The Basics of Audio Fingerprinting

Stephen Shum October 24, 2011

Take Home Questions

- What is audio fingerprinting?
- Why fingerprint?
- How does one fingerprint effectively?

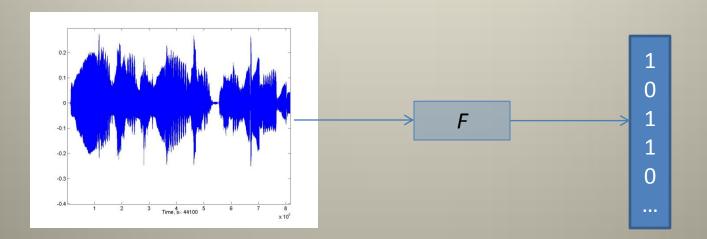
- Along the way,
 - Examples of existing systems and technologies
 - Philips, Shazam, Echonest
 - Brief overview of my summer at Google

Disclaimer

- My exposure to this topic is <u>at most</u> 4 papers ahead of anyone in this group who is seeing this material for the first time.
 - Questions, interruptions, and speaker berating will be tolerated

What is an audio fingerprint?

• Short summary of an audio object using a limited number of bits.



– Example: i-vectors

Fingerprinting \rightarrow Hashing

- Hash functions allow comparison of two large objects, X and Y, by just comparing their respective hash values H(X) and H(Y).
 - For a properly designed fingerprint function *F*, there should be a threshold *T* such that...
 - If X and Y are similar, then //F(X) F(Y)// < T with very high probability,
 - And //F(X) F(Y)// > T if X and Y are dissimilar.
- More on this later...

Why fingerprint?

• Efficient mechanism to establish the perceptual equality of two audio objects.

- Advantages
 - Reduced memory/storage requirements
 - Efficient comparison
 - Perceptual irrelevancies removed
 - Efficient search

Applications of Audio Fingerprinting

- Broadcast monitoring
 - Identifying what's played on public broadcasts
- Audio/song identification
 Mobile phone recordings severely degraded.
- Filtering technology for file sharing
- Automatic music library organization
 Correct meta-data inconsistencies

Qualities of Effective Fingerprints

- Discriminative power
- Distortion invariance
- Compactness
- Computational simplicity

- Granularity (application dependent)
 - How many seconds of audio is needed to identify an audio clip?

The Generic Framework (I)

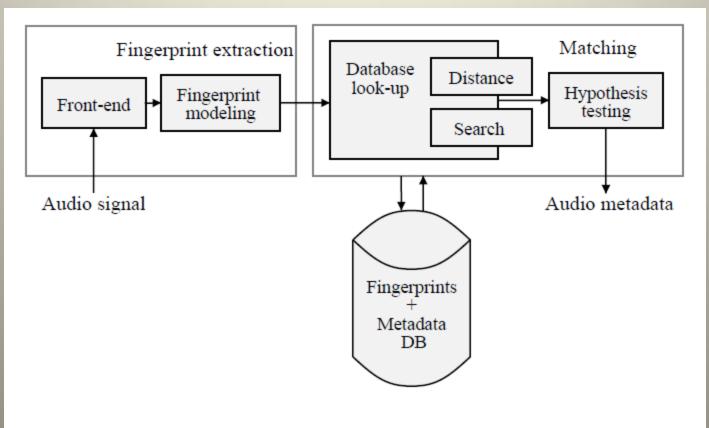


Fig. 1. Content-based Audio Identification Framework.

The Generic Framework (II)

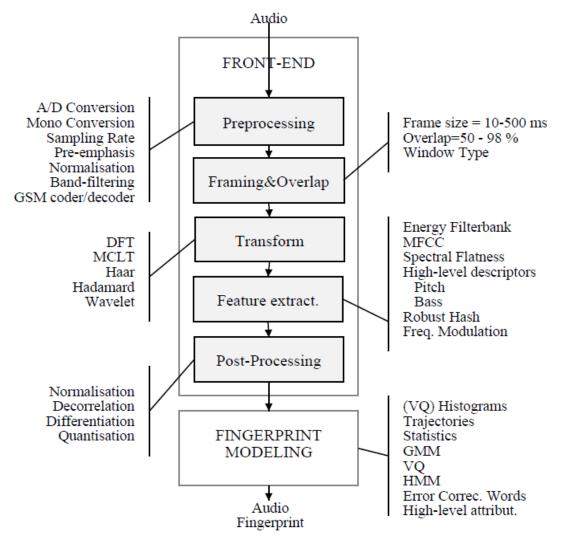


Fig. 2. Fingerprint Extraction Framework: Front-end (top) and Fingerprint modeling (bottom).

The Generic Framework (III)

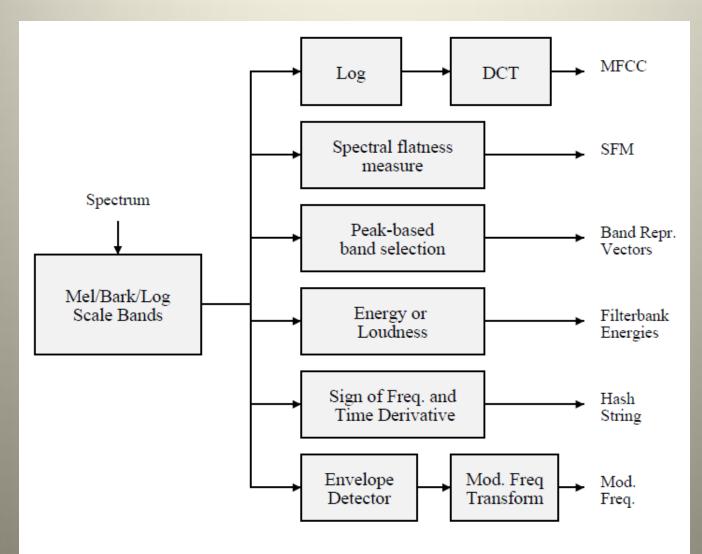


Fig. 3. Feature Extraction Examples

Quick Clarification

- An audio fingerprint can be...
 - A single vector that summarizes the entire file
 - i-vector
 - A stream of *sub-fingerprints*
 - Shazam, etc.

Roadmap

Introduction

Audio Fingerprinting Basics

- Example Systems
 - Shazam
 - Google
- Locality Sensitive Hashing (LSH)
 - Winner Take All (WTA) Hash
 - MinHash
- Recap

Roadmap

Introduction

- Audio Fingerprinting Basics

- Example Systems
 - Shazam
 - Google
- Locality Sensitive Hashing (LSH)
 Winner Take All (WTA) Hash
 MinHash
- Recap

Let's talk Shazam

- Recognize a song from a short snippet of audio recorded on a mobile phone.
 - Database of nearly 2 million tracks
 - Recorded snippet up to 15 seconds in length

"Combinatorically hashed time-frequency constellation analysis"

Shazam's Guiding Principles

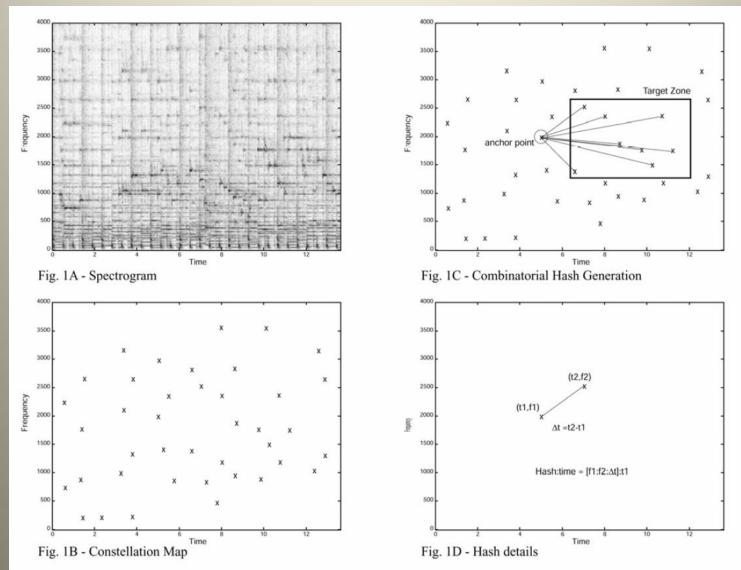
- Temporally localized
 - Calculate sub-fingerprints using audio samples near a corresponding point in time.
- Translation-invariant
 - Recorded snippet can start anywhere in the song.
- Robust
 - Dealing with severely degraded audio.
- Sufficiently (but not overly) entropic

Entropy???

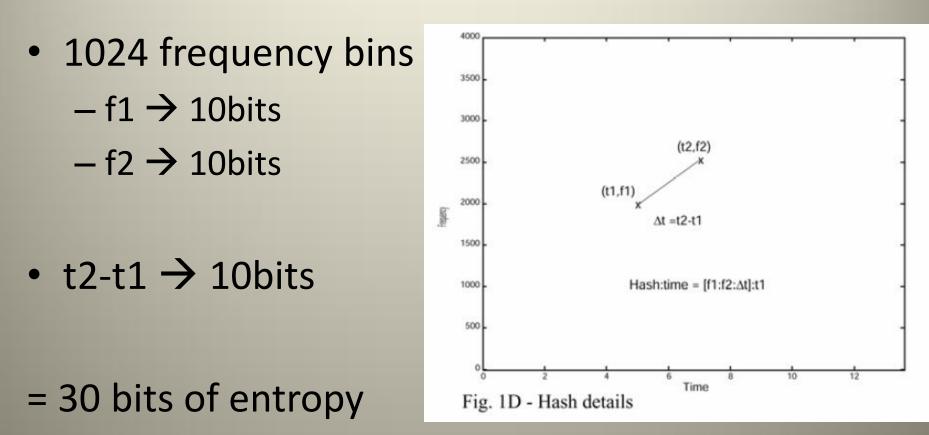
Insufficient entropy leads to excessive and spurious matches.

 Too much entropy leads to fragility and nonreproducibility of fingerprint tokens in the presence of noise and distortion.

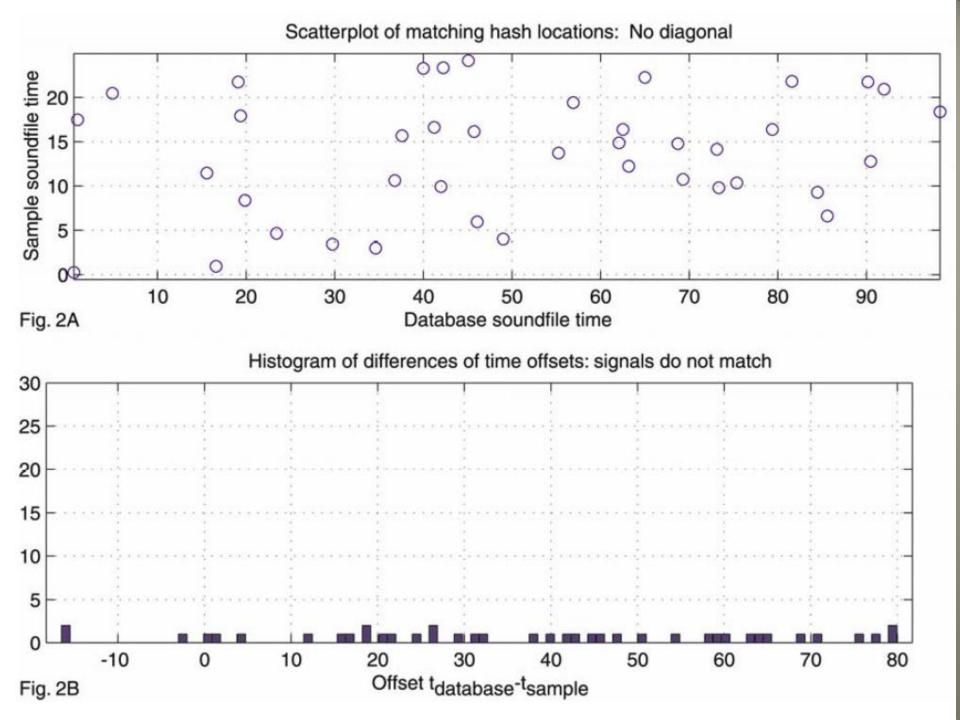
"Combinatorically hashed timefrequency constellation analysis"

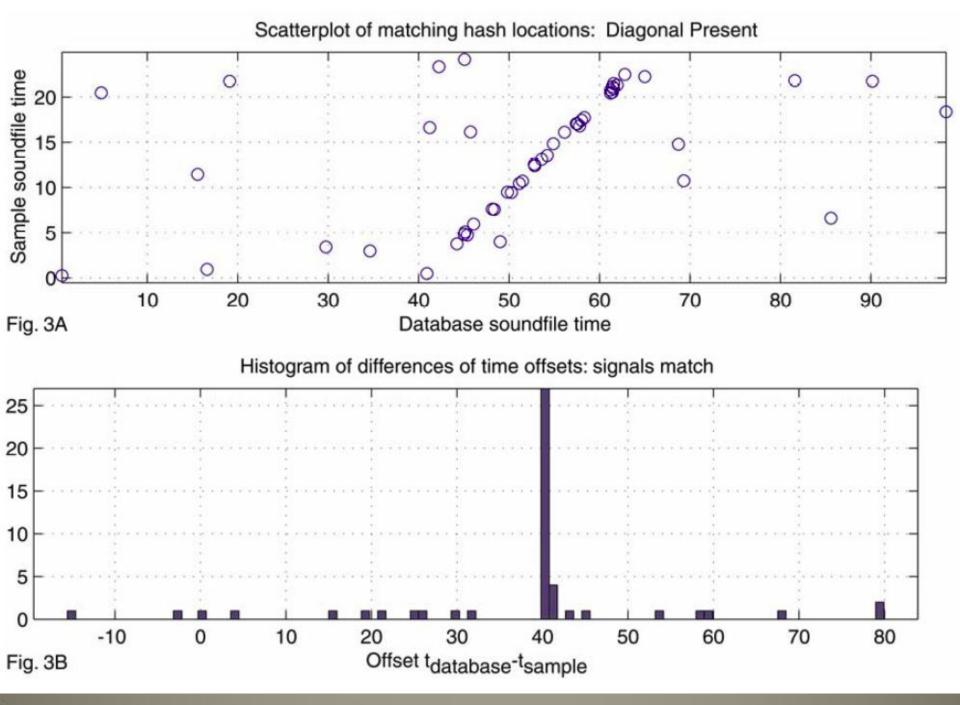


Hash Generation



 \rightarrow 32-bit unsigned integer





Roadmap

Introduction

Audio Fingerprinting Basics

- Example Systems
 - Shazam
 - Google
- Locality Sensitive Hashing (LSH)
 Winner Take All (WTA) Hash
 MinHash
 - MinHash
- Recap

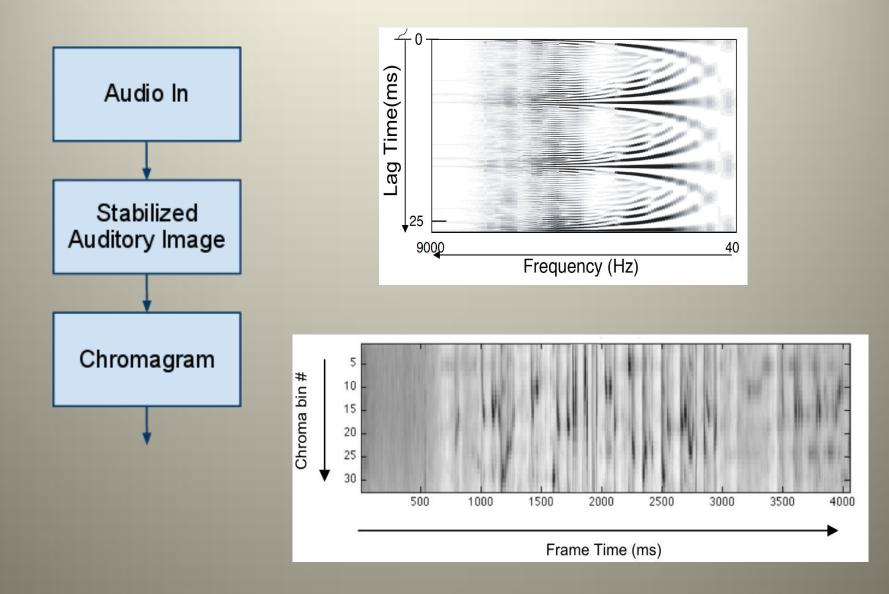
My Google Challenge

- Cover song detection
 - Also known as "version identification"
 - To identify a common musical work that might have been highly transformed by two different musicians.

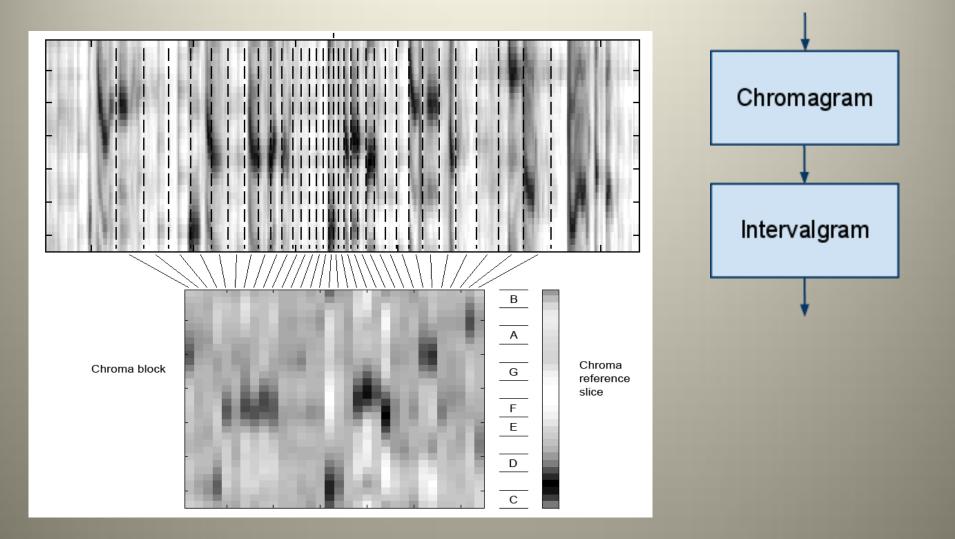
Motivation

- Commercial reasons
 - Detection of copyright infringement
 - Content filtering on YouTube
- Academic reasons
 - "Finding and understanding human transformations of a musical piece force us to develop intelligence audio algorithms that recognize common patterns among musical excerpts."
 - Most existing algorithms were not designed for datasets of Google proportions.

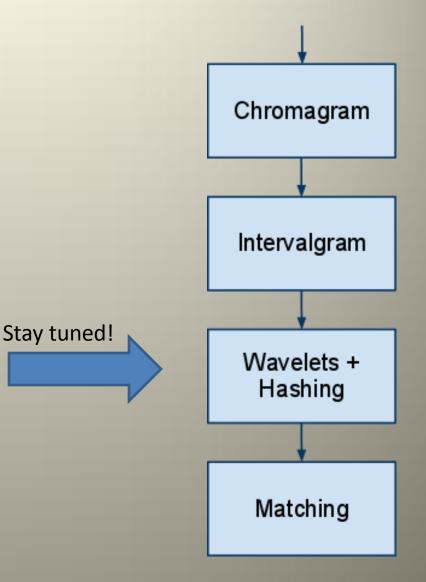
Existing System – Audio Features



Current Pipeline - Melody Features

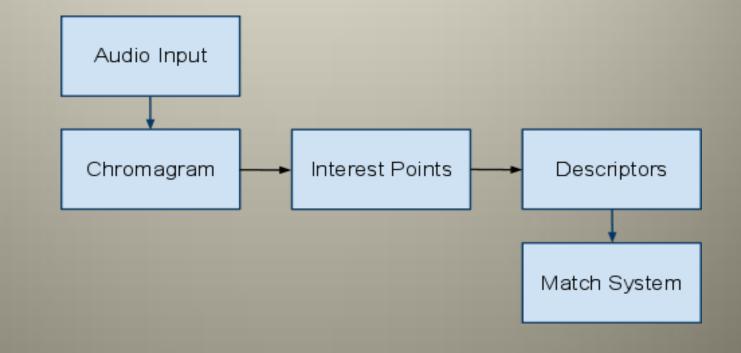


Current Pipeline - Overview



Interest Point-based Approach

- Shazam-inspired
 - "Constellation" \rightarrow Interest Points
 - "Combinatorial hash" \rightarrow Descriptors

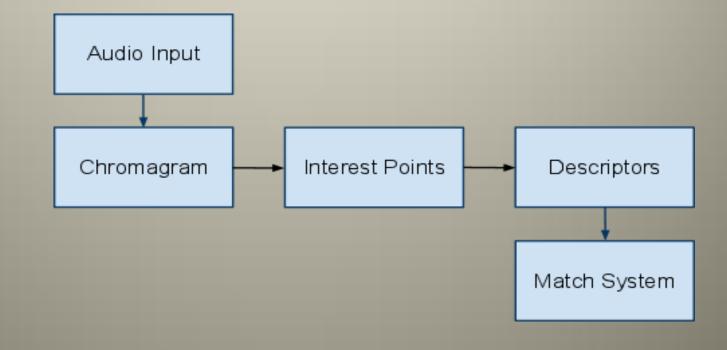


Key Challenge

• Shazam is about exact-match audio.

- Descriptors must match exactly for hit to occur.

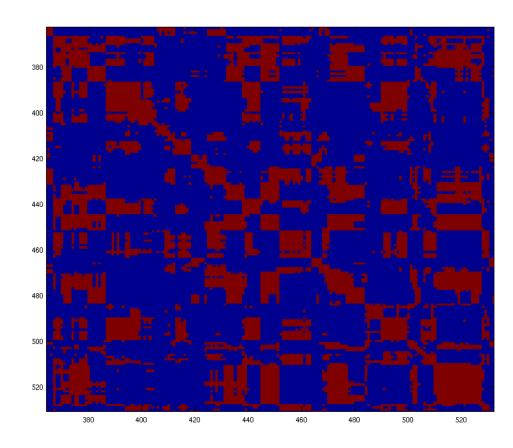
• Cover song detection is all about *fuzziness*.



Interest Point Detection - Approach I

Binarized Self-Similarity Matrix

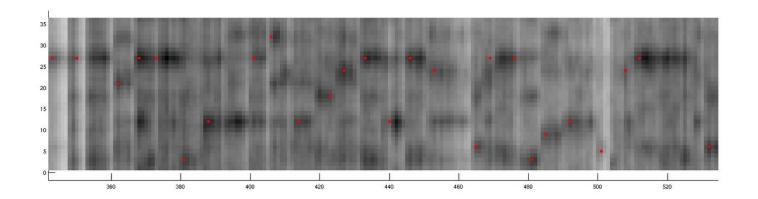
Onset of sustained notes create locally self-similar squares along the diagonal.

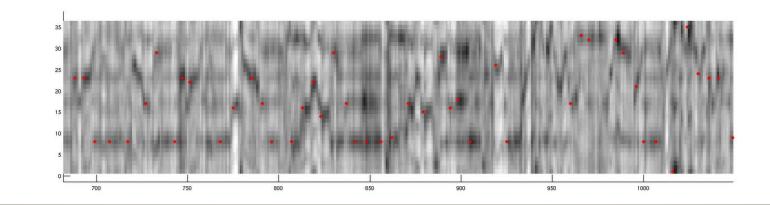


Interest Point Detection - Approach I

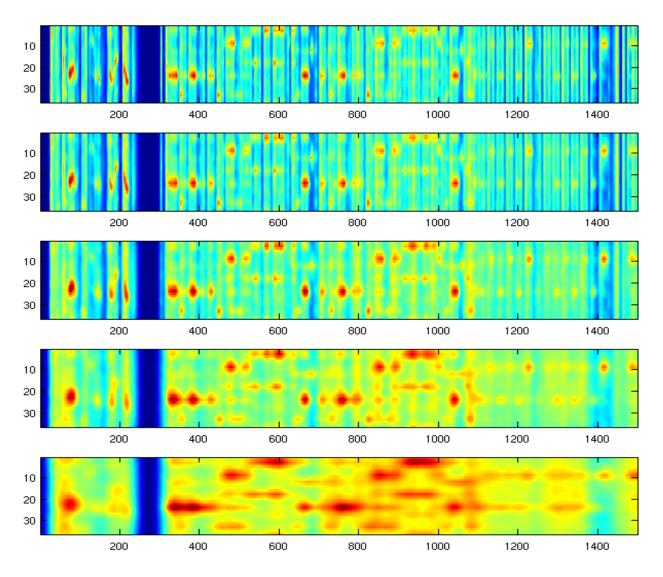
Binarized Self-Similarity Matrix

Onset of sustained notes create locally self-similar squares along the diagonal.



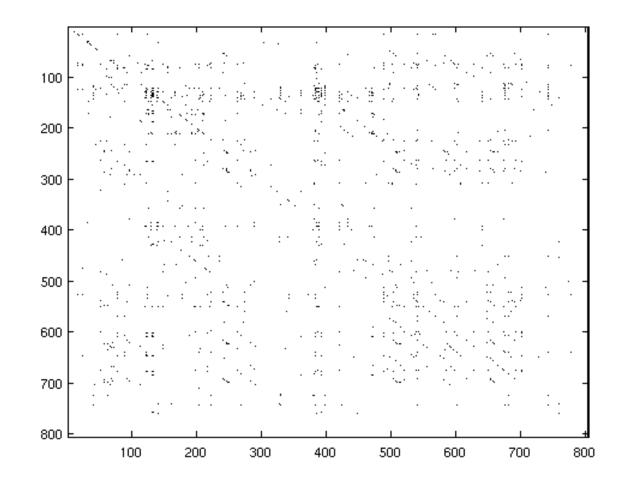


Approach II - Scale Space



Sample Result – Fail!

Descriptor heatmap comparing two songs



Consolation

T. Bertin-Mahieux and D. Ellis, "Large-Scale Cover Song Recognition Using Hashed Chroma Landmarks," in *Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, 2011.

Roadmap

- Introduction
 - Audio Fingerprinting Basics
- Example Systems
 - Shazam
 - Google
- Locality Sensitive Hashing (LSH)
 - Winner Take All (WTA) Hash
 - MinHash

Recap

Back to the Big Picture

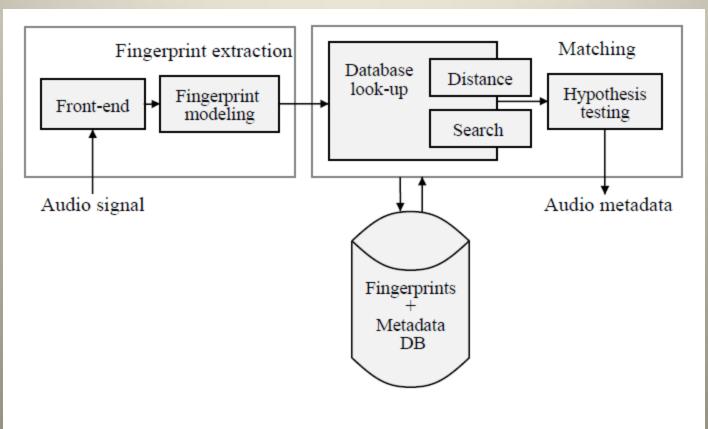


Fig. 1. Content-based Audio Identification Framework.

Algorithms for Hashing

- Locality Sensitive Hash (LSH)
 - For some distance metric $d(\cdot)$ and threshold R > 0,
 - An LSH family \boldsymbol{F} is a family of functions where
 - For any two points p, q
 - And function $h(\cdot)$ chosen uniformly at random from F,
 - $\, \operatorname{lf} d(p,q) < R$
 - Then h(p) = h(q) with probability at least P_1 (i.e. collide)
 - And if d(p,q) > R
 - Then h(p) = h(q) with probability at most P_2 .

Details

- $h(\cdot)$ is typically a hash function
 - Bit sampling of binary input vectors

• $h_i(\mathbf{x}) = x_i \in \{0, 1\}$

- Random projection on some normal unit vector r
 - $h_r(v) = sgn(v \cdot r) \in \{+1, -1\}$

– MinHash

Can create more complex hash functions

 $-g(\cdot) = [h_1(\cdot), ..., h_k(\cdot)]$

```
Algorithm Preprocessing

Input A set of points P,

l (number of hash tables),

Output Hash tables \mathcal{T}_i, i = 1, \ldots, l

Foreach i = 1, \ldots, l

Initialize hash table \mathcal{T}_i by generating

a random hash function g_i(\cdot)

Foreach i = 1, \ldots, l

Foreach j = 1, \ldots, n

Store point p_j on bucket g_i(p_j) of hash table \mathcal{T}_i
```

Algorithm Approximate Nearest Neighbor Query **Input** A query point q,

K (number of appr. nearest neighbors)

Access To hash tables \mathcal{T}_i , $i = 1, \ldots, l$

generated by the preprocessing algorithm **Output** K (or less) appr. nearest neighbors $S \leftarrow \emptyset$

For each $i = 1, \ldots, l$

 $S \leftarrow S \cup \{\text{points found in } g_i(q) \text{ bucket of table } \mathcal{T}_i\}$ Return the K nearest neighbors of q found in set S /* Can be found by main memory linear search */

Parameter Choices

- *k* is the width parameter
 - i.e. how many hash functions h to concatenate together to obtain g
- *l* is the number of hash tables
- Theoretical analysis in

 A. Gionis, P. Indyk, R. Motwani, "Similarity Search in High Dimensions via Hashing," in *Proceedings of VLDB*, 1999.

Winner Take All (WTA) Hash

theta = randperm(n);

[max_val, c(i)] = max(X(i, theta(1:K)));

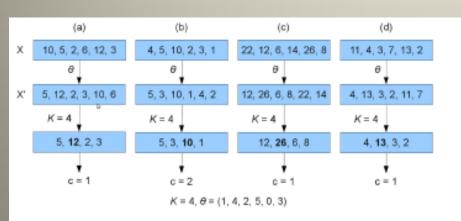


Figure 1: An example with 6-dimensional input vectors, K = 4, and θ = (1, 4, 2, 5, 0, 3). X in (a) and (b) are unrelated and result in different output codes, 1 and 2 respectively. X in (c) is a scaled and offset version of (a) and results in the same code as (a). X in (d) has each element perturbed by 1 which results in a different ranking of the elements, but the maximum of the first K elements is the same, again resulting in the same code.

Algorithm 1 WTA Hash

Input: A set of m Permutations Θ , window size K, input vector X.

Output: Sparse vector of codes C_X .

- 1. For each permutation θ_i in Θ .
 - (a) Permute elements of X according to θ_i to get X'.
 - (b) Initialize i^{th} sparse code c_{x_i} to 0.
 - (c) Set c_{x_i} to the index of the maximum value in X'(1...K)

i. For
$$j = 0$$
 to $K - 1$
A. If $X'(j) > X'(c_{x_i})$ then $c_{x_i} = j$

2. $C_X = [c_{x_0}, c_{x_1}, ..., c_{x_{m-1}}], C$ contains m codes, each taking a value between 0 and K - 1.

MinHash

- Encodes the index of the first 1 under random permutations of binary vectors.
- Hash collision rate corresponds to the Jaccard similarity between binary vectors:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Popular for large-scale clustering (document similarity, etc.)
- Special case of WTA Hash
 - -K = n, so as to avoid case of having all 0's.

Roadmap

Introduction

Audio Fingerprinting Basics

- Example Systems
 - Shazam
 - Google
- Locality Sensitive Hashing (LSH)
 - Winner Take All (WTA) Hash
 - MinHash
- Recap

References

- J. Haitsma, "A Highly Robust Audio Fingerprinting System," in *Proceedings of ISMIR*, 2002.
- P. Cano, E. Batlle, T. Kalker, and J.Haitsma, "A Review of Algorithms for Audio Fingerprinting," in *Workshop on Multimedia Signal Processing*, 2002.
- A. Wang, "An Industrial-Strength Audio Search Algorithm," in *Proceedings of ISMIR*, 2003.
- V. Chandrasekhar, M. Sharifi, and D. Ross, "Survey and Evaluation of Audio Fingerprinting Schemes for Mobile Query-By-Example Applications," in *Proceedings of ISMIR*, 2011.
- T. Bertin-Mahieux and D. Ellis, "Large-scale Cover Song Recognition Using Hashed Chroma Landmarks," in *Proceedings of WASPAA*, 2011.
- A. Gionis, P. Indyk, R. Motwani, "Similarity Search in High Dimensions via Hashing," in *Proceedings of VLDB*, 1999.
- J. Yagnik, D. Strelow, D. Ross, R. Lin, "The Power of Comparative Reasoning," in *Proceedings of ICCV*, 2011.