
Authenticated Join Processing in Outsourced Databases

Yin Yang1 Dimitris Papadias1 Stavros Papadopoulos1 Panos Kalnis2

1Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

{yini, dimitris, stavros}@cse.ust.hk

2 Division of Math. and Computer Sciences and Engineering
King Abdullah University of Science and Technology

Saudi Arabia

panos.kalnis@kaust.edu.sa

ABSTRACT
Database outsourcing requires that a query server constructs a
proof of result correctness, which can be verified by the client
using the data owner’s signature. Previous authentication
techniques deal with range queries on a single relation using an
authenticated data structure (ADS). On the other hand,
authenticated join processing is inherently more complex than
ranges since only the base relations (but not their combination)
are signed by the owner. In this paper, we present three novel join
algorithms depending on the ADS availability: (i) Authenticated
Indexed Sort Merge Join (AISM), which utilizes a single ADS on
the join attribute, (ii) Authenticated Index Merge Join (AIM) that
requires an ADS (on the join attribute) for both relations, and (iii)
Authenticated Sort Merge Join (ASM), which does not rely on
any ADS. We experimentally demonstrate that the proposed
methods outperform two benchmark algorithms, often by several
orders of magnitude, on all performance metrics, and effectively
shift the workload to the outsourcing service. Finally, we extend
our techniques to complex queries that combine multi-way joins
with selections and projections.

Categories and Subject Descriptors
H.2 DATABASE MANAGEMENT, H.2.0 General - Security,
integrity, and protection, H.2.4 Systems - Query processing

General Terms
Algorithms, Experimentation, Security.

Keywords
Database Outsourcing, Join Algorithms, Query Authentication.

1. INTRODUCTION
Database outsourcing [8] is applicable in numerous domains and
settings including edge computing [20], peer-to-peer networks
[10], database caching [14], etc. In this setting, a data owner
outsources database functionality to a third-party database service
provider (DSP) that maintains the data in a DBMS, and answers

queries to clients. Authenticated query processing enables the
DSP to prove the correctness of the results. Existing methods are
based on the secret/public key framework. Specifically, the DSP
indexes the signed data using an authenticated data structure
(ADS). During query processing, it traverses the ADS and returns
a verification object (VO) that includes the actual result and
additional verification information. The VO is transmitted to the
client, which can establish soundness and completeness using the
public key of the owner. Soundness means that every record in
the result set is present in the owner’s database and not altered.
Completeness means that all valid results are included.

In our examples, we use the database and queries of Figure 1.
Given Q0 = σquantity>100Purchase, the correct result set is RS =
{<p4, c1, 200>, <p5, c2, 500>}. RS1 = {<p4, c1, 200>, <p5, c2,
500>, <p6, c2, 600>} and RS2 = {<p4, c1, 200>, <p'5, c2, 555>} are
not sound because they either contain fake (p6 in RS1), or altered
(p'5 in RS2) records. RS3 = {<p4, c1, 200>} is not complete
because p5 is missing. Besides achieving soundness and
completeness, authenticated query processing methods should
minimize (i) the VO size, which dominates the communication
overhead between the client and the DSP, (ii) the verification cost
at the client, and (iii) the query processing time at the DSP. In
most applications, (i) and (ii) are more important goals than (iii),
since the client usually has less computational power and
bandwidth compared to the DSP.

Purchase Customer
pid cid quantity cid name city
p1 c1 20 c1 Tom New York
p2 c3 50 c2 Brian London
p3 c2 80 c3 Susan Tokyo
p4 c1 200 c4 Jane New York
p5 c2 500 c5 Carl London

Q0 = σquantity>100Purchase

Q1 = Purchase cidCustomer

Q2 = (σquantity>100Purchase) cidCustomer

Q3 = (σquantity>100Purchase) cid(σcity=“New York”Customer)
Figure 1 Running Example

Existing solutions focus on single-relation ranges. On the other
hand, authenticated join processing is inherently more complex
than ranges because only the base relations, and not their
combinations, are signed by the owner. As it will become clear
later, the client must always perform some computations to verify,
as well as, generate part of the result locally. Previous work on
this intricate problem is scarce and has severe shortcomings,
defeating the goal of data outsourcing. Motivated by this, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, RI, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

propose three novel authenticated join algorithms depending on
the ADS availability: (i) Authenticated Indexed Sort Merge Join
(AISM), which utilizes a single ADS in one of the base relations,
(ii) Authenticated Index Merge Join (AIM) that requires an ADS
for both relations, and (iii) Authenticated Sort Merge Join (ASM),
which does not rely on any ADS. Going one step further, we
describe the adaptation of our methods to authentication of
complex queries involving joins over multiple tables, possibly
combined with selections and projections. In particular, we show
that for such queries, the best execution plan may involve not
only AIM, but also AISM and ASM, in the presence of all
required ADSs.

The rest of the paper is organized as follows. Section 2
surveys related work on authenticated query processing. Sections
3, 4 and 5 describe AISM, AIM and ASM, respectively. Section 6
extends these methods to complex query authentication. Section 7
contains an extensive experimental evaluation, and Section 8
concludes the paper.

2. RELATED WORK
Section 2.1 overviews authentication techniques for range queries.
Section 2.2 discusses authenticated join processing. Before we
proceed, we provide some basic cryptographic background. A
one-way, collision-resistant hash function H takes as input a
message m of arbitrary length and produces a digest of fixed
length. H has two properties: (i) computing m from H(m) is
intractable, and (ii) the probability of two different messages to
have the same digest is very low. A public key digital signature
scheme involves the generation of a secret (sk) and a public (pk)
key: sk is known only to the signer, whereas pk is published. To
produce signature s of a message m, the signer applies sk to the
digest of m. Given s, m and pk, the verifier can certify that m has
not been falsified (integrity) and that m indeed originates from the
party that signs it (authenticity). Note that since H is not
commutative, a signature s on a set of records S can only certify a
fixed order of S called the verifiable order. For instance, assume
that a message m contains the concatenation s1|s2|s3 of three
records. A signature s(m) cannot be used to certify s3|s2|s1, or any
order other than s1|s2|s3.

2.1 Authenticated range query processing
Authenticated range query processing was first studied in
computer security community. [6] proposes a method that sorts
the records on the query attribute and indexes them by a Merkle
Hash Tree (MHT) [17]. The MHT is a binary tree that provides
the foundation for a broad class of ADSs, e.g., [6], [15], [12].
Every leaf node contains the digest of a record. The tree is
constructed bottom-up; each internal node stores a hash value
computed on the concatenation of the children digests. The data
owner signs the root using the secret key. Given a range query,
the DSP first expands it to include two boundary records, and
processes it using the MHT. The client can verify soundness by
exploiting the collision-resistance property of the hash function.
Furthermore, the boundary records ensure completeness, i.e., that
no result is missing at the query endpoints. [15] extends the
concepts of the MHT to Directed Acyclic Graphs, including
dictionaries, tries, and range search trees. Dynamic versions of the
MHT for outsourced data streams are discussed in [13], [21].

The first disk-based ADS for range query processing [20]
guarantees soundness, but not completeness. A subsequent
signature chaining approach [19][18] ensures both soundness and

completeness. Currently, the state-of-the-art ADS is the Merkle B-
tree (MB-tree) [12], which combines the MHT with the B+-tree,
i.e., it can be thought of as a MHT where the node fanout is
determined by the block size. Figure 2 illustrates query processing
using the MB-tree. Given a range query, the DSP traverses the
MB-tree top-down until it finds the first record (let si) in the
range. During the traversal, the following items are inserted into
the verification object VO: (i) the digests of the left siblings of N1
in the root, (ii) the digests of the left siblings of N3 in N1, (iii) the
(boundary) record si-1 preceding si, and (iv) the digests of the left
siblings of si-1 in N3. Next, the DSP retrieves the query result si,
si+1,.., sj by following the pointers between leaf nodes. The
(boundary) record sj+1 is added to the VO. Finally, a second
traversal from the root to sj+1 inserts all the digests on the right of
the path. In Figure 2, the digests contained in the VO are shaded.
Given si-1, si,.., sj, sj+1 and the digests, the client can re-compute
the digest of the root and verify it against the owner’s signature.
The EMB-tree [12] reduces the VO size by embedding a binary
MHT inside each internal node of the MB-tree. The MR-tree [25]
applies the concept of the MHT to R-trees for authentication of
multi-dimensional ranges on outsourced spatial data.

s i s jsj-1s i+1

N3

s i-1 ... j+1s

......
N4

......

N1 N2

...... ...

boundary records

root

hash values
by left traversal

hash values
by right traversal

N3
pointer to
right sibling

N4

N1 N2

Figure 2 Example of Merkle B-tree

Atallah et al. [3] introduce a theoretical approach with improved
asymptotic bounds for the VO size. To eliminate the threat of
revealing sensitive information to unauthorized clients, [11]
proposes an alternative scheme that avoids boundary records and
hash values in the VO. Several papers investigate outsourcing in
applications with semi-trusted DSP (e.g., [23], [7]) or clients (e.g.,
[24]), in which case authentication can be accomplished without
an ADS. Specifically, [23] considers that the DSP’s only
motivation to cheat is to save resources, and proposes a solution
in which the DSP proves that it has performed the necessary
computations to correctly answer the queries. [7] presents MHT-
based algorithms for verifying the correctness of storage
operations assuming that the database software at the DSP is
trusted, but not its physical storage. In [24], the owner introduces
fake tuples to the outsourced database, which are known to the
clients but not the DSP. A client can thus establish soundness and
completeness by analyzing the fake records in the result. These
solutions are not applicable to our model since we do not rely on
any degree of trust for the DSP or the clients. Finally, several
papers ([8],[5],[1]) investigate privacy preservation of outsourced
data. GhostDB [2] answers queries with both an untrusted server
and a secure chip embedded in a USB key. These issues are
orthogonal to join authentication and the proposed methods.

2.2 Authenticated join processing
[20] proposes the pre-computation and storage of all possible join

results in materialized views. Each view is treated as a
conventional table, meaning that an ADS can be built on it to
support more complex queries. For example, the result of Q1 =
Purchase cid Customer can be materialized in a view V1. If an
ADS is maintained on V1.quantity, the DSP can answer Q2 =
(σquantity>100 Purchase) cidCustomer by transforming it to
σquantity>100V1. This approach imposes a significant overhead for
the owner to construct and update a large number of materialized
views. Moreover, in most practical applications it is infeasible to
determine all possible joins in advance. The only existing
algorithm for on-line join processing is discussed in [19] and [12]
as an extension of range authentication. We refer to this algorithm
as Authenticated Index Nested Loop (AINL) since it is based on
the index nested loop paradigm, and discuss it in detail below.

Let R and S be the two relations to be joined on a common
attribute a, and consider that there is an ADS TS (i.e., MB-tree) on
S.a. R constitutes the outer and S the inner relation. Figure 3
illustrates the pseudo-code of AINL assuming a join R R.a=S.a S.
Initially, the signature of R, the cardinality |R| of R and the
signature of TS are inserted into the VO. Then, for each record r ∈
R in the verifiable order, the DSP appends r to the VO and
retrieves the matching records in S, by processing a range query
using TS (we use the term range to also denote equality
conditions). As discussed in Section 2.1 (see Figure 2), the output
of this query includes (i) the join matches of r, (ii) boundary
records, and (iii) digests obtained during TS traversal. These
values are inserted into the VO, together with a separator “;” that
signifies the end of each range query (hereafter, denoted as a
round). The processing terminates when all records of R are
exhausted, and the DSP transmits the VO to the client.

AINL (Relation R, MBTree TS, VO) // DSP
// The join query is R R.a=S.a S
1. Append to VO the signature of R, |R|, the root signature of TS
2. For each r ∈ R // in the verifiable order
3. Append r to VO
4. Call RangeSearch(TS, r.a, VO) // process range query on TS
5. Append a separator “;” to VO

Figure 3 Algorithm AINL

The client can reconstruct and authenticate the join result using
the algorithm of Figure 4. Specifically, it can establish the
correctness of R based on the owner’s signature. Furthermore, for
each record r ∈ R, it can verify RangeSearch(TS, r.a, VO) using
the mechanisms of the MB-tree. Note that since the VO of the
range query contains some additional (boundary) records, the
actual matching tuples of r are extracted in line 6.

Verify_AINL (VO) // Client
1. Read the signature of R, |R|, the root signature of TS from VO
2. For i = 1 To |R|
3. Read tuple r from VO
4. Read until reaching the separator “;”
5. Verify that the data read in line 4 are the VO for
 RangeSearch(TS, r.a, VO)
6. Extract each matching pair of tuples s of r read in line 4,

generate a join result combining r and s
7. Verify the signature of R

Figure 4 Algorithm Verify_AINL

For instance, consider Q1 = Purchase cidCustomer in Figure 1,
with Purchase as the outer relation. Initially, the VO contains the
signature of Purchase, its cardinality (5) and the signature of
TCustomer. Let the verifiable order of Purchase be (p1, p2, p3, p4,
p5)

1. The DSP performs a range query on TCustomer to find the
matching customer c1 of p1. Consequently it adds to the VO: p1,
c1, c2 (boundary record for c1) and the digests of TCustomer needed
to verify the correctness of the range. The separator “;” denotes
the end of the first round. Similarly, the second round appends to
the VO: p2, c3, boundary records c2 and c4, and the necessary
digests. In total, there are 5 rounds, each of which corresponds to
a tuple in Purchase. The VO contains 5 Purchase tuples and 13
records from Customer.

Let |R|, |S|, |RS| be the cardinality of R, S and the join result,
respectively. R R.a=S.a S necessitates the transmission of |R|
records of R and 2|R|+|RS| tuples of S (the matching tuples plus 2
boundaries records per R tuple), in addition to a large number of
digests. Furthermore, AINL incurs high computational overhead
for both the DSP (to process 5 range queries in the example) and
the client (to verify them). This motivates the naive alternative
(referred to as NAI) of executing the join exclusively at the client
side. Specifically, according to NAI, the DSP simply transmits the
base relations along with their signatures to the client, which
verifies them and performs the join locally. The VO size (|R| + |S|
tuples) of NAI is usually much lower than that of AINL, except
for the case where |R| << |S| and the join is highly selective.
Furthermore, unless |R| is very small, the verification of |R| range
queries in AINL burdens the client more than joining the two
tables directly. Although it is often better than AINL, NAI is far
from an ideal solution. First, the query is processed entirely by the
client, which contradicts the purpose of data outsourcing. Second,
the DSP transmits all records of the base relations, while the
client only needs those with matching partners. Finally, NAI
cannot take advantage of the existence of ADS on the data, or
selection conditions on the query. Next, we propose algorithms
that overcome these shortcomings of AINL and NAI. For ease of
presentation, we first focus on binary equi-joins, and defer the
discussion on other join conditions and complex queries for later
sections.

3. AISM
Similar to AINL, our first algorithm AISM (for Authenticated
Indexed Sort-Merge join) utilizes an ADS for the inner relation.
We demonstrate the basic idea of AISM using Q1 = Purchase cid

Customer, and assuming that the DSP maintains an MB-tree
TCustomer on Customer.cid. In a pre-processing step, the DSP sorts
the outer table Purchase on the join attribute cid, and generates
the rank list ΩPurchase. The purpose of the rank list is to inform the
client on how to restore the verifiable order of the records
(required for signature verification). For instance, assuming the
verifiable order p1, p2, p3, p4, p5, we have ΩPurchase = (1, 4, 3, 5, 2),
meaning that p1 has the smallest value (c1) on cid, p4 has the
second smallest value, and so on. Note that unlike conventional
sort-merge join, in AISM the sole purpose of sorting the outer
relation is to generate the corresponding rank list. Thus, it suffices
to sort only the join attribute values, which can often be
performed in main memory. The DSP transmits all tuples of the

1 For simplicity, we refer to a tuple by its id, i.e., p1 signifies the first

record of Purchase.

 VO: signature of R, root
signature of TS, r1-r6 in their
verifiable order

Round 1 ΩR[1], h1, s2, s3, s4;
Round 2 ΩR[2], h5, h6, hC, s10, s11, s12;
Round 3 ΩR[3];
Round 4 ΩR[4];
Round 5 ΩR[5], h13, h14, s15;

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 s14 s15

A B C D E

F G

RootS

R

S

R.a (S.a)

R[1]

s11

R[2]
R[3]

R[4]Ω
Ω
Ω Ω R[5]Ω R[6]Ω Round 6 ΩR[6];

Figure 5 Example of AISM

outer relation (Purchase) to the client in their verifiable order,
along with the owner’s signature and ΩPurchase. Next, the DSP
turns to the inner relation Customer. Observe from Figure 1 that
all purchases involve clients c1, c2 and c3. Therefore, it is possible
to find all matching customers for these purchases by a single
range Q = σc1≤cid≤c3

Customer on TCustomer. Due to the nature of the
MB-tree, the results of Q (i.e., customers with cid c1, c2, and c3)
are sorted on cid and can be authenticated. Meanwhile, the rank
list ΩPurchase explicitly specifies the order of purchases when
sorted on cid. Therefore, if the client obtains Purchase, ΩPurchase
and the results of Q = σc1≤cid≤c3

Customer, it can generate and
authenticate the result of Purchase cidCustomer, by merging the
output of Q with ΩPurchase.

In general, given a query R R.a=S.aS and an MB-tree TS on
S.a, the DSP processes a single multi-range Q with one traversal
of TS, and merges its VO, denoted as VO(Q), with the rank list ΩR.
ΩR[i]=j signifies that the i-th element of ΩR corresponds to the j-th
record in the verifiable order. For ease of presentation, we also
use ΩR[i] to denote this record. We illustrate the processing of Q
using the relations of Figure 5, where |S|=15 and |R|=6. The join
result contains three pairs (ΩR[1],s3), (ΩR[2],s11) and (ΩR[3],s11).
Initially, the DSP inserts into the VO: (i) the signature of R, (ii)
the root signature of TS, and (iii) all records of R in the verifiable
order (which can be arbitrary). Then, it sorts R according to the
join attribute a, breaking ties by the original (i.e., verifiable) order
of R, and generates the rank list ΩR. For each ΩR[i], the DSP first
inserts it in the VO, and performs two operations on TS, which we
call index-traversal and leaf-scan. Index-traversal traverses TS to
the leaf node that corresponds to the left boundary record of ΩR[i].
In the example of Figure 5, the DSP first inserts ΩR[1] in the VO,
and descends TS until node A, whose second entry corresponds to
s2, the left boundary of ΩR[1]. The digests of all left siblings (h1)
along the path (Root-F-A) are appended to the VO.

The leaf-scan starts from a leaf entry and follows the
successor pointers, until reaching the right boundary record.
During this step, all encountered tuples are inserted into the VO.
Continuing the example, the DSP appends to the VO s2, s3, s4
(right boundary of ΩR[1]) and a separator “;” signifying the end of
the first round. The DSP proceeds to the next round, and inserts
ΩR[2] into the VO. Index-traversal starts from the current position
(first entry of B), ascends the tree until the root, and then descends
to node D, which contains the left boundary s10 of ΩR[2]. The
digest (h5, h6, hC) of each skipped child is inserted into the VO.
Leaf-scan adds s10, the matching tuple s11 of ΩR[2], and s12 (i.e.,
right boundary) to the VO.

At the beginning of the third round, the DSP appends ΩR[3] to
the VO, which has the same join attribute value as ΩR[2]. Index-
traversal discovers that the left boundary s10 is before the current
position s12. An important principle of AISM is that the DSP

never traverses the tree backwards, and index-traversal is skipped.
Similarly, because the right boundary s12 has also been found,
leaf-scan is also omitted, and the third round terminates. For the
same reason, the fourth round simply appends ΩR[4] to the VO. At
the fifth round, index-traversal reaches s15, appending h13, h14 to
the VO. Since s15 is already the last record in S, leaf-scan inserts
s15, and the sixth round is skipped. Figure 6 illustrates AISM at
the DSP side. We omit the pseudo-code for index-traversal and
leaf-scan since their functionality is clear from the examples.

AISM (Relation R, MBTree TS, VO) // DSP
// The join query is R R.a=S.a S
1. Append to the VO the signature of R, |R|, the root signature of TS,

and all records of R in a verifiable order
2. Sort R to generate the rank list ΩR
3. Initialize n = TS.Root
4. For i = 1 To |R|
5. Append ΩR[i] to VO
6. Call IndexTraversal(n, R[ΩR[i]].a, VO)
7. Call LeafScan(n, R[ΩR[i]].a, VO)
8. Append a separator “;” to VO
9. Call IndexTraversal(n,+∞,VO)//to complete the traversal of TS

Figure 6 Algorithm AISM

Figure 7 describes the verification process, which includes the
actual result extraction from the VO. Specifically, the client
performs a single scan of the VO to (i) validate the signature of R,
(ii) establish the correctness of ΩR, (iii) reconstruct the root hash
of TS and match it against the signature, (iv) verify the results for
each ΩR[i], and generate join output. Operation (i) is trivial since
R is received in the verifiable order (line 2). In operation (ii), the
client checks that |ΩR| = |R|, and for each pair of subsequent
elements in ΩR, ΩR[i].a ≤ ΩR[i+1].a. Moreover, if ΩR[i].a =
ΩR[i+1].a, the client checks that ΩR[i] < ΩR[i+1] (lines 5-7). For
operation (iii), the client uses the records and digests of S to
derive2 the digest hRoot at the root of TS bottom-up (line 11). In the
above example, the VO contains h1, h5, h6, hC, h13, h14. The client
computes h2, h3, h4, h10, h11, h12, h15 by applying H on the
corresponding records. Then, it obtains hA (using h1-h3), hB (using
h4-h6), hD (using h10-h12), hE (using h13-h15), hF (using hA-hC), hG
(using hD-hE), and finally hRoot

 (using hF-hG), which is matched
against the signature of TS. Operation (iv) corresponds to range
query verification; i.e., the client ensures, for each r ∈ R, that the
boundary records enclose the matching tuples and only matching
tuples, which are extracted to generate join results (line 10).

2 When the tree is not full, the DSP must put additional boundary

tokens in the VO to inform the client about the tree structure [12].

Verify_AISM (VO) // Client
1. Read the signature of R, |R|, the root signature of TS, and all

records of R from VO
2. Verify the signature of R
3. Initialize integer j=0 and record r so that r.a = –∞
4. For i = 1 To |R|
5. Set j′ = j and r′ = r
6. Read integer j from VO, set r = R[j]
7. Check the condition (r.a>r′.a) ∨ (r.a=r′.a ∧ j > j′)
8. Read from VO until reaching the separator “;”
9. Verify that (i) the previous step only reads S tuples and digests,

(ii) the S tuples either match R or are boundary records, and
(iii) no digest is enclosed by boundary records

10. Generate join results of r and its matching S records
11. Use the values read in line 8 to incrementally compute hRoot
12. Read digests from VO until it is empty, use them to incrementally

compute hRoot
13. Verify hRoot against the root signature of TS

Figure 7 Algorithm Verify_AISM

Proof of soundness: Let rs be an incorrect answer. Then, either (i)
r does not match s, or (ii) r or s are bogus/altered. The first case
cannot happen because the client generates matching pairs by
itself. For the second case, a fake r tuple is detected by the
authentication information of R. An incorrect s tuple leads to the
wrong hRoot, failing the verification against the signature of TS. �
Proof of completeness: Let rs be a valid result of the query missed
by the client. Then either (i) the client does not receive r or s, or
(ii) the client does not identify r and s as a matching pair. For case
(i), if r is missing, the verification against the authentication
information of R fails. On the other hand, if s is absent from the
VO, for the client to correctly construct hRoot, the VO must contain
the digest h of s or of a node covering s. For instance, if s3 were
omitted, then the VO of Figure 5 should include h3. The client,
however, will detect either that a digest is enclosed by two
boundary records, or that a boundary record is missing (line 9 of
Verify_AISM). For case (ii), note that the client has all relevant R
(and S) tuples sorted on the join attribute a. Specifically, the order
of R records is established by ΩR (verified by the client), while the
order of S records is given by ADS TS and the no-go-back policy
during the tree traversal. Since the client performs the merging by
itself, it finds all matching pairs of R and S, eliminating the
possibility of missing rs. �

AISM avoids the repeated computations and redundant
transmissions incurred by AINL. Specifically, the DSP visits a

node in TS at most once, rather than up to |R| times in the case of
AINL. Meanwhile, using AISM, the client never repeats the
computation of any hash value, and each element of TS (e.g.,
digest or S tuple) is included in the VO at most once. Comparing
AISM with NAI (described in Section 2.2), the former avoids the
transmission of S records that do not have join partners. In
addition, whereas the client performs the entire join processing in
NAI, AISM shifts most of the workload to the DSP (e.g., sorting
R, traversing TS), leaving only inexpensive operations (e.g.,
rebuilding hRoot, merging the sorted relations) to the client. An
interesting observation is that AISM is notably more efficient for
the indexed relation (S) than the non-indexed one (R), suggesting
that the performance can be improved by utilizing a second ADS
on R. This motivates the next algorithm.

4. AIM
Authenticated Index Merge join (AIM) utilizes ADSs on the join
attribute in both input relations. Figure 8 illustrates two MB-trees
TS on S.a and TR on R.a for the datasets of Figure 5. Initially, the
DSP inserts the root signatures of TS and TR into the VO. It then
chooses one tree, say TR, reaches its first leaf node (H), finds the
first record (r1), and inserts it into the VO. With r1.a as target, the
DSP performs index-traversal and leaf-scan on TS, to retrieve
matching and boundary records. Index-traversal visits the path
from RootS to the first boundary s2 of r1. The digest (hs1

) of the
left sibling entry is appended to the VO. In the subsequent leaf-
scan, s2 , s3 and s4 are also added. Note that a match (i.e., s3) for r1
is found. Every time AIM identifies a result, it performs another
leaf-scan on TR. Continuing the example, the DSP appends a
separator “;” to the VO, performs the leaf-scan on TR, with target
r1.a = s3.a, leading to the insertion of r2 (right boundary) to the
VO. This additional operation retrieves all R tuples with identical
join attribute as r1, and is vital to the correctness of AIM.

The second round starts at the current positions at TS (s4) and
TR (r2). The DSP swaps the roles of TR and TS, and performs
index-traversal and leaf-scan on TR with s4.a as target value. Since
both the left (i.e., r1) and right (r2) boundary records are already
present in the VO, neither operation has any effect. There is no
extra leaf-scan on the opposite relation (as in Round 1) because s4
has no matching partner. In the third round, the DSP switches
back to TS, and performs index-traversal with target value r2.a,
ascending to RootS and then descending to s10, the left boundary
for r2. The digests of the skipped entries in nodes B and F, i.e.,
hs5

, hs6
, hC, are inserted into the VO. The subsequent leaf-scan

VO: root signature of TS,
root signature of TR, r1

Round 1 hs1
, s2, s3, s4; r2;

Round 2 ;
Round 3 hs5

, hs6
, hC, s10, s11, s12; r3,

r4;
Round 4 r5;
Round 5 hs13

, hs14
, s15;

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 s14 s15

A B C D E

F G

RootS

R

S

R.a(S.a)

H I

r1 r2 r5 r6

RootR

r4

s11

r3

Round 6 hr6
;

Figure 8 Example of AIM

appends s11, and s12. Similarly to Round 1, a match (s11) of the
target tuple (r2) is identified. Consequently, another leaf-scan is
performed on TR (with target s11.a=r2.a) adding r3 (match) and r4
(right boundary) to the VO. Note that if this operation were
omitted, the hash value of r3, rather than the full record, would be
inserted to the VO during the next round; consequently, the client
would miss the result (r3, s10).

The fourth round searches TR with target s12.a. Index-traversal
has no effect, since the VO already contains the left boundary r4;
leaf-scan finds no matches, and appends the right boundary r5. In
the fifth round, the DSP first performs index-traversal on TS, with
target value r5.a, following path s12-D-G-E-s15 and appending hs13

,
hs14

 (digests of skipped tuples) as well as s15 (the left boundary
record) to the VO. Because s15 is the last tuple of TS, leaf-scan is
skipped. Finally (sixth round), since s15.a is still smaller than the
target value r5.a, the DSP simply traverses TR back to RootR,
adding the digest of r6 to the VO. This is implemented by an
index-traversal with a target value of +∞. Figure 9 illustrates
AIM. The loop invariance of the algorithm is that, given a target
record from one relation, its left and right boundaries (and
possibly matching records) are determined in the opposite tree;
the right boundary is used as a new target in the next round. Lines
11-13 correspond to the extra leaf-scan operation, performed
whenever a matching pair is identified.

AIM (MBTree TR, MBTree TS, VO) // DSP
// The join query is R R.a=S.a S
1. Append the root signatures of TS and TR
2. Traverse TR from RootR to the leftmost node, and insert the first

record r1 to the VO
3. Initialize nS = TS.Root, nR = leftmost node of TR storing r1
4. Initialize tuples tS = null, tR = r1
5. Loop
6. Call IndexTraversal(nS, tR.key)
7. If the traversal of TS finishes
8. Call IndexTraversal(nR, +∞)
9. Return
10. Call LeafScan(nS, tR.key)
11. If a matching record of tR is encountered in line 10
12. Append a separator “;” to VO
13. Call LeafScan(nR, tR.key)
14. Set tS to the right boundary record corresponding to tR.key
15. Append a separator “;” to VO
16. Repeat lines 6-15, reversing R and S

Figure 9 Algorithm AIM

The verification process is summarized in Figure 10. The client (i)
verifies that the boundary records only enclose matching tuples,
(ii) checks whether the additional leaf-scan operations are
performed properly by the DSP, (iii) generates join results from
the data records contained in the VO, and (iv) reconstructs hS

Root,
hR

Root of TS and TR, and verifies them against their respective
signatures. Operations (iii) and (iv) jointly ensure soundness,
while the combination of (i), (ii), (iii) and (iv) guarantees
completeness of the result. The proof is similar to that of AISM,
except that in AIM the client must also verify condition (ii).
Specifically, if the DSP cheats by not executing this operation, or
doing it improperly (e.g., inserting a falsified tuple, or a hash
value rather than the actual record), then either the check at line 9
fails, or the reconstructed root hashes do not match their
corresponding signatures, alarming the client.

Verify_AIM (VO) // Client
1. Read the root signatures of TS and TR from VO
2. Read tuple r from VO
3. While VO is not empty
4. Read from VO until reaching separator “;”
5. Verify that in the previous step (i) only S tuples and digests are

read, (ii) the S tuples either match R or are boundary records
and (iii) no digest is enclosed by boundary records

6. Use the values read in line 4 to incrementally compute hS
Root

7. If matching records of r are identified during line 4
8. Read from VO until reaching separator “;”
9. Verify that in the previous step (i) only R tuples are read, (ii)

these R tuples only include those with identical join
attribute values as r, and one right boundary record

10. Use the values read in line 8 to incrementally compute hR
Root

11. Generate join results with r, S tuples read in line 4, and R
tuples read in line 8

12. Set s to the right boundary record of r
13. Repeat lines 4-12, reversing R and S (also r and s)
14. Verify hS

Root and hR
Root against their respective signatures

Figure 10 Algorithm Verify_AIM

AIM improves the performance of AISM. For relation S, the two
algorithms perform similar operations at the DSP as well as the
client, and place the same amount of data in the VO. However, for
relation R, AISM requires the DSP to sort all tuples, and the client
to verify and re-order them, whereas AIM only incurs one
traversal of TR for the DSP, and one hR

Root computation for the
client. Regarding the VO size, AISM inserts all R records, while
AIM only adds those with join partners, and boundary records /
digests for the remaining ones.

5. ASM
If there are no ADSs on the join attribute, the DSP has to return at
least the join inputs to the client, so that the latter can establish
their correctness. Furthermore, the client has to generate the join
output itself, as there is no way to authenticate a join result
received by the DSP. However, instead of the client executing the
entire join locally as in NAI, the proposed ASM (for
Authenticated Sort-Merge join) alleviates the burden of the client
as follows: (i) the DSP performs a sort-merge join, and (ii)
generates a VO such that the client can efficiently reconstruct the
join output. Specifically, the transmitted VO includes VO(R), BR,
VO(S), BS, and ΩRS. BR and BS are two bitmaps, and ΩRS is a list of
integers. The meaning of BR, BS and ΩRS will be explained soon.
For our examples we use Q1 = Purchase cid Customer in the
database of Figure 1, assuming that the verifiable orders are (p1,
p2, p3, p4, p5) and (c1, c2, c3, c4, c5) for Purchase and Customer,
respectively.

Figure 11 illustrates ASM at the DSP side. Initially (lines 1-
4), the DSP sorts R and S on the join attribute a, and inserts the
result in R' and S'. The use of temporary tables is necessary as the
original (i.e., verifiable) order is needed when R is included in the
VO. Then, it generates the rank lists ΩR and ΩS. Line 5
corresponds to the merge phase. This process marks every tuple
that has matching records in the other relation, and generates ΩRS.
ΩRS combines ΩR and ΩS in a single sorted list on a. In order to
distinguish the two relations, we negate each element of ΩS. If for
two records (r ∈ R, s ∈ S), r.a = s.a, then the element of r in ΩRS
precedes that of s. Continuing the example, given ΩPurchase = (1, 4,
3, 5, 2) and ΩCustomer = (1, 2, 3, 4, 5), ΩPur-Cus= (1, 4, −1, 3, 5, −2,
2, −3, −4, −5).

ASM (Relation R, Relation S, VO) // DSP
// The join query is R R.a=S.a S
1. Create a temporary table R′ with a single column a
2. For each record r ∈ R, append r.a to R′
3. Repeat lines 1-2 for S, creating a temporary table S′
4. Sort R′ and S′, and generate rank lists ΩR and ΩS
5. Merge the sorted R′ and S′, mark tuples with join partners, and

generate a combined rank list ΩRS
6. Create a bitmap BR of size |R|
7. ∀1≤i≤|R′|, set BR[ΩR[i]] to 1 if R′[i] has a join partner, and 0

otherwise
8. Append the signature of R and |R| to VO
9. For i = 1 To |R|, Append R[i] and BR[i] to VO
10. Repeat lines 6-9 for S
11. Append ΩRS to VO

Figure 11 Algorithm ASM

Next, the DSP generates the bitmap BR of R. Recall that the
merging phase marks each tuple that can be joined. Let j=ΩR[i] be
the rank of a record r ∈ R in the verifiable order. If r is marked,
BR[j] is set to 1; otherwise (r has no join partners in S), BR[j] is set
to 0. In the running example: BPurchase = (1, 1, 1, 1, 1) and BCustomer
= (1, 1, 1, 0, 0), since customers c4 and c5 do not appear in
Purchase. BR is inserted into the VO, together with VO(R).
Specifically, VO(R) includes the records of R in the verifiable
order, the cardinality of |R| and the owner’s signature. The bitmap
BS is generated in the same way and appended to the VO, together
with VO(S). Finally, the DSP adds ΩRS, and the entire VO is
transmitted to the client.

Upon obtaining the VO, the client computes and verifies the
result by applying the algorithm of Figure 12. When a tuple r ∈ R
is received, the client uses it to incrementally compute the
verification information (e.g., digest) required for matching the
signature. Then, it checks the bitmap value of r. If it is 1 (i.e., r
has join partners in S), the entire tuple is stored on the disk.
Otherwise, only the join attribute is kept. These bitmaps are
verified later in the subsequent merging step. The same process is
repeated for S. In our example, the name and city of c4 and c5 are
deleted, as these customers will not appear in the join result. At
this point the client can verify the individual relations. Next, it
remains to compute their join result. This is achieved by a merge
operation (lines 7-18) based on ΩRS, which constitutes the last part
of the VO. Specifically, matching records from the two relations
appear sequentially in ΩRS; hence, merging reduces to a scan of
ΩRS and retrieval of the corresponding tuples from the stored files.
When multiple records have identical join attributes, they are
temporarily stored in a buffer buf (line 13), and later examined to
produce join results (lines 15-18). Meanwhile, the client verifies
the correctness of the bitmaps, i.e., records marked “0” and stored
partially must not participate in any join results (line 16). Note
that the usage of the bitmap reduces the I/O operations because,
for tuples without join partners, only the join attribute is written
to, and then read from the disk. This optimization also applies to
AISM for handling the non-indexed relation.

Proof of soundness: Suppose that the DSP deceives the client
into generating a wrong result rs. Then either (i) r does not match
s, or (ii) r or s are bogus/altered. The first case is impossible as
the client generates matching pairs locally. Case (ii) is detected by
the authenticated information of R and S. �
Proof of completeness: Let rs be a valid result of the query. The
DSP must transmit the unaltered r (resp., s) to the client,

otherwise the checking against the authenticated information of R
(resp., S) will fail. Therefore the only possibility for the client to
miss rs is that the DSP provides the wrong rank list ΩRS, which is
detected in the same way as in AISM. Furthermore, if the DSP
cheats in the marking step (i.e., sets the bitmap to 0, although the
tuple can be joined), the client will detect it during the joining
step, since it keeps the join-attribute values for all records. �

Verify_ASM (VO) // Client
1. Read the signature for R and |R|
2. For i = 1 To |R|
3. Read next record r ∈ R and a bit mark from VO
4. Use r to incrementally verify against the signature of R
5. If mark is 0, store only r.a, otherwise store the entire r
6. Repeat lines 1-5 for S
7. Read an integer j from VO, set t=R[j] if j>0, and t=S[–j] otherwise
8. Initialize buffer buf with only one record t
9. While VO is not empty
10. Set j′=j and t′=t
11. Read j from VO, and set t in the same way as in line 7
12. Verify that t′.a≤t.a
13. If t′.a=t.a, verify that j′ < j, and insert t into buf
14. Else // t′.a<t.a
15. If buf contains records from both R and S
16. Verify that all tuples in buf are stored as full tuples
17. Join tuples in buf to generate results
18. Remove all records from buf, and insert t into buf

Figure 12 Algorithm Verify_ASM

Compared with AISM and AIM, ASM is naturally less efficient
as it does not utilize any ADS. This loss of efficiency is
compensated by its flexibility, which, as we clarify in the next
section, is an important property for authenticating complex
queries. Furthermore, ASM significantly outperforms AINL on all
aspects, and exhibits clear performance advantages over NAI in
terms of the workload of the client.

So far we have focused on equi-joins. Since all proposed
algorithms are based on the sort-merge join paradigm, they can be
easily applied to band joins, whose join predicates are of the form
|R.a–S.a| ≤ b. Note that an equi-join is a special case of the band
join where b = 0. For AISM and AIM the main change is that the
target of index-traversal for ΩR[i] is the first record s such that
ΩR[i].a–b ≤ s.a ≤ ΩR[i].a+b (instead of s.a = ΩR[i].a); meanwhile,
leaf-scan stops at the last such record. Similar extensions can be
applied to ASM. AIM involves one more complication; when
matching records are identified during leaf-scan (say, on TS), an
additional leaf-scan is performed on TR with the largest join
attribute value among the matching S records. If there are R tuples
that match this value, another leaf-scan is executed on TS, with the
largest a value among such records, causing a chain of leaf-scans.
This chain terminates when no match is found. For arbitrary join
predicates, the sort-merge join paradigm may no longer work, but
other optimizations in the proposed algorithms still apply.
Specifically, using ASM, the DSP transmits all records in both
relations, identifying those without join partners, so that the client
can discard unnecessary attributes. The utilization of MB-trees by
AISM and AIM can reduce communication overhead by
transmitting all attributes only for tuples with join partners. When
it is possible to verify by checking a key range that a sequence of
records in a relation do not have join partners, AISM and AIM
can further decrease the transmission cost by sending boundary
records and digests for them.

6. COMPLEX QUERY AUTHENTICATION
In practice, users may pose complicated and descriptive queries
involving joins over multiple relations, as well as other operators
such as selections and projections. Based on the proposed binary
algorithms, Section 6.1 develops optimized solutions for
authenticating multi-way joins, and Section 6.2 discusses general
selection-projection-join processing.

6.1 Multi-way join
For ease of presentation we focus on authenticating the join
results of 3 relations, and discuss the extension to m-way (m > 3)
joins whenever necessary. Consider a query QRST = R R.a=S.a S

S.b=T.b T, where a (b) is the join attribute between R and S (S and
T) respectively 3 . As in traditional query processing, the DSP
answers QRST through a plan of binary join operators. Without
loss of generality we assume that all join attributes (R.a, S.a, S.b,
T.b) are indexed by MB-trees. Figure 13 depicts an example left-
deep plan for QRST using two binary operators Op1, Op2. Given the
ADSs on all join attributes, Op1 employs a variant m-AIM of AIM,
optimized for multi-way joins to be discussed shortly. Since the
output of Op1 is not indexed, a variant m-AISM of AISM is used
for Op2. The DSP sends two VOs to the client: VO(RS) generated
by Op1 to be used for verification of R S, and VO(RST) to
authenticate the output of Op2. Alternatively, the DSP can answer
QRST through a right-deep plan that first joins S with T, and then R
with S T. Similar to conventional multi-way join processing, the
best choice is computed by dynamic programming, or any query
optimization method.

The algorithms m-AISM, m-ASM and m-AIM used in multi-
way join plans differ from their binary counterparts in two aspects.
First, recall that AISM and ASM transmit all tuples of the un-
indexed relations to the client. In m-AISM and m-ASM, when the
un-indexed input is the output of another operator, these records
are not replicated in the VO. In Figure 13, since Op1 sends a
separate VO to the client (based on which the client can derive
R S), it is not necessary for Op2 to include a redundant copy.
Second, a VO produced by an intermediate operator (e.g., VO(RS))
contains only the information for verifying and reconstructing
those partial results that have matching partners in all other
relations. For example, in Figure 13, VO(RS) authenticates an
intermediate result rs consisting of components r ∈ R and s ∈ S, if
and only if there is a tuple t ∈ T that matches s. In other words,
intermediate joins are evaluated incompletely, and in fact
minimally, based on the demand of subsequent operators, leading
to considerable reduction of the VO size.

R S T

R S

R S T

AIM

AISM

VO(RS) VO(RST)

m-

m-

Op 1

Op 2

Figure 13 Authenticated join tree

3 If there is also a condition between R and T, we model this condition

as an additional selection on top of the join, and use the techniques
of Section 6.2 to process the query.

Figure 14 illustrates an instance of multi-way join using the plan
of Figure 13. Before executing the plan, the DSP computes the set
SN of S tuples that do not have a join partner in T. In our example,
we assume s2 matches t1, and SN = {s1, s3, s4, s5}. Given this
information, the DSP starts processing R S using m-AIM (i.e.,
Op1). After inserting the root signature of TR and TS to VO(RS),
the DSP follows the path of TS (i.e., RootS-D-s1) to the first record
s1, and adds s1 to VO(RS). At this point, the binary AIM algorithm
would use s1 to probe TR and retrieve matching tuples r2, r3 as
well as boundary records r1, r4. This, however, is unnecessary
since SN suggests that s1 does not match any T tuple, meaning that
all intermediate results generated by joining s1 and R records are
useless. Therefore, m-AIM (similarly, m-AISM) requires the DSP
to skip traversing TR whenever it encounters a record in SN,
eliminating intermediate results not demanded by subsequent
operators.

VO(RS):{root signature of TR and TS, s1, s2; hA, r4, r5, r6; s3; s4; s5; hC}
VO(RST):{root signature of TT, Ω[1], t1, t2; Ω[2]; Ω[3]; Ω[4]; ht3

}

A B C

RootR

T

R

R.a/S.a

t1 t2 t3

RootT

RS/S Ω

r3

r2 r4 r5 r6 r7 r8 r9

s1 s2 s3 s5

S

S.b/T.b[1] Ω [2] Ω [3]

RootS
D E

r1

s4

Ω [4]

Op

Op

1

2

Figure 14 Example of m-AIM and m-AISM

Continuing the example, the DSP skips traversing TR for s1, and
retrieves the second record s2 ∈ TS, appending it to VO(RS). Since
s2 ∉ SN, the DSP switches to TR, inserting matching tuple r5,
boundary record r4, r6, and digest hA of node A to VO(RS).
Because a matching pair s2-r5 is identified, the DSP performs an
additional leaf-scan on TS, which appends right boundary record
s3 to VO(RS). Then, it traverses TS with new target r6.a, adding
boundary record s4 to VO(RS). Because s4 is in SN, the DSP
suspends operations on TR and arrives at s5, which is also in SN
and does not initiate TR traversal. Since s5 is the last record of S,
the DSP terminates m-AIM by adding digests of all right siblings
in TR (i.e., hC) to VO(RS). In total, VO(RS) contains only 3 R
records, compared to all 9 records if the DSP were applying AIM.
Next the DSP executes Op2. In addition to authenticating the join
results, VO(RST) must establish that the records in SN for which
Op1 skipped traversing TR (s1, s4 and s5) indeed have no matching
T tuples. For this purpose, the input of Op2 contains both the join
results of Op1 (i.e., tuple r5s2) and s1, s4, s5. Op2 sorts the four
tuples and traverses TT to produce VO(RST), shown in Figure 14.

Upon receiving VO(RS), the client rebuilds the root digests of
TR, TS and verifies them against their respective signatures. It also
checks that boundary records enclose matching tuples. From
VO(RS), the client extracts S records whose corresponding TR
traversals are skipped (i.e., s1, s4, s5), and generates the (partial)
join result r5s2 of R S. When it later receives VO(RST), it
prefixes the tuples computed in the previous step (i.e., s1, r5s2, s4,

s5) and verifies VO(RST) as in AISM. The proofs for soundness
and completeness of the multi-way algorithms are analogous to
those of the binary methods.

The above solution incurs some computational overhead on
the DSP and the client. Specifically, the DSP has to generate SN,
and the client must produce some intermediate results.
Considering that network transmission is usually the bottleneck,
this tradeoff is desirable. Nevertheless, the additional cost can be
eliminated when the join condition satisfies the property that a=b,
i.e., all tables join on the same attribute. This situation is common
in data warehousing applications, where multiple dimension
tables are joined with the fact table on the record ID attribute [22]
rather than through foreign keys. For such queries, we propose
AST (for authenticated synchronous traversal), which traverses
the ADSs of indexed relations in a synchronous fashion, avoiding
unnecessary intermediate results. Figure 15 illustrates AST for R

R.a=S.a S S.a=T.a T, assuming two MB-trees TR, TT on R.a and
T.a, respectively (S.a does not have an ADS).

ΩS[3]Ω

r1 r2 r3 r4 r5 r6 r7 r8 r9

A B C

RootR

T

R

R.a/S.a/T.a

t 1 t 2 t 3

RootT

S S[1]Ω S[2]Ω S[4]

,VO: {root signature of TR and TT, signature of relation S,
bitmap BS = “1000”, s1-s4 in a verifiable order,
ΩS[1], hr1, r2, r3, r4; t1, t2; ΩS[2]; ΩS[3]; ΩS[4]; hr5, hr6, hC; ht3}

Figure 15 Example of AST

Initially, the owner’s signatures for TR, TT and S, as well as the
tuples s1-s4 ∈ S are appended to the VO. The DSP computes (i) a
bitmap BS specifying the S tuples with join partners in both R and
T, which reduces the client’s storage consumption (in a similar
way to ASM), and (ii) a rank list ΩS signifying the sort order of S
tuples on attribute a. Assuming the join order4 is (R S) T,
AST interleaves the computation of R S with that of (R S) T
to eliminate the generation of unnecessary R S results.
Specifically, the DSP starts by retrieving the first element ΩS[1]
from ΩS, appending it to the VO, and traversing TR with ΩS[1] as
target value. During the traversal, the digest of r1, the join partner
r3, as well as the boundary records r2 and r4 are inserted into the
VO. Because a matching pair (ΩS[1], r3) is identified, the DSP
switches to TT, adding matching tuple t1 and boundary record t2 to
the VO. After that, the DSP continues joining R and S. Note that
at this point the DSP is aware that there are no T records with a
values between t1.a and t2.a. Based on this, the DSP scans ΩS, and
appends to the VO each tuple s∈S such that s.a ≤ t2.a (without
trying to find a join partner of s in TR). For instance, although
ΩS[2], ΩS[3] and ΩS[3] match r4, r8 and r9, respectively, none of
these results is inserted to the VO. Finally, when ΩS is depleted,
the DSP completes the traversal of TR and TT by adding to the VO

4 More sophisticated optimizations such as round-robin [22] and

dynamic re-ordering [4] are also applicable to AST.

the digests of all right sibling nodes, i.e., those of r5, r6, node C
(for TR) and t3 (for TT). The verification algorithm and
soundness/completeness proofs are similar to those of AISM and
AIM and omitted for brevity.

6.2 Selection-projection-join query
In addition to joins, complex queries often contain selection and
projection components. For projections, we follow the general
methodology of [19], i.e., we build a Merkle hash tree MHT(t) on
each tuple t that indexes all its attributes. The root hash of MHT(t)
serves as the digest of t in the ADSs. Consider that in Figure 1,
there is an MHT on each of p1-p5 (c1-c5) indexing their pid, cid
and quantity (cid, name and city) attributes. Assuming MB-trees
on both Purchase.cid and Customer.cid, the query Q5 =
πname,quantity (Purchase cid Customer) is processed as follows.
The DSP uses AIM to compute the join, with two modifications:
(i) for each Purchase (Customer) record with matching Customer
(Purchase) tuples, its cid, quantity (name) attributes, as well as
the hash of the remaining pid (city) attribute are inserted to the
VO (instead of the entire tuple); (ii) for each boundary record, its
cid value and the hash of other attributes are added to the VO.
Using these values, the client rebuilds the root digest of the MHT
of each tuple, and subsequently the root hash of the MB-trees.

Next, we address queries involving both selection and join
operators. Similar to multi-way joins, we distinguish two cases: (i)
the selection applies on the join attribute, and (ii) the selection is
on a different column. For case (i), when ADSs are available on
the selection/join attribute, the DSP answers the query with a
single traversal of the ADS, combining AISM (or AIM, AST)
with the range selection. For example, consider that in the join of
Figure 5, the user imposes a further selection σa<C where C is a
constant between r4.a and r5.a. After round 1 of AISM execution,
the DSP finds that ΩR[2] already violates the range selection, and
thus it simply inserts ΩR[2] to ΩR[6] directly into the VO without
traversing TS to identify their matching S tuples. In addition, it
appends digests of the right siblings of the root-to-leaf path of s4
to complete the traversal of TS. For case (ii), the selection and join
operators compete for the use of ADSs. An example is the
complex query Q4 in Figure 1, which involves a join and two
selections σ1 = σquantity>100Purchase, σ2 = σcity=“New York”Customer.
Assuming an ADS is available on each of the 4 attributes (cid,
quantity in Purchase and cid, city in Customer), an important
observation is that for a particular relation (e.g., Purchase), only
one ADS (e.g., either the one on cid or the other on quantity) can
be utilized to answer the query.

Figure 16 illustrates three plans for Q4. In Figure 16a, the join
is able to utilize the ADSs on both Purchase.cid and Customer.cid
with algorithm AIM, achieving maximal performance. However,
since its output is not indexed, the DSP must transmit all join
results to the client, and the latter performs the selections (i.e., σ1
and σ2) locally. On the other hand, the plan in Figure 16c
processes σ1 and σ2 with the corresponding ADSs, and feeds their
(non-indexed) outputs to the join, which must be performed with
the less efficient ASM algorithm. The plan in Figure 16b lies
between the other two, in which the join is able to use only one
ADS. In such situations, the optimal plan depends on the relative
selectivity and the cost of the operators. Finally, when there are
selections on top of the join (e.g., plans in Figure 16a and Figure
16b), a further optimization is to use a variant of AIM (AISM)
similar to m-AISM (m-AIM), which only evaluates the join
partially for records satisfying the subsequent selections.

cid

2: city=“New York ”

1: quantity >100

CustomerPurchase

σ

σ

σ

σ

cid

Purchase Customer

1: quantity>100

2: city=“New York”σ

σ

σ

σ

cid

Purchase Customer

1: quantity>100

2: city=“New York ”σ
σ
σ

σ

(a) Pull up both (b) Push down σ1 (c) Push down both
Figure 16 Three query plans for Q4

7. EXPERIMENTAL EVALUATION
We implemented all algorithms using the OpenSSL library [9],
and executed all experiments on an Intel Core2 Duo 2.13GHz
CPU. The MB-tree implementation is based on B+-trees with
4Kbytes page size. Section 7.1 compares the performance of the
proposed algorithms against AINL and NAI. Section 7.2 evaluates
multi-way join queries. Our prototype employs SHA1 with a
digest of 20 bytes as the hash function, and RSA+SHA1 with a
signature of 128 bytes as the digital signature scheme, both of
which are widely used in practice [16].

7.1 Evaluation of Binary Joins
We use two synthetic relations R and S, each containing two
independent attributes a1 and a2. The values of S.a1 are uniformly
distributed in the range [1,107], whereas R.a1, R.a2 and S.a2 follow
Gaussian distribution (with mean 5⋅106, 3⋅106 and 7⋅106
respectively), and share the same variance σ=106. In addition,
R.a1 is a foreign key that references S.a1, which is the primary key
of S. We construct an MB-tree on each of the four attributes (R.a1,
R.a2, S.a1, S.a2), before query processing. We investigate two
queries: (i) a foreign-key to primary-key join R a1

S denoted as
FK, and (ii) an equi-join R a2

S denoted as EQ. In all
experiments, R is the outer relation and S the inner one.

We compare the authenticated join algorithms on the
following metrics: (i) VO size CVO, (ii) total computation
overhead CClient of the client and (iii) query processing cost CDSP
of the DSP. In the first set of experiments, we fix the cardinality
of both R and S to 106 records, and study the impact of the record
size, which is equal in R and S. In this setting, AINL requires the
DSP to answer 106 range queries. Table 1 summarizes the AINL
results for the FK query because its cost is too high to be included
in the diagrams (the numbers for the EQ query are similar and
omitted). The most serious drawback of AINL is the enormous
VO size. In particular, when the tuple size is 32 bytes, AINL
requires the DSP to transmit 8.9Gbytes to the client, while the
entire database consumes merely 64Mbytes. This is due to the
huge number (several hundreds) of hash values that are sent with
each range query result, which dominate the VO size (note that
the VO size is almost insensitive to the record size). In addition,
the computation costs for both the DSP and the client are in the
order of hundreds of seconds, which are significantly higher than
those of the proposed methods.

Table 1 Cost of AINL vs. tuple size
Tuple size (bytes) 32 64 128 256 512

CVO (Gbytes) 8.9 9.0 9.2 9.6 10.3
CClient (seconds) 205 207 210 214 219
CDSP (seconds) 262 271 429 1728 4603

Figure 17 shows VO size as a function of the tuple length for NAI,
ASM, AISM and AIM, as well as the theoretically optimal VO
size, which the total size of tuples from R and S that are part of

the join results (i.e., those with matching partners in the opposite
relation). Note that “optimal” has smaller size than that of the join
pairs because it includes a record once, even if it participates in
multiple pairs.

NAIAISMASM AIM optimal

0

200

400

600

800

1000

1200

32 64 128 256 512

VO size (Mbytes)

 32 64 128 256 5120

200

400

600

800

1000

1200 VO size (Mbytes)

(a) FK (b) EQ
Figure 17 VO size vs. tuple size

The VO of all methods increases linearly with the tuple length,
and is always far below that of AINL. NAI and ASM incur
similar overhead because they both transmit the entire relations to
the client. The VO of AISM and AIM depends on the selectivity
of the join. For the FK dataset, because of the foreign-key /
primary-key constraint, every tuple in R has a matching partner in
S. Therefore, any distributed join algorithm (i.e., with or without
authentication) has to transmit the entire relation of R to the
client. On the other hand, some tuples of S do not participate in
the join, and their transmission is avoided by AISM and AIM. For
the EQ dataset, both R and S contain unmatched records. AIM
achieves the lowest VO size by excluding such tuples from both
tables, followed by AISM which eliminates unnecessary
transmissions in S. The VO of ASM and NAI includes all tuples.
Note that in terms of absolute values, the network overhead for
large tuples is quite high, especially for the FK dataset. However,
this is unavoidable because of the join cardinality. As shown in
the figure, the VO size of AIM is close to optimal. In practice,
joining large tables with foreign-key relationship rarely occurs
without projections or selections, which in effect reduces the tuple
size, or the cardinality of the relations respectively.

Figure 18 compares the methods in terms of the client’s
workload. Our methods outperform NAI by more than an order of
magnitude (note the logarithmic scale for the EQ dataset).
Comparing the proposed algorithms, AIM is the clear winner
because the client computes the digests of the two MB-trees’ root
nodes, and verifies them against their respective signatures in
main memory. ASM and AISM, on the other hand, require the
client to buffer records on the disk, and retrieve them in a random
order. Subsequently, their cost grows much faster than AIM with
the tuple size. Note that ASM has significantly better performance
on EQ than FK. Recall that for tuples of R without join partners,
the client stores and accesses only the join attribute. Since the join
result of EQ contains only 31⋅103 tuples, a large portion of R is
pruned reducing the client’s overhead.

NAIAISMASM AIM

0

20

40

60

80

100

120

140

32 64 128 256 51232 64 128 256 512

Total running time for the client
(seconds)

0.1

1

10

100

1000

32 64 128 256 512

Total running time for the client
(seconds)

(a) FK (b) EQ
Figure 18 Query cost for the client vs. tuple size

Figure 19 studies the effect of tuple length on the query
processing time of the DSP. Since in NAI the DSP does not
perform any computations, it is excluded from the diagrams.
Comparing Figure 18 and Figure 19, most of the workload is
performed by the DSP, which is desirable given that in practice
the DSP has much more powerful hardware than the client. Again,
the costs of all methods are well below that of AINL. ASM
always requires the DSP to sort all tuples of the two relations on
the join attributes, and its overhead is similar in both charts. AIM
incurs the lowest cost since it does not perform expensive sorting
operations. It is cheaper for the EQ dataset because, due to the
high selectivity, the ADSs prune the majority of records. The
overhead of AISM always lies between the other two.

AISMASM AIM

0

20

40

60

80

100

120

32 64 128 256 512

Total running time for the DSP
(seconds)

 0

20

40

60

80

32 64 128 256 512

Total running time for the DSP
(seconds)

(a) FK (b) EQ
Figure 19 Query cost for the DSP vs. tuple size

Next we fix the record size to 128 bytes, |R| to 106, and vary the
cardinality of S from |R|/10 to 5⋅|R|. This has a similar effect as
applying an additional selection (with variable selectivity) on the
inner table. The results of AINL on FK are summarized in Table
2. Because AINL answers |R| range queries, each of which
traverses the MB-tree in S, its cost grows logarithmically as |S|
increases. In fact, as we discuss in Section 2.2, the situation where
the outer relation (R) is much smaller than the inner one (S) is
most favorable for AINL. Nevertheless, in all settings, AINL
incurs significantly higher overhead than other algorithms on all
metrics, and is excluded from further discussion.

Table 2 Cost of AINL vs. |S|/|R|
|R| / |S| 0.1 0.5 1 2 5

CVO (Gbytes) 7.8 8.9 9.2 9.5 9.7
CClient (seconds) 196 205 210 218 223
CDSP (seconds) 296 311 429 540 647

Figure 20 displays the VO sizes for NAI, ASM, AISM and AIM.
In case of FK, the entire relation of R has to be included in the VO
due to the foreign-key constraint, which contributes a constant
overhead to all methods. For relation S, NAI and ASM transmit
all its tuples to the client, while AISM and AIM utilize the ADS
to prune most unmatched ones. Accordingly, the VO size of the
former two increases linearly with |S|, while that of the latter two
scales much better. For the EQ dataset, the performance gap
between AISM/AIM and NAI/ASM is wider (up to an order of
magnitude) due to higher selectivity of the join. Similar to Figure
17, the VO size of AIM is close to the optimal one.

Figure 21 evaluates the effect of |S|/|R| on the running time of
the client. The cost of both ASM and NAI increases linearly with
|S|, with the former always well below the latter. AISM and AIM
incur even lower workload for the client, and exhibit better
scalability with |S|. AIM is always the best choice since it only
involves main memory (hash and verification) operations. Finally,
Figure 22 illustrates the processing cost at the DSP as a function
of |S|/|R| (excluding NAI since it does not involve DSP

computations). The proposed algorithms successfully shift most
of the computation to the DSP. The ratio |S|/|R| has similar impact
on the overhead for both the DSP and the client.

NAIAISMASM AIM optimal

0.1 0.5 1 2 50

200

400

600

800
VO size (Mbytes)

 0. 1 0. 5 1 2 5
0

200

400

600

800 VO size (Mbytes)

(a) FK (b) EQ
Figure 20 VO size vs. |S|/|R|

NAIAISMASM AIM

0

20

40

60

80

100

0.1 0.5 1 2 5

Total running time for the client
(seconds)

 0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the client
(seconds)

(a) FK (b) EQ
Figure 21 Query cost the client vs. |S|/|R|

AISMASM AIM

0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the DSP
(seconds)

 0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the DSP
(seconds)

(a) FK (b) EQ
Figure 22 Query cost for the DSP vs. |S|/|R|

Summarizing, AISM, AIM and ASM outperform AINL by orders
of magnitude on every performance metric. Compared to NAI, the
proposed methods incur significantly lower cost for the client. In
addition, AISM and AIM utilize ADSs to considerably reduce the
VO size. Overall, AIM is the most efficient solution on all aspects,
followed by AISM, and then ASM. The performance gap between
different algorithms widens with the join selectivity (as in the EQ
dataset). Finally, we discuss the overhead of authentication with
respect to conventional algorithms.
• Regarding the communication overhead, our indexed

algorithms, and especially AIM, are usually close to
“optimal” (i.e., just transmitting the records with matching
partners), as shown in Figures 17 and 20. On the other hand,
ASM can be significantly more expensive, particularly for
selective joins, given that both the base tables must be
transmitted to the client because there is no alternative way
of verification.

• Regarding the server processing cost, recall that in NAI the
server transmits the complete base tables. The client
essentially performs a non-authenticated join (after verifying
the tables) using block nested loops. Therefore, the client
running time in Figures 18 and 21 corresponds to the cost of
a non-authenticated join at the server. By comparing with
Figures 19 and 22 (running time for the server), the proposed
algorithms have similar costs to NAI, and in some cases,

AISM and (especially) AIM may outperform it because they
utilize indexes on the join attribute.

• The only party that has to pay a significant price for
authentication is the client, which performs local
computations (Figures 18 and 21), whereas in non-
authenticated joins it simply receives results. This is a fair
trade-off since the client can decide if it is worthwhile to
dedicate resources for ensuring result correctness. For
instance, a client may require authenticated results only for
important queries.

7.2 Evaluation of Multi-way Joins
We generate three relations R, S and T, involving attributes R.a1,
R.a2, S.a1, S.a2, S.b1, S.b2, T.b1, T.b2. Attributes R.a1 and T.b1 are
uniformly distributed in [1,107]. S.a1 and S.b1 follow Gaussian
distribution with mean value 5⋅106 and variance 106. R.a2, S.a2,
S.b2 and T.b2 follow Gaussian distribution with variance 106 and
mean values 4⋅106 (for R.a2, S.b2) and 7⋅106 (S.a2, T.b2). In
addition, R.a1 and T.b1 are the primary keys of tables R and T, and
S.a1, S.b1 are foreign key referencing R.a1 and T.b1, respectively.
An MB-tree is constructed for each attribute. We evaluate two
queries: (i) R a1

S b1
T, which is a primary-key to foreign-key

join, denoted as FK, and (ii) R a2
S b1

T, denoted as EQ. For all
settings, the join plan is always left-deep, i.e., (R S) T. We
compare NAI against three different combinations of fully
optimized join algorithms, namely m-ASM+m-ASM, m-
AISM+m-AISM, and m-AIM+m-AISM, where X+Y means that
the first operator joining R with S adopts algorithm X and the
second one uses Y. Note that “m-AIM+m-AIM” is not applicable
since the results of R S, which is not indexed, feed to the second
join operator. AINL is excluded due to its prohibitive cost.

We first fix the cardinality of R, S and T to 5⋅105, and vary the
record length. Figures 23-25 demonstrate the VO size, verification
overhead at the client and the processing cost at the DSP,
respectively. In general, the efficiency of a multi-way join method
depends on its underlying binary join algorithms, which means
that (i) all methods outperform NAI in terms of the client’s
workload, and (ii) the two solutions utilizing ADSs, i.e., m-
AIM+m-AISM and m-AISM+m-AISM achieve considerable
savings in terms of VO size. m-AIM+m-AISM has the best overall
performance, followed by m-AISM+m-AISM, and finally m-
ASM+m-ASM. A major difference between the results for multi-
way and binary joins regards the processing cost at the client.
Specifically, in binary AIM client verification occurs entirely in
main memory and thus it is very fast in both datasets. For multi-
way joins, the client has to use disk accesses for reading and
writing the intermediate results of R S. Consequently, in the FK
dataset, the advantage of m-AIM+m-AISM over m-AISM+m-
AISM is limited since the number of these intermediate results is
large due to the foreign-key constraint.

NAI-AISM+m -AISMm-ASM+m -ASMm -AIM+m -AISMm optimal

32 64 128 256 512
0

200

400

600

800 VO size (Mbytes)

 32 64 128 256 5120

200

400

600

800 VO size (Mbytes)

(a) FK (b) EQ
Figure 23 VO size vs. tuple size

NAI-AISM+m -AISMm-ASM+m -ASMm -AIM+m -AISMm

0

20

40

60

80

100

120

0. 1 0. 5 1 2 5

Total running time for the client
(seconds)

 0

20

40

60

80

32 64 128 256 512

Total running time for the client
(seconds)

(a) FK (b) EQ
Figure 24 Query cost for the client vs. tuple size

-AISM+m -AISMm-ASM+m -ASMm -AIM+m -AISMm

0

20

40

60

80

100

32 64 128 256 512

Total running time for the DSP
(seconds)

 0

20

40

60

32 64 128 256 512

Total running time for the DSP
(seconds)

(a) FK (b) EQ
Figure 25 Query cost for the DSP vs. tuple size

Finally, we fix the record size to 128 bytes, |S| to 5⋅105, and vary
the cardinality of |R| and |T| maintaining |T|=|R|. Figures 26-28
display the results for the VO size, query processing cost and
verification overhead, respectively. Once again, the proposed
methods significantly alleviate the burden of the client compared
to NAI, and the use of ADSs leads to considerable VO reduction.
As the sizes of |R| and |T| grow, the impact of their MB-trees
becomes more pronounced, widening the performance gap among
different solutions.

NAI-AISM+m -AISMm-ASM+m -ASMm -AIM+m -AISMm optimal

0.1 0.5 1 2 5
0

200

400

600

800 VO size (Mbytes)

 0.1 0.5 1 2 5

VO size (Mbytes)

0

200

400

600

800

(a) FK (b) EQ
Figure 26 VO size vs. |R|/|S|

NAI-AISM+m -AISMm-ASM+m -ASMm -AIM+m -AISMm

0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the client
(seconds)

0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the client
(seconds)

(a) FK (b) EQ
Figure 27 Query cost for the client vs. |R|/|S|

-AISM+m -AISMm-ASM+m -ASMm -AIM+m -AISMm

0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the DSP
(seconds)

0

20

40

60

80

100

0. 1 0. 5 1 2 5

Total running time for the DSP
(seconds)

(a) FK (b) EQ
Figure 28 Query cost for the DSP vs. |R|/|S|

8. CONCLUSION
This paper constitutes the first comprehensive work on
authenticated join processing in outsourced databases. Compared
to range queries, authenticated joins are inherently more complex
and expensive. We propose three algorithms based on the sort-
merge paradigm, AISM, AIM and ASM, which cover the entire
spectrum of index availability and possible query plans. We show
through an extensive experimental evaluation that our techniques
outperform two benchmark authenticated join algorithms on all
metrics, and are truly effective in terms of minimizing the
transmission cost as well as the client’s workload. Finally, we
deal with complex queries involving joins over multiple tables
and, possibly, selections and projections.

An interesting direction for future work concerns the
development of authenticated join algorithm based on other (than
sort-merge) paradigms. For equi-join queries, an alternative of
ASM can be based on the hash join. Specifically, for query
R R.a=S.aS, the DSP first transmits all records of R to the client.
The client builds a hash table of them. Next, the DSP sends S
records one-by-one, and the client probes the hash table to
generate join results for each S record received. The optimization
of marking records without join partners also applies to this
method. This solution incurs less computational overhead for the
DSP (i.e., it does not need to sort S) and less memory
consumption of the client (i.e. it does not need to store S), but the
CPU overhead for the client is higher. Moreover, it requires
individual transmission for the records (of S) instead of a single
VO in ASM.

ACKNOWLEDGEMENTS
This work was supported by grant 6181/08 from Hong Kong
RGC.

REFERENCES
[1] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y. Order

Preserving Encryption for Numeric Data. SIGMOD, 2004.

[2] Anciaux, N., Benzine, M., Bouganim, L., Pucheral, P.,
Shasha, D. GhostDB: Querying Visible and Hidden Data
Without Leaks. SIGMOD, 2007.

[3] Atallah, M., Cho, Y., Kundu, A. Efficient Data
Authentication in an Environment of Untrusted Third-Party
Distributors. ICDE, 2008.

[4] Babu, S., Bizarro, P., DeWitt, D. Proactive Re-Optimization.
SIGMOD, 2005.

[5] Damiani, E., Vimercati, C., Jajodia, S., Paraboschi, S.,
Samarati, P. Balancing Confidentiality and Efficiency in
Untrusted Relational DBMSs. CCS, 2003.

[6] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.
Authentic Third-party Data Publication. DBSec, 2000.

[7] Ge, T., Zdonik, S. Light-weight, Runtime Verification of
Query Sources. ICDE, 2009.

[8] Hacıgümüş, H., Iyer, B., Mehrotra, S. Providing Databases
as a Service. ICDE, 2002.

[9] http://www.openssl.org

[10] Huebsch, R., Hellerstein, J., Lanham, N., Loo, B., Shenker,
S., Stoica, I. Querying the Internet with PIER. VLDB, 2003.

[11] Kundu, A., Bertino, E. Structural Signatures for Tree Data
Structures. VLDB, 2008.

[12] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.
Dynamic Authenticated Index Structures for Outsourced
Databases. SIGMOD, 2006.

[13] Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G. Proof-
Infused Streams: Enabling Authentication of Sliding
Window Queries on Streams. VLDB, 2007.

[14] Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo,
H., Lindsay, B., Naughton, J. F. Middle-Tier Database
Caching for e-Business. SIGMOD, 2002.

[15] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong,
A., Stubblebine, S. A General Model for Authenticated
Data Structures. Algorithmica, 39(1): 21-41, 2004.

[16] Menezes, A., van Oorschot, P., Vanstone, S. Handbook of
Applied Cryptography. CRC Press, 1996.

[17] Merkle, R. A Certified Digital Signature. CRYPTO, 1989.

[18] Narasimha M., Tsudik G. Authentication of Outsourced
Databases Using Signature Aggregation and Chaining.
DASFAA, 2006.

[19] Pang, H., Jain, A., Ramamritham, K., Tan, K.-L. Verifying
Completeness of Relational Query Results in Data
Publishing. SIGMOD, 2005.

[20] Pang, H., Tan, K.-L. Authenticating Query Results in Edge
Computing. ICDE, 2004.

[21] Papadopoulos, S., Yang, Y., Papadias, D. CADS:
Continuous Authentication on Data Streams. VLDB, 2007.

[22] Raman, V., Qiao, L., Han, W., Narang, I. S., Chen, Y. L.,
Yang, K. H., Ling, F. L. Lazy, Adaptive RID-List
Intersection, and Its Application to Index Anding. SIGMOD,
2007.

[23] Sion, R. Query Execution Assurance for Outsourced
Databases. VLDB, 2005.

[24] Xie, M., Wang, H., Yin, J., Meng, X. Integrity Auditing of
Outsourced Data. VLDB, 2007.

[25] Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.
Spatial Outsourcing for Location-based Services. ICDE,
2008.

