Unsupervised Methods for Speaker Diarization: An Integrated and Iterative Approach

Stephen Shum, Najim Dehak, and Jim Glass

*With help from Reda Dehak, Ekapol Chuangsuwanich, and Douglas Reynolds

November 29, 2012
The task of marking and categorizing the different audio sources within an unmarked audio sequence.
Speaker Diarization

• “Who is speaking when?”

• Segmentation
 – Determine when speaker change has occurred in the speech signal

• Clustering
 – Group together speech segments from the same speaker
Applications

- As a pre-processing step for other downstream applications
 - Annotate transcripts with speaker changes and labels
 - Provide an overview of speaker activity
 - Adapt a speech recognition system
 - Do speaker detection on multi-speaker speech (i.e., speaker tracking)
Take-Home Summary

• Extended previous work in applying factor analysis-based speaker modeling to speaker diarization

• Integrated variational inference into speaker clustering

• Validated an iterative optimization procedure to refine clustering and segmentation hypotheses
 – Interspeech 2012

• Proposed a duration-proportional sampling scheme to combat issues of i-vector underrepresentation
 – SM Thesis 2011
Roadmap

• Introduction
 – Summary of Contributions

• Background
 – Diarization System Overview
 – Speaker Modeling with Factor Analysis

• Our Incremental Approach
 – Towards Probabilistic Clustering Methods
 – Iterative System Optimization (Re-segmentation/Clustering)
 – Duration-Proportional Sampling

• Analysis and Discussion
 – Benchmark Comparison (Castaldo 2008)

• Conclusion
Standard Diarization Setup

- Agglomerative Hierarchical Clustering
 - Requires methods for model selection
- Iterative re-segmentation
Towards Factor Analysis

• At the heart of the speaker diarization problem is the problem of speaker modeling
 – Factor analysis-based methods have achieved success in the speaker recognition community.

• Main Idea
 – Low-dimensional summary of a speaker’s distribution of acoustic feature vectors
Modeling Feature Sequences with GMMs

- We need to model the distribution of feature vector sequences
 - e.g., Mel Frequency Cepstral Coefficients (MFCCs)

- Gaussian mixture models (GMMs) are a common representation
Modeling with Adapted GMM-UBMs

(1) Extract feature vector sequence from speech signal

(2) Train UBM with speech from many speakers

(3) Adapt target model from UBM
GMM-UBM and MAP Adaptation

• Target model is trained by adapting from background model
 – Couples models together and helps with limited target training data

• Adaptation only updates mean parameters representing acoustic events seen in target training data
 – Sparse regions of feature space filled in by UBM mean parameters
 * Both an advantage and a disadvantage

• Disadvantage
 – Limited target training data can still prevent some UBM components from being adapted.
Intuition

• The way the UBM adapts to a given speaker ought to be somewhat constrained.
 – For a particular speaker, there should exist some correspondence in the way the mean parameters move relative to one another.

• Supervector Re-parameterization
 – Concatenate all mixture mean components of a GMM.
Total variability space

• A GMM supervector corresponds to a point in space.

• Factor analysis captures the directions of maximum between-utterance variability.
The Total Variability Approach

• Assumption (Dehak, 2009)
 – All pertinent variabilities lie in some low dimensional subspace T
 * Call it the Total Variability Space

\[M = m + Tw \]

* w is the vector of i-vectors (Identity/Intermediate Vectors)

* m is supervector of un-adapted (UBM) means
* M is supervector of speaker- and channel- dependent means
Regarding i-vectors

• “For some speech segment s, its associated i-vector w_s can be seen as a low-dimensional summary of that segment’s distribution of acoustic features with respect to a UBM.”

• Low-dimensional random vector (100 \ll 20,000)
 – Standard normal prior distribution, $N(0, I)$

• Given some speech data,
 – Posterior mean \rightarrow i-vector
 – Posterior covariance \rightarrow i-vector covariance

• Cosine similarity metric
 – Can also length-normalize i-vectors onto the unit hypersphere
Roadmap

• Introduction
 – Summary of Contributions

• Background
 – Diarization System Overview
 – Speaker Modeling with Factor Analysis

• Our Incremental Approach
 – Towards Probabilistic Clustering Methods
 – Iterative System Optimization (Re-segmentation/Clustering)
 – Duration-Proportional Sampling

• Analysis and Discussion
 – Benchmark Comparison (Castaldo 2008)

• Conclusion
Initialization

Clustering

i-vector i-vector i-vector i-vector i-vector

Clustering
Clustering History

- **K-means on 2-speaker conversations (K = 2 known)**
 - Interspeech 2011
Clustering History

- **K-means on 2-speaker conversations (K = 2 known)**
 - Interspeech 2011
- **K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)**
 - Interspeech 2012
Clustering History

• K-means on 2-speaker conversations (K = 2 known)
 – Interspeech 2011

• K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 – Interspeech 2012

• Probabilistic Methods (SM Thesis 2011)
 – K-means → Gaussian Mixture Models
 * Bayesian model selection via variational inference
The Need for Approximate Inference

- Consider some observed data Y, a hidden variable set X, and associated parameters θ
- For model selection m, we want to maximize
 \[
 \log P(Y|m) = \log \int P(Y, X, \theta|m) dX d\theta
 \]
 → exact computation is intractable in general

- Introduce $q(X, \theta) = q(X) \cdot q(\theta)$ to approximate $P(X, \theta|Y, m)$
 \[
 \log P(Y|m) = F_m(q(X, \theta)) + KL(q(X, \theta)||P(X, \theta|Y, m))
 \]
 * Maximizing the Free Energy minimizes the KL-divergence between the variational posterior and true posterior distributions
Variational Free Energy

\[F_m(q(X)q(\theta)) = \int q(X)q(\theta) \cdot \log P(Y, X|\theta, m) dX d\theta \]

- Expectation, under \(q(X,\theta) \), of complete data log-likelihood
- Entropy of \(X \)
- KL-divergence between variational parameters and actual priors

\[+H(q(X)) - KL(q(\theta)||P(\theta|m)) \]

- The act of maximizing \(F_m(q(X)q(\theta)) \) yields an EM algorithm
 - VBEM-GMM
Clustering History

• K-means on 2-speaker conversations (K = 2 known)
 – Interspeech 2011

• K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 – Interspeech 2012

• Probabilistic Methods (SM Thesis 2011)
 – K-means → Gaussian Mixture Models
 * Bayesian model selection via variational inference
 – Rote application of VBEM-GMM
VBEM-GMM Visualization
Clustering History

• K-means on 2-speaker telephone conversations (K known)
 – Interspeech 2011

• K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 – Interspeech 2012

• Probabilistic Methods (SM Thesis 2011)
 – K-means \rightarrow Gaussian Mixture Models
 * Bayesian model selection via the variational approximation
 – Rote application of VBEM-GMM
 * GMMs are a poor way to model data living on a unit hypersphere.
Dimensionality Reduction

• i-vectors are both speaker- and channel-dependent
 – Channel effect localizes all i-vectors onto one small region on the unit hypersphere
 – Consider a projection (PCA) onto a lower-dimensional plane
Dimensionality Reduction

• **i-vectors are both speaker- and channel-dependent**
 – Channel effect localizes all i-vectors onto one small region on the unit hypersphere
 – Consider a projection (PCA) onto a lower-dimensional plane
PCA Visualization

Three-Speaker Conversation
(First Two Principal Components After i-vector Length-Normalization)
VBEM-GMM Clustering (after PCA)
Cluster Initialization

• **Baseline Approach**
 – Over-initialize the number of clusters
 * $K_0 = 15$
 – Remove components iteratively

• **Proposed Refinement**
 – Initialize using eigenvalue roll-off from the affinity matrix generated by the spectral clustering algorithm
 * $K_0 = \hat{K} + [3 \cdot \sigma_K]$
 – Still want to over-initialize clusters, but in a more informed manner.
System Diagram (Clustering)

- **audio**
- **initial segmentation**
- i-vector extraction + length normalization
- spectral init
- PCA
- VBEM-GMM

K0
System Diagram (Baseline)

- audio
- initial segmentation

- i-vector extraction + length normalization
- spectral init
- PCA
- VBEM-GMM

Re-seg

Final Pass

output
Experiment Details

• Evaluation Data
 – Multi-lingual CallHome corpus
 * 500 recordings, 2-5 minutes each, containing 2-7 speakers

• Total Variability
 – 20-dimensional MFCC acoustic feature vectors
 – UBM of 1024 Gaussians
 – Rank of Total Variability matrix = 100
 * i.e. 100-dimensional i-vectors

• Diarization Error Rate (DER)
 – Amount of time spent confusing one speaker’s speech as from another
Initial Results

VBEM-GMM Clustering Initialization Comparisons ($K_0 = 15$ vs. Spectral)

Diarization Error Rate

Actual Number of Speakers (Number of Conversations)

- Baseline System ($K_0 = 15$)
- Spectral Initialization
- Castaldo 2008

Stephen Shum — Spoken Language Systems Group
Roadmap

• Introduction
 – Summary of Contributions

• Background
 – Diarization System Overview
 – Speaker Modeling with Factor Analysis

• Our Incremental Approach
 – Towards Probabilistic Clustering Methods
 – Iterative System Optimization (Re-segmentation/Clustering)
 – Duration-Proportional Sampling

• Analysis and Discussion
 – Benchmark Comparison (Castaldo 2008)

• Conclusion
Iterative Re-segmentation

- Initialize a GMM for each cluster.
 * Speaker 1, Speaker 2, …, Non-speech N

- Obtain a posterior probability for each cluster given each feature vector.
 * $P(S_1|x_t)$, $P(S_2|x_t)$, …, $P(N|x_t)$

- Pool these probabilities across the entire conversation ($t = 1,…,T$) and use them to re-estimate each respective speaker’s GMM.
 * The Non-speech GMM is never re-trained.

- The Viterbi algorithm re-assigns each frame to the speaker/non-speech model with highest posterior probability.
• **Clustering** assumes some initial segmentation and clusters at the i-vector level
 – Better speaker representation

• **Re-segmentation** operates at level of acoustic features
 – Finer temporal resolution
Iterative System Optimization

- **Defining “convergence”**
 - DER can be seen as a “distance” between two diarization hypotheses.
Iterative System Optimization Results

![Diagram showing system configuration refinements with diarization error rate against actual number of speakers. The graph compares different initialization methods and their effectiveness with the number of speakers.]

- Spectral Initialization
- ...with Iter. Re-seg
- Castaldo 2008
Diarization System So Far

- Audio
- Initial segmentation

1. i-vector extraction + length normalization
2. Spectral init
3. PCA
4. VBEM-GMM
5. Re-seg

Workflow:
- New segmentation
- Converge?
 - Yes: Final Pass, output
 - No: Repeat process

Stephen Shum — Spoken Language Systems Group
29 November 2012
Diarization System So Far

- audio
- initial segmentation
 - i-vector extraction + length normalization
 - spectral init
 - PCA
 - VBEM-GMM

- Re-seg
- Converge?
 - Yes
 - Final Pass
 - output
 - No
 - new segmentation
Final Pass Refinements
(Interspeech 2011)

- Extract a single i-vector for each respective speaker.
 * Using the newly defined re-segmentation assignments

- Re-assign each newly-extracted segment i-vector w_i to the speaker i-vector $\{w_1, w_2, \ldots, w_K\}$ that is closer in cosine similarity.
 * “Winner Takes All”
Final Pass Refinements
(Interspeech 2011)

– Extract a single i-vector for each respective speaker.
 * Using the newly defined re-segmentation assignments

– Re-assign each newly-extracted segment i-vector w_i to the speaker i-vector $\{w_1, w_2, \ldots, w_K\}$ that is closer in cosine similarity.
 * “Winner Takes All”

– Iterate until convergence.
 * i.e. when segment-speaker assignments no longer change

– Essentially a K-means algorithm
 * Except determine “means” $\{w_1, w_2, \ldots, w_K\}$ via i-vector extraction
Diarization System So Far

- Audio
 - i-vector extraction + length normalization
 - Spectral init
 - PCA
 - VBEM-GMM

- Initial segmentation
 - Converge?
 - No
 - Re-seg
 - Yes
 - Final Pass

- New segmentation
 - Output
Diarization System So Far

- Audio
- Initial segmentation
- I-vector extraction + length normalization
- Spectral init
- PCA
- VBEM-GMM
- Re-seg
- Converge?
- Final Pass

New segmentation
K0

Yes
No

Output
i-vector Underrepresentation

• i-vectors have been used as point estimates.
 – During clustering, we treat them as independent and identically distributed samples from some underlying GMM.

• However, some i-vectors may be more equal than others.
 – i-vector from a 5-second speech segment versus 0.5-second segment

• Recall: Given some speech,
 – The i-vector is a posterior mean of a Gaussian distribution…
 – With an associated posterior covariance

 \[\text{cov}(w) = \left(I + T^* \Sigma^{-1} N(u) T \right)^{-1} \]
Overcoming Underrepresentation
– A Sampling Approach

• “Size” of covariance is inversely proportional to number of frames \(N(u) \) in utterance \(u \).
 – More frames used to extract \(i \)-vector \(\rightarrow \) “smaller” covariance

\[
\text{cov}(w) = \left(I + T^* \Sigma^{-1} N(u) T \right)^{-1}
\]

• Consider sampling the \(i \)-vector distribution
 – Let the number of samples drawn be proportional to the number of frames used to extract the \(i \)-vector.
 * Shorter segments \(\rightarrow \) larger covariance and fewer samples
 * Longer segments \(\rightarrow \) smaller covariance and more samples
A Simplified Cartoon

![Diagram with i-vectors and speech waveform]
Final System Diagram

- Audio
- Initial segmentation
 - i-vector extraction + length normalization
 - Duration sampling
 - Spectral init
 - PCA
 - VBEM-GMM
 - Re-seg
 - Converge?
 - Yes
 - Final Pass
 - No
 - New segmentation

Output
Proposed System Refinements

System Configuration Refinements

- Spectral Initialization
- ...with Iter. Re-seg
- ...and Duration Sampling
- Castaldo 2008

Actual Number of Speakers (Number of Conversations)

Diarization Error Rate

2 (303) 3 (136) 4 (43) 5 (10) 6 (6) 7 (2)
Final System Comparisons

![Graph showing diarization error rate vs actual number of speakers across different system comparisons.](graph.png)
Reconciling Our 2-Speaker Results

• Interspeech 2011 vs. Kenny 2010 vs. Castaldo 2008
 – State-of-the-art results on diarization on two-speaker telephone calls (number of speakers given)

• Interspeech 2012
 – On the CallHome corpus, when it is known that the conversation contains only two participants
 * DER = 5.2% vs. 8.7% (Castaldo 2008)
DER Observations

- Over-detecting the number of speakers
 - In the conversations where we correctly detect two speakers (136/303),
 * DER = 6.5% vs. 8.7% (Castaldo 2008)
 - But DER is unforgiving towards overestimation

- Conversely, underestimation

[Diagrams showing reference and hypothesis with overestimation and underestimation examples]
Roadmap

• Introduction
 – Summary of Contributions

• Background
 – Diarization System Overview
 – Speaker Modeling with Factor Analysis

• Our Incremental Approach
 – Towards Probabilistic Clustering Methods
 – Iterative System Optimization (Re-segmentation/Clustering)
 – Duration-Proportional Sampling

• Analysis and Discussion
 – Benchmark Comparison (Castaldo 2008)

• Conclusion
Explaining (Castaldo 2008)

- Causal system with fixed output delay
- Stream of factor analysis-based features (every 10ms)
Summary of Differences

• Castaldo 2008
 – Exploits structure of telephone conversations
 * Assesses no more than 3 speakers exist in any 60-second slice
 – Explicit use of speaker recognition system
 * Links speakers from current slice to previous slices

• Our “bag of i-vectors”
 – More general approach to clustering
 * Can handle any number of speakers, regardless of temporal conversation dynamics
 * Prone to missing speakers that seldom participate
 * Prone to separate speakers that participate often
Future Work

• Dimensionality Reduction
 – So far, only using first 3 principal components
 – t-SNE (Stochastic Neighbor Embedding)
 * van der Maaten 2008

• Within-utterance Factor Analysis
 – Is there some way to directly exploit variabilities within the acoustic features of a particular conversation?

• Temporal Modeling and Bayesian Nonparametric Inference
 – Hierarchical Dirichlet Process – Hidden Markov Model (HDP-HMM)
 * Fox 2008, Johnson 2010
Summary

• Extended previous work in applying factor analysis-based speaker modeling to speaker diarization

• Integrated variational inference into speaker clustering

• Validated an iterative optimization procedure to refine clustering and segmentation hypotheses
 – Interspeech 2012

• Proposed a duration-proportional sampling scheme to combat issues of i-vector underrepresentation
 – SM Thesis 2011
Thanks!

- Questions?
 - sshum @ csail.mit.edu