

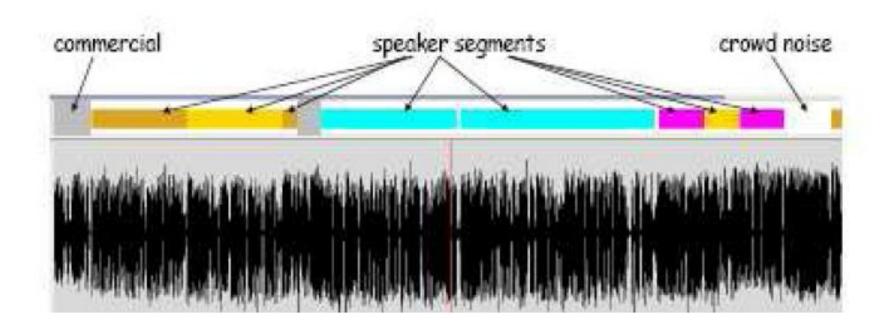
Exploiting Intra-Conversation Variability for Speaker Diarization

Stephen Shum*, Najim Dehak*, Ekapol Chuangsuwanich*, Douglas Reynolds^, Jim Glass*

*MIT Computer Science and Artificial Intelligence Laboratory ^MIT Lincoln Laboratory

August 31, 2011

The task of marking and categorizing the different audio sources within an unmarked audio sequence



Stephen Shum — Spoken Language Systems Group, MIT CSAIL

31 August 2011

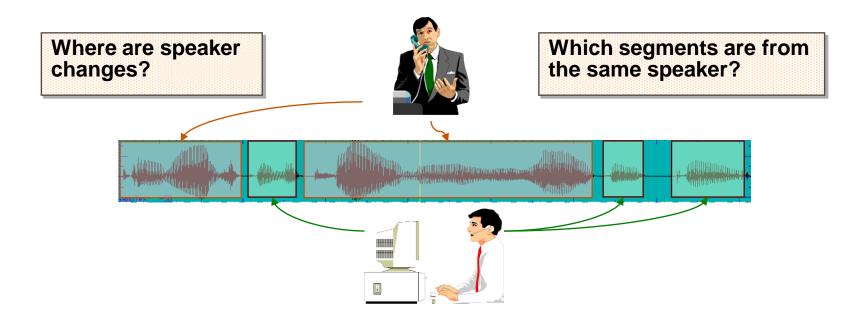
Speaker Diarization

"Who is speaking when?"

Segmentation

- Determine when speaker change has occurred in the speech signal

- Clustering
 - Group together speech segments from the same speaker



Towards Factor Analysis

- At the heart of the speaker diarization problem is the problem of speaker modeling
 - Factor analysis-based methods have recently achieved success in the speaker recognition community.
- Previous work in FA-based diarization
 - Stream-based, on-line system (Castaldo, 2008)
 - Variational Bayesian system (Kenny, 2010)

Difficulties

- Decisions made on very short (~1 second) speech segments
- Poor speaker change detection can corrupt speaker models

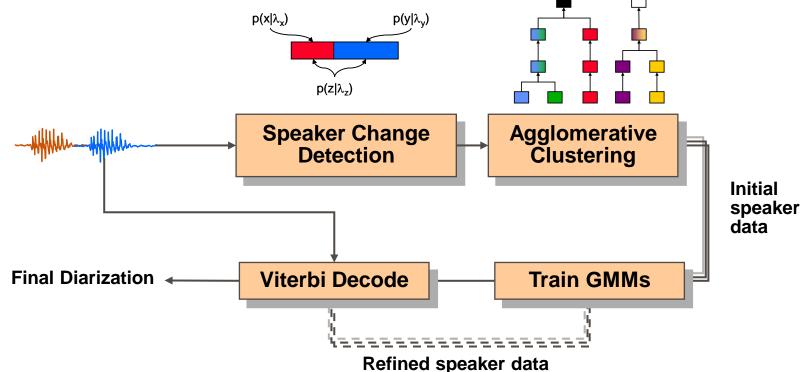
Roadmap

- Introduction
- A BIC-based Baseline System
- A Total Variability-based Approach
 - Factor Analysis Re-visited
 - Exploiting Intra-Conversation Variability
- System Evaluation
- Discussion and Conclusion

Roadmap

- Introduction
- A BIC-based Baseline System
- A Total Variability-based Approach
 - Factor Analysis Re-visited
 - Exploiting Intra-Conversation Variability
- System Evaluation
- Discussion and Conclusion

BIC-based Baseline System



Bayesian Information Criterion (BIC)

- BIC-based speaker change detection
- Agglomerative hierarchical clustering with BIC-based stopping criterion
- Iterative re-segmentation with GMM-Viterbi decoding

- * m is supervector of un-adapted (UBM) means
- * M is supervector of speaker- and channel- dependent means

A Review of Total Variability

Definition

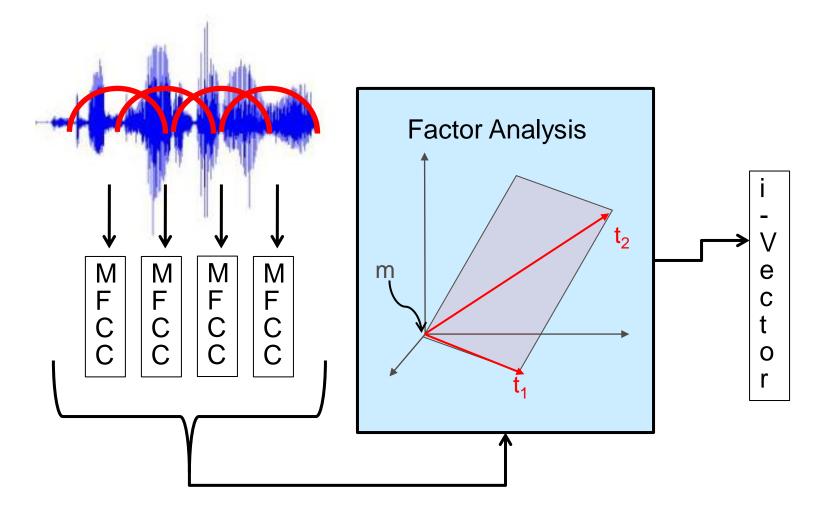
- A supervector is created by concatenating all the mixture mean components in a GMM.
- Assumption (Dehak, 2009)
 - All pertinent variabilities lie in some low dimensional subspace T
 - * Call it the Total Variability Space

 $\mathbf{M} = \mathbf{m} + \mathbf{T}\mathbf{w}$

* w is the vector of Total Factors

(Identity/Intermediate Vectors or i-vectors)

i-vector Extraction



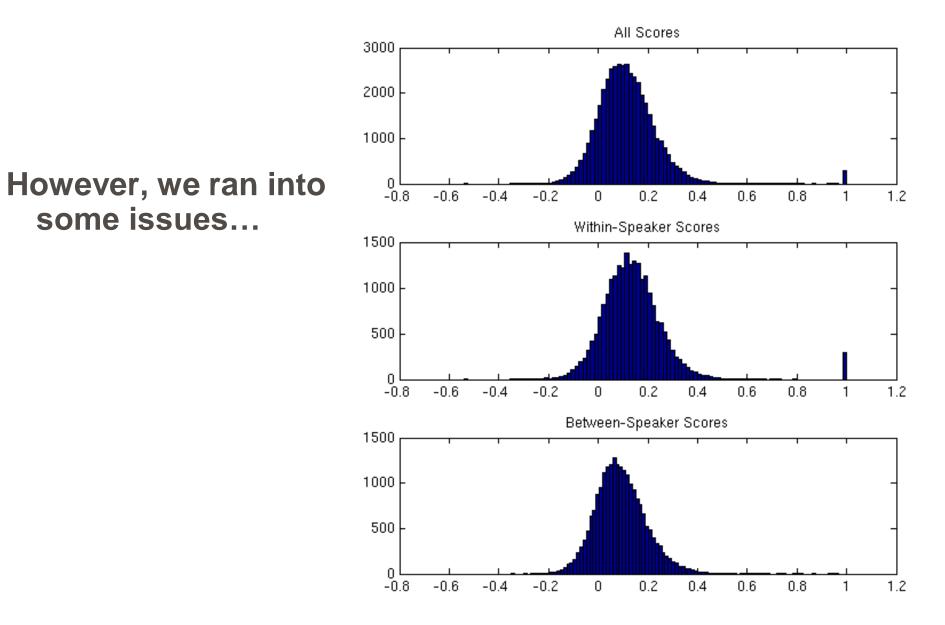
Inter-session Compensation and Cosine Scoring

IF we were to follow, by rote, the standard recipe, we have ...

$$score(w_1, w_2) = \frac{(A^t w_1)^t W^{-1}(A^t w_2)}{\sqrt{(A^t w_1)^t W^{-1}(A^t w_1)} \cdot \sqrt{(A^t w_2)^t W^{-1}(A^t w_2)}}$$

A: Linear Discriminant Analysis(LDA) projection matrix W: Within Class Covariance Normalization (WCCN) matrix

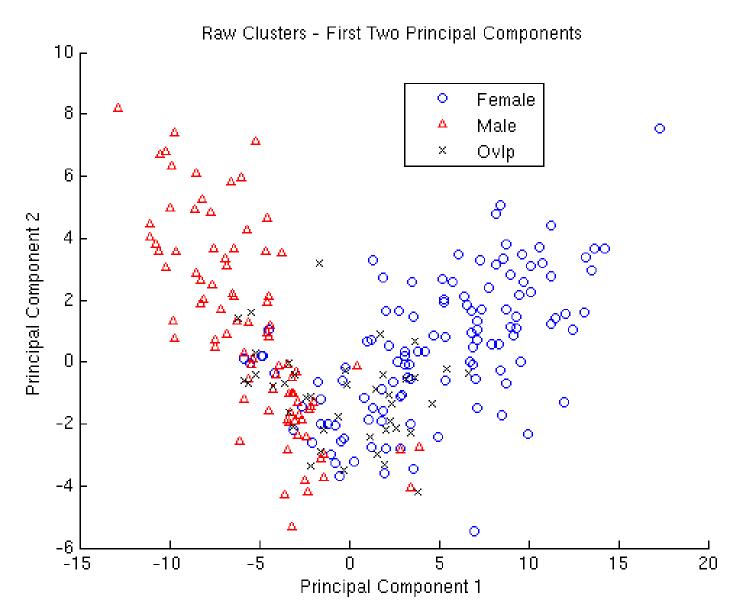
Inter-session Compensation



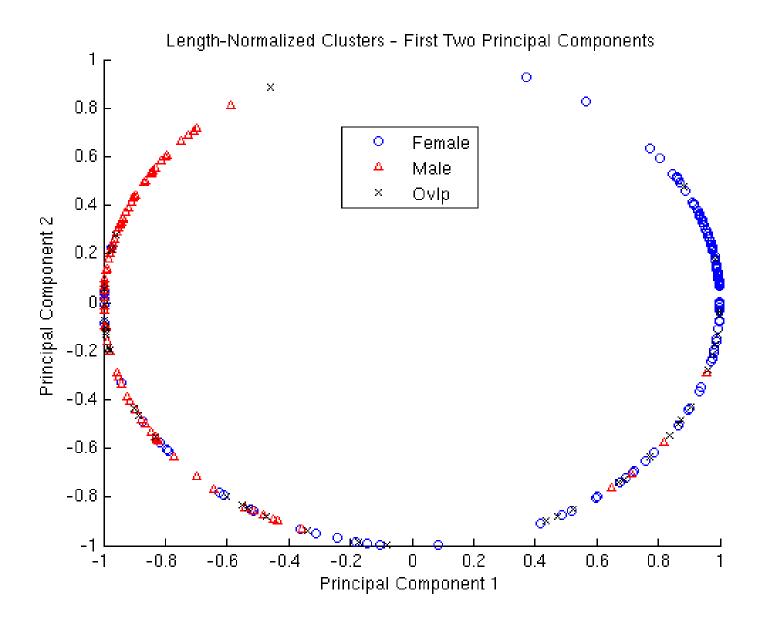
Inter-session Compensation Intra-session Exploitation

- Compensating for inter-session variability is wholly unnecessary in the problem of diarization.
 - Because we are working on a summed-channel telephone conversation, there is no *inter*-session.
 - What we really care about are the *intra*-session variabilities
 - * And hopefully, the most prominent variabilities correspond to distinctly <u>different</u> speakers.

i-vector Visualization



i-vector Visualization



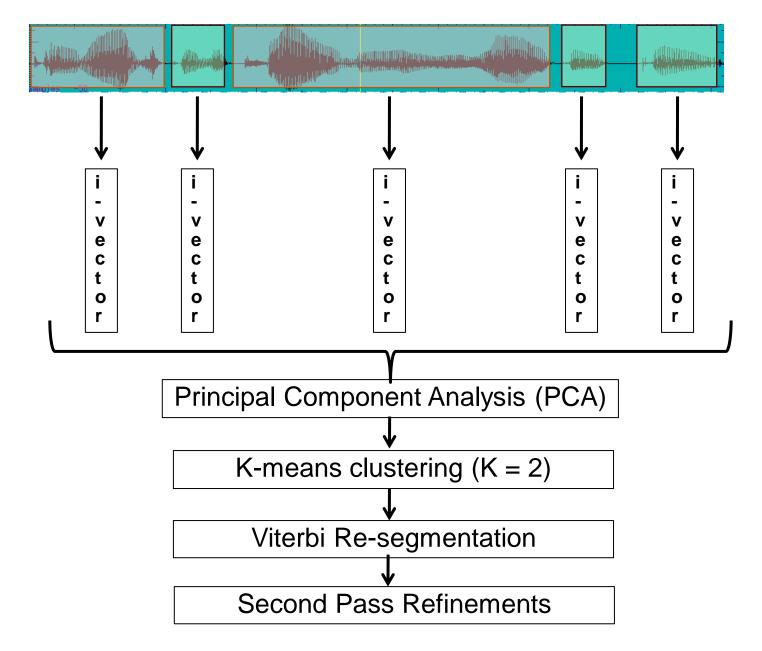
Intra-session Exploitation

- Could further emphasize the importance of principal directions with the most variability
 - i.e. the most principal components have the largest eigenvalues

$$score(w'_{1}, w'_{2}) = \frac{(w'_{1})^{t} \Lambda(w'_{2})}{\left\|\Lambda^{\frac{1}{2}} w'_{1}\right\| \cdot \left\|\Lambda^{\frac{1}{2}} w'_{2}\right\|}$$

 w'_i : PCA - projected i - vector Λ : Corresponding diagonal matrix of eigenvalue s

System Diagram



Viterbi Re-segmentation

- Operate at the acoustic feature level
- Initialize a 32-mixture GMM for each cluster
 - * Speaker A, Speaker B, Non-speech N
- Obtain a posterior probability for each cluster given each feature vector
 * P(A|x_t), P(B|x_t), P(N|x_t)
- Pool these probabilities across the entire conversation (t = 1, ..., T) and use them to re-estimate each respective speaker's GMM
 - * The Non-speech GMM is never re-trained.
- The Viterbi algorithm re-assigns each frame to the speaker/non-speech model with highest posterior probability.

Second Pass Refinements

- Extract a single i-vector for each respective speaker
 - * Using the newly defined re-segmentation assignments
- Re-assign each newly-extracted segment i-vector w_i to the speaker i-vector $\{w_A, w_B\}$ that is closer in cosine similarity
- Iterate until convergence

* i.e. when segment-speaker assignments no longer change

- Similar to Re-segmentation algorithm
 - * But makes hard decisions at the i-vector level instead of soft (posterior-based) decisions at the cepstral level
- Also similar to K-means
 - * Except we determine the "means" $\{w_A, w_B\}$ via i-vector extraction

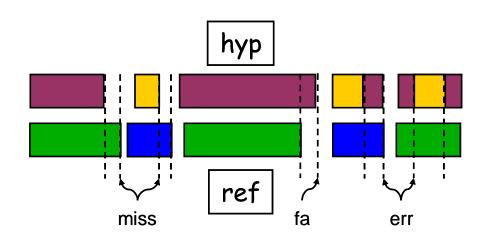
Roadmap

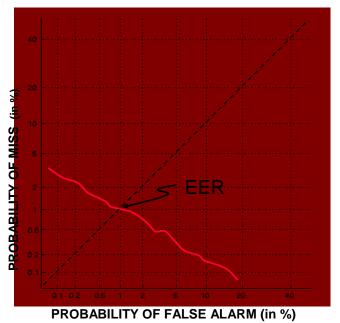
- Introduction
- A BIC-based Baseline System
- A Total Variability-based Approach
 - Factor Analysis Re-visited
 - Exploiting Intra-Conversation Variability
- System Evaluation
- Discussion and Conclusion

Measuring Diarization Error

- Diarization Error Rate (DER)
 - Miss (speaker in reference but not in hypothesis)
 - False Alarm (speaker in hypothesis but not in reference)
 - Speaker Confusion (confusing one speaker's speech as from another)
- Note

- Scoring protocol ignores overlapped speech segments





31 August 2011

Experiment Data

- Summed-channel telephone speech
 - 2008 NIST Speaker Recognition Evaluation Test Data
 - 2215 two-speaker telephone conversations (~5min each)
 - Can obtain a reference diarization by applying ASR or Voice Activity Detection on each channel separately
 - * Thanks to Brno University of Technology for providing these reference transcripts.

Experiment Results

Initial Approach – TV400

	Error Breakdown				
	Miss	False Alarm	Confusion	DER (%)	σ (%)
First Pass	7.7	2.0	4.0	13.8	9.6
Re-segmentation	0.3	2.3	2.9	5.2	8.6
Second Pass	0.3	2.3	1.5	4.2	7.0

Experiment Results

Initial Approach – TV400

	Error Breakdown				
	Miss	False Alarm	Confusion	DER (%)	σ (%)
First Pass	7.7	2.0	4.0	13.8	9.6
Re-segmentation	0.3	2.3	2.9	5.2	8.6
Second Pass	0.3	2.3	1.5	4.2	7.0

• After Parameter Optimization – TV100

	Error Breakdown				
	Miss	False Alarm	Confusion	DER (%)	σ (%)
First Pass	7.7	2.0	2.8	12.5	8.2
Re-segmentation	0.3	2.3	2.6	5.2	8.2
Second Pass	0.3	2.3	1.1	3.7	6.4

Experiment Results

Using Non-reference Segmentation (TV100)

	Error Breakdown				
	Miss	False Alarm	Confusion	DER (%)	σ (%)
First Pass	7.7	2.0	2.8	12.5	8.2
Re-segmentation	0.3	2.3	2.6	5.2	8.2
Second Pass	0.3	2.3	1.1	3.7	6.4

Using Reference Segmentation

	Speaker Confusion (%)	σ _c (%)
BIC-based Baseline	3.5	8.0
VB-based FA	1.0	3.5
Ref VAD + TV100	0.9	3.2
Own VAD + TV100	1.1	3.3

Roadmap

- Introduction
- A BIC-based Baseline System
- A Total Variability-based Approach
 - Factor Analysis Re-visited
 - Exploiting Intra-Conversation Variability
- System Evaluation
- Discussion and Conclusion

Lingering Issues

- Diarization of speech containing more than two speakers
 - How can we estimate the number of speakers?
- Overlapped speech segments
 - Though not scored, we still have to deal with them during diarization
 - Potential to corrupt our PCA
 - * Can mislead our system into finding fruitless directions of variabilities that we do not mean to address
 - Not too much previous work on this... (Boakye, 2008 & 2011)
- "Bag of i-vectors" approach is limiting
 - Would be nice to incorporate temporal dynamics (i.e. HMMs)
 - Can draw from plenty of previous work

Conclusions

Factor analysis-based approach to speaker diarization

- Inspired by Total Variability and i-vectors
- Key Insight

* Exploiting Intra-Conversation Variability

- Attained state of the art results on a test set of 2-speaker conversations

• Further Work

- Detecting and removing overlapped speech segments
- Extending to an unknown number of speakers

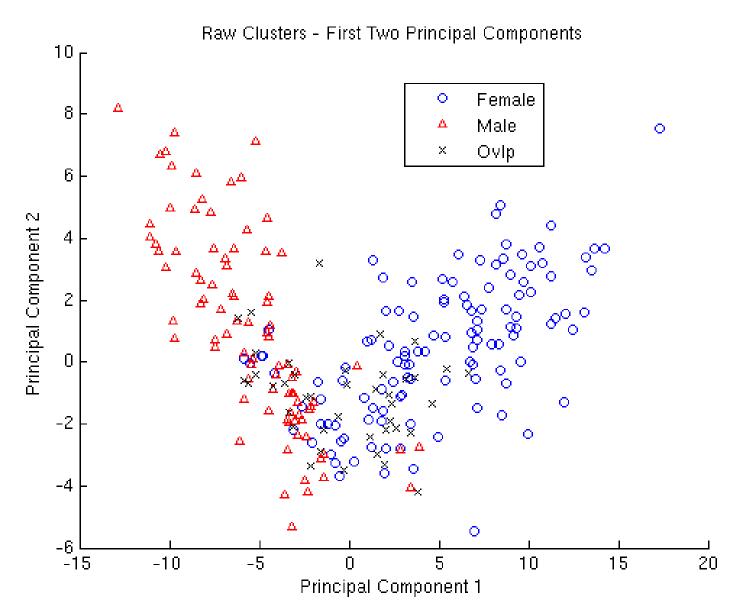
* Variational Bayes

- Incorporating temporal dynamics
- Addressing problems of data sparsity

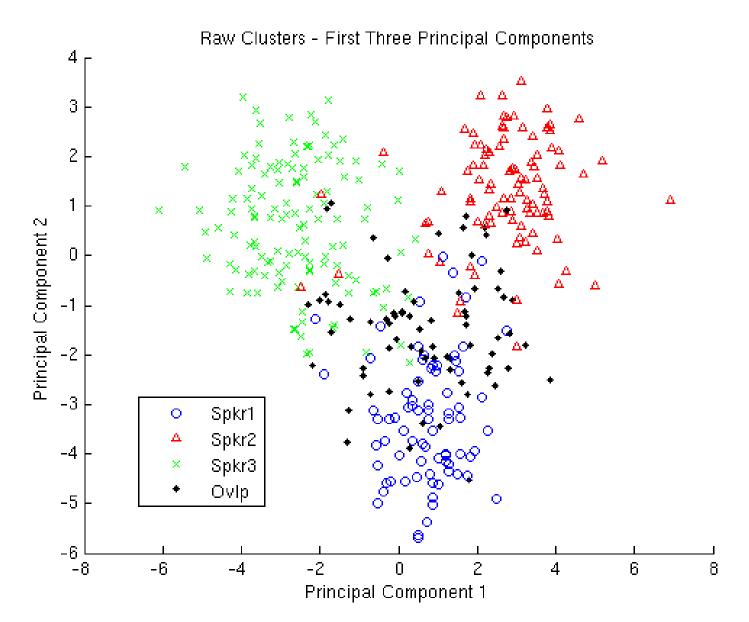
Questions?

Bonus Slides

The Problem With Overlap



The Problem With Overlap



Estimating Speaker Number

- Proposed solution: Variational Bayes (VB)
 - Fabio Valente (2005), Patrick Kenny (2010)
- Advantages to being Bayesian
 - In theory, these methods are not subject to the over-fitting that plagues maximum likelihood methods
 - * Quantitative version of Occam's razor
 - * Should not need to resort to approximations such as BIC
- Variational Approximation $P(x, y | w) \approx q(x) \cdot q(y)$
- Non-parametric approaches
 - Sticky HDP-HMM (Fox, 2008) and -HSMM (Johnson, 2010)
 - * Hierarchical Dirichlet Process (HDP)
 - * Hidden Semi-Markov Model (HSMM)

Other Issues

- Cosine similarity \rightarrow data lie on the unit hypersphere
 - Poorly modeled by a GMM
- Data sparsity
 - A speaker may speak very infrequently
 - All i-vectors are weighted equally, but some are more equal than others
 - * Need some way of incorporating information about the duration of speech used to extract a given i-vector

Conclusions

Factor analysis-based approach to speaker diarization

- Inspired by Total Variability and i-vectors
- Key Insight

* Exploiting Intra-Conversation Variability

- Attained state of the art results on a test set of 2-speaker conversations

• Further Work

- Detecting and removing overlapped speech segments
- Extending to an unknown number of speakers

* Variational Bayes

- Incorporating temporal dynamics
- Addressing problems of data sparsity

Questions?

