	# hrs	Arabic	Chinese	English	Iberian	Slavic	Average
Arabic	23	20.9	16.0	15.2	20.3	6.39	15.8
Chinese	23	22.1	16.1	15.2	20.3	5.72	15.9
English	23	21.6	15.4	12.8	19.2	5.84	15.0
Iberian	23	21.4	15.3	15.5	19.1	5.40	15.3
Slavic	23	21.3	16.0	15.6	20.8	4.66	15.7
Fused	(115)	<u>19.5</u>	<u>12.9</u>	<u>11.2</u>	<u>17.6</u>	3.53	<u>12.9</u>
Benchmark	315	19.6	13.1	<u>11.2</u>	18.4	3.27	13.1

Summary

- Language recognition using i-vectors
 - Spectral feature baseline
 - DNN bottleneck feature benchmark
- Parallelizing a Bayesian nonparametric model for large-scale acoustic unit discovery
- Experiments
 - The usefulness of context-dependent modeling
 - The magic of fusion
 - The impact of improved acoustic features
 - The generalizability of language-specific perspectives

Overview

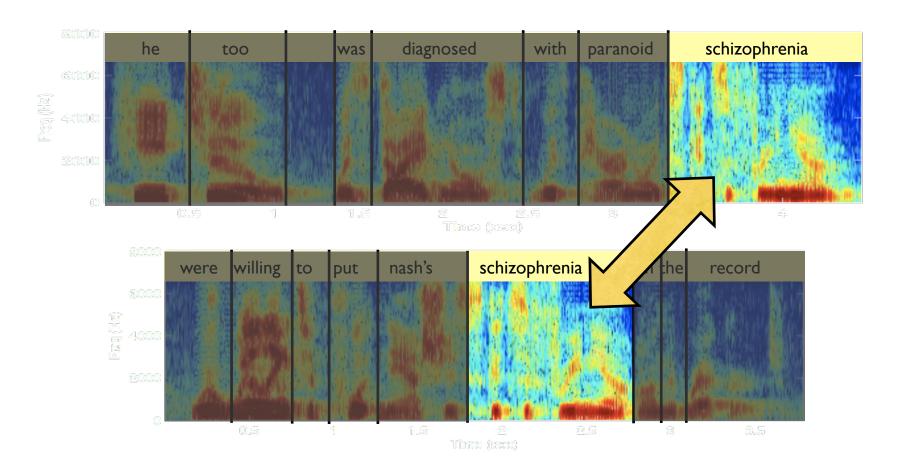
	Domain Adaptation	Weak Supervision	
Adapt system to changes in Speaker recording technology by applying Verification existing models to new, unlabeled data sets		Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints	
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units	

Overview

	Domain Adaptation	Weak Supervision		
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints		
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units		

Can we improve acoustic unit discovery using equivalence constraints?

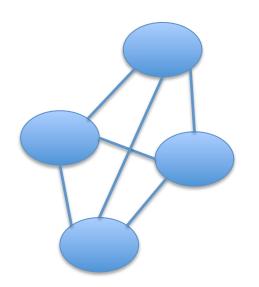
Find repeated acoustic segments



Can we improve acoustic unit discovery using equivalence constraints?

Find repeated acoustic segments

Verify that these segments match

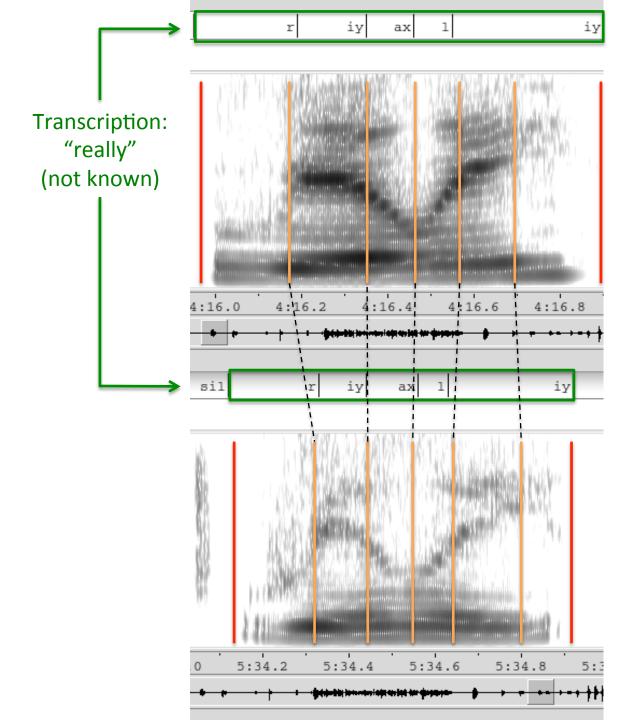


 Constrain unit discovery process to learn similar unit sequences for matched segments

Proposed Methods

- Assumption
 - Given sets of pronunciation-equivalent utterances (e.g., words, phrases, or sentences)

- DTW-based segmentation consolidation
- Equivalence-constrained clustering



DTW-based segmentation consolidation

- For each set of pronunciation-equivalent utterances:
- Pick an utterance to use as an exemplar
- Obtain landmark segmentation from exemplar
- Use dynamic time warp (DTW) alignment between exemplar and all other utterances to map exemplar segmentation to all the other utterances

Equivalence-constrained clustering

 For each set of pronunciation-equivalent utterances:

- Pick an utterance uniformly at random;
- Sample acoustic unit sequence (as in BAUD);
- Pretend as though every other utterance in the set also sampled the exact same acoustic unit sequence and update models accordingly.

Key Takeaways

- Experiments on TIMIT
 - Run constrained BAUD on training subset
 - Evaluate models on test subset

- Evaluation metrics and results
 - Normalized mutual information (NMI)
 - ~5% relative increase (vs. unconstrained BAUD)
 - Defined a word error rate-based metric to measure inconsistency between equivalent sequences
 - ~10% relative decrease (vs. unconstrained BAUD)

Thesis Contributions

	Domain Adaptation	Weak Supervision
Speaker Verification	Adapt system to changes in recording technology by applying existing models to new, unlabeled data sets	Actively explore a database of unknown speakers and build speaker models using pairwise equivalence constraints
Language Identification	Augment existing volumes of transcribed speech with largescale, unsupervised discovery of acoustic units on untranscribed, multilingual data	Use equivalence constraints between acoustic sequences to improve speaker-independence of discovered acoustic units

Future Work

- Domain adaptation
 - Telephone → Microphone
 - Out-of-domain detection
- Weak supervision
 - Noisy labels
 - Improved feature representations
 - Towards crowd-supervised development of speech technologies

Acknowledgments