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Take Home Questions

What is audio fingerprinting?
Why fingerprint?
How does one fingerprint effectively?

Along the way,
— Examples of existing systems and technologies

* Philips, Shazam, Echonest

— Brief overview of my summer at Google



Disclaimer

* My exposure to this topic is at most 4 papers
ahead of anyone in this group who is seeing
this material for the first time.

— Questions, interruptions, and speaker berating will
be tolerated



What is an audio fingerprint?

Short summary of an audio object using a
imited number of bits.




Fingerprinting = Hashing

e Hash functions allow comparison of two large
objects, X and Y, by just comparing their
respective hash values H(X) and H(Y).

— For a properly designed fingerprint function F,
there should be a threshold T such that...

— If Xand Y are similar, then ||F(X) — F(Y)]| < T with
very high probability,

— And ||F(X) — F(Y)]| > T if Xand Y are dissimilar.

e More on this later...



Why fingerprint?

e Efficient mechanism to establish the
perceptual equality of two audio objects.

 Advantages
— Reduced memory/storage requirements
— Efficient comparison

* Perceptual irrelevancies removed

— Efficient search



Applications of Audio Fingerprinting

Broadcast monitoring
— |dentifying what’s played on public broadcasts

Audio/song identification
— Mobile phone recordings severely degraded.

Filtering technology for file sharing

Automatic music library organization
— Correct meta-data inconsistencies



Qualities of Effective Fingerprints

Discriminative power
Distortion invariance
Compactness
Computational simplicity

Granularity (application dependent)

— How many seconds of audio is needed to identify
an audio clip?



The Generic Framework (1)
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Fig. 1. Content-based Audio Identification Framework.




The Generic Framework (ll)

Audio
FRONT-END
A A
A/D Conversion
Mono Conversion 1  Preprocessing
Sampling Rate |~
Pre-emphasis ¥
Normalisation )
Band-filtering Framing&Overlap
GSM coder/decoder T
DFT v Transform
MCLT /
Haar ¥
Hadamard
Wavelet Feature extract.
¥
/ Post-Processing
Normalisation
Decorrelation A 4
Differentiation
Quantisation FINGERPRINT
MODELING
\.
Audio
Fingerprint

Fig. 2. Fingerprint Extraction Framework: Front-end (top) and Fingerprint

modeling (bottom).
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The Generic Framework (IlI)
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Quick Clarification

An audio fingerprint can be...

A single vector that summarizes the entire file

e |-vector

ream of sub-fingerprints




Roadmap

Introduction
— Audio Fingerprinting Basics
Example Systems

— Shazam
— Google

Locality Sensitive Hashing (LSH)
— Winner Take All (WTA) Hash
— MinHash

Recap
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Let’s talk Shazam

* Recognize a song from a short snippet of
audio recorded on a mobile phone.

— Database of nearly 2 million tracks
— Recorded snippet up to 15 seconds in length

e “Combinatorically hashed time-frequency
constellation analysis”



Shazam’s Guiding Principles

Temporally localized

— Calculate sub-fingerprints using audio samples
near a corresponding point in time.

Translation-invariant
— Recorded snippet can start anywhere in the song.

Robust
— Dealing with severely degraded audio.

Sufficiently (but not overly) entropic



Entropy???

* |nsufficient entropy leads to excessive and
spurious matches.

 Too much entropy leads to fragility and non-
reproducibility of fingerprint tokens in the
presence of noise and distortion.



“Combinatorically hashed time-

frequency constellation analysis”
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Fig. 1D - Hash details
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Scatterplot of matching hash locations: No diagonal
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Scatterplot of matching hash locations: Diagonal Present
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My Google Challenge

* Cover song detection
— Also known as “version identification”

— To identify a common musical work that might
have been highly transformed by two different
musicians.



Motivation

e Commercial reasons
— Detection of copyright infringement
— Content filtering on YouTube

e Academic reasons

— “Finding and understanding human transformations of
a musical piece force us to develop intelligence audio
algorithms that recognize common patterns among
musical excerpts.”

— Most existing algorithms were not designed for
datasets of Google proportions.



Existing System — Audio Features
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Current Pipeline - Melody Features

Chromagram
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Current Pipeline - Overview
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Stay tuned!
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Interest Point-based Approach

Shazam-inspired

— “Constellation” = Interest Points

“Combinatorial has

Audio Input
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Key Challenge

Shazam is about exact-match audio.
— Descriptors must match exactly for hit to occur.

over song detection is all about fuzziness.

Audio Input

'

Chromagram = [nterest Foints

Match System




Interest Point Detection - Approach |

Binarized Self-Similarity Matrix
Onset of sustained notes create locally self-similar squares
along the diagonal.




Interest Point Detection - Approach |
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Sample Result — Fail!

criptor heatmap comparing two song
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Consolation

T. Bertin-Mahieux and D. Ellis, “Large-Scale Cover Song
Recognition Using Hashed Chroma Landmarks,” in
Proceedings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2011.
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Back to the Big Picture
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Fig. 1. Content-based Audio Identification Framework.




Algorithms for Hashing

e Locality Sensitive Hash (LSH)
— For some distance metric d(-) and threshold R > 0,
— An LSH family F is a family of functions where
— For any two points p, Q

— And function h(-) chosen uniformly at random from F,

— Ifd(p,g) <R
* Then h(p) = h(q) with probability at least P, (i.e. collide)

— And ifd(p,q) > R
* Then h(p) = h(g) with probability at most P..



Details

* h(-) is typically a hash function
— Bit sampling of binary input vectors
* hi(x) =X € {0, 1}
— Random projection on some normal unit vector r
* h(v) =sgn(v-r)e{+1, -1}
— MinHash

* Can create more complex hash functions

= 90)=[h (), ... A ()]



Algorithm Preprocessing
Input A set of points £,
[ (number of hash tables),
Output Hash tables 7;. i=1.....{
Foreach i=1.....1
Initialize hash table 7, by generating
a random hash function g;(-)
Foreach i =1.....1
Foreach j = l......n
Store point p; on bucket g;{(p;} of hash table 7;

Algorithm Approximate Nearest Neighbor Query
Input A query pomt q.

K (number of appr. nearest neighbors]
Aceess To hash tables 7, 0= 1.....1

eenerated by the preprocessing algorlthm
Output A (or less) appr. nearest neighbors
S0
Foreach i=1.....1

S S U {pomts found in g,(¢) bucket of table 7}
Return the A nearest neighbors of ¢ found in set S
/* Can be found by main memory linear search */




Parameter Choices

e Kkisthe width parameter

— i.e. how many hash functions h to concatenate
together to obtain g

e |isthe number of hash tables

 Theoretical analysis in

— A. Gionis, P. Indyk, R. Motwani, “Similarity Search
in High Dimensions via Hashing,” in Proceedings of
VLDB, 1999.
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Figure 1: An example with 6-dimensional input vectors, K
=4 and#=(1,4,2.5,0,3). Xin(a)and (b) are unrelated
and result in different output codes, 1 and 2 respectively.
X 1n (c) 15 a scaled and offset version of (a) and results 1n
the same code as (a). X in (d) has each element perturbed
by 1 which results in a different ranking of the elements,
but the maximum of the first K elements 1s the same, again
resulting in the same code.

Winner Take All (WTA) Hash

[max_val, c(i)] = max(X(i, theta(1:K)));

Algorithm 1 WTA Hash

Input: A set of m Permutations 8, window size K, input
vector X .
Output: Sparse vector of codes C'y.

|. For each permutation £; in 6.

(a) Permute elements of X according to 6; to get X .
(b) Initialize it" sparse code ¢ to (.

(c) Set cp, to the index of the maximum value in

X'(1..K)
L. Forj=0t K —1
A. IfX'(j) > X '(cz,) then ¢, = j.

2. Ox = [CTD., Copgyenen f:m_t]-.- (' contains m codes, each
taking a value between () and K — 1.




MinHash

e Encodes the index of the first 1 under random
permutations of binary vectors.

 Hash collision rate corresponds to the Jaccard
similarity between binary vectors:

(ABy_MnB|
J(4, ~ |AUB|

— Popular for large-scale clustering (document
similarity, etc.)

e Special case of WTA Hash
— K =n, so as to avoid case of having all O’s.
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