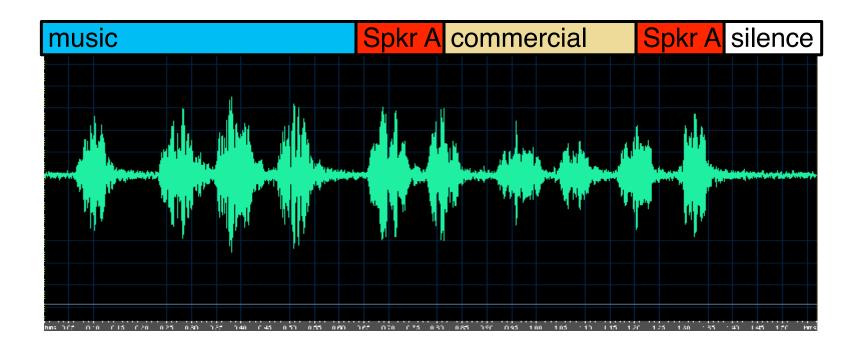


Unsupervised Methods for Speaker Diarization: An Integrated and Iterative Approach

Stephen Shum, Najim Dehak, and Jim Glass

*With help from Reda Dehak, Ekapol Chuangsuwanich, and Douglas Reynolds November 29, 2012

The task of marking and categorizing the different audio sources within an unmarked audio sequence.

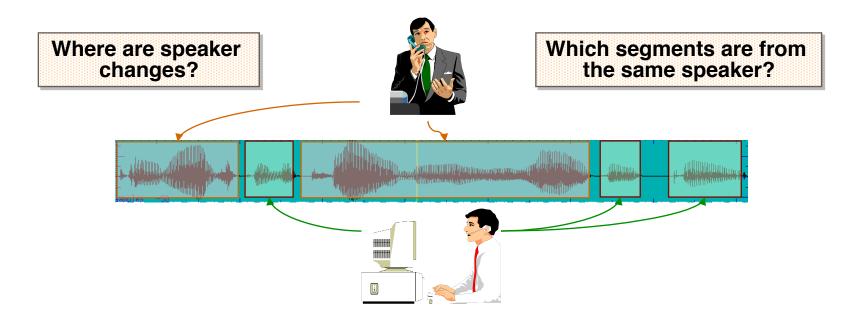


Speaker Diarization

"Who is speaking when?"

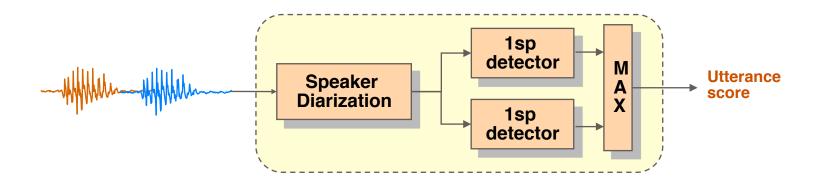
Segmentation

- Determine when speaker change has occurred in the speech signal
- Clustering
 - Group together speech segments from the same speaker



Applications

- As a pre-processing step for other downstream applications
 - Annotate transcripts with speaker changes and labels
 - Provide an overview of speaker activity
 - Adapt a speech recognition system
 - Do speaker detection on multi-speaker speech (i.e., speaker tracking)



Take-Home Summary

- Extended previous work in applying factor analysis-based speaker modeling to speaker diarization
 - Castaldo 2008, Kenny 2010, Interspeech 2011-2012
- Integrated variational inference into speaker clustering
 - Valente 2005, Kenny 2010, SM Thesis 2011
- Validated an iterative optimization procedure to refine clustering and segmentation hypotheses
 - Interspeech 2012
- Proposed a duration-proportional sampling scheme to combat issues of i-vector underrepresentation
 - SM Thesis 2011

Roadmap

Introduction

- Summary of Contributions

Background

- Diarization System Overview
- Speaker Modeling with Factor Analysis

Our Incremental Approach

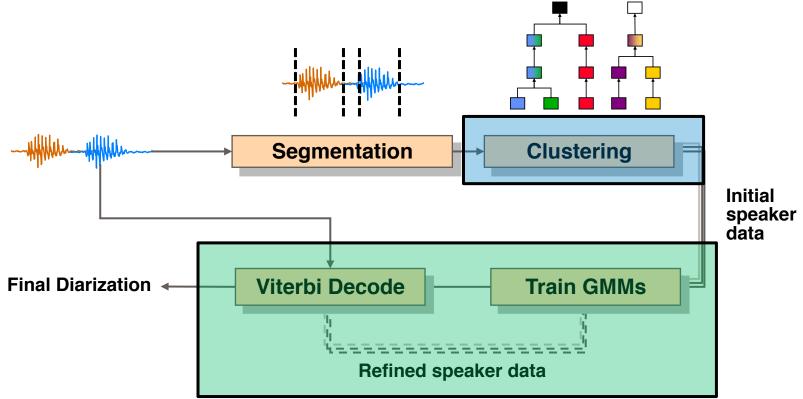
- K-means and Spectral Clustering (Interspeech 2011, 2012)
- Towards Probabilistic Clustering Methods
- Iterative System Optimization (Re-segmentation/Clustering)
- Duration-Proportional Sampling

Analysis and Discussion

- Benchmark Comparison (Castaldo 2008)

Conclusion

Standard Diarization Setup



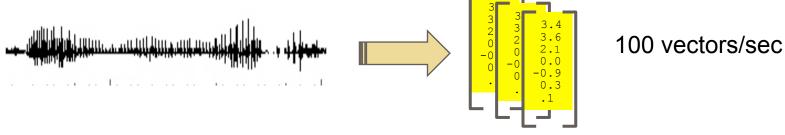
- Agglomerative Hierarchical Clustering
 - Requires methods for model selection
- Iterative re-segmentation

Towards Factor Analysis

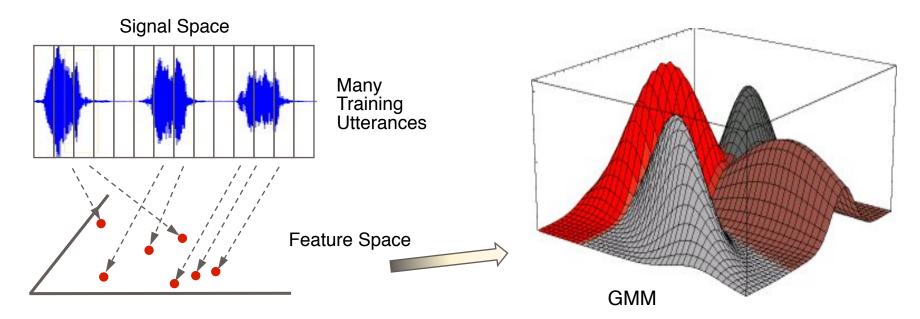
- At the heart of the speaker diarization problem is the problem of speaker modeling
 - Factor analysis-based methods have achieved success in the speaker recognition community.
- Main Idea
 - Low-dimensional summary of a speaker's distribution of acoustic feature vectors

Modeling Feature Sequences with GMMs

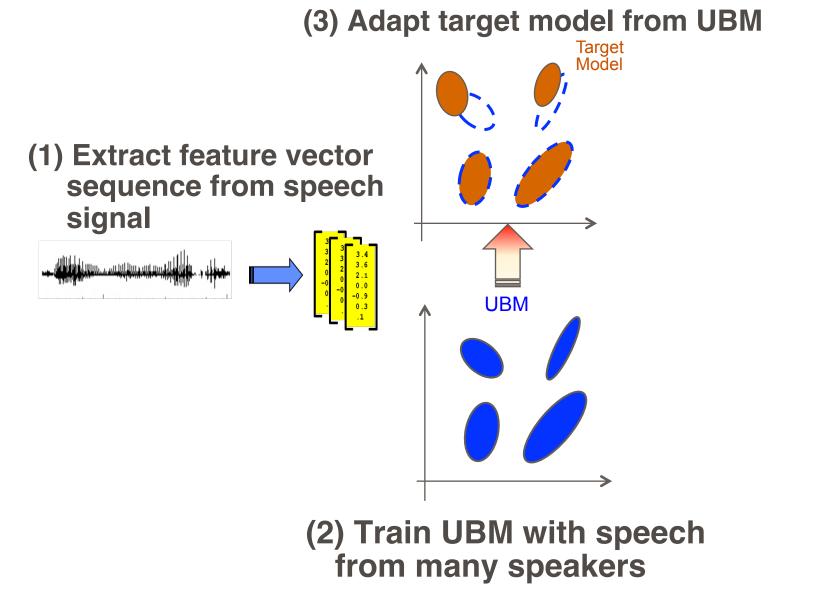
- We need to model the distribution of feature vector sequences
 - e.g., Mel Frequency Cepstral Coefficients (MFCCs)



Gaussian mixture models (GMMs) are a common representation



Modeling with Adapted GMM-UBMs



GMM-UBM and MAP Adaptation

- Target model is trained by adapting from background model
 - Couples models together and helps with limited target training data
- Adaptation only updates mean parameters representing acoustic events seen in target training data
 - Sparse regions of feature space filled in by UBM mean parameters
 - * Both an advantage and a disadvantage

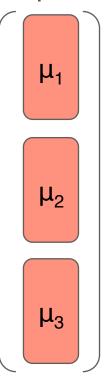
Disadvantage

 Limited target training data can still prevent some UBM components from being adapted.

- The way the UBM adapts to a given speaker ought to be somewhat constrained.
 - For a particular speaker, there should exist some correspondence in the way the mean parameters move relative to one another.

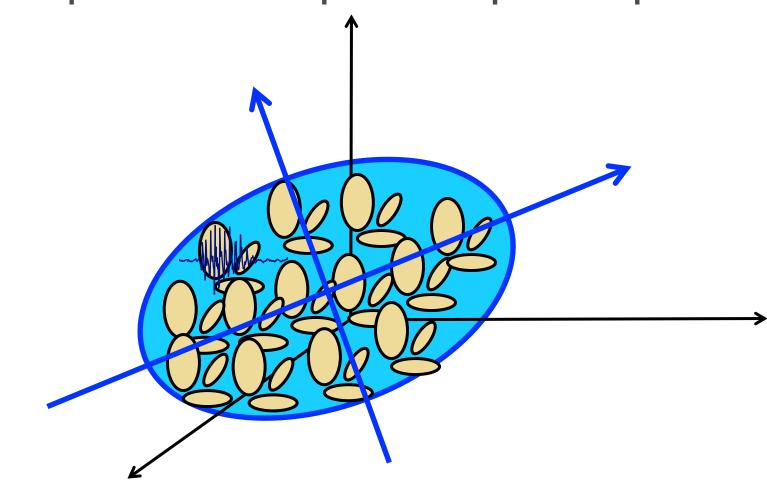
Supervector Re-parameterization

- Concatenate all mixture mean components of a GMM.



Total variability space

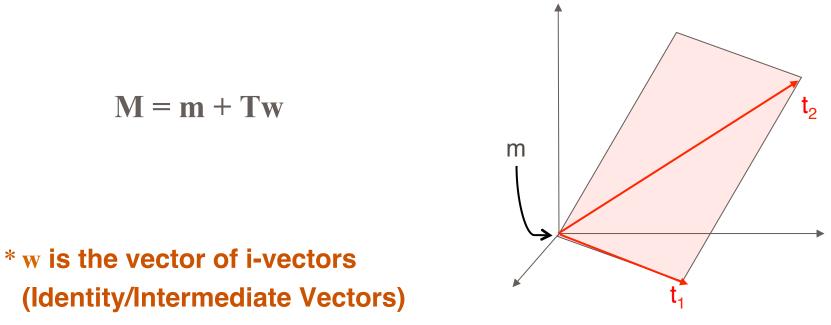
• A GMM supervector corresponds to a point in space.



 Factor analysis captures the directions of maximum betweenutterance variability.

The Total Variability Approach

- Assumption (Dehak, 2009)
 - All pertinent variabilities lie in some low dimensional subspace T
 - * Call it the Total Variability Space



* m is supervector of un-adapted (UBM) means
 * M is supervector of speaker- and channel- dependent means

Regarding i-vectors

- "For some speech segment s, its associated i-vector w_s can be seen as a low-dimensional summary of that segment's distribution of acoustic features with respect to a UBM."
- Low-dimensional random vector (100 << 20,000)
 - Standard normal prior distribution, N(0, I)
- Given some speech data,
 - Posterior mean \rightarrow i-vector
 - Posterior covariance \rightarrow i-vector covariance

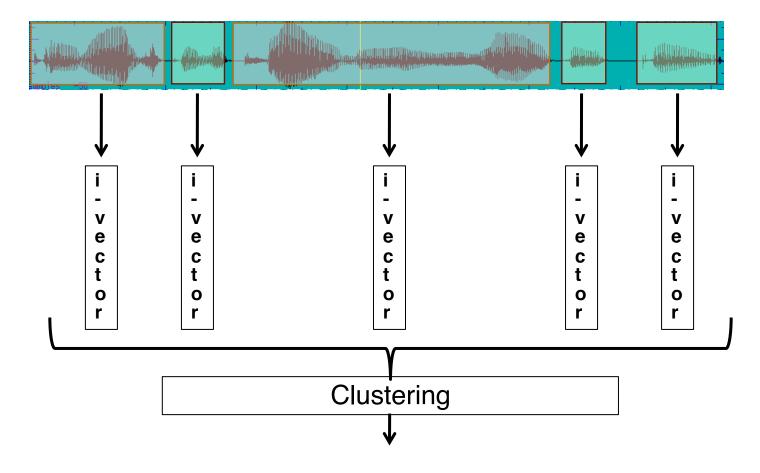
Cosine similarity metric

- Can also length-normalize i-vectors onto the unit hypersphere

Roadmap

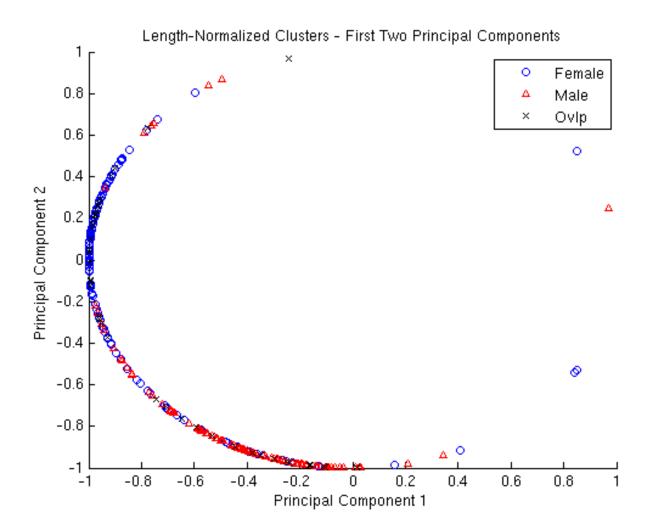
- Introduction
 - Summary of Contributions
- Background
 - Diarization System Overview
 - Speaker Modeling with Factor Analysis
- Our Incremental Approach
 - K-means and Spectral Clustering (Interspeech 2011, 2012)
 - Towards Probabilistic Clustering Methods
 - Iterative System Optimization (Re-segmentation/Clustering)
 - Duration-Proportional Sampling
- Analysis and Discussion
 - Benchmark Comparison (Castaldo 2008)
- Conclusion

Initialization



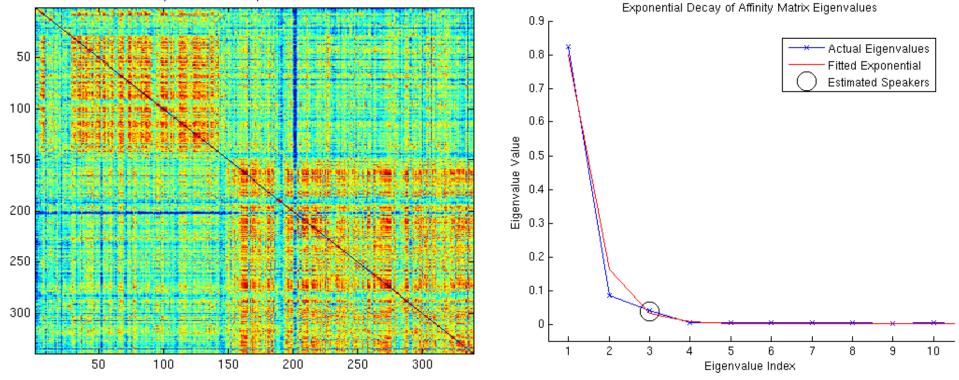
K-means on 2-speaker conversations (K = 2 known)

– Interspeech 2011



- K-means on 2-speaker conversations (K = 2 known)
 - Interspeech 2011
- K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 - Interspeech 2012

Affinity Matrix of a 3-speaker Conversation



Stephen Shum — Spoken Language Systems Group

- K-means on 2-speaker conversations (K = 2 known)
 - Interspeech 2011
- K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 - Interspeech 2012
- Probabilistic Methods (SM Thesis 2011)
 - K-means \rightarrow Gaussian Mixture Models
 - * Bayesian model selection via variational inference

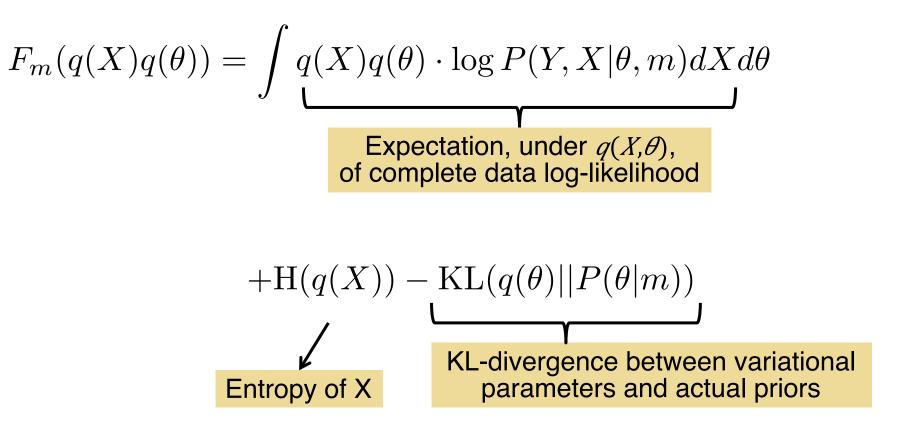
The Need for Approximate Inference

- Consider some observed data *Y*, a hidden variable set *X*, and associated parameters θ
- For model selection m, we want to <u>maximize</u> $\log P(Y|m) = \log \int P(Y, X, \theta|m) dX d\theta$

 \rightarrow exact computation is intractable in general

- Introduce $q(X, \theta) = q(X) \cdot q(\theta)$ to approximate $P(X, \theta | Y, m)$ $\log P(Y|m) = F_m(q(X, \theta)) + \text{KL}(q(X, \theta)||P(X, \theta | Y, m))$
 - * Maximizing the Free Energy minimizes the KL-divergence between the variational posterior and true posterior distributions

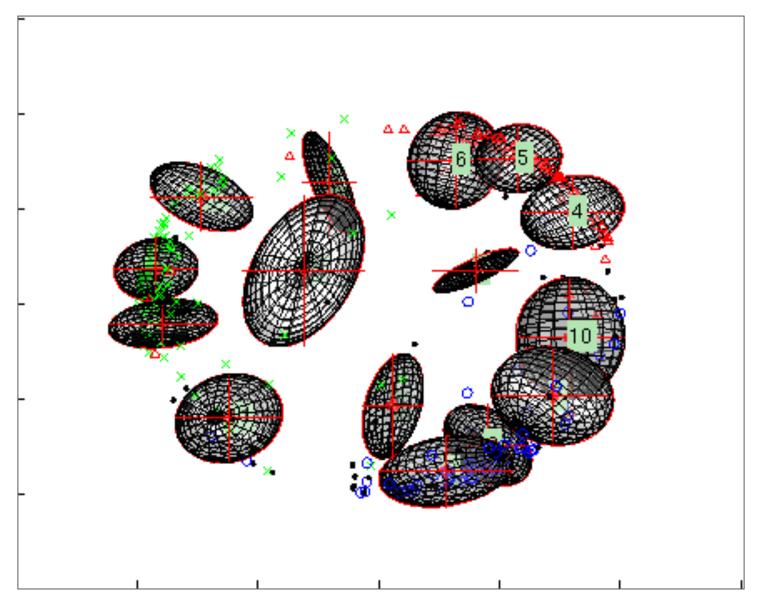
Variational Free Energy



• The act of maximizing $F_m(q(X)q(\theta))$ yields an EM algorithm – VBEM-GMM

- K-means on 2-speaker conversations (K = 2 known)
 - Interspeech 2011
- K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 - Interspeech 2012
- Probabilistic Methods (SM Thesis 2011)
 - K-means \rightarrow Gaussian Mixture Models
 - * Bayesian model selection via variational inference
 - Rote application of VBEM-GMM

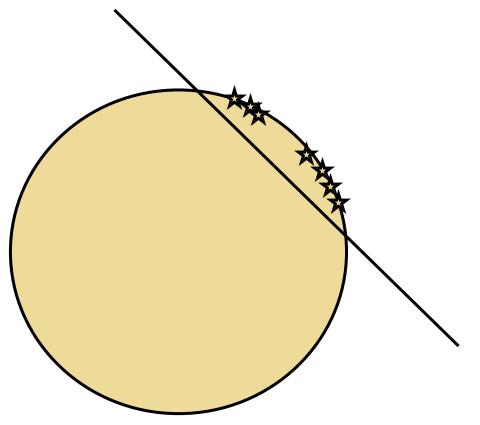
VBEM-GMM Visualization



- K-means on 2-speaker telephone conversations (K known)
 - Interspeech 2011
- K-means and Spectral Clustering on K-speaker telephone conversations (K both known and unknown)
 - Interspeech 2012
- Probabilistic Methods (SM Thesis 2011)
 - K-means \rightarrow Gaussian Mixture Models
 - * Bayesian model selection via the variational approximation
 - Rote application of VBEM-GMM
 - * GMMs are a poor way to model data living on a unit hypersphere.

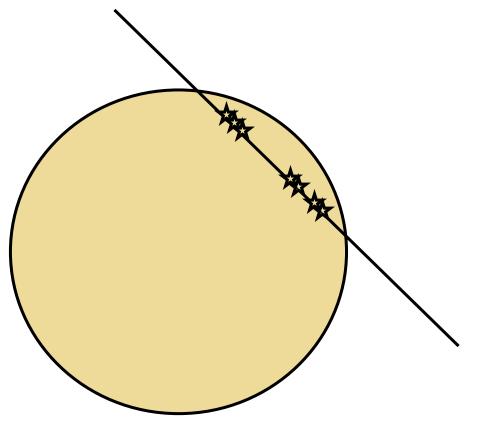
Dimensionality Reduction

- i-vectors are both speaker- and channel-dependent
 - Channel effect localizes all i-vectors onto one small region on the unit hypersphere
 - Consider a projection (PCA) onto a lower-dimensional plane

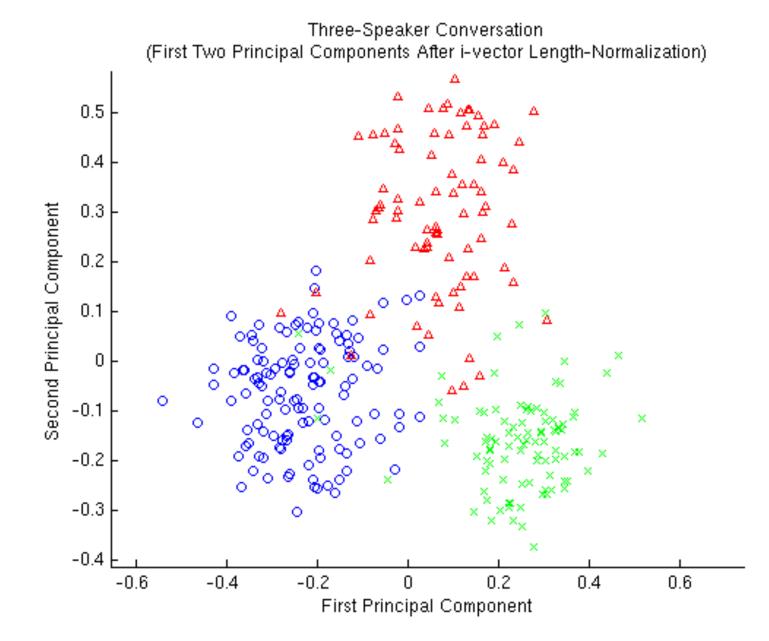


Dimensionality Reduction

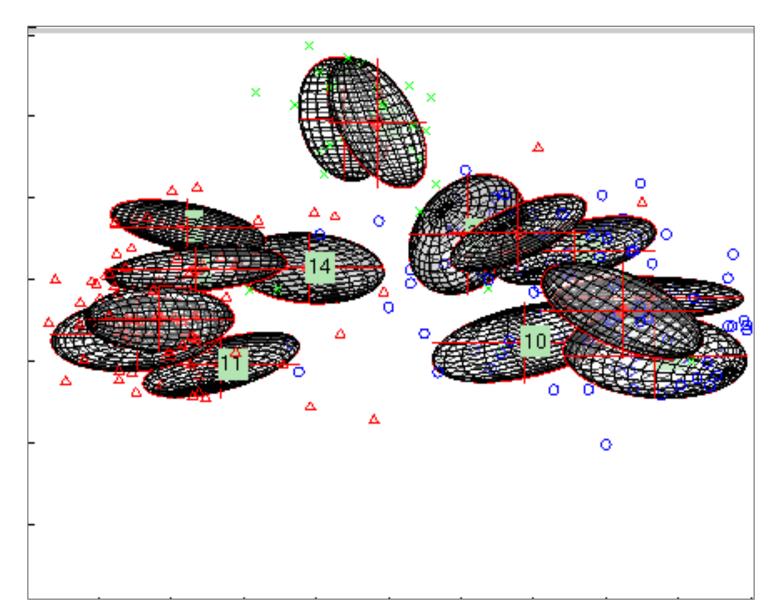
- i-vectors are both speaker- and channel-dependent
 - Channel effect localizes all i-vectors onto one small region on the unit hypersphere
 - Consider a projection (PCA) onto a lower-dimensional plane



PCA Visualization



VBEM-GMM Clustering (after PCA)



Cluster Initialization

Baseline Approach

- Over-initialize the number of clusters

* $K_0 = 15$

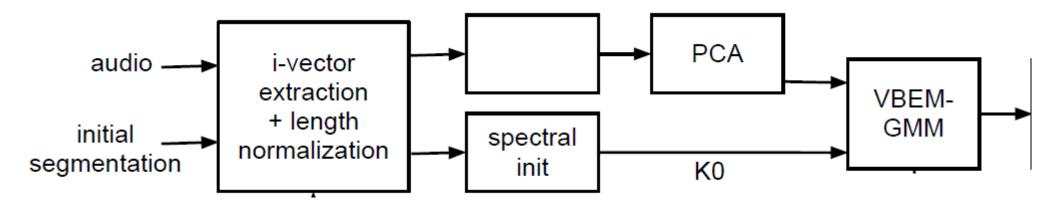
- Remove components iteratively

Proposed Refinement

 Initialize using eigenvalue roll-off from the affinity matrix generated by the spectral clustering algorithm

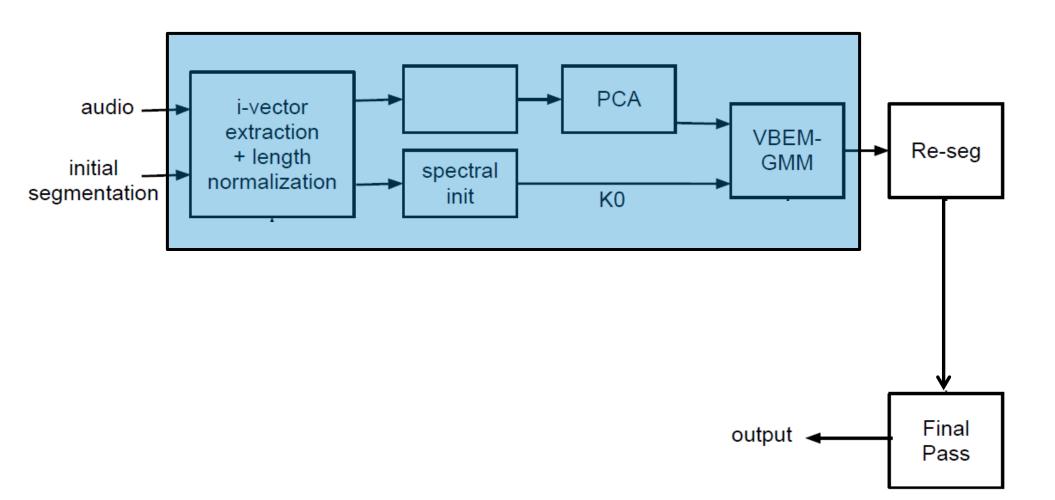
* $K_0 = \hat{K} + \lceil 3 \cdot \sigma_K \rceil$

- Still want to over-initialize clusters, but in a more informed manner.



System Diagram (Clustering)

System Diagram (Baseline)



Experiment Details

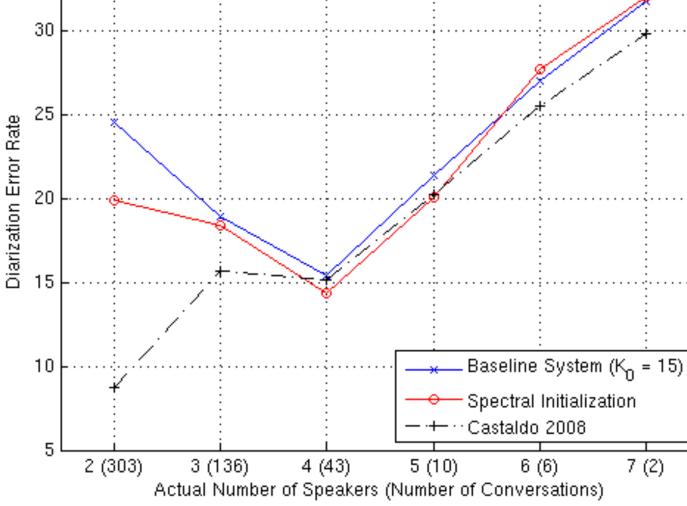
- Evaluation Data
 - Multi-lingual CallHome corpus
 - * 500 recordings, 2-5 minutes each, containing 2-7 speakers

Total Variability

- 20-dimensional MFCC acoustic feature vectors
- UBM of 1024 Gaussians
- Rank of Total Variability matrix = 100
 - * i.e. 100-dimensional i-vectors

Diarization Error Rate (DER)

- Amount of time spent confusing one speaker's speech as from another



VBEM-GMM Clustering Initialization Comparisons ($K_0 = 15 \text{ vs. Spectral}$)

35

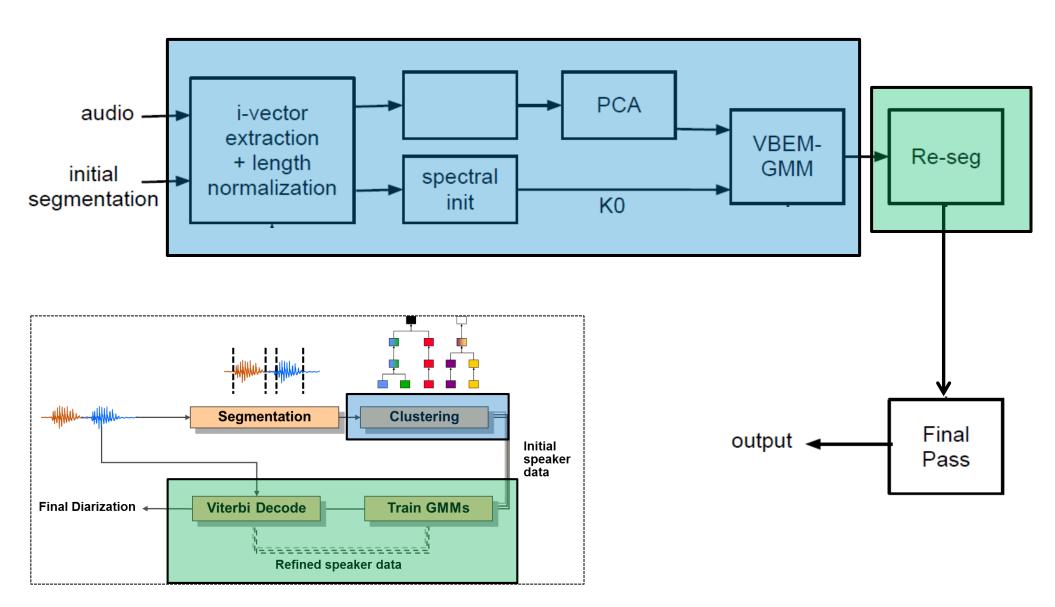
Roadmap

- Introduction
 - Summary of Contributions
- Background
 - Diarization System Overview
 - Speaker Modeling with Factor Analysis

Our Incremental Approach

- K-means and Spectral Clustering (Interspeech 2011, 2012)
- Towards Probabilistic Clustering Methods
- Iterative System Optimization (Re-segmentation/Clustering)
- Duration-Proportional Sampling
- Analysis and Discussion
 - Benchmark Comparison (Castaldo 2008)
- Conclusion

System Diagram (Baseline)

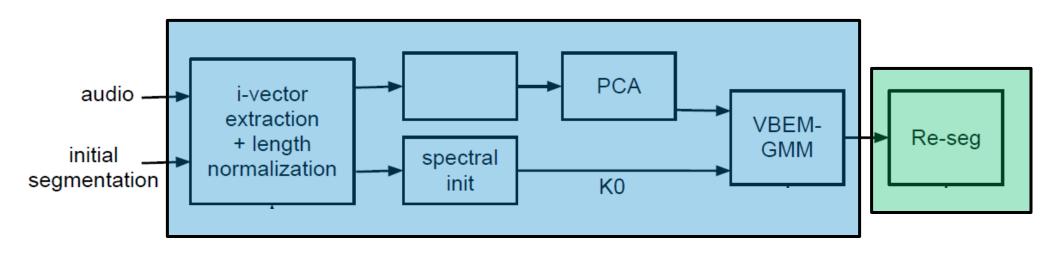


Stephen Shum — Spoken Language Systems Group

Iterative Re-segmentation

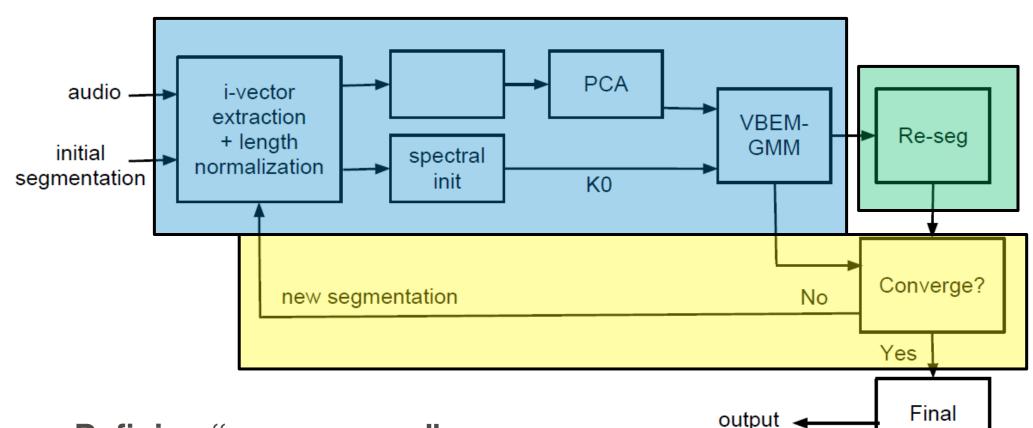
- Initialize a GMM for each cluster.
 - * Speaker 1, Speaker 2, ..., Non-speech N
- Obtain a posterior probability for each cluster given each feature vector.
 * P(S₁Ix_t), P(S₂Ix_t), ..., P(NIx_t)
- Pool these probabilities across the entire conversation (t = 1, ..., T) and use them to re-estimate each respective speaker's GMM.
 - * The Non-speech GMM is never re-trained.
- The Viterbi algorithm re-assigns each frame to the speaker/non-speech model with highest posterior probability.

A Symbiotic Relationship



- Clustering assumes some initial segmentation and clusters at the i-vector level
 - Better speaker representation
- Re-segmentation operates at level of acoustic features
 - Finer temporal resolution

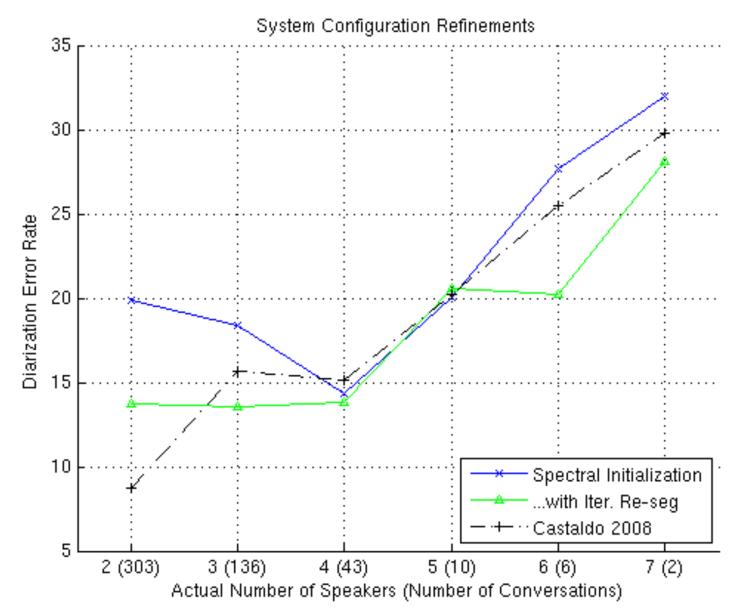
Iterative System Optimization



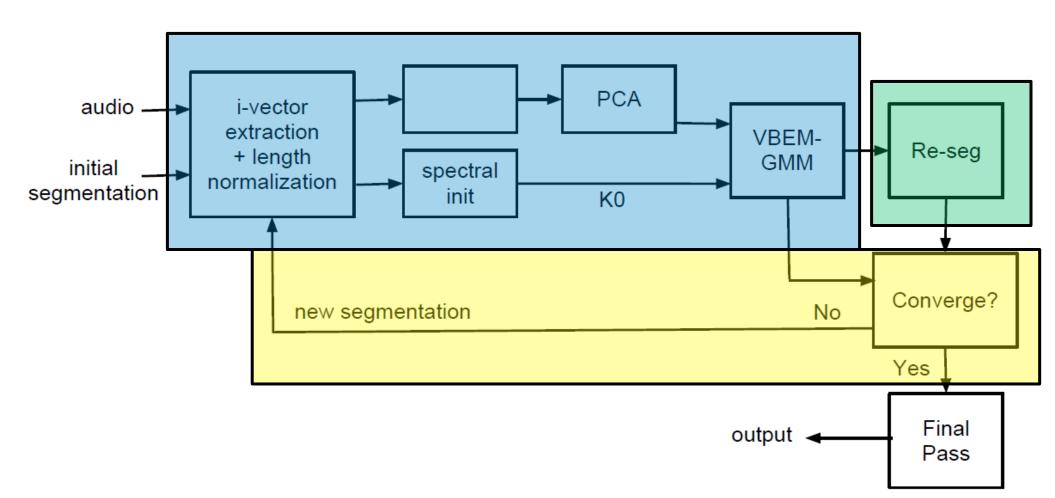
• Defining "convergence"

 DER can be seen as a "distance" between two diarization hypotheses. Pass

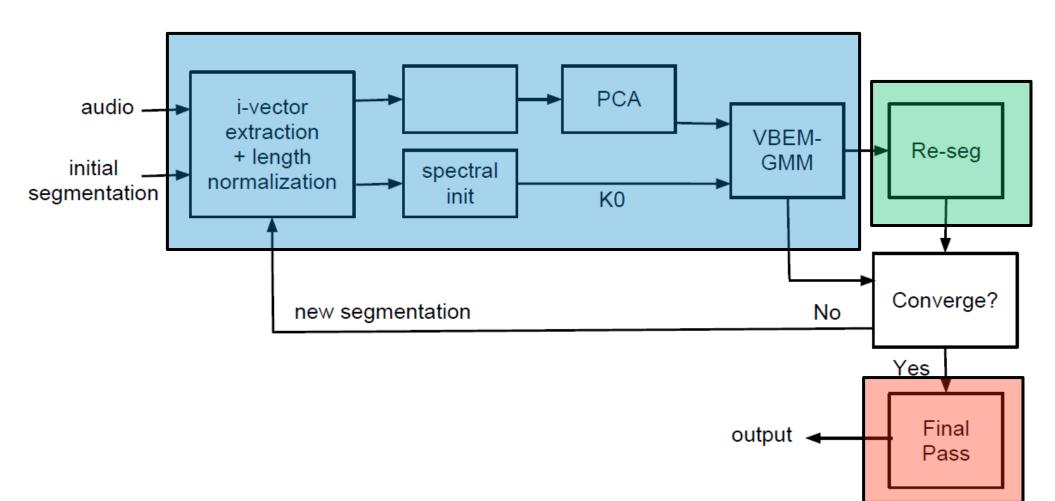
Iterative System Optimization Results



Diarization System So Far

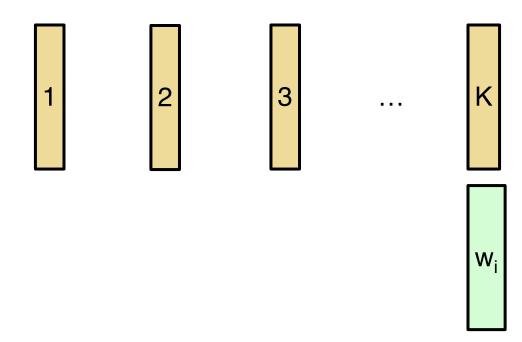


Diarization System So Far



Final Pass Refinements (Interspeech 2011)

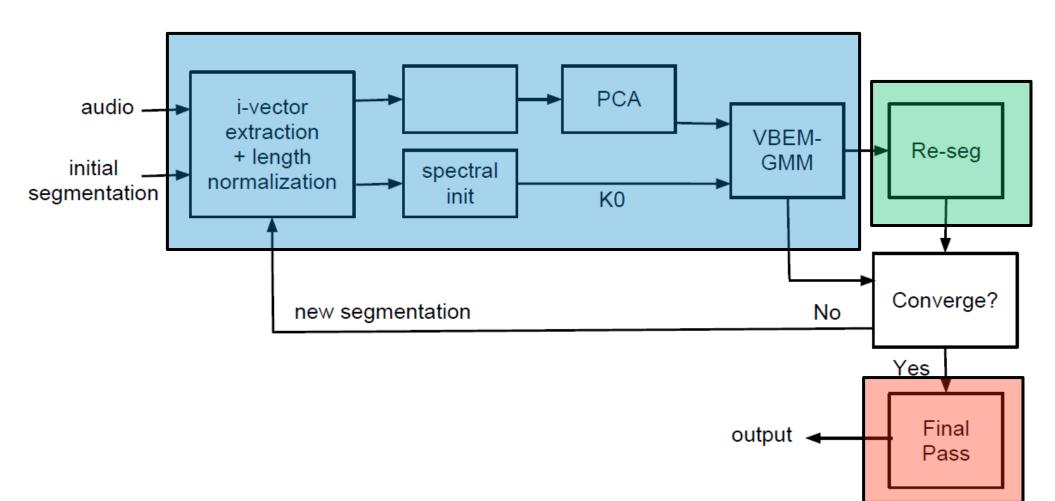
- Extract a single i-vector for each respective speaker.
 - * Using the newly defined re-segmentation assignments
- Re-assign each newly-extracted segment i-vector w_i to the speaker i-vector $\{w_1, w_2, \dots, w_K\}$ that is closer in cosine similarity.
 - * "Winner Takes All"



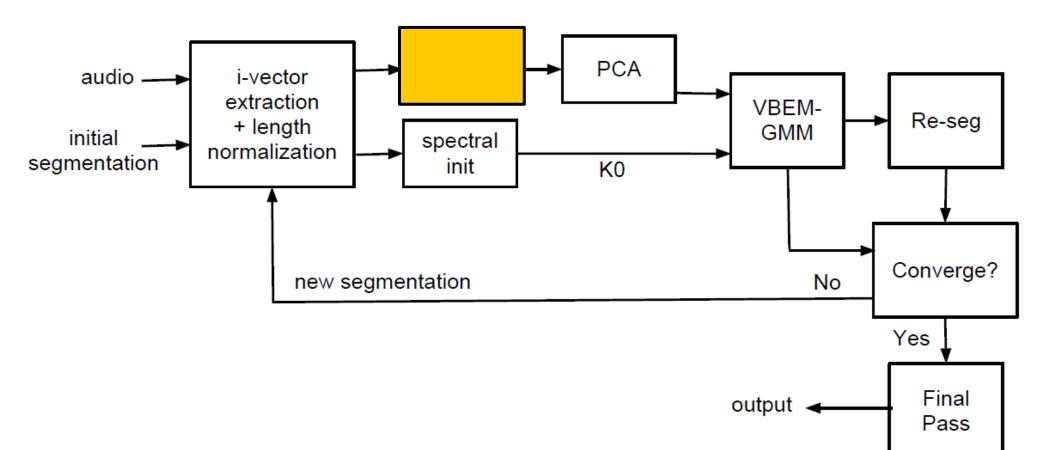
Final Pass Refinements (Interspeech 2011)

- Extract a single i-vector for each respective speaker.
 - * Using the newly defined re-segmentation assignments
- Re-assign each newly-extracted segment i-vector w_i to the speaker i-vector {w₁, w₂, ..., w_k} that is closer in cosine similarity.
 * "Winner Takes All"
- Iterate until convergence.
 - * i.e. when segment-speaker assignments no longer change
- Essentially a K-means algorithm
 - * Except determine "means" $\{w_1, w_2, ..., w_K\}$ via i-vector extraction

Diarization System So Far



Diarization System So Far



i-vector Underrepresentation

- i-vectors have been used as point estimates.
 - During clustering, we treat them as independent and identically distributed samples from some underlying GMM.
- However, some i-vectors may be more equal than others.
 - i-vector from a 5-second speech segment versus 0.5-second segment

• Recall: Given some speech,

- The i-vector is a posterior mean of a Gaussian distribution...
- With an associated posterior covariance

$$\operatorname{cov}(w) = \left(I + T^* \Sigma^{-1} \overline{N(u)} T\right)^{-1}$$

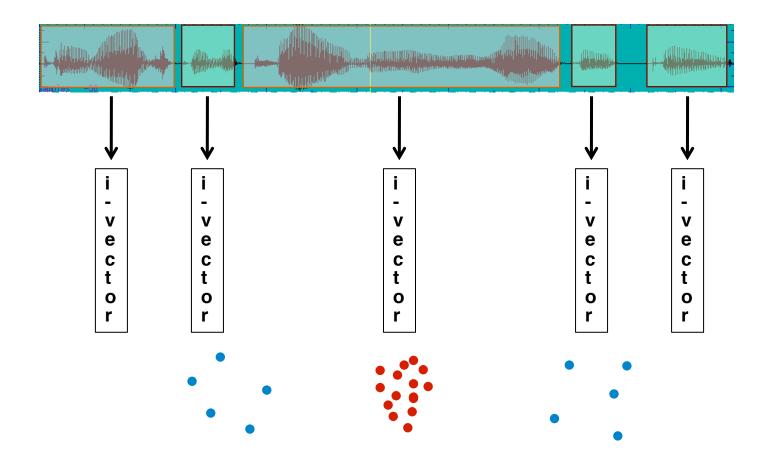
Overcoming Underrepresentation – A Sampling Approach

- "Size" of covariance is inversely proportional to number of frames N(u) in utterance u.
 - More frames used to extract i-vector \rightarrow "smaller" covariance

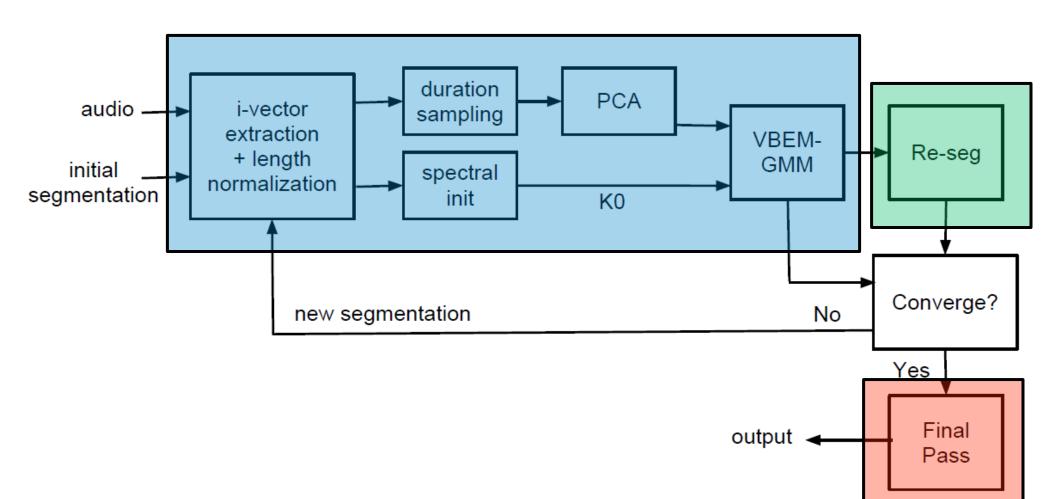
$$\operatorname{cov}(w) = \left(I + T^* \Sigma^{-1} N(u) T\right)^{-1}$$

- Consider sampling the i-vector distribution
 - Let the number of samples drawn be proportional to the number of frames used to extract the i-vector.
 - * Shorter segments \rightarrow <u>larger</u> covariance and <u>fewer</u> samples
 - * Longer segments \rightarrow <u>smaller</u> covariance and <u>more</u> samples

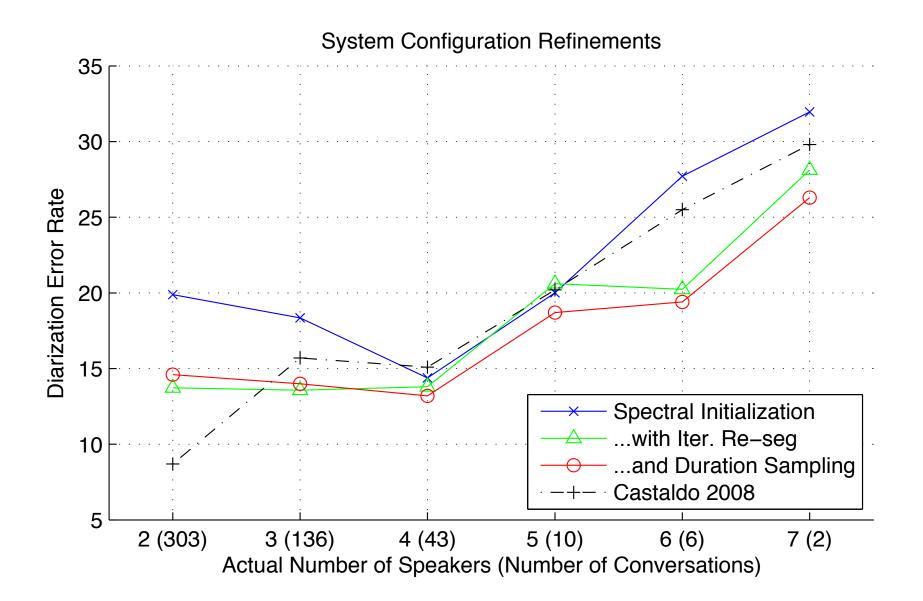
A Simplified Cartoon



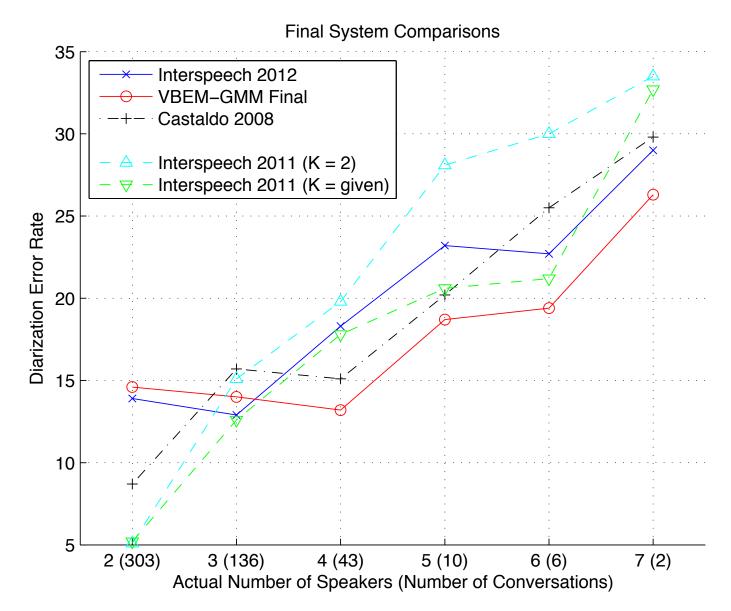
Final System Diagram



Proposed System Refinements



Final System Comparisons



Reconciling Our 2-Speaker Results

- Interspeech 2011 vs. Kenny 2010 vs. Castaldo 2008
 - State-of-the-art results on diarization on two-speaker telephone calls (number of speakers given)

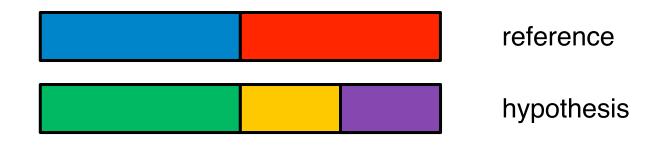
Interspeech 2012

 On the CallHome corpus, when it is known that the conversation contains only two participants

* DER = 5.2% vs. 8.7% (Castaldo 2008)

DER Observations

- Over-detecting the number of speakers
 - In the conversations where we correctly detect two speakers (136/303),
 - * DER = 6.5% vs. 8.7% (Castaldo 2008)
 - But DER is unforgiving towards overestimation



Conversely, underestimation

Roadmap

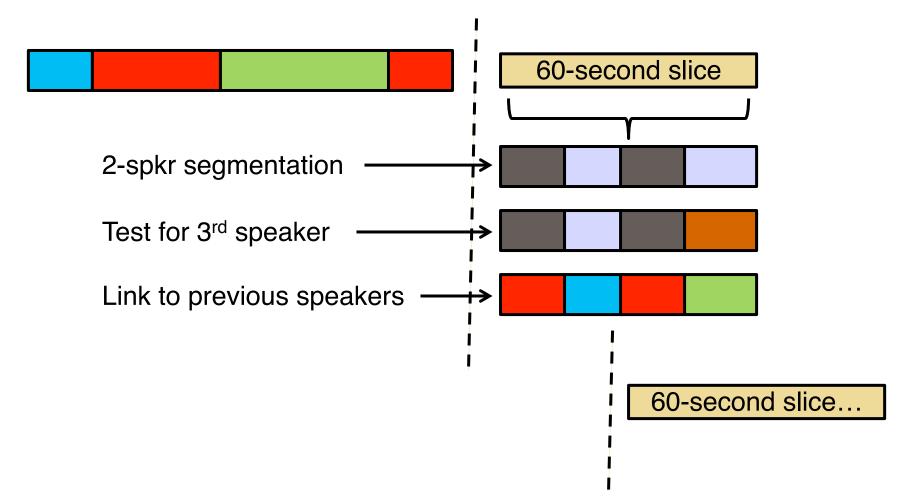
- Introduction
 - Summary of Contributions
- Background
 - Diarization System Overview
 - Speaker Modeling with Factor Analysis
- Our Incremental Approach
 - K-means and Spectral Clustering (Interspeech 2011, 2012)
 - Towards Probabilistic Clustering Methods
 - Iterative System Optimization (Re-segmentation/Clustering)
 - Duration-Proportional Sampling

Analysis and Discussion

- Benchmark Comparison (Castaldo 2008)
- Conclusion

Explaining (Castaldo 2008)

- Causal system with fixed output delay
- Stream of factor analysis-based features (every 10ms)



Summary of Differences

- Castaldo 2008
 - Exploits structure of telephone conversations
 - * Assumes no more than 3 speakers exist in any 60-second slice
 - Explicit use of speaker recognition system
 - * Links speakers from current slice to previous slices
- Our "bag of i-vectors"
 - More general approach to clustering
 - * Can handle any number of speakers, regardless of temporal conversation dynamics
 - * Prone to missing speakers that seldom participate
 - * Prone to separate speakers that participate often

Future Work

Dimensionality Reduction

- So far, only using first 3 principal components
- t-SNE (Stochastic Neighbor Embedding)
 - * van der Maaten 2008

Within-utterance Factor Analysis

- Is there some way to directly exploit variabilities within the acoustic features of a particular conversation?
- Temporal Modeling and Bayesian Nonparametric Inference
 - Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM)
 - * Fox 2008, Johnson 2010

- Extended previous work in applying factor analysis-based speaker modeling to speaker diarization
 - Castaldo 2008, Kenny 2010, Interspeech 2011/2012
- Integrated variational inference into speaker clustering
 - Valente 2005, Kenny 2010, SM Thesis 2011
- Validated an iterative optimization procedure to refine clustering and segmentation hypotheses
 - Interspeech 2012
- Proposed a duration-proportional sampling scheme to combat issues of i-vector underrepresentation
 - SM Thesis 2011

Thanks!

• Questions?

- sshum @ csail.mit.edu