

From Vectors Representing Speech to Graphs Representing Corpora

Stephen Shum

*With Najim Dehak, Jim Glass, Doug Reynolds, Bill Campbell, and many others November 2013

From Vectors Representing Speech to Graphs Representing Corpora:

Reconciling how far we've come with how far we still have to go

Extracting Information from Speech

- Vector-based representations of speech
- Graph-based representation of audio databases
- Domain adaptation for speaker recognition

Information in Speech

- Speech is a time-varying signal whose information can be observed in the time and frequency domains
 - Such information can be captured via a time sequence of features

Modeling Feature Sequences with GMMs

- We need to model the distribution of feature vector sequences
 - e.g., Mel Frequency Cepstral Coefficients (MFCCs)

Gaussian mixture models (GMMs) are a common representation

Modeling with Adapted GMM-UBMs

GMM-UBM and MAP Adaptation

- Target model is trained by adapting from background model
 - Couples models together and helps with limited target training data
- Adaptation only updates mean parameters representing acoustic events seen in target training data
 - Sparse regions of feature space filled in by UBM mean parameters
 - * Both an advantage and a disadvantage
- Disadvantage
 - Limited target training data still prevents some UBM components from being adapted.

Advantages

- Re-parameterize GMM as a *supervector*.
 - Concatenate all mixture mean components of a GMM.
- The way the UBM adapts to a given speaker ought to be somewhat constrained.
 - Regardless of speaker identity, there should exist at least some correspondence in the way the means move relative to one another.

The Total Variability Space

 Suppose a GMM supervector corresponds to a point in highdimensional space.

• Use factor analysis to capture the directions of maximum between-utterance variability.

The Total Variability Approach

t₂

Assumption (Dehak, 2009)

- All pertinent variabilities lie in some low dimensional subspace T
 - * Call it the Total Variability Space

Regarding i-vectors

- For some speech segment s, its associated i-vector w_s can be seen as a low-dimensional summary of that segment's distribution of acoustic features (with respect to a UBM).
- (Relatively) low-dimensional random vector (600 << 120,000)
 - Standard normal prior distribution, N(O, I)

• Given some speech,

- Posterior mean \rightarrow i-vector
- Posterior covariance \rightarrow i-vector covariance

- Model variable-length sequences of acoustic features using a GMM adapted from a UBM.
- Re-parameterize the GMM into a high-dimensional supervector by concatenating all mixture means.
- Obtain a lower-dimensional *i-vector* representation via factor analysis, which uses a Total Variability subspace to model directions of maximal variability in the supervector space.

Exploiting the convenience of a vector-based representation

- Allows for rote application of machine learning techniques to compensate for unwanted channel/inter-session variabilities
 - Nuisance Attribute Projection (NAP)
 - Linear Discriminant Analysis (LDA) + Within-Class Covariance Normalization (WCCN) + cosine scoring
 - Probabilistic LDA (PLDA)

Effects of inter-session compensation

Graph visualization

- Represent each segment as a node with connections (edges) to its K nearest neighbors (K-NN); K = 3
- Absolute locations of the nodes are not important
- Relative locations of nodes provide information about connectedness and similarity

Colors represent speakers

Stephen Shum — Spoken Language Systems Group

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE ■= low VE ●= normal VE ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE ■= low VE ●= normal VE ♦=room LDC * =room HIVE

♦=room LDC

5

Stephen Shum — Spoken Language Systems Group

MIC

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 ▲= high VE ■= Iow VE ●= normal VE ♦=room LDC * =room HIVE

6 4 2 £.) 10.1 3 **Colors represent speakers** 1 Stephen Shum — Spoken Language Systems Group

November 2013

What's next?

- We can build graphs according to certain specifications (i.e., K-NN) and apply the *known* node labels to produce effective and compelling visualizations.
- What can we do with arbitrary graphs with <u>no</u> known labels?

- Little previous work exists in the speaker recognition field
- Initial and exploratory work presented at ICASSP 2013
- Applied this work to "domain adaptation" over the summer

Quick Summary

- Two datasets, ~11,000 utterances each, from NIST SRE's
- Different graph constructions
 - 2-, 5-, 10-, 25-, 50-, 100-NN graphs
 - * Experimented with "local node-level pruning"
- Graph clustering algorithms
 - Agglomerative hierarchical clustering (AHC)
 - Markov Clustering (MCL)
 - * van Dongen, 2000
 - Infomap
 - * Rosvall and Bergstrom, 2008

"Expansion"

Х

Main Takeaways

- Given an unlabeled speaker content graph, we can do a reasonable job of discovering the underlying speakers.
- Agglomerative hierarchical clustering does the best
 - Need to specifying stopping criterion (i.e., number of speakers)
- Random-walk methods also do well
 - Provide reasonable estimates of the number of speakers
 - More dependent on graph-construction parameters

Unsupervised Clustering Approaches for Domain Adaptation in Speaker Recognition Systems

Unsupervised Clustering Approaches for Domain Adaptation in Speaker Recognition Systems

Domain Adaptation & Transfer Learning

- Most current statistical learning techniques assume (incorrectly) that the training and test data come from the same underlying distribution.
- Labeled data may exist in one domain, but we want a model that can also perform well on a related, but not identical, domain.
- Hand-labeling data in a new domain is hard and expensive.
- Can we leverage the original, labeled, "out-of-domain" data when building a model to work on the new, unlabeled, "indomain data?

Unsupervised Clustering Approaches for Domain Adaptation in Speaker Recognition Systems

Stephen Shum — Spoken Language Systems Group

November 2013

In the context of speaker recognition

- Current success of i-vector approach has depended upon having access to large amounts of matched and labeled training data
 - 1000's of speakers making 10's of calls
 - Recent SRE's have become a bit of a data-engineering exercise
- We can't realistically expect that most applications will have access to such a large set of labeled data from matched conditions.
- How can we design a task to focus research efforts on how to use unlabeled data for adapting system hyperparameters to a new domain?

Usage of data (labeled & unlabeled) in an i-vector system

Demonstrating Mismatch

- Enroll and score
 - SRE10 telephone speech
 - * Annual/Biannual NIST Speaker Recognition Evaluation (SRE)
- Matched, "in-domain" SRE data
 - All calls from all speakers from SRE 04, 05, 06, and 08 collections
- Mismatched "out-of-domain" SWB data
 - All calls from all speakers from Switchboard-I and Switchboard-II

Demonstrating Mismatch

Summary statistics for SRE & SWB lists

Hyper	# Spkrs	# Males	# Females	# Calls	Avg #	Avg #
list					calls/spkr	phone_num/spkr
SWB	3114	1461	1653	33039	10.6	3.8
SRE	3790	1115	2675	36470	9.6	2.8

Stephen Shum — Spoken Language Systems Group

Demonstrating Mismatch

Baseline / Benchmark Results (Equal Error Rate – EER)

UBM & T	Whitening	WC & AC	JHU	ΜΙΤ
SWB	SWB	SWB	6.92%	7.57%
SWB	SRE	SWB	5.54%	5.52%
SWB	SRE	SRE	2.30%	2.09%
SRE	SRE	SRE	2.43%	2.48%

- Focus on gap between using SWB/SRE labels for WC & AC
 - Continue using SWB for UBM&T and SRE for Whitening

Challenge Task Rules

- Allowed to use SWB data and their labels
- Allowed to use SRE data but <u>not</u> their labels
- Evaluate on SRE10.

Unsupervised Clustering Approaches for <u>Domain Adaptation</u> in Speaker Recognition Systems

Stephen Shum – Spoken Language Systems Group

November 2013

Proposed Framework

- Begin with Σ_{SWB} (WC) and Φ_{SWB} (AC).
- Use PLDA and Σ_{SWB} , Φ_{SWB} to compute pairwise affinity matrix, A, on SRE data.
- Cluster A to obtain hypothesized speaker labels.
- Use labels to obtain Σ_{SRE} and Φ_{SRE}
- Linearly interpolate (via α_{WC} and α_{AC}) between prior (SWB) and new (SRE) covariance matrices to obtain final hyper-parameters:

$$\Sigma_{\rm F} = \alpha_{\rm WC} \cdot \Sigma_{\rm SRE} + (1 - \alpha_{\rm WC}) \cdot \Sigma_{\rm SWB}$$
$$\Phi_{\rm F} = \alpha_{\rm AC} \cdot \Phi_{\rm SRE} + (1 - \alpha_{\rm AC}) \cdot \Phi_{\rm SWB}$$

• Iterate?

(Unsupervised) Clustering

- Agglomerative hierarchical clustering (AHC)
 - Provide the number of clusters at which to stop
- Graph-based random walk algorithms
 - Infomap
 - Markov Clustering (MCL)

Initial Results (1000 SRE speakers)

		# Spkrs	# Clstrs	Clustering Performance		$\alpha^* \text{ EER } (\%)$			$\alpha = 1 \text{ EER } (\%)$			
#		K	\hat{K}	Confusion	Purity	Frag.	Perfect	Нур.	Gap	Perfect	Нур.	Gap
1	AHC	1000	1000*	7.4%	94.9%	1.20	2.37	2.55	7.8%	2.77	3.16	14%
2	Infomap		918	18.2%	85.9%	1.44		2.71	14%		3.45	25%
3	MCL		997	15.1%	90.3%	1.45		2.68	13%		3.40	23%

• α*

- Assumes the selection of optimal interpolation parameters (oracle)

- α = **1**
 - Use only the hyper-parameters obtained from hypothesized cluster labels
- Better clustering → better recognition performance
 - However, effect is severely attenuated both in recognition results and in the presence of hyper-parameter interpolation!

Initial Results (1000 SRE speakers)

		# Spkrs	# Clstrs	Clustering Performance		$\alpha^* \text{ EER } (\%)$			$\alpha = 1 \text{ EER } (\%)$			
#		K	\hat{K}	Confusion	Purity	Frag.	Perfect	Нур.	Gap	Perfect	Hyp.	Gap
1	AHC	1000	1000^{*}	7.4%	94.9%	1.20	2.37	2.55	7.8%	2.77	3.16	14%
2	Infomap		918	18.2%	85.9%	1.44		2.71	14%		3.45	25%
3	MCL		997	15.1%	90.3%	1.45		2.68	13%		3.40	23%

- AHC provides best clustering and recognition
 - Requires number of speakers as stopping criterion
- Infomap and MCL provide reasonable estimates of #spkrs
 - Assuming appropriate choice of sparse graph

→ Use Infomap/MCL to estimate #spkrs for AHC

Effect of stopping AHC at different cluster numbers

Number of clusters at which AHC is stopped

Initial Results (1000 SRE speakers)

		# Spkrs	# Clstrs	Clustering Performance		$\alpha^* \text{ EER } (\%)$			$\alpha = 1 \text{ EER } (\%)$			
#		K	\hat{K}	Confusion	Purity	Frag.	Perfect	Hyp.	Gap	Perfect	Нур.	Gap
1	AHC	1000	1000^{*}	7.4%	94.9%	1.20	2.37	2.55	7.8%	2.77	3.16	14%
2	Infomap		918	18.2%	85.9%	1.44		2.71	14%		3.45	25%
3	MCL		997	15.1%	90.3%	1.45	—	2.68	13%		3.40	23%
4												
5	Infomap+AHC	1000	918	9.0%	92.6%	1.19	2.37	2.56	8.2%	2.77	3.18	15%
6	MCL+AHC		997	7.5%	94.9%	1.20		2.56	8.0%		3.16	14%

AHC provides best clustering and recognition

- Requires number of speakers as stopping criterion
- Infomap and MCL provide reasonable estimates of the number of speakers
 - Assuming appropriate choice of sparse graph

→ Use Infomap/MCL to estimate #spkrs for AHC

Automatic estimation of α^*

Still an open and unsolved problem

Results So Far

Via clustering and optimal adaptation

	Ŕ	Perfect	Hypothesized	Gap (%)
AHC	3790*	2.23	2.58	16%
Infomap+AHC	3196		2.53	13%
MCL+AHC	3971		2.61	17%

Initial baseline and benchmark

UBM & T	Whitening	WC & AC	JHU
SWB	SRE	SWB	5.54%
SWB	SRE	SRE	2.30%

- In the presence of adaptation, α, an imprecise estimate of the number of clusters is forgivable.
- A range of adaptation parameters yield decent results.
 - The selection of optimal values is still an open question.
- Best automatic system so far obtains SRE10 performance that is within 15% of a system that has access to all speaker labels.

What's next?

- Telephone Telephone domain mismatch
 - Simple solutions work well already
 - Explicitly identifying the source of the performance degradation
 - * Work currently ongoing
- Telephone Microphone domain mismatch
 - Expected to be a more difficult problem
 - * Initial experiments pending
- Out-of-domain detection
 - Instance of the canonical outlier/novelty detection problem

Final Words

- Vector-based representations of speech for speaker and language recognition
 - UBM-MAP \rightarrow supervector \rightarrow i-vector
 - Independent of speech duration
 - Can easily apply known methods for channel/session compensation
- Graph-based representation of audio databases enables fast and large-scale processing of existing and incoming data
 - Query-by-example, speaker indexing/clustering, general insights
- Discussed the application of both ideas in the context of domain adaptation for speaker recognition.
 - Still a lot to do and learn!