A General Framework for Geo-Social Query Processing

Nikos Armenatzoglou Stavros Papadopoulos Dimitris Papadias

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay,

Hong Kong

{nikos, stavrosp, dimitris}@cse.ust.hk

ABSTRACT

The proliferation of GPS-enabled mobile devises and the popularity
of social networking have recently led to the rapid growtlGefo-
Social NetworkgGeoSNs). GeoSNs have created a fertile ground
for novel location-based social interactions and advertising. These
can be facilitated by GeoSN queries, which extract useful informa-
tion combining both theocial relationshipsand thecurrent loca-

tion of the users. This paper constitutes the first systematic work
on GeoSN query processing. We proposgaeral frameworkhat
offers flexible data management and algorithmic design. Our ar-
chitecturesegregatethe social, geographical and query processing
modules. Each GeoSN query is processed via a transparent com
bination ofprimitive queriesssued to the social and geographical
modules. We demonstrate the power of our framework by intro-
ducing several “basic” and “advanced” query types, and devising
various solutions for each type. Finally, we perform an exhaustive
experimental evaluation with real and synthetic datasets, based o
realistic implementations with both commercial software (such as
MongoDB) and state-of-the-art research methods. Our results con-
firm the viability of our framework in typical large-scale GeoSNs.

1. INTRODUCTION

A Geo-Social NetworKGeoSN) couples social network func-
tionality with location-based services. Specifically, a GeoSN is a
graph, where nodes represent users and edges correspaedde fr
ship relations. Moreover, through GPS-enabled mobile devices,
users publish their current geographical location to their friends,
by “checking-in” at various places. The most popular GeoSN to
date, Foursquare [5], accommodates over 30M users, andesceiv
millions of check-ins per day [8]. In addition, more “traditional”

We expect more advertising applications to gravitate towards ex-
ploiting both the geographical and social information of GeoSNs.
In this paper we focus on GeoSN queries that extract useful in-
formation combining both theocial relationshipsnd thecurrent
(i.e., lastly postedjocationof the users. Despite their importance,
there is a limited literature on GeoSN query processing. Inindustry,
to the best of our knowledge, there are no white papers document-
ing the processing of queries suchRadarandNearby On the
other hand, the few existing academic works [21, 39, 31, 38] focus
solely on the algorithmic part, overlooking critical data manage-
ment issues, namely that (i) the data storage methods greatly influ-
ence the performance of a GeoSN algorithm, and (ii) the social and
geographical data may be administered by different entities.
Towards this end, we introduce a general framework for GeoSN
guery processing. Specifically, we propose an architectursdgat
regatesthe social, geographical, and query processing modules.

r}Each GeoSN query is processed via a transparent combination of

primitive queriesissued to the social and geographical modules,
which do not interact with each other. This allows separate (and
thus more flexible) social and geographical data management, and
permits each module to be optionally operated by a different entity.
Moreover, it renders the implementation of each module orthog-
onal to the architecture. As such, any existing technology (e.g.,
cloud computing, graph databases, sophisticated spatial structures,
etc.) or future advances can be easily integrated into any module.
We first address two “basic” GeoSN queriBsinge Friend$RF),
which returns the friends of a user within a given range, ldadr-
est Friends(NF), which returns the nearest friends of a user to a
given location. We design various algorithms for every query type,
with each algorithm utilizing a different combination of primitive
queries. We show that (i) our framework provides flexibility in al-

social networks, such as Facebook and Twitter, have been recentlygorithmic design, and (i) the algorithm efficiency heavily depends

augmented with check-in functionality.

This trend in geo-social networking has created opportunities for
novel location-based social interactions and advertising. For in-
stance, services like FacebooRearbyand Foursquare’Radar
return the friends that recently checked-in at close proximity to a
user’s current location. In addition, Foursquare has joined forces
with GroupOn to provide offers from stores to nearby users [13].

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. Articles from this volume were inViie present
their results at The 39th International Conference on Vengk Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 10

Copyright 2013 VLDB Endowment 2150-8097/13/1$.10.00.

on the number and performance of the involved primitives, which
in turn depends on the underlying data management scheme.

In addition, we propose a novel, more “advanced”, GeoSN query
type, calledNearest Star GroufNSG). Given a query location rep-
resented as a 2D pointand an integem, anNSG query returns a
user group of sizen, which (i) forms a star subgraph of the social
network, and (ii) minimizes the aggregate (Euclidean) distance of
its members tg. As an example, consider that a restaurant has a 4-
seat table available, and wishes to send a GroupOn-like offer (e.g.,
the next group of four people who come to the restaurant will re-
ceive a 20% discouhptWith m = 4 andq being the location of the
restaurant, aNlSG query would return the nearest group of 4 users
to the restaurant, who are connected througbramon friendthe
center of the star). By focusing only on such groups, the GeoSN
can (i) increase the effectiveness of the advertisement, avoiding
overwhelming remote or socially unconnected groups with unin-

teresting offers, and (ii) minimize the cost by contacting only the Orthogonal work. There are also other approaches that extract
star centers, who are likely to influence the other group members. useful information from a GeoSN, but target at different settings to
We show thalNSG runs in polynomial time, and introduce several ours. In GeoFeed [23], a user receives a set of posts submitted by
implementations that comply with our framework. friends, whose geo-tagged location is within a specific area of inter-
Finally, we provide an exhaustive experimental evaluation of all est. [37] predicts friendships based on past user locations. [41] rec
proposed schemes, using real and synthetic datasets. In particulammmends places and friends by taking into account the user loca-
we experiment with various storage implementations for both the tion history. [30] performs quantitative analysis on geo-social data.
social and geographical data, including commercial databases sucl40] quantifies the influence of one user to another based on spatial
as MongoDB [17] (used by Foursquare [19]), as well as state-of- and social criteria. [27, 26] process SQL-like queries on archived
the-art research schemes. We also test with two system settingsgeo-social data. Finally, [36, 29] aim at answering GeoSN queries,
the first positions all modules at one machine, whereas the secondwhile protecting user location privacy (e.g., via encryption).
utilizes a separate machine for each module.

Our contributions are summarized as follows: Evidently, there is a narrow literature on GeoSN query process-

ing in our setting, namely, [21, 39, 31, 38] described above. These
e We propose the first general framework for GeoSN query Works overlook crucial data management issues. In particular, they

processing, which enables flexible data management and al-Pundle their algorithms with specific data representations and in-
gorithmic design. dices, which may feature excessive costs in typical large GeoSNs.

For instance, [31] employs an adjacency matrix for keeping info
e We introduce novel basic and advanced GeoSN queries, andabout the social graph, which may incur prohibitive storage over-
devise various algorithms for solving them. head. [21, 38] make use of hybrid indices, incorporating both so-
cial and spatial data. Such structures may suffer from enormous
maintenance costs due to high check-in rates. [38, 39] do not spec-
ify how the social graph is stored. We stress that the data repre-
2 sentation scheme may greatly affect the performance of an algo-
rithm. Finally, all the approaches essentially assume that all the
data are owned by a single entity, and are accommodated by a sin-
gle machine. In the next section we present a general framework
for GeoSN query processing that overcomes these drawbacks.

e We include thorough experiments with diverse implementa-
tions/architectures, using real and synthetic datasets.

The remainder of the paper is organized as follows. Section
overviews related work. Section 3 introduces our general frame-
work. Section 4 presents our GeoSN query algorithms. Section
5 evaluates the proposed techniques with comprehensive experi
ments. Section 6 concludes our work.

2. RELATED WORK 3. FRAMEWORK

We describe the relevant work on GeoSN query processing in In Section_3.1 we descripe_c_)ur architecture, whe_re_as in Section

industry and academia, and orthogonal topics on GeoSNss. 3.2 we explain the query primitives that serve as building blocks of
GeoSN query algorithms.

Industry. Foursquare’fRadarand Facebook'®earbyreturn the .
friends who are currently in the vicinity of a user. A similar func- 3.1 Architecture
tionality is provided by Geologi [10], a platform for location-based The proposed architecture consists of three modules, depicted in
services, which notifies a user when friends enter a certain range.Figure 1: a social module (SM), a geographical module (GM), and
FullCircle [9] detects groups of users (not necessarily friends) with a query processing module (QM). The SM stores exclusively so-
similar interests and preferences within small distance of each othercial data (e.g., friendship relations), whereas the GM keeps only
Once a new group is found, the members are encouraged to comgeographical information (e.g., check-ins). The QM is responsible
municate and form friendships. Hotlist [14] recommends to users for receiving GeoSN queries from users, executing them, and re-
various events based on their social relations (e.g., how many friendsurning the results. The users do not communicate directly with the
are also attending the event), preferences, and proximity to eventSM and GM. The SM, GM and QM can either be three separate
locations. Since most of the above work is proprietary, processing servers, three separate clouds, or a single system (server or.cloud)
algorithms are not documented. However, the tasks of the three modules segregated

Academic research. Huang and Liu [28] suggest a GeoSN query

that returns to a user the friends that are nearby and share commor
interests, without providing concrete processing algorithms. [21,

39] aim at minimizing the communication cost for proximity de-)
tection among friends, by enabling users to issue location updates ‘
only when they exit certain safe regions. Liu et al. [31] propose the User Results

Social Social Module

pri;nitiy' (SM)

GeoSN Queries (Query Processing
o Module

QM)

k-Geo-Social Circle of Friend Querfk-gCoFQ): given a weighted Geographical Geographical

graph, a user, and a positive integek, the k-gCoFQ finds the primitives Mo

group g of k + 1 users, which (i) is connected, (ii) contains

and (iii) minimizes the maximum distance between any two of its

members (modeled as a weighted average of the Euclidean distance Figure 1: Proposed GeoSN ar chitecture

and a notion of social strength). [38] introduces 8wrio-Spatial

Group Query(SSGQ): given a query poigtand two positive inte- The SM and GM do not interact with each other, but rather com-
gersk, n, the SSGQ returns a groypof n users, such that (i) each municate only with the QM. More specifically, the QM processes
user ing is socially connected with at leagt — k) members of, a GeoSN query through an algorithm that builds upon well-defined
and (ii) the sum of distances of all membergjito ¢ is minimized. social and geographicatimitive queries These primitives define

The k-gCoFQ and SSGQ queries are NP-Hard, and their authors a rigorous interface between QM-SM and QM-GM, respectively.
present approximation algorithms. The sole duties of the SM and GM (with respect to a given GeoSN

query) are to execute their corresponding primitives on their stored
data. The QM eventually derives the final results by combining
the outputs of the primitives, optionally exploiting auxiliary indices
maintained locally.

The segregation of SM and GM allows their administration by
different entities, e.g., the SM (GM) can be maintained by a com-
pany with expertise in social networking (resp. location-based ser-
vices). For instance, in UK and Japan, Facebook Places [3] coop-
erates with Factual [4], which provides infrastructure for location-

based services. Glancee [12], a location-based service app, use
Facebook’s social graph to connect nearby users. Another exam-

ple is the cooperation of pure commercial social networks, e.g.,
Twitter or Facebook, and GeoSNs like Foursquare. A user who

has both a Twitter or Facebook and a Foursquare account can pos

his Foursquare check-in at Twitter or Facebook [15]. Thus, if Face-
book or Twitter needs the geographical information of users’ check-
ins to execute a GeoSN query, it obtains it from Foursquare. The
separation of QM enables third-party companies that do not own
any social or geographical data to implement GeoSN queries by
solely interacting with the APIs of SM and GM (e.g., Agora [1]).

In addition, separating the functionality of SM and GM renders

the management of social and geographical data more flexible, be-
cause the frequent check-in updates do not burden the relatively
e

static social structures. For example, due to an unexpected high rat
of check-ins recently, Foursquare’s system had a very long down-
time. The problem was caused because their data are spread acro
multiple balanced database shards. When a shard is overused,
new one is added, followed by rebalancing. The rebalancing of the

entire database caused the crash [6]. In a segregated system, such 2N

crash in GM would not affect SM.

Finally, the segregation offers several other benefits. First, our
architecture can readily integrate modifications (e.g., a new, more
efficient structure) in the implementation of SM without modify-
ing GM, and vice versa. Second, novel GeoSN query types and
algorithms can be devised, either by using a different combination
of existing primitives or by implementing new ones, without the
need of altering the SM and GM infrastructures. Last, social (ge-
ographical) data can be used independently for pure social (resp.
geographical) queries, potentially through the same primitive oper-
ations utilized by GeoSN queries. As a result, a “traditional” social
network can adopt our architecture without extra effort.

3.2 Primitive Queries

Here we introduce the primitive social and geographical queries
that are used as fundamental components in our GeoSN algorithm
(presented in Section 4). These operations are supported by all typ
ical graph and spatial data structures, and can be easily integrate
with any SM and GM implementation.

We make use of the following social primitives:

e GetFriends(u): Given a usew, returnu’s friends.

e AreFriends(u;,uj;): Given two userss;, u;, returntrue if
u;, u; are friends, anglalse otherwise.

We also utilize the geographical primitives below. Note that ev-
ery location is regarded as (&, y) pair of coordinates in some
fixed Cartesian plane. When we refer to a user’s location, we
mean the(z, y) coordinates associated with his/temrrent (i.e.,
lastly posted) check-in. We assume Euclidean space, but the gen
eral framework and query processing techniques also apply fdr roa
networks (the GM should simply integrate an indexing scheme that
supports the primitives according to the network distance, e.g., [35]).

e GetUserLocation(u): Givenu, returnu’s location.

S

e RangeUsers(q,r): Given a query poing and a real number
r, return the users within distanegrom ¢, along with their
locations.

e NearestUsers(q,k): Given a query poing and an integer
k, return thek users nearest tpin ascending distance, along
with their locations.

Observe thaRangeUsers and Nearest Users return also the lo-
cation of each user in the result. This could be very useful for the
glgorithms at QM that employ these primitives, while it does not
affect the computational and space complexity of the result.

All the above primitives can be easily supported by the API of

M and GM. For instanceGetFriends is readily implemented

the API of Facebook, whereas the API of Foursquare offers
GetUserLocation. We do not exclude the existence of additional
primitives. Nevertheless, any primitive must be treated ag@amic
operation. To the best of our knowledge, operations that maintain
statefor future primitive invocations (e.g., an incremental version
of a nearest neighbor query that extracts legtbest result upon
a new query) are not supported by any commercial GeoSN. The
main reason is that maintaining state (e.g., via priority queues) for
a large number of simultaneous queries is prohibitively expensive.
The efficiency of the primitives depends on the underlying stor-
age scheme employed by SM and GM. For instance, representing
the social graph by adjacency lists is preferable @t Friends

e output simply consists of the users in the lisudf whereas

th
%djacency matrices are faster fdreFriends (the output istrue

if the bit at cell (i, j) of the matrix is 1). Similarly, although all
common spatial indices suppdRunge Users and Nearest Users,
they feature differences in performance.

Unfortunately, there is no unanimously accepted social or spatial
storage implementation. To elaborate, Facebook uses adjacency
lists stored in Memcached [16], a distributed memory caching sys-
tem, whereas Foursquare uses MongoDB [17], a document-oriented
database. Moreover, Twitter employs the R*-Tree spatial index
[20], whereas Foursquare adopts the grid-based geohashesef Mo
goDB [11]. Similarly, academic research has utilized a wide vari-
ety of approaches; [27] uses adjacency lists stored in Neo4j [18] (a
graph database), [31] employs an adjacency matrix, whereas [26]
utilizes relational tables for storing the friendship relations; more-
over, [23] indexes check-ins with a grid, [21] applies a Quad tree,
while [31] exploits the R*-Tree. We stress that every GeoSN algo-
rithm should be tailored to a specific SM and GM instantiation, se-
lecting the combination of primitives that leads to maximum query
efficiency. In the next section, we explain that a variety of GeoSN

;iallgorithms can be implemented using the described primitives.

4. QUERY PROCESSING

We study three GeoSN query typ&ange Friend¢RF) in Sec-
tion 4.1, Nearest FriendgNF) in Section 4.2, andNearest Star
Group (NSG) in Section 4.3. There are various ways to process a
GeoSN query using primitives. For each query type, we introduce
algorithms that use different combinations of primitivesthout
requiring the existence of a sophisticatgdrid index at the QM.

Notation. Symbols in Sans Serif typeface designate a query type,
e.g.,NF, sets are represented by symbols l&ke|S| denotes the
size of S, and sets of sets appear in calligraphic form, &g.,

To considerably simplify our notation throughout the section, we
use symbot to denote a user (ID, location) pair, but we miat use
separate symbols for user ID (e.g.id) and location (e.g.u.1).

This calls for some clarifications regarding the primitive queries
explained in Section 3.2GetFriends returns only a list of user

IDs, since the social module SM does not possess any spatial dataqueries that us®F as a subroutine, while it comes with a free

Therefore, when we write; € F whereF = GetFriends(u), the
location attribute ofu; is null. GetUserLocation(u;) results in
filling the (null) location ofu;. On the other hand, when we write
u; € U, whereU = RangeUsers(q,r), u; encompassesothan
ID and location.

Finally, we denote the Euclidean distance of a uséo ¢ by
llg,u||. Note though that, in order to execute this operatds,
location must not beull.

Running example. Throughout this section, we use Figure 2 as a

asymptotic cost (since the locations must be retrieved to answer the
query anyway, and do not add to the space complexity of the result).

We next describe three solutions for tRE query, whose pseu-
docode is given in Figure 3.

Input: Useru, locationg, radiusr
Output: Result setlR

*
1.

Algorithm 1 (RFy) */
F = GetFriends(u), R=10

running example, where the black points refer to the locations of 10 2. For each usen; € F

users{u1, uz, us, u4, us, us, U7, Us, Uy, Uio }, the edges represent

the social relations among them, and the grey point is an arbitrary 4.

guery location;. The table contains the distance of each user to

u10

Uy 5 units

ur

ug

Ug
U9
Uo us

10

Uy

104 11.3 12.2

Us Ug ur

15

us Uug U110

15.5 15.9 18.9

| ul

lg.ull | 5 6.4

Figure 2: Running Example

A useful subroutine. Several algorithms presented next require the
incrementaretrieval of the fiext nearest uséto a locationg. This
can be implemented via a subroutine callektNearestUser(q).
However, such an operation necessitates the maintenarstatef

(e.g., the lastly retrieved nearest user, or some heap information).

3. GetUserLocation(u;)
I |g, us]| < r, addu; into R
5. Return R

[* Algorithm 2 (RF») */
1. Return R = GetFriends(u) N RangeUsers(q,r)

[* Algorithm 3 (RF3) */

1. U = RangeUsers(q,r), R =10

2. For eachusen; € U

3. If AreFriends(u,u;), addu; into R
4. Return R

Figure 3: Pseudocode of RF algorithms

Algorithm 1 (RF:). This variant first extracts the sét of u's
friends invoking primitiveGetFriends(u) in Line 1. Subsequently
(Lines 2-4), for every; € F, it retrieves its location via primitive
GetUserLocation(u;), and insertsu; in result setr if the dis-
tance between, andq is smaller than or equal ta For example,
RFi(ua,q,8) first computest’ = {u2, us, us} and retrieves the
user locations. Then, it adds only to R, since|q, uz|| = 6.4 < 8
(Ilg, us|] = 10 > 8, and||q, us|| = 12.2 > 8).

Recall from Section 3.2 that the primitives cannot keep state at Algorithm 2 (RF3). This algorithm gets the friends af through

SM and GM. HencepNeztNearestUser(q) cannot be regarded as
a primitive query, but rather it should be implemented at QM.

A way to do this is via repeated calls féearestUsers(q, k) as
follows: we initialize kK = 0 and, every time we need the next
nearest user tg, we call NearestUsers(q, k) after incrementing
k by 1. Since the result is sorted in ascending distance, tihe

GetFriends(u), and execute®RangeUsers(q,r) to get the users
that are within distance to ¢. Finally, it performs an intersection
between these two sets, which yields the resultFor instance,
RF>(u4,q,8) performsGetFriends(us) N RangeUsers(q,8) =
{uz,us, ue} N {u1,uz} ={u2}.

next nearest user is the last entry of the list. However, this would Algorithm 3 (RF3). RF5 calculated/ = RangeUsers(q,r), and
incur considerable result overlap in successive calls. A solution to then insertss; € U into R if AreFriends(u,u;) = true. In our

this problem is to increment by a tunable steg > 1. Then,
QM can keep the newly retrieved users in a locglieug sorted in
ascending distance tp WheneverNextNearestUser is invoked,

it will pop the head of the queue and return it to the user. When
the queue is empty, another execution)ddarestUsers(q, k) is
necessary, after addingo the current.

4.1 Range Friends (RF)

Problem formulation. Simply stated RF returns the friends of
usery that are within distance to a locatiorny. More formally:

PROBLEM 1. Given a usemw, a 2D pointg and a positive real
numberr, a Range Friends (RF) query RF'(u, ¢,) returns a set
R defined as follows:

R = {u; | AreFriends(u,u;) A ||q, ui|| < r}

Similar to RangeUsers and NearestUsers, the result contains
also the users’ locations. For exampleF'(u4, ¢,8) = {uz} and
RF(us,q,10) = {u1,us}, whereu,, uz, us carry both their ID
and location. This may be particularly useful for other GeoSN

running exampleRF3(ua4, g, 8) first executesRange Users(q, 8)

= {u1,u2}, and then calculatedreFriends(ua,u1) = false and
AreFriends(ua,u2) = true. Consequently, the algorithm returns
R = {uz} as the result.

The above algorithms have important differences. For instance,
RF, and RF3 necessitate a spatial index for efficient range query
processing.RF5 could also benefit from an adjacency matrix im-
plementation (because it invokeseFriends numerous times). In
addition, as we demonstrate in our experiments, the machine archi-
tecture (centralized or distributed) has a significant impact on their
relative performance. Finally, the data and query parameters are
also vital in determining the best algorithm, e.g., if there are few
users within a rangeR F» and RF35 are preferable tdr F1, while
RF, is better for sparse social networks of users in the same geo-
graphic area.

4.2 Nearest Friends (NF)

Problem formulation. NF returns thet friends of usew that are
closest to locatiom in ascending distance. Formally:

PROBLEM 2. Given a usem, a 2D pointqg and a positive in-
tegerk, a Nearest Friends (NF) query N F'(u, q, k) returns a list
R = (u,...,ux) such that, foreach <i < k:

AreFriends(u, ui) A anu’bl‘ < Hq7 ui+1|| A
(Fu' ' € RA AreFriends(u,u’) A|g, o] < ||, ux]])

For example,N F'(uz, q,2) = (u4,ug). Similar to the case of
RF, the result incorporates the user locations. Figure 4 includes the
pseudocode of three solution variants ¥, explained next.

Input: Useru, locationg, positive integek
Output: Result setR?

/* Algorithm 1 (N Fy) */

F = GetFriends(u), R=10

For each usen; € F, computeGetUserLocation(u;)
SortF in ascending order dfg, u;||

Insert the firsk entries ofF" into R

Return R

grwnE

[* Algorithm 2 (N Fy) */

F = GetFriends(u), R =0
2. While|R| < k

3. u; = NextNearestUser(q)
4, If u; € F, addu; into R

5. Return R

=

/* Algorithm 3 (N F3) */

R=90

2. While|R| < k

3. u; = NextNearestUser(q)

4. If AreFriends(u,u;), addu; into R
5. Return R

=

Figure 4: Pseudocode of NF algorithms

Algorithm 1 (N F1). NF; first calculatesF” = GetFriends(u),
and gets the location of every, € F via GetUserLocation(us;).
Subsequently, it sort8' in ascending distance of each user therein
to ¢, and inserts the first entries of F' into R. In our example,
NFi(ug,q,2) retrievesF = GetFriends(uz) = {ua,us, uo},
extracts the user locations via three callsGetUserLocation,
sortsF' in ascending distance of eaah € F' to ¢ producing or-
dered list(ua, ug, uo). It finally returns the first 2 users in the list,
i.e., R = (u4,us).

Algorithm 2 (N F3). N F; first extracts the friends’ of u through
GetFriends(u). ltthen iteratively retrieves the next nearest user
to ¢ by calling NextNearestUser. If u; isin F, it is added toR.
When the size ok becomes equal th, we are certain that we have
evaluated the correct result. In Figure/2F»(u2, g,2) evaluates
F = GetFriends(u2) = {ua,us,us}. Then, it getsu; as the
result of the first call taVextNearestUser(q). Sinceu, ¢ F, itis
not added td?. Subsequently, it proceeds with retrieving users
ug throughb calls to NexztNearestUser(q), and adds only.y € F
andus € F to R. At this point|R| becomes2 and, thus, the
method returns? to the user and terminates.

Algorithm 3 (N F3). N F3 is similar toN F», but instead of invok-
ing GetFriends, it utilizes AreFriends for checking the friendship
between a user retrieved ezt NearestUser andw. In our run-
ning example N F3(u2, g, 2) iteratively computes useis; -ug via
six calls toNextNearest User, and performs adlre Friends prim-
itive for each of them. During this process, it adds us to R
(since only those are friends with), and concluded R| = 2).

Similar to theRF algorithms, the relative performance of the
NF solutions depends on the implementation, existing indexes, ma-
chine architecture, data distribution, and query parameters. We ex-
perimentally evaluate them in detail in Section 5.

4.3 Nearest Star Group (NSG)

Problem formulation. NSG returns thek nearest groups afn
users to a query locatiofy such that the users in every group are
connected through a common friend. This query is based on the
concept ofaggregate distancid4]. Specifically, the aggregate dis-
tance of a set of usef$ = {u., ..., u,} to a pointq is defined as
adist(q,U) = f(l|lg,u1ll,---,|lg, unl||), wheref is a monotoni-
cally increasing functioh For example, letU = {uy,us, ur}. If

[= sum, adist(q,U) = |lg, ua[| + [lq, us|| + [lg, ur|| = 31.3; if

f = mag, thenadist(q, U) = maz(||g, wal|, |l us|l, g, url|) =

|lg, ur[= 15.

DEFINITION 1. Given a user and a positive integein, a Star
Group (SG) of auser u is a set that containg andm — 1 of his/her
friends. The set of all SGs of givenm, is defined as:

SGu.m = {SU{u} | S C GetFriends(u) A |S| =m — 1}

We can perceive an SG af as astar subgraphof the social
network, which has as the center vertex (underlined) and the-
1 friends as the pendant vertices. Note thahay havemultiple
SGs. For instance, iy = 3, uz has three SGs, name§G,,, 3 =
{{uz,us,ue}, {uz, ua, uo}, {uz, us, ug } }. On the other hand;;
has only one SG, i.e§G.,, 5 = {{u1,us, ur}}.

DEFINITION 2. Given a query locatiog and a positive integer
m, theNearest Star Group (NSG) of auser uis asetNSGy,q,m,
such that:

NSGu,qm € SGum N(B S €SGum :
adist(q, S") < adist(q, NSGu,q,m))

NSGy q,m is them-element SG of, with the smallest aggregate
distance tay. For example, considerin = sum as the aggregate
function, NSGus,q,3 = {u1,us,us}. We denote byN'SG,,
the set of all NSGs associated wighgivenm, e.9.,N§G, 4 =
{NSGus,q4, NSGuy,q,4, NSGug,q,a} (u2,us,us are the only
users with three friends). When there is no ambiguityqoand
m, we use notationlVSG,, and N'SG instead ofNSG, 4,» and
NSG, m, respectively.

PrRoOBLEM 3. Given a 2D pointg and positive integersn, k,
a Nearest Star Group (NSG) query NSG(q, m, k) returns a list
R = (NSGu,,...,NSGy,) such that, for eachh < i < k:

NSG., € NS§G A adist(q, NSG.,) < adist(q, NSG,
(ANSG, : NSG € NSGANSG,: € R A
adist(q, NSG./) < adist(q, NSGu,))

H»l) A

As an example, consider a restaurant that wishes to advertise
a table of three. Fok = 1, m 3 and f = sum, query
NSG(q,3,1), whereq is the location of the restaurant, retrieves
the group of three users, such that (i) they form a star subgraph
in the social network, and (ii) their sum of distances to the restau-
rant is minimized. In Figure 2N SG(q, 3,1) = (NSGus,q,3)
({u1,us,us}). The restaurant could send the advertisement to all

A function f is monotonically increasingff Vi

f(zlf"'»zn) Zf(w/17mix)

T, >z, —

the users, or just the center vertex The minimization of the ag-
gregate distance of the three userg te motivated by the fact that
the offer is more likely to attract users in close proximity;t@ather
than remote ones.

Observe that, according to the definition of Problem 3kfor 1,

the SGs inR havedifferentcenter vertices. This choice eliminates
from the result groups with large intersection, i.e., centered at the 5.

Input: Locationg, positive integersn, k
Output: Result sef?

Initialize R, bs, bun

Whilebyn < bs
Get the next nearest usergo
Construct NSGs
Update resulR andbs, byn

pONPE

same user and differing in only a few pendant users. In an advertis-8- Refiner // optional step

ing application, this can minimize duplicate advertisements, while

maximizing the advertising coverage.

The next lemma is useful for proving the polynomial complexity

of NSG, and designing our algorithms.

LEMMA 1. Itholds thatNSG.,q,m = {u}UNF(u,q,m—1).

PROOF LetS = {u} U NF(u,q,m —1) = {u,u1,us,...,
Um—1}, 1.€.,S contains user and hism — 1 closest friends tq.
Consider also a s&’ = {u, ul,us,...,un,_1}, which is derived
from S by substituting any subset ¢fi+, . . . , umm—1 } Of u's friends
with a different set of friends. Note thdy, u;|| < ||g, u;|| for all
1 <4 < m — 1, by the definition ofN F'(u, g, m — 1). Then, due
to the fact thatf is monotonically increasing, it holds that

adist(¢,S) = f(lla ull, llgs wrll, - . 1, w1]
< f(|\f17u|\>||q,u,1\|7--‘>||Q»U;n—1|\)
< adist(q, S")

Consequently, there is 8§ # S with a smaller aggregate distance

to g. By Definition 2, this means tha¥ SGu,g.m = S = {u} U
NF(u,q,m — 1), which concludes our proof.[]

THEOREM 1. NSG runs in polynomial time.

PROOF. Problem 3 states that tié¢SG result is comprised of

Return R

Figure5: Skeleton for NSG algorithms

Algorithm 1 (NSGeager). The main idea is that, for every newly
retrieved usew;, the algorithmeagerlyconstructsN SG.,,; using

any NF algorithm and Lemma 1, and computes its aggregate dis-
tance tog. If adist(g, NSG.,) is lower than the current best dis-
tance attained by treeerusers, held i, the process sef§ SG .,

as the current resul andb, to adist(gq, NSG.,;). Next, it updates

a bound on the smallest aggregate distance that can achieved by an
unseenu;, stored inb,,,. Specifically,b,, is the sum of distances

of (i) the currently investigated, to ¢, and (ii) them — 1 nearest
seenusers tog. The intuition behind.,,, is that, in thebestcase,

the aggregate distance SG.., of anyunseen usei; is ||q, u;||

(as ifu, were at the same distanceg¢@s the last uset;) plus the

m — 1 smallest possible distancesd¢das if u; were friends with
them — 1 nearest users tg). If there are fewer tham — 1 users
seen so fari(< m — 1), NSGeqger adds(m — i — 1) - ||q, uil|,
simulating the missing: —i— 1 users as being at the same distance
to g asu;. The procedure stops whép, > b, as the unseen users
cannot have a better NSG. No refinement step is required. Figure
6 presents the pseudocodedb G cqq4.-. We prove the correctness

of the algorithm in the long version of this paper [22].

Input: Locationg, positive integern

the k& user NSGs with smallest aggregate distance. Moreover, ac- Qutput: Result setR

cording to Lemma 1, a user NSG can be retrieved biXBrquery.
Hence, in order to answ@&SG, we can simply compute the NSG

of everyuser in the social graph (e.g., in a trivial brute-force man-

ner), and select the best ones. Given th&tF runs in polynomial
time, NSG requires polynomial computational time as well]

Algorithmic skeleton. The brute-force solution given in Theo-

rem 1 is clearly prohibitively expensive for large social graphs and, 8.
thus, we aim at constructing more efficient algorithms. We outline -

our main idea in Figure 5 in the form of abstract steps. ii&a-
tivelyinvestigate users in ascending distance toine 3), since the
members of the result NSGs are likely to be close.té-or every
retrieved user, we (partially or fully) construct NSGs that par-
ticipates in (Line 4), appropriately updating the resil{Line 5).
We terminate this process by updating and checking celdaiar

bounds boundb; (resp.b.») contains aggregate distance informa-

tion associated with theeenresp.unseehpart of the social graph.
Henceforth, we use ternséento refer to a user retrieved in Line 3
and associated with a loop iteration (we use teumseehfor any
other user). The goal is to stop the process (i.e., réagh> b,) as

1. Initializebs = 00, bun =0, R=0,i =1
2. Whilebyr, < bs

. u; = NextNearestUser(q)
4. NSGy, ={ui} UNF(u;,q,m — 1)
5. If INSGu,| = m A adist(q, NSGu,) < bs
6. R = (NSGu;), bs = adist(q, NSGu;)
7. bun = |lg, us|| + E(1§j§i)/\(j<m) llg; u;ll
Ifi<m—1bun+=(m—1i—1)-]g,ull
i+ +
10.Return R

Figure 6: Pseudocode of NSG cqger

Figure 7 walks through all the steps of CAISG cqger (g, 3, 1).
The algorithm concludes in iterations, where iteratiohretrieves
and investigates user;. A dashed circle around a userindi-
cates that the algorithm constru®¥sSG.,, and the number next to
this circle is the aggregate distance/é6G.,. Bold edges consti-
tute the current resulR, where the underlined user is its center.
The values obs, b, appear at the bottom of each iteration. At
iteration 1,N.SG cq4r retrieves the nearest usergfu:, and com-

early as possible, while guaranteeing that (i) the final result is com- putesNSG., = {ui,us,ur} andadist(q, NSG.,) = 31.3. It
puted by Lines 1-5, or (ii) we have sufficient information to get the then setsR = (INSG.,) as a candidate result, ahd = 31.3 as

final result in arefinemenstep in Line 6.

the smallest aggregate distance found so far. Moreover, it calcu-

We next present three solutions that follow the general algorith- latesb.,, = (||q, u1|| + Zjl:l llg, uil]) + 1 -1lg, u1]| = 15 (the
mic methodology explained above. They essentially differ in the sum in the parenthesis is from Line 7, whereas the second factor is

computation of NSGs, the updatingtef,, and the refinement a?

from Line 8). This is the minimum distance that can be obtained

(Lines 4-6, respectively). They also utilize different combinations by any unseen user, assuming his distance and that of his friends

of primitives. For simplicity, we explain all algorithms fér= 1,
focusing on the case where the aggregate functigngssum.

is equal tol||g, u1||. Sinceb., < bs, the algorithm proceeds to
iteration 2, where it retrieves the second nearest useand com-

Iteration 2

Iteration 7

I I
I
I I s
33wy | [e Us
S 1 U Uy A ! “ﬁ'w .
= I . X
. > u U I : 3
o 7} ° } .7} \ ° | uo7;
q |) | } P q 35.9....
; | | ¥
| 129 I/ . * U
e - | I 40 9
bun =15 < (UG - Y2 | Ug I U U2 o
s =31.3 | byn = 17.8 < by bun =21.8 <by =268 | b,, =22.7<b, =263 bun = 23.6 < by =26.3 | bun = 26.4 > by = 26.3
Figure 7: Example of NSG cqger
I I
Iteration 1 } Iteration 2 } Iteration 3 } Iteration 4 } . Iteration 5 } Iteration 6 } Iteration 7
s T 26.
| } ,‘3 I I Sug } us us !
uy I [w I w1 o =2
I I 1 I I e Uy / u I
* \ * [o \ R ‘ * . ‘
° I ° I . I ° I \ I I
q [q I q [q [b [| I
\ \ \ \ 1 L2l [
| u. | 5 | % | ‘e | .‘ | . .
} 2 } 2 } 2 } U } ug } ug U
bun =15 <bs =00 | by =178 <by =00 | bun =214 <by =00 | byy =218 >b, =268 | by =227 <b, =263 | bun =236 <b; =263 | bun = 26.4 > b, = 26.3
Useen = {u1} | Useen = {ur,uz} | Useen = {u1,u2,us} | Useen = {u1, u2,us, us}| Useen, = {ur, ug, us, ua, s} | Useen = {U1, U2, uz, ua, us, 6 } | Useen = {u1, Uz, uz, ug, us, ug, 7}

Figure 9: Example of NSG .,

putesNSGu, = {uz,u4,us}, adist(q, NSGu,) = 29 < bs.
Therefore, it updates, to 29, and setR = (NSG.,) andb,, =
(llg, uz]| + Z?Zl [lg, u;]|) = 17.8. The algorithm proceeds simi-

larly until iteration7, whereb.,, = (||, uz|| + >5_; llg, u;l|) =

Figure 9 depicts a detailed example of the algorithm, for call
NSGiay(gq,3,1). We follow the same notation as in Figure 7,
adding setlUs..,, for easy reference. The retrieval of-us in the
first three iterations, respectively, does not cause the construction

26.4 > b, = 26.3 and, hence, the procedure concludes outputting Of any complete or partial NSG, but updates,. At iteration
NSG. as the result. The NSG of any user that has not been seen4 the algorithm fetches,, who has two friends:z, us € Usecen

must have aggregate distance at lexstt, even if he is a friend
with the two users closest tp(u1,u2).

Algorithm 2 (N SGlazy). This approach follows a similar algorith-
mic framework toN SGqg.-. The main difference is that, when
the next nearest uset; to q is retrieved,N SG,., doesnot con-
struct theentire N.SG.,;, butlazily builds the NSG from the users
seen so far, kept in a ligfs.., sorted in ascending distance¢o

that have been already seen. Therefore, it complste&r.,, and
setsR = (NSG.,), bs = 26.8. In addition, the procedure uses
uy4 to construct twapartial NSGs, namelyNV SG ., and NSG.,,
which containus as the only pendant vertex. lIteration 5 causes
the construction ofVSG..,, andus contributes to theompletion

of NSG.,. The process continues updatify b, andb.,, and
concludes at iteratiofi (b, > bs) returningN SG.,; as the result.
Comparing with Figure 7, the algorithm performs the same number

Moreover,u; contributes to the creation of the NSGs of the users of iterations, because it uses exactly the samé,,,, bounds. How-

iN Useen. This implies that the algorithm maintaipsirtial NSGs
for the users il;..,. When an NSG is completed, we upddte

andb; similarly to N.SGqger. FOr simplicity, we use the same no-

tation for the partial and complete NSG of usdi.e., NSG.,); we
simply chec N SG., | againstn to verify whether it is complete or
partial. Finally,b..., is updated in the same manner a8if G eqger-
Figure 8 illustrates the pseudocode®tGi..,, Whereas [22] in-
cludes its correctness proof.

Input: Locationg, positive integern
Output: Result setlR

1. Initializebs = 00, bun =0, R=0,i =1, Useen = 0
2. Whilebyn < bs

3 u; = NexztNearestUser(q)

4 F = GetFriends(u;)

5. For all u € Useen, N F' 1l in asc. dist. toy

6. If INSGy,;| <m

7 addu to NSG

8 If INSGu,| = m A adist(q, NSGuy,;) < bs
9. R = (NSGuq,), bs = adist(q, NSGuy,)
10. If INSGu| < m

11. addu; to NSG,,

12. If INSGy| = m A adist(q, NSGy) < bs
13. R = (NSGu), bs = adist(q, NSGv)

14. addu; to Usecen I Uscen is sorted in asc. dist. tg
15, bun = |lg, will + X< i<iyaiom) 1@ sl
16. Ifi<m—1,bunt=(m—1i—1)|/qul
17. i+ +

18.Return R

Figure 8: Pseudocode of NSGiq.y

ever, as opposed . SGeager, NSGiqzy avoids building com-
plete NSGs for all seen users.

Algorithm 3 (NSGZ%...-). This approach is awptimizationof
N SG cqqer With two important differences: (i) after it retrieves the
next nearest user; to ¢, NSG?,,. attempts to construgV SG.,
using onlyw;’s friends in rangebs (the current smallest aggre-
gate distance) tgq. This is because, if a friend af; is outside
rangebs, NSG,, is guaranteed to be worse than the current best.
(i) NSGZ.4- increases bound,,, more aggressivelyto termi-
nate faster. Specificallyy,, here is the best distance that can be
achieved by an unseen user without any seen friendspi.g.=
m - ||q, u;|| whereu; is the lastly seen user. This looser bound en-
sures that, upon termination of the loop, an unseenthsgiis not
friends with a seen useannot yield a better NSG than the current
best. However, this does not guarantee that the best result has been
found. In particular, aefinement stejs needed to check the case
of unseen users in rande with seen friendsThe intuition is that
the extra cost of the refinement step may be lower than the savings
attained from the earlier termination.

Figure 10 contains the pseudocodeNa$ G;,,... The algorithm
needs arnnitialization step (Lines 2-3), in order to calculaie for
the first time before entering the while loop. It next proceeds as in
N SG cager, NamMely it retrieves the next nearest usgto ¢ (starting
fromw;). However, in contrast t&V SG cager, in Line 7N SG7 o e,
constructs (potentiallpartial) N.SG.,, using the friends of;; (re-
trieved in Line 6) that are withih, distance tgy. If NSG,, is com-
plete, R andb, are properly updated similar & SG cqger (Lines
8-9). Theb,, bound is set in Line 15. Lines 18-22 constitute the
refinement step, which is facilitated by the information gathered in

Initialization Iteration 1 Iteration 2

| | |
I I I
313 ug | | Uus I
UL | I Ug Uy ® }
‘QZ } } * U7 |
:] I I .q M !
I I
| | . b |
I I = I .
I I ug U2 g ug. I Ug
I by =15< ! |
by = 31.3 | bs=313 | bun =192 <b, =29 |
I I I
I I I

Fyeen = {us,ur} Fyeen = {ua, us, ug, uz, ug}

Refinement

No result change because:
adist(q, NSGy,) + (3 —2) - ||, us|| = 28.6 > by = 26.3

Ug
i adist(q, NSG,) + (3 —2) - ||, us|| = 32.3 > by = 26.3

bun =30 > by = 26.3

|
|
|
|
|
|
|
\ |
. | adist(q, NSGy;) + (3~ 2) - |lq, us|| = 30 > b = 26.3
|
|
|
|
Ficen = {ua, us, ug, uz, ug} |

Figure 11: Example of NSG?, -

Input: Locationg, positive integeim
Output: Result setkR

1. Initializebs = 00, bun =0, R=0, Fseen = 0,i =1
2. ui = NearestUsers(q,1), NSGy, = {u1} UNF(q,u1,m — 1)
3. bs = adist(q, NSGy,)

4. Whilebyn < bs

5. u; = NextNearestUser(q)

6. F = RF(u;,q,bs)

7. NSGy,; = {u;} Uthem — 1 nearest users igin F'
8. If INSGu,;| = m A adist(q, NSGy;) < bs

9. R = (NSGy,), bs = adist(q, NSGy,)

10. Forallue F

11. If u € Fseen, addu t0 Fseen

12. If INSG.| < m, addu; to NSG,

13. If INSGy| = m A adist(q, NSGu) < bs

14. R = (NSG.), bs = adist(q, NSG.)

15. bun =m - ||q7uz||

16. i+ +

17.¢ = i — 1 // so thatu; is the lastly seen user
18.For all u € Fseen A |[NSGy| <m

19. |If adist(q, NSGy) + (m — |[NSGu]) - |g, ui|| < bs
20. NSGy = NF(u,q,m — 1)

21. If adist(q, NSGy,) < bs

22. R = (NSGu), bs = adist(q, NSGv)
23.Return R

Figure 10: Pseudocode of NSGy,ge,

Lines 10-14. Specifically, all the retrievédgendsof the seenusers
are put in a listF..,. The algorithm lazily constructs their NSGs
as new users; arrive in Line 5. If such an NSG is completeR,
andb, may be updated (Lines 13-14). Finally, the refinement step
completes the partial NSGs éf...,, in case the condition in Line
19 holds, updating?, b, if necessary. We prove the correctness of
NSGZqer in[22].

Figure 11 illustrates an example for cAllSG,,.. (g, 3, 1), com-
plying with the notation of Figures 7 and 9, and addifg.,, for
easy reference. The initialization step buildsSG., and sets
bs = adist(q, NSG.,) = 31.3. Atiteration 1, the algorithm sets
R = (NSG.,) andby,, = 3-||¢, u1|| = 15, preserves,, and adds
us, ur iINtO Fseern. It also creates partial NSGs for the usergia.,,
usingu, . At iteration 2, N SG?,,., constructsVSG.,, which be-
comes the current best result giving a new= 29. The friends
of ua (u4, us, ug) jOIN Fseen, and initialize their partial NSGs. The
value ofb,,, becomesl9.2; observe that it increases faster than
in the case 0N SGeager aNd NSGiq.y. At iteration 3, the pro-
cedure retrieves, createsN.SG.,, and completes the NSGs of
Ua,us € Fseen. The best among them §SG.,, that updates,
to 26.3. Boundb,,, becomes30 > b, and, hence, the algorithm

The performance of the three describ¢8G solutions depends
on the number of seen users, as well as the number and efficiency of
the primitive queries involved. In the next section we include their
thorough experimental comparison. Some final remarks concern
the case ok > 1 and the usage of aggregate functipr= max.
The modifications of our pseudocodes for> 1 are straightfor-
ward: we simply maintain &-element listR, which contains the
k best NSGs at all times (sorted in ascending aggregate distance
to ¢), andbs now constitutes thé™ smallest distance. Moreover,
NSG,4e (Figure 10) constructs NSGs in Line 2, properly set-
ting bs in Line 3. Finally, the case of = max is supportecnly
for NSG cager and N SGiazy. The sole alteration concerns setting
bun = ||g, ui|| in every loop iteration. Correctness is proved in a
very similar fashion to the case ¢f= sum. We omit the details
due to space constraints.

5. EXPERIMENTS

Section 5.1 describes our experimental setup, whereas Section
5.2 presents our results.

51 Setup

Storage schemes. We employed two different data storage ap-
proaches for the social (SM) and geographical (GM) module: a
disk-basedwith cache), and anemory-basedAll schemes were
implemented in C++, under Linux Ubuntu.

The disk-based approach uses MongoDB [17], a popular com-
mercialdocument-oriented databas&ongoDB keeps the infor-
mation in documents in the hard disk. At the SM, we store the
social graph as a set of such documents. Every document corre-
sponds to a user, and carries his ID argbeedlist of his friends’

IDs (i.e., an adjacency list). All documents are indexed withta B
Tree on user IDGetFriendsretrieves the user document and re-
turns the friend list. AreFriendsentails reading a user document
and checking his friend list. A social update (i.e., the insertion or
deletion of a graph edge between two users) involves readiog
user documents, altering their friend lists, and writing émgire

two lists back in their documents kept in the disk. At the GM, we
create a document for each user, which contains his ID and coordi-
nates. These documents are indexed with"aTBee on user ID,
which enables fast answering @etUserLocation RangeUsers
and NearestUsersre readily supported in MongoDB by built-in
functions. To answer such queries, MongoDB exploits efficient
spatial indexing techniques, suchgréds andgeohashing11]. A
location update entails both a document update and an index up-
date. MongoDB does not have a caching component. Instead, it
uses Linux’s caching mechanism.

terminates. Next, the refinement step does not need to complete the In the memory-based approach, we store the social graph at SM

partial NSGs ofug, uz, ug € Fieen, Since the condition of Line 19
is not satisfied. The algorithm returdéSG..; as the result. This
example demonstrates the potential superioritNétG,., ver-
SUSN SGeqger aNd N SGqy; it performs fewer iterations, while
the refinement step does not incur any additional overhead.

in a main memonhash table where the key is the user ID and
the value is asortedlist of his friends’ IDs. PrimitiveGetFriends

is a simple lookup in the table, whereAgeFriendsinvolves a ta-

ble lookup and a binary search over a friend list. A social update
involves finding thewo users in the hash table, and altering their

friend lists. At the GM, we store each user (represented by his ID 5.2 Results

and coordinates) in a regulaf0 x 300 grid. We also use a hash Range Friends (RF). Recall thatRF; involves an execution of
table on the user ID, to facilitate fast execution@étUserLoca- Ge¢Friends and subsequent calls 6fet UserLocation for the re-

tion. We performRangeUsersn a straightforward manner using trieved friends. RF, performs an intersection of the results of
the grid, whereas we adopt the CPM [33] algorithm for answering Ge¢Friends and RangeUsers. RFs executesRangeUsers and
NearestUsersA Iocatlo_n upda_te nc_eeds a hash ta_ble lookup (to find performs subsequent calls foe Friends.

the user e}nd change h_ls _Iocatlpn field), the dele_tlon of the user from Figure 12 assesses the query timertis) of our threeRF algo-

the old grid cell, and his insertion to the new grid cell. rithms as a function of radius(in km) for our real dataset. Figure
12(a) shows the disk-based centralized scenario. The performance
of RF; is unaffected by, because its primitives are independent
of r. In contrast, the query time d®F> and RF3; increases with

r, because they both callange Users whose processing time rises
'with ». RF> exhibits the best performancg.§7-22.25 ms), out-
performing RF; by almost up to one order of magnitudes(94

ms), and RF3 by more than two orders of magnitud&60.46-
547.73 ms). The main reason is thaF» entails only two rela-
Datasets. We used both real and synthetic datasets. We derived the tively inexpensive primitive operations. On the contra in-

real dataset from Foursquare and Twitter as follows. We first gath- VokesGetUserLocation for every friend (i.e., 437 times on the av-
ered 12,652 users that posted a Foursquare check-in as a tweet off2ge), resulting in a high I/ cosF; has the worst performance,
their Twitter account on theameday (May 30th, 2012) in New @S it executeslreFriends for every user in the range, which may
York City. The check-in coordinates were spread in an overall include up to thousands of users.

area of 1,11%m?. This user information was maintained at the
GM. We then extracted their friends from Twitter (where the aver-

Machine architecture. We conducted our experiments using both
acentralizedanddistributedarchitecture. The centralized scenario
positions the three modules (SM, GM and QM) at a single server.
The distributed setting utilizes a separate server for each module
where the QM machine communicates with the SM and GM ma-
chines via a 100Mbps Ethernet network. Each server is an Intel
Core 2 Duo, with a 2.33GHz CPU and 4GB RAM.

3

10
B
%***

age number of friends was 437), yielding a Twitter subgraph of KRR KKK
2,220,627 users (note though that these additional users did not 2* 1011 EE};

Time (M9

=
o
°©

have any location data). This social graph was kept at the SM.
We also created five differesiyntheticdatasets, containing 1-5 101
million users, respectively, simulating scenarios in a big city. We
used the Bardsi-Albert preference model [24] for generating the
edges, setting the average number of friends to 100 (note that this
number is currently 190 in Facebook [2], and was 5-8 in 2011 in
Foursquare [7]). The number of friends in this model follows a
power law distribution, which is in tangent with the current trend
in popular social networks [32]. We assigned locationaltasers
respecting the following two principles: (i) two friends are more
likely to check-in at nearby places, and (ii) the distance between
two friends follows a power law distribution [25]. More specif-
ically, starting from a random user at a random location, we tra-
versed the entire graph in a BFS fashion and assigned locations to
the users based on their Euclidean distances to their friends, which
were randomly derived from the distribution of [25]. The resulting
check-in coordinates were spread in an overall area of 7853
From the above datasets, the social graphs were kept at the SM,
whereas the location data were stored at the GM.

RF; *-
RF| —+—
RFy 3

10t

05 1 15 2 25 3 35 4 45 5
r (km)

(a) Disk-Centralized

05 1 15 2 25 3
r (km)

(b) Memory-Centralized

35 4 45 5

10* 10

RF —+—

RF; did not terminate RF| —+— RF; did not terminate
RF, 3¢ RF,

2

=
o
3
>
15)
3

Time (M9
Time (M9

i
o
N
i
Q
R

et Herr K o
o e e
s

10 10

05 1 15 2 25 3 35 4 45 5
r (km)

(c) Disk-Distributed

05 1 15 2 25 3 35 4 45 5
r (km)

(d) Memory-Distributed
Figure 12: Query timefor RF vs. r (Real dataset)

Figure 12(b) depicts our results for the memory-based central-
ized case RF» and RF5 follow the same trends as in Figure 12(a),
but their times are lower because the primitives are faster in main
memory. The mostimportant observation is tRdf, now becomes
the best algorithm. The reason is th@¢t UserLocation does not
incur any 1/O cost, which was the dominant overhead in the disk-
based case. As sucRF; becomes about twice faster th&¥?.
Figures 12(c) and 12(d) demonstrate the query time in the disk-
based and memory-based distributed scenario, respectiely.
does not terminate in a reasonable time frame, due to the numerous
AreFriends calls. RF»> outperformsRF; by up to one order of
Evaluation methodology. Since the two machine architectures are magnitude in both settings, maintaining its query time bel@®
orthogonal to the two storage schemes described above, we ex-ms. The major reason is thdtF; pays the considerable network

Parameters. Table 1 summarizes the system parameters with their
ranges, where is the radius (irkm) in RF, s is the increment step

in NextNearestUser, k is the result size iNF andNSG, m is the
group size ilNSG, andN is the synthetic dataset size.

Table 1. System parametersand their ranges
Parameter r B k m N
Range 0.5-5km 1K-5K 1-10 2-7 1M-5M

plored in total four different scenarios; nameBjisk-Centralized
Memory-CentralizedDisk-Distributed and Memory-Distributed
We assessed the algorithms with respect to ttwal query re-
sponse timei.e., the time elapsed from the instant a query is is-

delay for performing the multipl&Zet UserLocation calls, which

is the dominant cost in both the disk- and memory-based scenarios.
In Figure 13 we assess the scalability of fRE algorithms us-

ing the synthetic datasets. We vary the dataset Bizéixing the

sued to its result retrieval. The reported time is the average overradius tor = 2.5 km. RF} is practically unaffected by; for

100 random queries. For the disk-based case, we perfocaute
warm-upby issuing 50 random primitive queries.

all N, GetFriends retrieves the same number of friends (since the
average number of friends in all datasets is fixed0), whereas

GetUserLocation is efficiently handled by a B-Tree whose height 800 "
is minimally influenced by the increase M. The costs oR F» and
RF3rise with N; larger datasets are denser and, ttRisyge Users
retrieves more users. Contrary to the case of the real dataset, here = 20
RF is always superior t&® F» and RF3, since the smaller average o
number of friends (100 vs. 437) maké&tFriends considerably
cheaper, and leads to much few@etUserLocation invocations.
Even for the case oN = 5M in the disk-based distributed sce-
nario, the overhead aR F; is in the order ofil00 ms.

RF; % RF; -3
RF, -3¢ RF,) ¢
RF| —+— % 10?7} RE——
@10° * * @
E % * E . . * * * ¢ 2
Py 0 10 S) .) . .
Ee NI B B e (c) Disk-Distributed (d) Memory-Distributed
VI 10077 . .
o X ‘ ‘ ‘ } } } } } Figure 14: Query timefor NF; vs. s and k (Real dataset)
W s 4 s T s e s
N (million) N (million)
(a) Disk-Centralized (b) Memory-Centralized than that in the disk-based case. In the distributed c&d®, be-
- - comes the best algorithnly F; executesGet UserLocation mul-
N RF did not terminate o RF, did not terminate tiple times which impose great network delay, wher@ak, per-
ol T N R —— forms fewer primitive invocations due to the step-wise prefetching
€ T e € N X of NextNearestUser. N F5 does not terminate within a reasonable
£l F ; &yl ; ; ; time frame, due to its numerousreFriend queries.
o R S R e ’
. N(n:1|||l0l‘j) N(mllllc.m) . , NF|—+— SRR , — e ¥
(c) Disk-Distributed (d) Memory-Distributed BT kXX 2% S
?:; * e e e X _E EE; ,,,,, §
=102 e R =10t 1——
Figure 13: Query timefor RF vs. NV (Synthetic datasets)
10* 10° ‘
12345k678910 12345k678910
Nearest Friend_s (NF). Recall thaWFl inVOKesGetFriends fol- (a) Disk-Centralized (b) Memory-Centralized
lowed by multiple GetUserLocation operations. N F, executes
GetFriends, and callsNeztNearest User multiple times.N F3 in- W T pupnneng LY v S
volves multipleNextNearest User and AreFriends calls. We first NPy NP
include a discussion on the increment stelf NextNearestUser, g g
which considerably affects the performanceNof» and N F5. g NN g .
Figure 14 plots the query time &¥ F% versuss and result sizé i X e a P e
(the case ofV F3 is similar and, thus, omitted), for the real dataset. . . <
Observe thatV F; is affected by theeombinationof s andk. In 123456738910 1234567383910
most settings, a higherleads to better performance. This suggests (c) Disk-Distributed (d) Memory-Distributed

that executingfewer NearestUsers primitives at the expense of !]
retrieving “redundant” users is preferable to multiple calls with a Figure 15: Query timefor NF vs. k (Real dataset)
higher result overlap. However, for smél(i.e., 1 and2), the value
of s that leads to the lowest query timgK) lies between the two
extremes. The reason is that tNE result is relatively close tq
for a smallk and, hence, a moderatdeads to minimizing both the
“redundant” users and the number of primitive calls. The benefits
are more pronounced in the distributed setting (Figures 14(c) and
14(d)), because the “redundant” users inflict both processing and
network overhead. In the remaining experiments, we fine-tuned
to its optimal value for every setting and algorithm.

Figure 15 evaluates the thrd# algorithms when varying for
the real datasetV F; is independent ok. On the other hand, the
number of calls taVextNearestUser in N F» and N F rises with Nearest Star Group (NSG). Recall that, NSGeqger builds the
k and, thus, performance deteriorates. In the centralized scenariocomplete NSGs for users around the query location, until no un-

Figure 16 assesses the scalability of Mig algorithms on the
synthetic datasets, varying the dataset $izand settingc = 5.
N F; is unaffected byN, since, similar toRF, GetFriends al-
ways retrieves a fixed number of uset9({ on the average). On
the other hand, the costs &f %, and N F3 increase with/V; all
areas become denser and, heréestNearest User investigates a
much larger number of users until it finds theearest friends (e.g.,
~ 150K users whenV = 3M). Consequently)V F; is the best al-
gorithm in all settings, with overhead in the orderl®f ms even
in the most demanding setting (Figure 16(c)).

N F; exhibits the best performance. The reason is thaty if, seen user can lead to a better resdItSG|,., builds partial NSGs
andN F3, (i) numerous users are investigated, and (ii) a friendship involving only users seen so faN SG7,,., involves a more aggres-
test is performed for every retrieved usdrFs; is worse thanV Fs sive bound than the previous algorithms, in order to reach an earlier
because its numerous calls foeFriends outweigh the one-time termination. RoutinesV F' (in N SG cager) aNdRF (in NSG7 o ger)

cost of GetFriends in NF,. The costs ofVF> and N F3 in Fig- were implemented using the fastest algorithms for each setting. We

ure 14(b) are close, because the overheathefriends is smaller also appliedf = sum as the aggregate function.

S 4
10° % 10
NFp e X
108 M —— « i i 10 " * K
= 2w
St X g NFy-—
210° - g NF, ¢
£ Ew N
2
10 10°
;
10* 10t
1 3 5 1 3 5
N (million) N (million)
(a) Disk-Centralized (b) Memory-Centralized
10° 10°
NFy- -
NFy—— X NFy—+—
»10* U o0t U
8 NF; did not terminate 2 %
=108 =108 NF; did not terminate
10204 t t t t 10202 :
5

1 3
N (million)

(c) Disk-Distributed

1 3
N (million)

(d) Memory-Distributed

Figure 16: Query timefor NF vs. N (Synthetic datasets)

Figure 17 depicts the performance of th&G algorithms for the
real dataset, as a function of the group sizék = 1). The cost of
every algorithm increases with, as more users are seen to find the
NSG result. NSGeqger €Xhibits the worst performance (Figures
17(c) and 17(d) omit its costs, as it did not terminate within rea-
sonable time); it involves expensiVé F’ calls, whereasV SGq.y
and NSGy,., invoke the cheape€etFriends and RF, respec-
is the best algorithm, whereas
its query time is always smaller than2 sec. The largest perfor-
mance gain ovelN SG,., reaches up to more than one order of
magnitude (Figure 17(b)). The main reason is tNefiG?,,., ex-

tively. In most settingsN.SG

*

eager

o 10
10°f e+
o
E ngéager —_
E | neamer T i
210 azy
E NSGleager ¥
= S X 3 >< x
18] %
* Ko K
S K *
10?
1 2 3 4 5 6 1 2 3 , - -
‘ k

(b) Memory-Centralized

4

10 X 10

x S
2 % * * * * 2 y » % * *
= * £
210° NSGiagerdid not terminate z 103} ¥ NSGagerdid not terminate
g =
NSGlgey = e NSGy, — — e
NG ager X NSGoager
10? 10
1 2 3 4 5 6 1 2 3 4 5 6
k k

(c) Disk-Distributed (d) Memory-Distributed
Figure 18: Query timefor NSG vs. k (Real dataset)

Figure 19 depicts the scalability results of tR&G algorithms
on the synthetic datasets, when varying the dataset/$izand
settingk = 3, m = 5. The cost of every algorithm increases
with N. The reason is that all areas become denser and, there-
fore, more users must be investigated before discovering the re-
sult. NSG¢ e, is superior taVSGeager andN SGiqzy in Figures
19(a)-19(c), for the same reasons as in the real dataset case. How
ever, in Figure 19(d)NSGi.., becomes marginally better than
NSG:?q4er- The reasonis that the cost 6kt Friends in the main-
memory setting is lower than that in the disk case. Therefore, the
gains of N SG?,,., due to the fewer explored users becomes much

plores up to one order of magnitude fewer users in the while loop |ess pronounced. Finally, despite the complexity of &G query
than NSGqy (118 vs. 3,539), while its refinement step is very and our relatively weak machines, the best algorithms yield query

fast. Neverthelessy SG,., is superior form < 3 (m < 4) in the

response times in the order of a few seconds, even in the most chal-

centralized (distributed) case; it runs fewer primitives per iteration, |enging settings.

while its number of iterations is comparable to thafNiv G

*

eager*
10° 10
NSGager —+— zg%ager —
5| NSGyyy M 44| | NSGyp -
10 azy azy
NSGrager 3 | NSGrager
2ot 20 el
5 x| 3 g
E10° e £ , %
= = *
o] * oK 10 *
102} K o3 M §
> g
o ol
2 3 4 5 6 7 2 3 4 5 6 7

(a) Disk-Centralized

(b) Memory-Centralized

10*

NSy 6 e NSGey X I
NSGrhager kX NSGager P
2 o s
E ¥ * * * £ * *
5103 ¥ Ko <103 % o K *
£ 2 .
= X =)
x NSGagerdid not terminate X NSGagerdid not terminate
102 102X
2 3 4 5 6 7 2 3 4 5 6 7
m m

(c) Disk-Distributed

(d) Memory-Distributed

Figure 17: Query timefor NSG vs. m (Real dataset)

Figure 18 assesses the performance ofNB& algorithms for
the real dataset, when varyigand settingn = 5. For groups of

5 users N SG%,,., is the best algorithm for the reasons explained
in Figure 17. The cost of every method naturally increases kith
since more users must be investigated to construdt thest NSGs
comprising the result. However, the query timeMS5GT,,., is

below3 sec even fork = 6 in all scenarios.

10°
NSGager —+—
NSGyzy - e
o| NSGleager -
®10 M
E
[SET 10 « " %
« * * * * * *
10° 10!
1 3 5 1 3 5
N (million) N (million)
(a) Disk-Centralized (b) Memory-Centralized
10° 10° s
NSG,,, — Mo eager *
W, o] |Gk
@ e @
E NSGageid notterminate | £l S K
& N % E NSGyggerdid not terminate
*
*
*
10* 10°
1 3 5 1 3. 5
N (million) N (million)

(c) Disk-Distributed

(d) Memory-Distributed

Figure 19: Query timefor NSG vs. N (Synthetic datasets)

Updates. In each experiment, we performed 100,000 social up-
dates, and an equal number of spatial updates. A social update was
a friendship creation between two users, whereas a spatial update
was a check-in that altered the current location of a user to a new
one (see Section 5.1 for the implementation details). We report the
average update times for the real and synthetic datasets, focusing

only on the centralized setting (the times are the same in the dis- 7.

tributed case, as each update ocdacslly at SM or GM). [1]
For the real dataset, in the disk-based scenario, a social update [2]

takes2.3 ms and a spatial updaté.17 ms. Observe that a so-

cial update is considerably more expensive than a spatial update, [3]

because it entails reading two long friend lists (each of average [4

size 437) from the disk, whereas a spatial update involves chang- 6]

ing a single entry in the effective spatial indices of MongoDB. Note

that MongoDB employs Linux’s cache, which significantly reduces [7]

both read and write costs. For the memory-based case, a social up-[8]

date require$.57 us, and a spatial update4 us. Here, a social [
update is cheaper than a spatial one; the social cost is now very Iowﬁ(l’}

(since the 1/O cost is eliminated), whereas our grid may contain a
long ID list in the user’s old cell, which must be traversed to locate [12]
his ID and delete it. [13]
Figure 20 illustrates the update time when varying the dataset
size N for the synthetic datasets. In general, the cost of spatial [14]
updates in both the disk- and memory-based setting increases with;s,
N, since the dataset cardinality affects the size and performance of
the spatial indices. On the other hand, the social updates are rather
minimally impacted byN, since their cost is mainly influenced by 17]
the average number of friends. The observed fluctuation in Figure ;¢
20(a) is due to the ID lookups during the updates and the random-[1g;
ness of the datasets. Finally, a spatial (social) update is more costly
than a social (spatial) update in the memory-based (disk-based) sce-
nario for the same reasons as in the real dataset scenario. [20]

[21]
10° : »
Spatial M — —
Social — ngal — U e X
.glo“) glol o
8 S RV 3 v £
[23]
10° 1 3 p 10° - " :
N (million) N (million) [24]

(a) Disk-Centralized (b) Memory-Centralized

[25]

Figure 20: Updatetimevs. N (Synthetic datasets) (26]

Summary. We derive three main conclusions from our empiri-
cal analysis: (i) the best algorithm for each query type depends
on the setting (data management method and system architecture)28]
(i) the performance of our algorithms is excellent even under the [29]
most challenging scenarios (e.g., fdSG queries, in the disk- 30]
based case, for larges and k), and scales well with the dataset 131]
size, and (iii) our implementations can handle hundreds of updates
per second even for large dataset siZ€s<£ 5M).

6. CONCLUSION

In this paper we conducted the first systematic study of GeoSN
query processing. In particular, we introduced a general framewor [34]
that segregates the social, geographical and query processing mod-
ules, enabling flexible data management and algorithmic design. A [35]
GeoSN query is processed via a combination of primitive opera-
tions issued to the social and geographical modules. We also intro-[36]
duced novel GeoSN queries, and designed various solutions based
on different sets of primitives. Finally, we performed an exhaustive 137]
experimental evaluation on real and synthetic datasets with realistic[3g
implementations, which confirmed the viability of our framework

[27]

[32]

[33]

and the practicality of our GeoSN queries and algorithms. (39]
[40]
Acknowledgements
[41]

This work was supported by grant HKUST 6174/12 from Hong
Kong RGC.

REFERENCES

Agora. http://agora-app.heroku.com/

Facebook anatomy.
https://www.facebook.com/notes/facebook- data-team/
anatomy-of-facebook/10150388519243859/

Facebook Placesttps://www.facebook.com/about/location/
Factual.http://www.factual.com/

5] Foursquarehttp://www.foursquare.com/

Foursquare downtime problerttp://blog.foursquare.com/2010/
10/05/so-that-was-a-bummer/

Foursquare friendshipbttp://vimeo.com/22641902
Foursquare statistichttps://foursquare.com/about/
Fullcircle. http://www.fullcircle.net/
Geologi.http://www.geologi.com/

Geospatial indexes in MongoDAttp:
/ldocs.mongodb.org/manual/core/geospatial-indexes/
Glanceehttp://www.glancee.com/

GroupOn Now! deals available on Foursquare.
https://blog.groupon.com/cities/
groupon-now-deals-available-in-foursquare/

Hotlist. http://www.hotlist.com/ .

Linking Foursquare with Facebook and Twitter.
http://support.foursquare.com/entries/

21738953-linking-foursquare-with-facebook-and- twitt er/ .

16] Memcachedhttp://memcached.org/

Mongodb.http://www.mongodb.org/
Neo4j.http://neo4j.org/

Scaling MongoDB at Foursquare.
http://www.10gen.com/presentations/
mongonyc-2012-scaling-mongodb-foursquare
Twitter: Real-time Geohttp://www.slideshare.net/
raffikrikorian/rtgeo-where-20-2011 .
A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K. Wampler. Buddy
tracking - efficient proximity detection among mobile frienBsrvasive and
Mobile Computing3(5):489 — 511, 2007.

N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general framework for
geo-social query processing. Full version of this paper, available online at
http://www.cse.ust.hk/ ~ nikos/geosns/GeoSNs-long.pdf ,
2013.

J. Bao, M. F. Mokbel, and C.-Y. Chow. GeoFeed: A location aware news feed
system. INCDE, 2012.

A. L. Baralasi and R. Albert. Emergence of scaling in random networks.
Science286(5439):509-512, 1999.

E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: useement
in location-based social networks. $$GKDD, 2011.

Y. Doytsher, B. Galon, and Y. Kanza. Querying geo-social data by bridging
spatial networks and social networks.LUBSN 2010.

Y. Doytsher, B. Galon, and Y. Kanza. Managing socio-spatial data as large
graphs. INnWWW 2012.

Q. Huang and Y. Liu. On geo-social network servicesGeoinformatics2009.
A. Khoshgozaran and C. Shahabi. Private buddy search: Enabling private
spatial queries in social networks. GSE 2009.

N. Li and G. Chen. Analysis of a location-based social networlkC$t 2009.
W. Liu, W. Sun, C. Chen, Y. Huang, Y. Jing, and K. Chen. Circle of fiien
query in geo-social networks. DASFAA 2012.

A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.
Measurement and analysis of online social networkSIBCOMM 2007.

K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitgon
An efficient method for continuous nearest neighbor monitorin&I®VOD,
2005.

D. Papadias, Y. Tao, K. Mouratidis, and C. Hui. Aggregate nearest naighbo
queries in spatial databasé@¢§_M Transactions on Database Systems (TODS)
30(2):529-576, 2005.

D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing imlspati
network databases. MLDB, 2003.

C. Ruiz Vicente, D. Freni, C. Bettini, and C. S. Jensen. Location-relatedqyri
in geo-social networkdEEE Internet Computingl5(3):20-27, May 2011.

S. Scellato, C. Mascolo, M. Musolesi, and V. Latora. Distance matters:
Geo-social metrics for online social networks WOSN 2010.

D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On socio-spatial group
query for location-based social networks SIGKDD, 2012.

M.L.Yiu,L.H. U, S. éaltenis, and K. Tzoumas. Efficient proximity detection
among mobile users via self-tuning policies AWLDB, 2010.

C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. Evaluating geo-social
influence in location-based social networksQKM, 2012.

Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W. Ma. Recommending friends and
locations based on individual location histoACM Transactions on the Web
(TWEB) 5(1):5, 2011.

