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ABSTRACT 
Database outsourcing requires that a query server constructs a 
proof of result correctness, which can be verified by the client 
using the data owner’s signature. Previous authentication 
techniques deal with range queries on a single relation using an 
authenticated data structure (ADS). On the other hand, 
authenticated join processing is inherently more complex than 
ranges since only the base relations (but not their combination) 
are signed by the owner. In this paper, we present three novel join 
algorithms depending on the ADS availability: (i) Authenticated 
Indexed Sort Merge Join (AISM), which utilizes a single ADS on 
the join attribute, (ii) Authenticated Index Merge Join (AIM) that 
requires an ADS (on the join attribute) for both relations, and (iii) 
Authenticated Sort Merge Join (ASM), which does not rely on 
any ADS. We experimentally demonstrate that the proposed 
methods outperform two benchmark algorithms, often by several 
orders of magnitude, on all performance metrics, and effectively 
shift the workload to the outsourcing service. Finally, we extend 
our techniques to complex queries that combine multi-way joins 
with selections and projections. 

Categories and Subject Descriptors 
H.2 DATABASE MANAGEMENT, H.2.0 General - Security, 
integrity, and protection, H.2.4 Systems - Query processing 

General Terms 
Algorithms, Experimentation, Security. 

Keywords 
Database Outsourcing, Join Algorithms, Query Authentication. 

1. INTRODUCTION 
Database outsourcing [8] is applicable in numerous domains and 
settings including edge computing [20], peer-to-peer networks 
[10], database caching [14], etc. In this setting, a data owner 
outsources database functionality to a third-party database service 
provider (DSP) that maintains the data in a DBMS, and answers 

queries to clients. Authenticated query processing enables the 
DSP to prove the correctness of the results. Existing methods are 
based on the secret/public key framework. Specifically, the DSP 
indexes the signed data using an authenticated data structure 
(ADS). During query processing, it traverses the ADS and returns 
a verification object (VO) that includes the actual result and 
additional verification information. The VO is transmitted to the 
client, which can establish soundness and completeness using the 
public key of the owner. Soundness means that every record in 
the result set is present in the owner’s database and not altered. 
Completeness means that all valid results are included.  

In our examples, we use the database and queries of Figure 1. 
Given Q0 = σquantity>100Purchase, the correct result set is RS = 
{<p4, c1, 200>, <p5, c2, 500>}. RS1 = {<p4, c1, 200>, <p5, c2, 
500>, <p6, c2, 600>} and RS2 = {<p4, c1, 200>, <p'5, c2, 555>} are 
not sound because they either contain fake (p6 in RS1), or altered 
(p'5 in RS2) records. RS3 = {<p4, c1, 200>} is not complete 
because p5 is missing. Besides achieving soundness and 
completeness, authenticated query processing methods should 
minimize (i) the VO size, which dominates the communication 
overhead between the client and the DSP, (ii) the verification cost 
at the client, and (iii) the query processing time at the DSP. In 
most applications, (i) and (ii) are more important goals than (iii), 
since the client usually has less computational power and 
bandwidth compared to the DSP. 

Purchase Customer 
pid cid quantity cid name city
p1 c1 20 c1 Tom New York
p2 c3 50 c2 Brian London
p3 c2 80 c3 Susan Tokyo
p4 c1 200 c4 Jane New York
p5 c2 500 c5 Carl London  

 

Q0 = σquantity>100Purchase  

Q1 = Purchase cidCustomer 

Q2 = (σquantity>100Purchase) cidCustomer 

Q3 = (σquantity>100Purchase) cid(σcity=“New York”Customer) 
Figure 1 Running Example 

Existing solutions focus on single-relation ranges. On the other 
hand, authenticated join processing is inherently more complex 
than ranges because only the base relations, and not their 
combinations, are signed by the owner. As it will become clear 
later, the client must always perform some computations to verify, 
as well as, generate part of the result locally. Previous work on 
this intricate problem is scarce and has severe shortcomings, 
defeating the goal of data outsourcing. Motivated by this, we 
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propose three novel authenticated join algorithms depending on 
the ADS availability: (i) Authenticated Indexed Sort Merge Join 
(AISM), which utilizes a single ADS in one of the base relations, 
(ii) Authenticated Index Merge Join (AIM) that requires an ADS 
for both relations, and (iii) Authenticated Sort Merge Join (ASM), 
which does not rely on any ADS. Going one step further, we 
describe the adaptation of our methods to authentication of 
complex queries involving joins over multiple tables, possibly 
combined with selections and projections. In particular, we show 
that for such queries, the best execution plan may involve not 
only AIM, but also AISM and ASM, in the presence of all 
required ADSs. 

The rest of the paper is organized as follows. Section 2 
surveys related work on authenticated query processing. Sections 
3, 4 and 5 describe AISM, AIM and ASM, respectively. Section 6 
extends these methods to complex query authentication. Section 7 
contains an extensive experimental evaluation, and Section 8 
concludes the paper. 

2. RELATED WORK 
Section 2.1 overviews authentication techniques for range queries. 
Section 2.2 discusses authenticated join processing. Before we 
proceed, we provide some basic cryptographic background. A 
one-way, collision-resistant hash function H takes as input a 
message m of arbitrary length and produces a digest of fixed 
length. H has two properties: (i) computing m from H(m) is 
intractable, and (ii) the probability of two different messages to 
have the same digest is very low. A public key digital signature 
scheme involves the generation of a secret (sk) and a public (pk) 
key: sk is known only to the signer, whereas pk is published. To 
produce signature s of a message m, the signer applies sk to the 
digest of m. Given s, m and pk, the verifier can certify that m has 
not been falsified (integrity) and that m indeed originates from the 
party that signs it (authenticity). Note that since H is not 
commutative, a signature s on a set of records S can only certify a 
fixed order of S called the verifiable order. For instance, assume 
that a message m contains the concatenation s1|s2|s3 of three 
records. A signature s(m) cannot be used to certify s3|s2|s1, or any 
order other than s1|s2|s3.      

2.1 Authenticated range query processing 
Authenticated range query processing was first studied in 
computer security community. [6] proposes a method that sorts 
the records on the query attribute and indexes them by a Merkle 
Hash Tree (MHT) [17]. The MHT is a binary tree that provides 
the foundation for a broad class of ADSs, e.g., [6], [15], [12]. 
Every leaf node contains the digest of a record. The tree is 
constructed bottom-up; each internal node stores a hash value 
computed on the concatenation of the children digests. The data 
owner signs the root using the secret key. Given a range query, 
the DSP first expands it to include two boundary records, and 
processes it using the MHT. The client can verify soundness by 
exploiting the collision-resistance property of the hash function. 
Furthermore, the boundary records ensure completeness, i.e., that 
no result is missing at the query endpoints. [15] extends the 
concepts of the MHT to Directed Acyclic Graphs, including 
dictionaries, tries, and range search trees. Dynamic versions of the 
MHT for outsourced data streams are discussed in [13], [21]. 

The first disk-based ADS for range query processing [20] 
guarantees soundness, but not completeness. A subsequent 
signature chaining approach [19][18] ensures both soundness and 

completeness. Currently, the state-of-the-art ADS is the Merkle B-
tree (MB-tree) [12], which combines the MHT with the B+-tree, 
i.e., it can be thought of as a MHT where the node fanout is 
determined by the block size. Figure 2 illustrates query processing 
using the MB-tree. Given a range query, the DSP traverses the 
MB-tree top-down until it finds the first record (let si) in the 
range. During the traversal, the following items are inserted into 
the verification object VO: (i) the digests of the left siblings of N1 
in the root, (ii) the digests of the left siblings of N3 in N1, (iii) the 
(boundary) record si-1 preceding si, and (iv) the digests of the left 
siblings of si-1 in N3. Next, the DSP retrieves the query result si, 
si+1,.., sj by following the pointers between leaf nodes. The 
(boundary) record sj+1 is added to the VO. Finally, a second 
traversal from the root to sj+1 inserts all the digests on the right of 
the path. In Figure 2, the digests contained in the VO are shaded. 
Given si-1, si,.., sj, sj+1 and the digests, the client can re-compute 
the digest of the root and verify it against the owner’s signature. 
The EMB-tree [12] reduces the VO size by embedding a binary 
MHT inside each internal node of the MB-tree. The MR-tree [25] 
applies the concept of the MHT to R-trees for authentication of 
multi-dimensional ranges on outsourced spatial data.  
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Figure 2 Example of Merkle B-tree  

Atallah et al. [3] introduce a theoretical approach with improved 
asymptotic bounds for the VO size. To eliminate the threat of 
revealing sensitive information to unauthorized clients, [11] 
proposes an alternative scheme that avoids boundary records and 
hash values in the VO. Several papers investigate outsourcing in 
applications with semi-trusted DSP (e.g., [23], [7]) or clients (e.g., 
[24]), in which case authentication can be accomplished without 
an ADS. Specifically, [23] considers that the DSP’s only 
motivation to cheat is to save resources, and proposes a solution 
in which the DSP proves that it has performed the necessary 
computations to correctly answer the queries. [7] presents MHT-
based algorithms for verifying the correctness of storage 
operations assuming that the database software at the DSP is 
trusted, but not its physical storage. In [24], the owner introduces 
fake tuples to the outsourced database, which are known to the 
clients but not the DSP. A client can thus establish soundness and 
completeness by analyzing the fake records in the result. These 
solutions are not applicable to our model since we do not rely on 
any degree of trust for the DSP or the clients. Finally, several 
papers ([8],[5],[1]) investigate privacy preservation of outsourced 
data. GhostDB [2] answers queries with both an untrusted server 
and a secure chip embedded in a USB key. These issues are 
orthogonal to join authentication and the proposed methods.  

2.2 Authenticated join processing 
[20] proposes the pre-computation and storage of all possible join 



results in materialized views. Each view is treated as a 
conventional table, meaning that an ADS can be built on it to 
support more complex queries. For example, the result of Q1 = 
Purchase cid Customer can be materialized in a view V1. If an 
ADS is maintained on V1.quantity, the DSP can answer Q2 = 
(σquantity>100 Purchase) cidCustomer by transforming it to 
σquantity>100V1. This approach imposes a significant overhead for 
the owner to construct and update a large number of materialized 
views. Moreover, in most practical applications it is infeasible to 
determine all possible joins in advance. The only existing 
algorithm for on-line join processing is discussed in [19] and [12] 
as an extension of range authentication. We refer to this algorithm 
as Authenticated Index Nested Loop (AINL) since it is based on 
the index nested loop paradigm, and discuss it in detail below. 

Let R and S be the two relations to be joined on a common 
attribute a, and consider that there is an ADS TS (i.e., MB-tree) on 
S.a. R constitutes the outer and S the inner relation. Figure 3 
illustrates the pseudo-code of AINL assuming a join R R.a=S.a S. 
Initially, the signature of R, the cardinality |R| of R and the 
signature of TS are inserted into the VO. Then, for each record r ∈ 
R in the verifiable order, the DSP appends r to the VO and 
retrieves the matching records in S, by processing a range query 
using TS (we use the term range to also denote equality 
conditions). As discussed in Section 2.1 (see Figure 2), the output 
of this query includes (i) the join matches of r, (ii) boundary 
records, and (iii) digests obtained during TS traversal. These 
values are inserted into the VO, together with a separator “;” that 
signifies the end of each range query (hereafter, denoted as a 
round). The processing terminates when all records of R are 
exhausted, and the DSP transmits the VO to the client. 

 

AINL (Relation R, MBTree TS, VO) // DSP 
// The join query is R R.a=S.a S 
1. Append to VO the signature of R, |R|, the root signature of TS 
2. For each r ∈ R // in the verifiable order  
3.  Append r to VO 
4.  Call RangeSearch(TS, r.a, VO)  // process range query on TS 
5.  Append a separator “;” to VO 

Figure 3 Algorithm AINL 

The client can reconstruct and authenticate the join result using 
the algorithm of Figure 4. Specifically, it can establish the 
correctness of R based on the owner’s signature. Furthermore, for 
each record r ∈ R, it can verify RangeSearch(TS, r.a, VO) using 
the mechanisms of the MB-tree. Note that since the VO of the 
range query contains some additional (boundary) records, the 
actual matching tuples of r are extracted in line 6.  
 

Verify_AINL (VO) // Client 
1. Read the signature of R, |R|, the root signature of TS from VO 
2. For i = 1 To |R| 
3.  Read tuple r from VO 
4.  Read until reaching the separator “;” 
5.  Verify that the data read in line 4 are the VO for  
          RangeSearch(TS, r.a, VO) 
6.  Extract each matching pair of tuples s of r read in line 4, 

generate a join result combining r and s 
7. Verify the signature of R 

Figure 4 Algorithm Verify_AINL 

For instance, consider Q1 = Purchase cidCustomer in Figure 1, 
with Purchase as the outer relation. Initially, the VO contains the 
signature of Purchase, its cardinality (5) and the signature of 
TCustomer. Let the verifiable order of Purchase be (p1, p2, p3, p4, 
p5)

1. The DSP performs a range query on TCustomer to find the 
matching customer c1 of p1. Consequently it adds to the VO: p1, 
c1, c2 (boundary record for c1) and the digests of TCustomer needed 
to verify the correctness of the range. The separator “;” denotes 
the end of the first round. Similarly, the second round appends to 
the VO: p2, c3, boundary records c2 and c4, and the necessary 
digests. In total, there are 5 rounds, each of which corresponds to 
a tuple in Purchase. The VO contains 5 Purchase tuples and 13 
records from Customer.  

Let |R|, |S|, |RS| be the cardinality of R, S and the join result, 
respectively. R R.a=S.a S necessitates the transmission of |R| 
records of R and 2|R|+|RS| tuples of S (the matching tuples plus 2 
boundaries records per R tuple), in addition to a large number of 
digests. Furthermore, AINL incurs high computational overhead 
for both the DSP (to process 5 range queries in the example) and 
the client (to verify them). This motivates the naive alternative 
(referred to as NAI) of executing the join exclusively at the client 
side. Specifically, according to NAI, the DSP simply transmits the 
base relations along with their signatures to the client, which 
verifies them and performs the join locally. The VO size (|R| + |S| 
tuples) of NAI is usually much lower than that of AINL, except 
for the case where |R| << |S| and the join is highly selective. 
Furthermore, unless |R| is very small, the verification of |R| range 
queries in AINL burdens the client more than joining the two 
tables directly. Although it is often better than AINL, NAI is far 
from an ideal solution. First, the query is processed entirely by the 
client, which contradicts the purpose of data outsourcing. Second, 
the DSP transmits all records of the base relations, while the 
client only needs those with matching partners. Finally, NAI 
cannot take advantage of the existence of ADS on the data, or 
selection conditions on the query. Next, we propose algorithms 
that overcome these shortcomings of AINL and NAI. For ease of 
presentation, we first focus on binary equi-joins, and defer the 
discussion on other join conditions and complex queries for later 
sections. 

3. AISM 
Similar to AINL, our first algorithm AISM (for Authenticated 
Indexed Sort-Merge join) utilizes an ADS for the inner relation. 
We demonstrate the basic idea of AISM using Q1 = Purchase cid 

Customer, and assuming that the DSP maintains an MB-tree 
TCustomer on Customer.cid. In a pre-processing step, the DSP sorts 
the outer table Purchase on the join attribute cid, and generates 
the rank list ΩPurchase. The purpose of the rank list is to inform the 
client on how to restore the verifiable order of the records 
(required for signature verification). For instance, assuming the 
verifiable order p1, p2, p3, p4, p5, we have ΩPurchase = (1, 4, 3, 5, 2), 
meaning that p1 has the smallest value (c1) on cid, p4 has the 
second smallest value, and so on. Note that unlike conventional 
sort-merge join, in AISM the sole purpose of sorting the outer 
relation is to generate the corresponding rank list. Thus, it suffices 
to sort only the join attribute values, which can often be 
performed in main memory. The DSP transmits all tuples of the 

                                                                 
1 For simplicity, we refer to a tuple by its id, i.e., p1 signifies the first 

record of Purchase.  



 VO: signature of R, root 
signature of TS, r1-r6 in their 
verifiable order 

Round 1 ΩR[1], h1, s2, s3, s4; 
Round 2 ΩR[2], h5, h6, hC, s10, s11, s12; 
Round 3 ΩR[3]; 
Round 4 ΩR[4]; 
Round 5 ΩR[5], h13, h14, s15;  

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 s14 s15

A B C D E

F G

RootS

R

S

R.a (S.a )

R[1]

s11

R[2]
R[3]

R[4]Ω
Ω
Ω Ω R[5]Ω R[6]Ω Round 6 ΩR[6]; 

Figure 5 Example of AISM 

outer relation (Purchase) to the client in their verifiable order, 
along with the owner’s signature and ΩPurchase. Next, the DSP 
turns to the inner relation Customer. Observe from Figure 1 that 
all purchases involve clients c1, c2 and c3. Therefore, it is possible 
to find all matching customers for these purchases by a single 
range Q = σc1≤cid≤c3

Customer on TCustomer. Due to the nature of the 
MB-tree, the results of Q (i.e., customers with cid c1, c2, and c3) 
are sorted on cid and can be authenticated. Meanwhile, the rank 
list ΩPurchase explicitly specifies the order of purchases when 
sorted on cid. Therefore, if the client obtains Purchase, ΩPurchase 
and the results of Q = σc1≤cid≤c3

Customer, it can generate and 
authenticate the result of Purchase cidCustomer, by merging the 
output of Q with ΩPurchase. 

In general, given a query R R.a=S.aS and an MB-tree TS on 
S.a, the DSP processes a single multi-range Q with one traversal 
of TS, and merges its VO, denoted as VO(Q), with the rank list ΩR. 
ΩR[i]=j signifies that the i-th element of ΩR corresponds to the j-th 
record in the verifiable order. For ease of presentation, we also 
use ΩR[i] to denote this record. We illustrate the processing of Q 
using the relations of Figure 5, where |S|=15 and |R|=6. The join 
result contains three pairs (ΩR[1],s3), (ΩR[2],s11) and (ΩR[3],s11). 
Initially, the DSP inserts into the VO: (i) the signature of R, (ii) 
the root signature of TS, and (iii) all records of R in the verifiable 
order (which can be arbitrary). Then, it sorts R according to the 
join attribute a, breaking ties by the original (i.e., verifiable) order 
of R, and generates the rank list ΩR. For each ΩR[i], the DSP first 
inserts it in the VO, and performs two operations on TS, which we 
call index-traversal and leaf-scan. Index-traversal traverses TS to 
the leaf node that corresponds to the left boundary record of ΩR[i]. 
In the example of Figure 5, the DSP first inserts ΩR[1] in the VO, 
and descends TS until node A, whose second entry corresponds to 
s2, the left boundary of ΩR[1]. The digests of all left siblings (h1) 
along the path (Root-F-A) are appended to the VO. 

The leaf-scan starts from a leaf entry and follows the 
successor pointers, until reaching the right boundary record. 
During this step, all encountered tuples are inserted into the VO. 
Continuing the example, the DSP appends to the VO s2, s3, s4 
(right boundary of ΩR[1]) and a separator “;” signifying the end of 
the first round. The DSP proceeds to the next round, and inserts 
ΩR[2] into the VO. Index-traversal starts from the current position 
(first entry of B), ascends the tree until the root, and then descends 
to node D, which contains the left boundary s10 of ΩR[2]. The 
digest (h5, h6, hC) of each skipped child is inserted into the VO. 
Leaf-scan adds s10, the matching tuple s11 of ΩR[2], and s12 (i.e., 
right boundary) to the VO.  

At the beginning of the third round, the DSP appends ΩR[3] to 
the VO, which has the same join attribute value as ΩR[2]. Index-
traversal discovers that the left boundary s10 is before the current 
position s12. An important principle of AISM is that the DSP 

never traverses the tree backwards, and index-traversal is skipped. 
Similarly, because the right boundary s12 has also been found, 
leaf-scan is also omitted, and the third round terminates. For the 
same reason, the fourth round simply appends ΩR[4] to the VO. At 
the fifth round, index-traversal reaches s15, appending h13, h14 to 
the VO. Since s15 is already the last record in S, leaf-scan inserts 
s15, and the sixth round is skipped. Figure 6 illustrates AISM at 
the DSP side. We omit the pseudo-code for index-traversal and 
leaf-scan since their functionality is clear from the examples. 

 

AISM (Relation R, MBTree TS, VO) // DSP 
// The join query is R R.a=S.a S 
1. Append to the VO the signature of R, |R|, the root signature of TS, 

and all records of R in a verifiable order 
2. Sort R to generate the rank list ΩR 
3. Initialize n = TS.Root 
4. For i = 1 To |R| 
5.  Append ΩR[i] to VO 
6.  Call IndexTraversal(n, R[ΩR[i]].a, VO)  
7.  Call LeafScan(n, R[ΩR[i]].a, VO)  
8.  Append a separator “;” to VO 
9. Call IndexTraversal(n,+∞,VO)//to complete the traversal of TS 

Figure 6 Algorithm AISM 

Figure 7 describes the verification process, which includes the 
actual result extraction from the VO. Specifically, the client 
performs a single scan of the VO to (i) validate the signature of R, 
(ii) establish the correctness of ΩR, (iii) reconstruct the root hash 
of TS and match it against the signature, (iv) verify the results for 
each ΩR[i], and generate join output. Operation (i) is trivial since 
R is received in the verifiable order (line 2). In operation (ii), the 
client checks that |ΩR| = |R|, and for each pair of subsequent 
elements in ΩR, ΩR[i].a ≤ ΩR[i+1].a. Moreover, if ΩR[i].a = 
ΩR[i+1].a, the client checks that ΩR[i] < ΩR[i+1] (lines 5-7). For 
operation (iii), the client uses the records and digests of S to 
derive2 the digest hRoot at the root of TS bottom-up (line 11). In the 
above example, the VO contains h1, h5, h6, hC, h13, h14. The client 
computes h2, h3, h4, h10, h11, h12, h15 by applying H on the 
corresponding records. Then, it obtains hA (using h1-h3), hB (using 
h4-h6), hD (using h10-h12), hE (using h13-h15), hF (using hA-hC), hG 
(using hD-hE), and finally hRoot

 (using hF-hG), which is matched 
against the signature of TS. Operation (iv) corresponds to range 
query verification; i.e., the client ensures, for each r ∈ R, that the 
boundary records enclose the matching tuples and only matching 
tuples, which are extracted to generate join results (line 10). 

                                                                 
2 When the tree is not full, the DSP must put additional boundary 

tokens in the VO to inform the client about the tree structure [12].  



Verify_AISM (VO) // Client 
1. Read the signature of R, |R|, the root signature of TS, and all 

records of R from VO 
2. Verify the signature of R 
3. Initialize integer j=0 and record r so that r.a = –∞ 
4. For i = 1 To |R| 
5.  Set j′ = j and r′ = r 
6.  Read integer j from VO, set r = R[j] 
7.  Check the condition (r.a>r′.a) ∨ (r.a=r′.a ∧ j > j′) 
8.  Read from VO until reaching the separator “;” 
9.  Verify that (i) the previous step only reads S tuples and digests, 

(ii) the S tuples either match R or are boundary records, and 
(iii) no digest is enclosed by boundary records 

10.  Generate join results of r and its matching S records 
11.  Use the values read in line 8 to incrementally compute hRoot 
12. Read digests from VO until it is empty, use them to incrementally 

compute hRoot 
13. Verify hRoot against the root signature of TS 

Figure 7 Algorithm Verify_AISM 

Proof of soundness: Let rs be an incorrect answer. Then, either (i) 
r does not match s, or (ii) r or s are bogus/altered. The first case 
cannot happen because the client generates matching pairs by 
itself. For the second case, a fake r tuple is detected by the 
authentication information of R. An incorrect s tuple leads to the 
wrong hRoot, failing the verification against the signature of TS.   �                                                          
Proof of completeness: Let rs be a valid result of the query missed 
by the client. Then either (i) the client does not receive r or s, or 
(ii) the client does not identify r and s as a matching pair. For case 
(i), if r is missing, the verification against the authentication 
information of R fails. On the other hand, if s is absent from the 
VO, for the client to correctly construct hRoot, the VO must contain 
the digest h of s or of a node covering s. For instance, if s3 were 
omitted, then the VO of Figure 5 should include h3. The client, 
however, will detect either that a digest is enclosed by two 
boundary records, or that a boundary record is missing (line 9 of 
Verify_AISM). For case (ii), note that the client has all relevant R 
(and S) tuples sorted on the join attribute a. Specifically, the order 
of R records is established by ΩR (verified by the client), while the 
order of S records is given by ADS TS and the no-go-back policy 
during the tree traversal. Since the client performs the merging by 
itself, it finds all matching pairs of R and S, eliminating the 
possibility of missing rs.  � 

AISM avoids the repeated computations and redundant 
transmissions incurred by AINL. Specifically, the DSP visits a 

node in TS at most once, rather than up to |R| times in the case of 
AINL. Meanwhile, using AISM, the client never repeats the 
computation of any hash value, and each element of TS (e.g., 
digest or S tuple) is included in the VO at most once. Comparing 
AISM with NAI (described in Section 2.2), the former avoids the 
transmission of S records that do not have join partners. In 
addition, whereas the client performs the entire join processing in 
NAI, AISM shifts most of the workload to the DSP (e.g., sorting 
R, traversing TS), leaving only inexpensive operations (e.g., 
rebuilding hRoot, merging the sorted relations) to the client. An 
interesting observation is that AISM is notably more efficient for 
the indexed relation (S) than the non-indexed one (R), suggesting 
that the performance can be improved by utilizing a second ADS 
on R. This motivates the next algorithm. 

4. AIM 
Authenticated Index Merge join (AIM) utilizes ADSs on the join 
attribute in both input relations. Figure 8 illustrates two MB-trees 
TS on S.a and TR on R.a for the datasets of Figure 5. Initially, the 
DSP inserts the root signatures of TS and TR into the VO. It then 
chooses one tree, say TR, reaches its first leaf node (H), finds the 
first record (r1), and inserts it into the VO. With r1.a as target, the 
DSP performs index-traversal and leaf-scan on TS, to retrieve 
matching and boundary records. Index-traversal visits the path 
from RootS to the first boundary s2 of r1. The digest (hs1

) of the 
left sibling entry is appended to the VO. In the subsequent leaf-
scan, s2 , s3 and s4 are also added. Note that a match (i.e., s3) for r1 
is found. Every time AIM identifies a result, it performs another 
leaf-scan on TR. Continuing the example, the DSP appends a 
separator “;” to the VO, performs the leaf-scan on TR, with target 
r1.a = s3.a, leading to the insertion of r2 (right boundary) to the 
VO. This additional operation retrieves all R tuples with identical 
join attribute as r1, and is vital to the correctness of AIM.  

The second round starts at the current positions at TS (s4) and 
TR (r2). The DSP swaps the roles of TR and TS, and performs 
index-traversal and leaf-scan on TR with s4.a as target value. Since 
both the left (i.e., r1) and right (r2) boundary records are already 
present in the VO, neither operation has any effect. There is no 
extra leaf-scan on the opposite relation (as in Round 1) because s4 
has no matching partner. In the third round, the DSP switches 
back to TS, and performs index-traversal with target value r2.a, 
ascending to RootS and then descending to s10, the left boundary 
for r2. The digests of the skipped entries in nodes B and F, i.e., 
hs5

, hs6
, hC, are inserted into the VO. The subsequent leaf-scan 

 
VO: root signature of TS,  
root signature of TR, r1 

Round 1 hs1
, s2, s3, s4; r2;  

Round 2 ; 
Round 3 hs5

, hs6
, hC, s10, s11, s12; r3, 

r4; 
Round 4 r5; 
Round 5 hs13

, hs14
, s15; 
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Figure 8 Example of AIM 



appends s11, and s12. Similarly to Round 1, a match (s11) of the 
target tuple (r2) is identified. Consequently, another leaf-scan is 
performed on TR (with target s11.a=r2.a) adding r3 (match) and r4 
(right boundary) to the VO. Note that if this operation were 
omitted, the hash value of r3, rather than the full record, would be 
inserted to the VO during the next round; consequently, the client 
would miss the result (r3, s10). 

The fourth round searches TR with target s12.a. Index-traversal 
has no effect, since the VO already contains the left boundary r4; 
leaf-scan finds no matches, and appends the right boundary r5. In 
the fifth round, the DSP first performs index-traversal on TS, with 
target value r5.a, following path s12-D-G-E-s15 and appending hs13

, 
hs14

 (digests of skipped tuples) as well as s15 (the left boundary 
record) to the VO. Because s15 is the last tuple of TS, leaf-scan is 
skipped. Finally (sixth round), since s15.a is still smaller than the 
target value r5.a, the DSP simply traverses TR back to RootR, 
adding the digest of r6 to the VO. This is implemented by an 
index-traversal with a target value of +∞. Figure 9 illustrates 
AIM. The loop invariance of the algorithm is that, given a target 
record from one relation, its left and right boundaries (and 
possibly matching records) are determined in the opposite tree; 
the right boundary is used as a new target in the next round. Lines 
11-13 correspond to the extra leaf-scan operation, performed 
whenever a matching pair is identified.  

 

AIM (MBTree TR, MBTree TS, VO) // DSP 
// The join query is R R.a=S.a S 
1. Append the root signatures of TS and TR 
2. Traverse TR from RootR to the leftmost node, and insert the first 

record r1 to the VO 
3. Initialize nS = TS.Root, nR = leftmost node of TR storing r1 
4. Initialize tuples tS = null, tR = r1 
5. Loop 
6.  Call IndexTraversal(nS, tR.key) 
7.  If the traversal of TS finishes 
8.   Call IndexTraversal(nR, +∞) 
9.   Return 
10.  Call LeafScan(nS, tR.key) 
11.  If a matching record of tR is encountered in line 10 
12.   Append a separator “;” to VO 
13.   Call LeafScan(nR, tR.key) 
14.  Set tS to the right boundary record corresponding to tR.key 
15.  Append a separator “;” to VO 
16.  Repeat lines 6-15, reversing R and S 

Figure 9 Algorithm AIM 

The verification process is summarized in Figure 10. The client (i) 
verifies that the boundary records only enclose matching tuples, 
(ii) checks whether the additional leaf-scan operations are 
performed properly by the DSP, (iii) generates join results from 
the data records contained in the VO, and (iv) reconstructs hS

Root, 
hR

Root of TS and TR, and verifies them against their respective 
signatures. Operations (iii) and (iv) jointly ensure soundness, 
while the combination of (i), (ii), (iii) and (iv) guarantees 
completeness of the result. The proof is similar to that of AISM, 
except that in AIM the client must also verify condition (ii). 
Specifically, if the DSP cheats by not executing this operation, or 
doing it improperly (e.g., inserting a falsified tuple, or a hash 
value rather than the actual record), then either the check at line 9 
fails, or the reconstructed root hashes do not match their 
corresponding signatures, alarming the client. 

Verify_AIM (VO) // Client 
1. Read the root signatures of TS and TR from VO 
2. Read tuple r from VO 
3. While VO is not empty 
4.  Read from VO until reaching separator “;” 
5.  Verify that in the previous step (i) only S tuples and digests are 

read, (ii) the S tuples either match R or are boundary records 
and (iii) no digest is enclosed by boundary records 

6.  Use the values read in line 4 to incrementally compute hS
Root 

7.  If matching records of r are identified during line 4 
8.   Read from VO until reaching separator “;” 
9.   Verify that in the previous step (i) only R tuples are read, (ii) 

these R tuples only include those with identical join 
attribute values as r, and one right boundary record 

10.   Use the values read in line 8 to incrementally compute hR
Root 

11.   Generate join results with r, S tuples read in line 4, and R 
tuples read in line 8 

12.  Set s to the right boundary record of r 
13.  Repeat lines 4-12, reversing R and S (also r and s) 
14. Verify hS

Root and hR
Root against their respective signatures 

Figure 10 Algorithm Verify_AIM 

AIM improves the performance of AISM. For relation S, the two 
algorithms perform similar operations at the DSP as well as the 
client, and place the same amount of data in the VO. However, for 
relation R, AISM requires the DSP to sort all tuples, and the client 
to verify and re-order them, whereas AIM only incurs one 
traversal of TR for the DSP, and one hR

Root computation for the 
client. Regarding the VO size, AISM inserts all R records, while 
AIM only adds those with join partners, and boundary records / 
digests for the remaining ones. 

5. ASM 
If there are no ADSs on the join attribute, the DSP has to return at 
least the join inputs to the client, so that the latter can establish 
their correctness. Furthermore, the client has to generate the join 
output itself, as there is no way to authenticate a join result 
received by the DSP. However, instead of the client executing the 
entire join locally as in NAI, the proposed ASM (for 
Authenticated Sort-Merge join) alleviates the burden of the client 
as follows: (i) the DSP performs a sort-merge join, and (ii) 
generates a VO such that the client can efficiently reconstruct the 
join output. Specifically, the transmitted VO includes VO(R), BR, 
VO(S), BS, and ΩRS. BR and BS are two bitmaps, and ΩRS is a list of 
integers. The meaning of BR, BS and ΩRS will be explained soon. 
For our examples we use Q1 = Purchase cid Customer in the 
database of Figure 1, assuming that the verifiable orders are (p1, 
p2, p3, p4, p5) and (c1, c2, c3, c4, c5) for Purchase and  Customer, 
respectively. 

Figure 11 illustrates ASM at the DSP side. Initially (lines 1-
4), the DSP sorts R and S on the join attribute a, and inserts the 
result in R' and S'. The use of temporary tables is necessary as the 
original (i.e., verifiable) order is needed when R is included in the 
VO. Then, it generates the rank lists ΩR and ΩS. Line 5 
corresponds to the merge phase. This process marks every tuple 
that has matching records in the other relation, and generates ΩRS. 
ΩRS combines ΩR and ΩS in a single sorted list on a. In order to 
distinguish the two relations, we negate each element of ΩS. If for 
two records (r ∈ R, s ∈ S), r.a = s.a, then the element of r in ΩRS 
precedes that of s. Continuing the example, given ΩPurchase = (1, 4, 
3, 5, 2) and ΩCustomer = (1, 2, 3, 4, 5), ΩPur-Cus= (1, 4, −1, 3, 5, −2, 
2, −3, −4, −5). 



ASM (Relation R, Relation S, VO) // DSP 
// The join query is R R.a=S.a S 
1. Create a temporary table R′ with a single column a 
2. For each record r ∈ R, append r.a to R′ 
3. Repeat lines 1-2 for S, creating a temporary table S′ 
4. Sort R′ and S′, and generate rank lists ΩR and ΩS 
5. Merge the sorted R′ and S′, mark tuples with join partners, and 

generate a combined rank list ΩRS 
6. Create a bitmap BR of size |R| 
7. ∀1≤i≤|R′|, set BR[ΩR[i]] to 1 if R′[i] has a join partner, and 0 

otherwise 
8. Append the signature of R and |R| to VO 
9. For i = 1 To |R|, Append R[i] and BR[i] to VO 
10. Repeat lines 6-9 for S 
11. Append ΩRS to VO 

Figure 11 Algorithm ASM 

Next, the DSP generates the bitmap BR of R. Recall that the 
merging phase marks each tuple that can be joined. Let j=ΩR[i] be 
the rank of a record r ∈ R in the verifiable order. If r is marked, 
BR[j] is set to 1; otherwise (r has no join partners in S), BR[j] is set 
to 0. In the running example: BPurchase = (1, 1, 1, 1, 1) and BCustomer 
= (1, 1, 1, 0, 0), since customers c4 and c5 do not appear in 
Purchase. BR is inserted into the VO, together with VO(R). 
Specifically, VO(R) includes the records of R in the verifiable 
order, the cardinality of |R| and the owner’s signature. The bitmap 
BS is generated in the same way and appended to the VO, together 
with VO(S). Finally, the DSP adds ΩRS, and the entire VO is 
transmitted to the client. 

Upon obtaining the VO, the client computes and verifies the 
result by applying the algorithm of Figure 12. When a tuple r ∈ R 
is received, the client uses it to incrementally compute the 
verification information (e.g., digest) required for matching the 
signature. Then, it checks the bitmap value of r. If it is 1 (i.e., r 
has join partners in S), the entire tuple is stored on the disk. 
Otherwise, only the join attribute is kept. These bitmaps are 
verified later in the subsequent merging step. The same process is 
repeated for S. In our example, the name and city of c4 and c5 are 
deleted, as these customers will not appear in the join result. At 
this point the client can verify the individual relations. Next, it 
remains to compute their join result. This is achieved by a merge 
operation (lines 7-18) based on ΩRS, which constitutes the last part 
of the VO. Specifically, matching records from the two relations 
appear sequentially in ΩRS; hence, merging reduces to a scan of 
ΩRS and retrieval of the corresponding tuples from the stored files. 
When multiple records have identical join attributes, they are 
temporarily stored in a buffer buf (line 13), and later examined to 
produce join results (lines 15-18). Meanwhile, the client verifies 
the correctness of the bitmaps, i.e., records marked “0” and stored 
partially must not participate in any join results (line 16). Note 
that the usage of the bitmap reduces the I/O operations because, 
for tuples without join partners, only the join attribute is written 
to, and then read from the disk. This optimization also applies to 
AISM for handling the non-indexed relation. 

Proof of soundness: Suppose that the DSP deceives the client 
into generating a wrong result rs. Then either (i) r does not match 
s, or (ii) r or s are bogus/altered. The first case is impossible as 
the client generates matching pairs locally. Case (ii) is detected by 
the authenticated information of R and S.                                    � 
Proof of completeness: Let rs be a valid result of the query. The 
DSP must transmit the unaltered r (resp., s) to the client, 

otherwise the checking against the authenticated information of R 
(resp., S) will fail. Therefore the only possibility for the client to 
miss rs is that the DSP provides the wrong rank list ΩRS, which is 
detected in the same way as in AISM. Furthermore, if the DSP 
cheats in the marking step (i.e., sets the bitmap to 0, although the 
tuple can be joined), the client will detect it during the joining 
step, since it keeps the join-attribute values for all records. � 

Verify_ASM (VO) // Client 
1. Read the signature for R and |R| 
2. For i = 1 To |R| 
3.  Read next record r ∈ R and a bit mark from VO 
4.  Use r to incrementally verify against the signature of R 
5.  If mark is 0, store only r.a, otherwise store the entire r 
6. Repeat lines 1-5 for S 
7. Read an integer j from VO, set t=R[j] if j>0, and t=S[–j] otherwise 
8. Initialize buffer buf with only one record t 
9. While VO is not empty 
10.  Set j′=j and t′=t 
11.  Read j from VO, and set t in the same way as in line 7 
12.  Verify that t′.a≤t.a 
13.  If t′.a=t.a, verify that j′ < j, and insert t into buf 
14. Else // t′.a<t.a 
15.   If buf contains records from both R and S 
16.    Verify that all tuples in buf are stored as full tuples 
17.    Join tuples in buf to generate results 
18.    Remove all records from buf, and insert t into buf 

Figure 12 Algorithm Verify_ASM 

Compared with AISM and AIM, ASM is naturally less efficient 
as it does not utilize any ADS. This loss of efficiency is 
compensated by its flexibility, which, as we clarify in the next 
section, is an important property for authenticating complex 
queries. Furthermore, ASM significantly outperforms AINL on all 
aspects, and exhibits clear performance advantages over NAI in 
terms of the workload of the client. 

So far we have focused on equi-joins. Since all proposed 
algorithms are based on the sort-merge join paradigm, they can be 
easily applied to band joins, whose join predicates are of the form 
|R.a–S.a| ≤ b. Note that an equi-join is a special case of the band 
join where b = 0. For AISM and AIM the main change is that the 
target of index-traversal for ΩR[i] is the first record s such that 
ΩR[i].a–b ≤ s.a ≤ ΩR[i].a+b (instead of s.a = ΩR[i].a); meanwhile, 
leaf-scan stops at the last such record. Similar extensions can be 
applied to ASM. AIM involves one more complication; when 
matching records are identified during leaf-scan (say, on TS), an 
additional leaf-scan is performed on TR with the largest join 
attribute value among the matching S records. If there are R tuples 
that match this value, another leaf-scan is executed on TS, with the 
largest a value among such records, causing a chain of leaf-scans. 
This chain terminates when no match is found. For arbitrary join 
predicates, the sort-merge join paradigm may no longer work, but 
other optimizations in the proposed algorithms still apply. 
Specifically, using ASM, the DSP transmits all records in both 
relations, identifying those without join partners, so that the client 
can discard unnecessary attributes. The utilization of MB-trees by 
AISM and AIM can reduce communication overhead by 
transmitting all attributes only for tuples with join partners. When 
it is possible to verify by checking a key range that a sequence of 
records in a relation do not have join partners, AISM and AIM 
can further decrease the transmission cost by sending boundary 
records and digests for them. 



6. COMPLEX QUERY AUTHENTICATION 
In practice, users may pose complicated and descriptive queries 
involving joins over multiple relations, as well as other operators 
such as selections and projections. Based on the proposed binary 
algorithms, Section 6.1 develops optimized solutions for 
authenticating multi-way joins, and Section 6.2 discusses general 
selection-projection-join processing. 

6.1 Multi-way join 
For ease of presentation we focus on authenticating the join 
results of 3 relations, and discuss the extension to m-way (m > 3) 
joins whenever necessary. Consider a query QRST = R R.a=S.a S 

S.b=T.b T, where a (b) is the join attribute between R and S (S and 
T) respectively 3 . As in traditional query processing, the DSP 
answers QRST through a plan of binary join operators. Without 
loss of generality we assume that all join attributes (R.a, S.a, S.b, 
T.b) are indexed by MB-trees. Figure 13 depicts an example left-
deep plan for QRST using two binary operators Op1, Op2. Given the 
ADSs on all join attributes, Op1 employs a variant m-AIM of AIM, 
optimized for multi-way joins to be discussed shortly. Since the 
output of Op1 is not indexed, a variant m-AISM of AISM is used 
for Op2. The DSP sends two VOs to the client: VO(RS) generated 
by Op1 to be used for verification of R S, and VO(RST) to 
authenticate the output of Op2. Alternatively, the DSP can answer 
QRST through a right-deep plan that first joins S with T, and then R 
with S T. Similar to conventional multi-way join processing, the 
best choice is computed by dynamic programming, or any query 
optimization method. 

The algorithms m-AISM, m-ASM and m-AIM used in multi-
way join plans differ from their binary counterparts in two aspects. 
First, recall that AISM and ASM transmit all tuples of the un-
indexed relations to the client. In m-AISM and m-ASM, when the 
un-indexed input is the output of another operator, these records 
are not replicated in the VO. In Figure 13, since Op1 sends a 
separate VO to the client (based on which the client can derive 
R S), it is not necessary for Op2 to include a redundant copy. 
Second, a VO produced by an intermediate operator (e.g., VO(RS)) 
contains only the information for verifying and reconstructing 
those partial results that have matching partners in all other 
relations. For example, in Figure 13, VO(RS) authenticates an 
intermediate result rs consisting of components r ∈ R and s ∈ S, if 
and only if there is a tuple t ∈ T that matches s. In other words, 
intermediate joins are evaluated incompletely, and in fact 
minimally, based on the demand of subsequent operators, leading 
to considerable reduction of the VO size. 

R S T

R     S

R    S    T

AIM

AISM

VO(RS) VO(RST)

m-

m-

Op 1

Op 2

 
Figure 13 Authenticated join tree 

                                                                 
3 If there is also a condition between R and T, we model this condition 

as an additional selection on top of the join, and use the techniques 
of Section 6.2 to process the query. 

Figure 14 illustrates an instance of multi-way join using the plan 
of Figure 13. Before executing the plan, the DSP computes the set 
SN of S tuples that do not have a join partner in T. In our example, 
we assume s2 matches t1, and SN = {s1, s3, s4, s5}. Given this 
information, the DSP starts processing R S using m-AIM (i.e., 
Op1). After inserting the root signature of TR and TS to VO(RS), 
the DSP follows the path of TS (i.e., RootS-D-s1) to the first record 
s1, and adds s1 to VO(RS). At this point, the binary AIM algorithm 
would use s1 to probe TR and retrieve matching tuples r2, r3 as 
well as boundary records r1, r4. This, however, is unnecessary 
since SN suggests that s1 does not match any T tuple, meaning that 
all intermediate results generated by joining s1 and R records are 
useless. Therefore, m-AIM (similarly, m-AISM) requires the DSP 
to skip traversing TR whenever it encounters a record in SN, 
eliminating intermediate results not demanded by subsequent 
operators. 

VO(RS):{root signature of TR and TS, s1, s2; hA, r4, r5, r6; s3; s4; s5; hC} 
VO(RST):{root signature of TT, Ω[1], t1, t2; Ω[2]; Ω[3]; Ω[4]; ht3

} 
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Figure 14 Example of m-AIM and m-AISM 

Continuing the example, the DSP skips traversing TR for s1, and 
retrieves the second record s2 ∈ TS, appending it to VO(RS). Since 
s2 ∉ SN, the DSP switches to TR, inserting matching tuple r5, 
boundary record r4, r6, and digest hA of node A to VO(RS). 
Because a matching pair s2-r5 is identified, the DSP performs an 
additional leaf-scan on TS, which appends right boundary record 
s3 to VO(RS). Then, it traverses TS with new target r6.a, adding 
boundary record s4 to VO(RS). Because s4 is in SN, the DSP 
suspends operations on TR and arrives at s5, which is also in SN 
and does not initiate TR traversal. Since s5 is the last record of S, 
the DSP terminates m-AIM by adding digests of all right siblings 
in TR (i.e., hC) to VO(RS). In total, VO(RS) contains only 3 R 
records, compared to all 9 records if the DSP were applying AIM. 
Next the DSP executes Op2. In addition to authenticating the join 
results, VO(RST) must establish that the records in SN for which 
Op1 skipped traversing TR (s1, s4 and s5) indeed have no matching 
T tuples. For this purpose, the input of Op2 contains both the join 
results of Op1 (i.e., tuple r5s2) and s1, s4, s5. Op2 sorts the four 
tuples and traverses TT to produce VO(RST), shown in Figure 14. 

Upon receiving VO(RS), the client rebuilds the root digests of 
TR, TS and verifies them against their respective signatures. It also 
checks that boundary records enclose matching tuples. From 
VO(RS), the client extracts S records whose corresponding TR 
traversals are skipped (i.e., s1, s4, s5), and generates the (partial) 
join result r5s2 of R S. When it later receives VO(RST), it 
prefixes the tuples computed in the previous step (i.e., s1, r5s2, s4, 



s5) and verifies VO(RST) as in AISM. The proofs for soundness 
and completeness of the multi-way algorithms are analogous to 
those of the binary methods. 

The above solution incurs some computational overhead on 
the DSP and the client. Specifically, the DSP has to generate SN, 
and the client must produce some intermediate results. 
Considering that network transmission is usually the bottleneck, 
this tradeoff is desirable. Nevertheless, the additional cost can be 
eliminated when the join condition satisfies the property that a=b, 
i.e., all tables join on the same attribute. This situation is common 
in data warehousing applications, where multiple dimension 
tables are joined with the fact table on the record ID attribute [22] 
rather than through foreign keys. For such queries, we propose 
AST (for authenticated synchronous traversal), which traverses 
the ADSs of indexed relations in a synchronous fashion, avoiding 
unnecessary intermediate results. Figure 15 illustrates AST for R 

R.a=S.a S S.a=T.a T, assuming two MB-trees TR, TT on R.a and 
T.a, respectively (S.a does not have an ADS).  

ΩS[3]Ω
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S S[1]Ω S[2]Ω S[4]

,VO: {root signature of TR and TT, signature of relation S,
bitmap BS = “1000”,  s1-s4 in a verifiable order, 
ΩS[1], hr1, r2, r3, r4; t1, t2; ΩS[2]; ΩS[3]; ΩS[4]; hr5, hr6, hC; ht3} 

 
Figure 15 Example of AST 

Initially, the owner’s signatures for TR, TT and S, as well as the 
tuples s1-s4 ∈ S are appended to the VO. The DSP computes (i) a 
bitmap BS specifying the S tuples with join partners in both R and 
T, which reduces the client’s storage consumption (in a similar 
way to ASM), and (ii) a rank list ΩS signifying the sort order of S 
tuples on attribute a. Assuming the join order4 is (R S) T, 
AST interleaves the computation of R S with that of (R S) T 
to eliminate the generation of unnecessary R S results. 
Specifically, the DSP starts by retrieving the first element ΩS[1] 
from ΩS, appending it to the VO, and traversing TR with ΩS[1] as 
target value. During the traversal, the digest of r1, the join partner 
r3, as well as the boundary records r2 and r4 are inserted into the 
VO. Because a matching pair (ΩS[1], r3) is identified, the DSP 
switches to TT, adding matching tuple t1 and boundary record t2 to 
the VO. After that, the DSP continues joining R and S. Note that 
at this point the DSP is aware that there are no T records with a 
values between t1.a and t2.a. Based on this, the DSP scans ΩS, and 
appends to the VO each tuple s∈S such that s.a ≤ t2.a (without 
trying to find a join partner of s in TR). For instance, although 
ΩS[2], ΩS[3] and ΩS[3] match r4, r8 and r9, respectively, none of 
these results is inserted to the VO. Finally, when ΩS is depleted, 
the DSP completes the traversal of TR and TT by adding to the VO 

                                                                 
4  More sophisticated optimizations such as round-robin [22] and 

dynamic re-ordering [4] are also applicable to AST. 

the digests of all right sibling nodes, i.e., those of r5, r6, node C 
(for TR) and t3 (for TT). The verification algorithm and 
soundness/completeness proofs are similar to those of AISM and 
AIM and omitted for brevity. 

6.2 Selection-projection-join query 
In addition to joins, complex queries often contain selection and 
projection components. For projections, we follow the general 
methodology of [19], i.e., we build a Merkle hash tree MHT(t) on 
each tuple t that indexes all its attributes. The root hash of MHT(t) 
serves as the digest of t in the ADSs. Consider that in Figure 1, 
there is an MHT on each of p1-p5 (c1-c5) indexing their pid, cid 
and quantity (cid, name and city) attributes. Assuming MB-trees 
on both Purchase.cid and Customer.cid, the query Q5 = 
πname,quantity (Purchase cid Customer) is processed as follows. 
The DSP uses AIM to compute the join, with two modifications: 
(i) for each Purchase (Customer) record with matching Customer 
(Purchase) tuples, its cid, quantity (name) attributes, as well as 
the hash of the remaining pid (city) attribute are inserted to the 
VO (instead of the entire tuple); (ii) for each boundary record, its 
cid value and the hash of other attributes are added to the VO. 
Using these values, the client rebuilds the root digest of the MHT 
of each tuple, and subsequently the root hash of the MB-trees. 

Next, we address queries involving both selection and join 
operators. Similar to multi-way joins, we distinguish two cases: (i) 
the selection applies on the join attribute, and (ii) the selection is 
on a different column. For case (i), when ADSs are available on 
the selection/join attribute, the DSP answers the query with a 
single traversal of the ADS, combining AISM (or AIM, AST) 
with the range selection. For example, consider that in the join of 
Figure 5, the user imposes a further selection σa<C where C is a 
constant between r4.a and r5.a. After round 1 of AISM execution, 
the DSP finds that ΩR[2] already violates the range selection, and 
thus it simply inserts ΩR[2] to ΩR[6] directly into the VO without 
traversing TS to identify their matching S tuples. In addition, it 
appends digests of the right siblings of the root-to-leaf path of s4 
to complete the traversal of TS. For case (ii), the selection and join 
operators compete for the use of ADSs. An example is the 
complex query Q4 in Figure 1, which involves a join and two 
selections σ1 = σquantity>100Purchase, σ2 = σcity=“New York”Customer. 
Assuming an ADS is available on each of the 4 attributes (cid, 
quantity in Purchase and cid, city in Customer), an important 
observation is that for a particular relation (e.g., Purchase), only 
one ADS (e.g., either the one on cid or the other on quantity) can 
be utilized to answer the query.  

Figure 16 illustrates three plans for Q4. In Figure 16a, the join 
is able to utilize the ADSs on both Purchase.cid and Customer.cid 
with algorithm AIM, achieving maximal performance. However, 
since its output is not indexed, the DSP must transmit all join 
results to the client, and the latter performs the selections (i.e., σ1 
and σ2) locally. On the other hand, the plan in Figure 16c 
processes σ1  and σ2 with the corresponding ADSs, and feeds their 
(non-indexed) outputs to the join, which must be performed with 
the less efficient ASM algorithm. The plan in Figure 16b lies 
between the other two, in which the join is able to use only one 
ADS. In such situations, the optimal plan depends on the relative 
selectivity and the cost of the operators. Finally, when there are 
selections on top of the join (e.g., plans in Figure 16a and Figure 
16b), a further optimization is to use a variant of AIM (AISM) 
similar to m-AISM (m-AIM), which only evaluates the join 
partially for  records satisfying the subsequent selections.  
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7. EXPERIMENTAL EVALUATION 
We implemented all algorithms using the OpenSSL library [9], 
and executed all experiments on an Intel Core2 Duo 2.13GHz 
CPU. The MB-tree implementation is based on B+-trees with 
4Kbytes page size. Section 7.1 compares the performance of the 
proposed algorithms against AINL and NAI. Section 7.2 evaluates 
multi-way join queries. Our prototype employs SHA1 with a 
digest of 20 bytes as the hash function, and RSA+SHA1 with a 
signature of 128 bytes as the digital signature scheme, both of 
which are widely used in practice [16]. 

7.1 Evaluation of Binary Joins 
We use two synthetic relations R and S, each containing two 
independent attributes a1 and a2. The values of S.a1 are uniformly 
distributed in the range [1,107], whereas R.a1, R.a2 and S.a2 follow 
Gaussian distribution (with mean 5⋅106, 3⋅106 and 7⋅106 
respectively), and share the same variance σ=106. In addition, 
R.a1 is a foreign key that references S.a1, which is the primary key 
of S. We construct an MB-tree on each of the four attributes (R.a1, 
R.a2, S.a1, S.a2), before query processing. We investigate two 
queries: (i) a foreign-key to primary-key join R a1 

S denoted as 
FK, and (ii) an equi-join R a2

S denoted as EQ. In all 
experiments, R is the outer relation and S the inner one. 

We compare the authenticated join algorithms on the 
following metrics: (i) VO size CVO, (ii) total computation 
overhead CClient of the client and (iii) query processing cost CDSP 
of the DSP. In the first set of experiments, we fix the cardinality 
of both R and S to 106 records, and study the impact of the record 
size, which is equal in R and S. In this setting, AINL requires the 
DSP to answer 106 range queries. Table 1 summarizes the AINL 
results for the FK query because its cost is too high to be included 
in the diagrams (the numbers for the EQ query are similar and 
omitted). The most serious drawback of AINL is the enormous 
VO size. In particular, when the tuple size is 32 bytes, AINL 
requires the DSP to transmit 8.9Gbytes to the client, while the 
entire database consumes merely 64Mbytes. This is due to the 
huge number (several hundreds) of hash values that are sent with 
each range query result, which dominate the VO size (note that 
the VO size is almost insensitive to the record size). In addition, 
the computation costs for both the DSP and the client are in the 
order of hundreds of seconds, which are significantly higher than 
those of the proposed methods. 

Table 1 Cost of AINL vs. tuple size 
Tuple size (bytes) 32 64 128 256 512 

CVO  (Gbytes) 8.9 9.0 9.2 9.6 10.3 
CClient (seconds) 205 207 210 214 219 
CDSP  (seconds) 262 271 429 1728 4603 

Figure 17 shows VO size as a function of the tuple length for NAI, 
ASM, AISM and AIM, as well as the theoretically optimal VO 
size, which the total size of tuples from R and S that are part of 

the join results (i.e., those with matching partners in the opposite 
relation). Note that “optimal” has smaller size than that of the join 
pairs because it includes a record once, even if it participates in 
multiple pairs.  
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Figure 17 VO size vs. tuple size 

The VO of all methods increases linearly with the tuple length, 
and is always far below that of AINL. NAI and ASM incur 
similar overhead because they both transmit the entire relations to 
the client. The VO of AISM and AIM depends on the selectivity 
of the join. For the FK dataset, because of the foreign-key / 
primary-key constraint, every tuple in R has a matching partner in 
S. Therefore, any distributed join algorithm (i.e., with or without 
authentication) has to transmit the entire relation of R to the 
client. On the other hand, some tuples of S do not participate in 
the join, and their transmission is avoided by AISM and AIM. For 
the EQ dataset, both R and S contain unmatched records. AIM 
achieves the lowest VO size by excluding such tuples from both 
tables, followed by AISM which eliminates unnecessary 
transmissions in S. The VO of ASM and NAI includes all tuples. 
Note that in terms of absolute values, the network overhead for 
large tuples is quite high, especially for the FK dataset. However, 
this is unavoidable because of the join cardinality. As shown in 
the figure, the VO size of AIM is close to optimal. In practice, 
joining large tables with foreign-key relationship rarely occurs 
without projections or selections, which in effect reduces the tuple 
size, or the cardinality of the relations respectively. 

Figure 18 compares the methods in terms of the client’s 
workload. Our methods outperform NAI by more than an order of 
magnitude (note the logarithmic scale for the EQ dataset). 
Comparing the proposed algorithms, AIM is the clear winner 
because the client computes the digests of the two MB-trees’ root 
nodes, and verifies them against their respective signatures in 
main memory. ASM and AISM, on the other hand, require the 
client to buffer records on the disk, and retrieve them in a random 
order. Subsequently, their cost grows much faster than AIM with 
the tuple size. Note that ASM has significantly better performance 
on EQ than FK. Recall that for tuples of R without join partners, 
the client stores and accesses only the join attribute. Since the join 
result of EQ contains only 31⋅103 tuples, a large portion of R is 
pruned reducing the client’s overhead. 
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Figure 18 Query cost for the client vs. tuple size 



Figure 19 studies the effect of tuple length on the query 
processing time of the DSP. Since in NAI the DSP does not 
perform any computations, it is excluded from the diagrams. 
Comparing Figure 18 and Figure 19, most of the workload is 
performed by the DSP, which is desirable given that in practice 
the DSP has much more powerful hardware than the client. Again, 
the costs of all methods are well below that of AINL. ASM 
always requires the DSP to sort all tuples of the two relations on 
the join attributes, and its overhead is similar in both charts. AIM 
incurs the lowest cost since it does not perform expensive sorting 
operations. It is cheaper for the EQ dataset because, due to the 
high selectivity, the ADSs prune the majority of records. The 
overhead of AISM always lies between the other two. 
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Figure 19 Query cost for the DSP vs. tuple size 

Next we fix the record size to 128 bytes, |R| to 106, and vary the 
cardinality of S from |R|/10 to 5⋅|R|. This has a similar effect as 
applying an additional selection (with variable selectivity) on the 
inner table. The results of AINL on FK are summarized in Table 
2. Because AINL answers |R| range queries, each of which 
traverses the MB-tree in S, its cost grows logarithmically as |S| 
increases. In fact, as we discuss in Section 2.2, the situation where 
the outer relation (R) is much smaller than the inner one (S) is 
most favorable for AINL. Nevertheless, in all settings, AINL 
incurs significantly higher overhead than other algorithms on all 
metrics, and is excluded from further discussion. 

Table 2 Cost of AINL vs. |S|/|R| 
|R| / |S| 0.1 0.5 1 2 5 

CVO  (Gbytes) 7.8 8.9 9.2 9.5 9.7 
CClient (seconds) 196 205 210 218 223 
CDSP (seconds) 296 311 429 540 647 

Figure 20 displays the VO sizes for NAI, ASM, AISM and AIM. 
In case of FK, the entire relation of R has to be included in the VO 
due to the foreign-key constraint, which contributes a constant 
overhead to all methods. For relation S, NAI and ASM transmit 
all its tuples to the client, while AISM and AIM utilize the ADS 
to prune most unmatched ones. Accordingly, the VO size of the 
former two increases linearly with |S|, while that of the latter two 
scales much better. For the EQ dataset, the performance gap 
between AISM/AIM and NAI/ASM is wider (up to an order of 
magnitude) due to higher selectivity of the join. Similar to Figure 
17, the VO size of AIM is close to the optimal one. 

Figure 21 evaluates the effect of |S|/|R| on the running time of 
the client. The cost of both ASM and NAI increases linearly with 
|S|, with the former always well below the latter. AISM and AIM 
incur even lower workload for the client, and exhibit better 
scalability with |S|. AIM is always the best choice since it only 
involves main memory (hash and verification) operations. Finally, 
Figure 22 illustrates the processing cost at the DSP as a function 
of |S|/|R| (excluding NAI since it does not involve DSP 

computations). The proposed algorithms successfully shift most 
of the computation to the DSP. The ratio |S|/|R| has similar impact 
on the overhead for both the DSP and the client.  
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Figure 20 VO size vs. |S|/|R| 
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Figure 21 Query cost the client vs. |S|/|R| 
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Figure 22 Query cost for the DSP vs. |S|/|R| 

Summarizing, AISM, AIM and ASM outperform AINL by orders 
of magnitude on every performance metric. Compared to NAI, the 
proposed methods incur significantly lower cost for the client. In 
addition, AISM and AIM utilize ADSs to considerably reduce the 
VO size. Overall, AIM is the most efficient solution on all aspects, 
followed by AISM, and then ASM. The performance gap between 
different algorithms widens with the join selectivity (as in the EQ 
dataset). Finally, we discuss the overhead of authentication with 
respect to conventional algorithms. 
• Regarding the communication overhead, our indexed 

algorithms, and especially AIM, are usually close to 
“optimal” (i.e., just transmitting the records with matching 
partners), as shown in Figures 17 and 20. On the other hand, 
ASM can be significantly more expensive, particularly for 
selective joins, given that both the base tables must be 
transmitted to the client because there is no alternative way 
of verification. 

• Regarding the server processing cost, recall that in NAI the 
server transmits the complete base tables. The client 
essentially performs a non-authenticated join (after verifying 
the tables) using block nested loops. Therefore, the client 
running time in Figures 18 and 21 corresponds to the cost of 
a non-authenticated join at the server. By comparing with 
Figures 19 and 22 (running time for the server), the proposed 
algorithms have similar costs to NAI, and in some cases, 



AISM and (especially) AIM may outperform it because they 
utilize indexes on the join attribute. 

• The only party that has to pay a significant price for 
authentication is the client, which performs local 
computations (Figures 18 and 21), whereas in non-
authenticated joins it simply receives results. This is a fair 
trade-off since the client can decide if it is worthwhile to 
dedicate resources for ensuring result correctness. For 
instance, a client may require authenticated results only for 
important queries.  

7.2 Evaluation of Multi-way Joins 
We generate three relations R, S and T, involving attributes R.a1, 
R.a2, S.a1, S.a2, S.b1, S.b2, T.b1, T.b2. Attributes R.a1 and T.b1 are 
uniformly distributed in [1,107]. S.a1 and S.b1 follow Gaussian 
distribution with mean value 5⋅106 and variance 106. R.a2, S.a2, 
S.b2 and T.b2 follow Gaussian distribution with variance 106 and 
mean values 4⋅106 (for R.a2, S.b2) and 7⋅106 (S.a2, T.b2). In 
addition, R.a1 and T.b1 are the primary keys of tables R and T, and 
S.a1, S.b1 are foreign key referencing R.a1 and T.b1, respectively. 
An MB-tree is constructed for each attribute. We evaluate two 
queries: (i) R a1 

S b1
T, which is a primary-key to foreign-key 

join, denoted as FK, and (ii) R a2 
S b1

T, denoted as EQ. For all 
settings, the join plan is always left-deep, i.e., (R S) T. We 
compare NAI against three different combinations of fully 
optimized join algorithms, namely m-ASM+m-ASM, m-
AISM+m-AISM, and m-AIM+m-AISM, where X+Y means that 
the first operator joining R with S adopts algorithm X and the 
second one uses Y. Note that “m-AIM+m-AIM” is not applicable 
since the results of R S, which is not indexed, feed to the second 
join operator. AINL is excluded due to its prohibitive cost. 

We first fix the cardinality of R, S and T to 5⋅105, and vary the 
record length. Figures 23-25 demonstrate the VO size, verification 
overhead at the client and the processing cost at the DSP, 
respectively. In general, the efficiency of a multi-way join method 
depends on its underlying binary join algorithms, which means 
that (i) all methods outperform NAI in terms of the client’s 
workload, and (ii) the two solutions utilizing ADSs, i.e., m-
AIM+m-AISM and m-AISM+m-AISM achieve considerable 
savings in terms of VO size. m-AIM+m-AISM has the best overall 
performance, followed by m-AISM+m-AISM, and finally m-
ASM+m-ASM. A major difference between the results for multi-
way and binary joins regards the processing cost at the client. 
Specifically, in binary AIM client verification occurs entirely in 
main memory and thus it is very fast in both datasets. For multi-
way joins, the client has to use disk accesses for reading and 
writing the intermediate results of R S. Consequently, in the FK 
dataset, the advantage of m-AIM+m-AISM over m-AISM+m-
AISM is limited since the number of these intermediate results is 
large due to the foreign-key constraint. 
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Finally, we fix the record size to 128 bytes, |S| to 5⋅105, and vary 
the cardinality of |R| and |T| maintaining |T|=|R|. Figures 26-28 
display the results for the VO size, query processing cost and 
verification overhead, respectively. Once again, the proposed 
methods significantly alleviate the burden of the client compared 
to NAI, and the use of ADSs leads to considerable VO reduction. 
As the sizes of |R| and |T| grow, the impact of their MB-trees 
becomes more pronounced, widening the performance gap among 
different solutions.  
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8. CONCLUSION 
This paper constitutes the first comprehensive work on 
authenticated join processing in outsourced databases. Compared 
to range queries, authenticated joins are inherently more complex 
and expensive. We propose three algorithms based on the sort-
merge paradigm, AISM, AIM and ASM, which cover the entire 
spectrum of index availability and possible query plans. We show 
through an extensive experimental evaluation that our techniques 
outperform two benchmark authenticated join algorithms on all 
metrics, and are truly effective in terms of minimizing the 
transmission cost as well as the client’s workload. Finally, we 
deal with complex queries involving joins over multiple tables 
and, possibly, selections and projections.  

An interesting direction for future work concerns the 
development of authenticated join algorithm based on other (than 
sort-merge) paradigms. For equi-join queries, an alternative of 
ASM can be based on the hash join. Specifically, for query 
R R.a=S.aS, the DSP first transmits all records of R to the client. 
The client builds a hash table of them. Next, the DSP sends S 
records one-by-one, and the client probes the hash table to 
generate join results for each S record received. The optimization 
of marking records without join partners also applies to this 
method. This solution incurs less computational overhead for the 
DSP (i.e., it does not need to sort S) and less memory 
consumption of the client (i.e. it does not need to store S), but the 
CPU overhead for the client is higher. Moreover, it requires 
individual transmission for the records (of S) instead of a single 
VO in ASM.   
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