
Algorithmic Approaches for Two

Fundamental Optimization Problems:

Workload-Balancing And

Planar Steiner Trees

Diplomarbeit in Mathematik mit Schwerpunkt Informatik

von Siamak Tazari

Technische Universität Darmstadt

Betreuer:

Dr. habil. Matthias Müller-Hannemann

Fachbereichsinterner Betreuer:

Prof. Dr. Alexander Martin

Darmstadt, August 10, 2006

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst, keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt und alle
Stellen, die dem Wortlaut oder Sinne nach anderen Werken entnommen
sind, durch Angabe der Quellen als Entlehnungen kenntlich gemacht
habe.

Darmstadt, den 10.8.2006

(Siamak Tazari)

Preface

“The wind, it whispers to the buckeyed trees in rhyme.
Well my heart’s in the Highlands,
I can only get there one step at a time.”
—Bob Dylan, “Highlands”

In today’s life, we encounter optimization problems all the time: from a
simple everyday question like the fastest way to get from home to work up
to large scale problems such as maximizing the profit of a company, there
is an ever growing number of optimization problems that are waiting to be
solved. Unfortunately, for many of these problems, it is not known how
they can be solved exactly in a “reasonable” time. Even worse, there is
reasonable evidence that a large class of optimization problems do not have
“fast” algorithms at all. Still, these problems are present and we need to
calculate some solution for them — optimal or not. These problems are
investigated both from a theoretical and from a practical point of view.

From a practical point of view, we approach these algorithmic challenges
with the goal of finding “good” solutions in an acceptable time. This can
be achieved, for example, by the use of heuristics or by mathematical pro-
gramming. Ideally, one would also like to be able to know the quality of
the calculated solutions by specifying how much they are maximally away
from the optimal solution. The work in this area is often classified as ex-
perimental algorithms, where one designs and implements algorithms and
shows their good quality by making experiments on real or artificial test
data and comparing them to other known solutions or theoretical lower and
upper bounds.

From a theoretical point of view, we would like to design algorithms
that give us a certain performance guarantee, i.e. algorithms that deliver
solutions that are provably within some given factor of the optimum. This
leads to the area of approximation algorithms and complexity theory. For
some classes of hard optimization problems, there even exist algorithms
that calculate solutions that are arbitrarily close to the optimum and run

i

ii

in “theoretically” short time. However, many of these algorithms are still
too slow in practice. But still, it is this interplay between theoretical and
practical results that makes us able to solve harder and larger optimization
problems every day.

In this thesis, we are going to look at both of these views. We investigate
two fundamental optimization problems. The first one, workload balancing
in multi-stage production processes, belongs to the large class of scheduling
problems and we approach it from a practical point of view. We consider
a specific application, namely, the optimization of a kind of printed circuit
board manufacturing machine. We identify the abstract scheduling problem
that has to be solved, show that it is hard, and propose a heuristic to solve
it fast in practice. For a special but very important case of the problem,
we present an exact algorithm that runs in polynomial time and we use this
algorithm to derive our heuristic for the original problem. We argue that our
algorithm delivers high quality solutions by showing experimental results on
real application data and comparing them with lower bounds delivered by
mathematical programming tools.

The second problem that we look at is a classical network-design problem,
called the Steiner tree problem. Roughly speaking, in this problem, we
want to interconnect a given set of points with a shortest possible network.
We study this problem from a theoretical point of view. We look at both
the Steiner tree problem in graphs and the geometric Steiner tree problem.
Our goal was to find a so-called polynomial time approximation scheme
for the Steiner tree problem in planar graphs. The case of planar graphs is
highly relevant in VLSI design, since it contains the rectilinear and octilinear
Steiner tree problems with obstacles as special cases. Also, the question
about the existence of polynomial time approximation schemes in planar
graphs is a very important theoretical question in its own right. Even though
we did not succeed in finding such an approximation scheme for the Steiner
tree problem in planar graphs, we conjecture that one exists. We thoroughly
review the relevant literature on this topic and suggest a promising way to
achieve the desired result. Specifically, we show that if a specific lemma is
proved to be true, then a polynomial time approximation scheme follows.

Throughout this work, we will introduce many algorithmic ideas,
methodologies and proof techniques, both in the area of experimental al-
gorithms and in the area of approximation algorithms. So, one can also
regard this thesis as giving a broad — and often deep — overview on these
topics.

iii

Acknowledgments

First of all, I want to thank my supervisor Dr. Matthias Müller-Hannemann
for all the time and effort he spent in advising me on this thesis and always
being helpful about every question I had and every problem I encountered
throughout this work and beyond. I want to thank Prof. Dr. Karsten
Weihe and Prof. Dr. Alexander Martin for integrating me into algorithmic
research early on and trusting me with challenging tasks since the first year
of my studies at the university. I could always seek their advice on every
academic and career decision I faced and they have always provided me with
the best of their knowledge and experience. I would also like to thank Dr.
Thomas Ihringer and Prof. Dr. Klaus Keimel for the advice, knowledge
and experience they passed on to me in numerous conversations throughout
my studies. My thanks go to Prof. Dr. Marc Alexa who accepted me as
a research assistant even before I had started my courses at the university
and brought me in touch with the fascination of mathematically challenging
research in computer science. For the time I spent at the University of
British Columbia in Vancouver, Canada, I would like to thank Prof. Dr.
Holger Hoos, Prof. Dr. Will Evans, Prof. Dr. Anne Condon and Prof. Dr.
Kevin Leyton-Brown for being excellent instructors and advisors and also
Frank Hutter for encouraging me to go there in the first place. I would also
like to thank the “Studienstiftung des Deutschen Volkes” for their constant
support throughout my years at the university and specifically for making
the exchange year to the University of British Columbia possible for me.

I would like to thank everyone in the algorithmics group of the computer
science department at TU-Darmstadt for warmly integrating me into the
group and always being helpful about various technical and non-technical
problems at work. The same thanks go to the discrete optimization group
in the mathematics department and to the graphical interactive systems
group of the computer science department for the time I spent working with
them. My special thanks go to the Informatics Olympiad group in Iran
for the wealth of knowledge I acquired and the fascination I experienced
throughout my time with them in that young age that greatly influenced
my course in life. And most of all, I would like to thank my parents for
the world of love and encouragement they have always been providing me
with, being there whenever I needed them, always supporting me with all
the means that were available to them, and igniting and keeping alive the
fire of my fascination for mathematics and computer science ever since my
early childhood.

Contents

Part I:
Workload Balancing in Multi-Stage Production Processes 1

1 Problem Introduction 3

1.1 Problem Statement . 3

1.2 Application . 4

1.3 Related Work . 5

1.4 Our Contribution and Overview 7

2 NP-Hardness and ILP Formulation 9

2.1 NP-Hardness . 9

2.2 Integer Linear Programming Model 10

3 Our Approach 15

3.1 The Big Picture . 15

3.2 The Network Flow Model and the Capacity Decision Variant 17

3.3 The MinMax Variant . 17

3.4 Solving the Uniform Case Optimally 20

3.5 Lower Bounds . 25

3.6 Shortest-Path Based Local Search and Reset Times 26

4 Computational Results 29

4.1 Test Instances and Environment 29

4.2 The Uniform Case . 29

v

vi

4.3 Impact of Local Search and Toolbit Exchanges 31

4.4 Lower Bounds and Comparison with CPLEX 32

4.5 An Experiment about the Unit-Length Assumption 34

Part II:
Towards a PTAS for the Planar Steiner Tree Problem 35

5 The Steiner Minimum Tree Problem 37

5.1 The SMT Problem in Graphs 38

5.2 The Geometric SMT Problem 38

5.3 Uniform Orientation Metrics and Obstacles 39

5.4 On Planar Graphs . 40

6 On Spanners 43

6.1 Sparse Spanners of Weighted Graphs 44

6.2 More on Planar Graphs . 46

6.3 Mehlhorn’s Graph is Planar for Planar Graphs 50

6.4 A Subset Spanner for Planar Graphs 52

6.5 On Banyans . 57

7 PTASs for Geometric Variants 59

7.1 Arora’s Approach . 59

7.2 Node-Weighted Geometric Steiner Trees 62

7.3 Mitchell’s Approach . 65

7.4 The Problem with Obstacles 68

8 PTASs for Planar Graphs 71

8.1 Baker’s Decomposition . 71

8.2 Planar Separators and Planar TSP 73

8.3 Weighted Planar Separators and Weighted Planar TSP 74

8.4 Klein’s Approach and Weighted Planar TSP 77

vii

9 Our Conjecture: The Planar SMT Problem Admits a PTAS 79

9.1 Edge Compression and Steiner Trees 80

9.2 Step 1 (The Missing Step): Filtering 82

9.3 Step 2: Thinning . 84

9.4 Step 3: Dynamic Programming 86

9.5 Summary of the Algorithm 89

Bibliography 91

Part I:
Workload Balancing in
Multi-Stage Production
Processes

1

Chapter 1

Problem Introduction

We consider a variant on the general workload balancing problem, which
arises naturally in automated manufacturing and throughput optimization
of assembly-lines. The problem is to distribute the tasks over compatible
machines and phases of the process simultaneously. The total duration of
all phases is to be minimized.

In this chapter, we will first state the abstract formulation of our prob-
lem. Then we will describe an application that motivated this research,
namely printed circuit board (PCB) manufacturing on certain modular ma-
chines, such as Philips/Assembléon’s AX1. After presenting some related
work in this area, we will outline our contribution and give an overview of
our results.

Most contents of this part of the thesis are published in [79], which is
the joint work of Karsten Weihe, Matthias Müller-Hannemann and myself.

1.1 Problem Statement

In this thesis, we study the following general workload balancing problem.

Problem 1.1 (Main Problem). We are given tasks T = {t1, . . . , tn},
machines P = {p1, . . . , pm}, phases Q = {q1, . . . , qs}, a reset time R, and a
set A ⊆ T ×Q×P of feasible assignments of tasks to machines and phases.
Throughout the paper, a pair (q, p) ∈ Q × P will be called a bucket (see
Fig. 1.1).

A schedule is an assignment f : T 7→ Q × P of every task to a bucket.
A schedule is feasible if (t, f(t)) ∈ A for all t ∈ T .

1AX is a fast component mounter for printed circuit boards, Philips/Assembléon B.V.,
Eindhoven, The Netherlands.

3

Chapter 1. Problem Introduction 4

makespan
time

phase 1 phase 2 phase 3

machine 1

machine 2

machine 3

workload

bucket (3, 1)

Figure 1.1: Illustration of the makespan. Each box represents a task.

For t ∈ T , let `(t) denote the length of task t and rf (q, p) the number of
times a reset is needed in bucket (q, p) given the schedule f . The workload
of a machine p in a phase q is the sum of the lengths of the tasks assigned
to it plus a possible reset time, i.e.

wlf (q, p) =
∑

t∈T,f(t)=(q,p)

`(t) + R · rf (q, p)

for a given schedule f . The duration of a phase is the maximum workload
of a machine in that phase:

df (q) = max
j=1,...,m

{wlf (q, pj)} .

The makespan of the schedule is the sum of the durations of the phases, i.e.

c(f) =
s

∑

i=1

df (qi) .

The goal is to find a schedule that minimizes the makespan (see Fig. 1.1).

1.2 Application

This problem arises, for example, in throughput optimization of assembly
lines. In fact, our original motivation for this work is a particular application
of assembly-line balancing: printed circuit board (PCB) manufacturing on
certain modular machines such as Philips/Assembléon’s AX (Fig. 1.2).

The circuit boards are the workpieces, the stations of the assembly line
are the machines. The workpieces are moved forward in steps. In every phase

Chapter 1. Problem Introduction 5

Figure 1.2: Philips/Assembléon’s AX-5 consists of 20 pick-and-place stations.

between two moving steps, the machines perform tasks on the workpieces.
The moving steps are periodic: after s steps, each workpiece has exactly
assumed the position of its predecessor in the line. The actions of a machine
are identical on all workpieces, so this is a periodic scheme with period s,
too (see Fig. 1.3).

Every machine has a robot arm, which performs the tasks. In a task, a
component is picked from a particular position (feeder) inside this machine
and mounted at a prescribed position on the board. A machine comes with
feeders for different component types. The feasibility relation A is induced
by the following restrictions. A task may be performed by a machine if
the machine has a feeder for the required component type. On the other
hand, the task may be processed only in those phases in which the mounting
position is in the visibility range of the machine.

The robot arm needs a toolbit for picking and holding a component.
Different types of components require different toolbits. Each machine has
a toolbit repository, and the reset time is induced by the necessary exchange
of the toolbit at that repository.

A phase is finished once all machines have accomplished all of their tasks
that are assigned to this phase. The time to produce one board is the sum
of the durations of the s steps (up to a constant value). This time is to be
minimized.

1.3 Related Work

Workload balancing (makespan minimization) of parallel machines for a sin-
gle production phase is a prototypal scheduling problem which has been

Chapter 1. Problem Introduction 6

time

station 2 station 3station 1

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

after phase 1

after phase 2

return stroke

after phase 3

visible area visible area visible area

prev. return stroke

Figure 1.3: Five snapshots of a board cycle with s = 3; the arrows on each line indicate
the moves of the belt from the previous phase to the current one, respectively. In the
lowest row, a new board is mounted on the belt; then, in each of the three phases, the belt
moves forward and components get placed on the boards; after the last phase, a finished
board leaves the machine, the belt detaches from the boards and returns to its initial
position, ready to mount a new board.

widely considered [17]. A number of overview papers on printed circuit board
optimization and assembly lines have appeared quite recently. Scholl [77]
surveys general problems and approaches to the balancing and sequencing
of assembly lines. An overview on printed circuit board assembly problems
has been given by Crama et al. [25].

Ayob et. al. [6] compare different models and assembly machine technolo-
gies for surface mount placement machines. Multi-station parallel placement
machines like the Fuji QP-122 or Assembléon’s AX found only little atten-
tion. For this type of machine, evolutionary (genetic) algorithms have been
proposed in [83]. These authors consider a greatly simplified model in com-
parison to the one studied in this paper. Their computational results lack
a comparison with optimal solutions or lower bounds. Müller-Hannemann
and Weihe [65] recently studied a different variant of the workload balancing
problem, where for each task exactly one machine is compatible (instead of
a subset of the machines as in Problem 1.1). However, in that variant also
the movement scheme of the assembly line was part of the optimization.

It is an empirical observation that task lengths differ not by too much in
typical applications. Therefore, it is interesting to study the case of uniform
task lengths. For example, this has been done by Grunow et al. [38].

Very large-scale neighborhood search has been applied quite successfully
to several hard combinatorial optimization problems [1], in particular to the
classical machine scheduling problems [32].

The problem of optimizing the setup of placement machines has been
studied in the thesis of Gaudlitz [36]. Some of our methods are used in his

Chapter 1. Problem Introduction 7

work to evaluate the quality of the resulting setups.

1.4 Our Contribution and Overview

In Chapter 2 we show that our problem is NP-hard in the strong sense,
even if all tasks are of unit length and the reset time is zero. In Chapter 3,
we will present a novel algorithmic approach for this type of problem. In
the first stage of our algorithm, we will compute an optimal solution to the
special case of unit task-lengths and zero reset time. This solution will be
used in the second stage as a start solution to compute a good solution to
the original problem. As noted above, this special case is of interest in its
own right.

Our research on this special case led to the following nice byproduct: for
a fixed number of phases, Problem 1.1 can be solved in polynomial time if
all tasks are of unit length and there is no reset time. We would like to note
that if the tasks are not of unit-length, the problem remains NP-hard even
when we have zero reset time and only 2 phases [65].

The first stage of the algorithm is based on a reduction to a certain max-
flow problem. Basically, the second stage may be characterized as sort of
a shortest-path based multi-exchange local search where we generalize and
extend the work of Frangioni et al. [32].

It might be worth mentioning that our handling of the reset times is
quite generic and may be easily adapted to other types of complications.
This observation demonstrates that our algorithm is quite robust in the
sense that various types of complications may be naturally incorporated.

A major part of this work is an extensive computational study on all
real-world examples that are available to us (Chapter 4). We compare our
solution to an integer linear programming (ILP) based approach using the
ILP solver of CPLEX. Typically, our algorithm comes close to the lower
bound computed by CPLEX or even hits the optimal value although it is
faster than CPLEX by orders of magnitude.

The comparatively small run time of our algorithm is particularly inter-
esting for the complementary problem, to determine a favorable setup of the
assembly line. In fact, here our problem naturally occurs as a subproblem,
in which the quality of a trial setup is evaluated by the quality of the induced
optimal task distribution [36]. In this context, the algorithm is to be applied
repeatedly a large number of times, so a small run time is mandatory.

Chapter 2

NP-Hardness and ILP
Formulation

In this chapter, we will first prove our hardness result. Then we will present
the ILP formulation that we used to compare our computational results to
CPLEX.

2.1 NP-Hardness

Theorem 2.1. Problem 1.1 is NP-hard in the strong sense, even if all tasks
are of unit length and the reset time is zero.

Proof. We reduce the minimum vertex cover problem to an instance of Prob-
lem 1.1 with unit task-lengths and no reset time. The vertex cover problem
is well-known to be NP-hard [45].

Let an undirected graph G = (V,E) be given. Construct an instance of
Problem 1.1 in the following way: let n = m = |E| and s = |V |, i.e. for
every edge we introduce a task and a machine and for every vertex we create
a phase. Let T = {te : e ∈ E}, P = {pe : e ∈ E}, and Q = {qv : v ∈ V }
denote the task, machine, and phase sets, respectively. For every task te

with e = {v, w}, we allow exactly 2 buckets on each machine pe: the buckets
(qv, pe) and (qw, pe). Thus, the set of feasible assignments is given by

A = {(te, qv, pe), (te, qw, pe) : e ∈ E, e = {v, w}} . (2.1)

We claim that for every vertex cover W ⊆ V there exists a schedule with
c(f) ≤ |W | and for every solution to (2.1) there exists a vertex cover W in

9

Chapter 2. NP-Hardness and ILP Formulation 10

G with c(f) = |W |. If this is true, then any function f minimizing c also
results in a minimum vertex cover and the theorem is proved.

Note in (2.1) that every machine is given only one job; we just have to
decide in which one of the given two phases to do it. Thus, the duration of
every phase is at most one, i.e.

(∀q ∈ Q) df (q) ≤ 1 . (2.2)

Suppose a vertex cover W ⊆ V is given. For every edge e we can find a
vertex cov(e) ∈ W which covers it; if an edge is covered by 2 vertices in W ,
we can just take any one. We set

(∀te ∈ T) f(te) = (qcov(e), pe) . (2.3)

In this way, we get a feasible assignment for every task in T . Furthermore,
no task is done in a phase corresponding to a vertex in V \ W and we get

c(f) =
∑

v∈V

df (qv) =
∑

v∈W

df (qv)
(2.2)

≤
∑

v∈W

1 = |W | . (2.4)

Now suppose a feasible assignment function f is given. We set W = {v :
df (qv) = 1}. Then we get

c(f) =
∑

v∈V

df (qv)
(2.2)
=

∑

v∈W

df (qv) =
∑

v∈W

1 = |W | . (2.5)

But W also covers all edges in G: For an edge e = {v, w} ∈ E, we have
f(te) = (qv, pe) or f(te) = (qw, pe). Then df (qv) = 1 or df (qw) = 1 and thus
v ∈ W or w ∈ W and thus, e is covered.

This proof suggests that the parameter that makes this problem hard is
the number of phases, s. Indeed, for any fixed s, the problem can be solved
in polynomial time as we will show in the next chapter.

2.2 Integer Linear Programming Model

To obtain lower bounds in our computational study and to compare our
algorithm to CPLEX, we modeled our problem — applied to the scenario of
PCB manufacturing on the AX with toolbit exchanges — as an integer linear
program. This model is basically taken from [36]. The toolbit exchanges
induce the reset times and modeling them correctly is somewhat complicated
as can be seen below.

We use the following variables:

Chapter 2. NP-Hardness and ILP Formulation 11

• di denotes the duration of phase i

• wi,j denotes the workload of bucket (i, j)

• ri,j is the number of toolbit exchanges (i.e. reset times) in bucket (i, j)

• ft,i,j ∈ {0, 1} decides if task t is assigned to bucket (i, j)

• xb,i,j ∈ {0, 1} decides if toolbit b is used in bucket (i, j)

• xf
b,i,j ∈ {0, 1} specifies if toolbit b is the first toolbit used in bucket

(i, j)

• xl
b,i,j ∈ {0, 1} specifies if toolbit b is the last toolbit used in bucket

(i, j)

• xf∨l
b,i,j ∈ {0, 1} is 1 iff toolbit b is the first or last toolbit used in bucket

(i, j)

• xprec
b,i,j ∈ {0, 1} is 1 iff toolbit b is the first one of this phase or the last

one of the preceding phase in bucket (i, j)

• xu
i,j ∈ {0, 1} tells if there is exactly one toolbit used in bucket (i, j)

• xf=l
i,j ∈ {0, 1} tells if bucket (i, j) uses at least 2 different toolbits and

the first toolbit equals the last one

For all the indices in this section, we have i = 1, . . . , s, j = 1, . . . ,m, t =
1, . . . , n and b = 1, . . . , h where h denotes the number of available toolbits.

The objective is to minimize the makespan, i.e.,

min

s
∑

i=1

di

subject to the following constraints:

• the duration of a phase is the maximum workload over all machines:

∀i, j di ≥ wi,j

• the workload of a bucket is the sum of the task-lengths performed in
that bucket plus reset times:

∀i, j wi,j = ri,j · R +

n
∑

t=1

ft,i,j · `(t)

Chapter 2. NP-Hardness and ILP Formulation 12

• the number of toolbit exchanges in a bucket consists of (i) the number
of toolbits used in the bucket minus 1; (ii) an additional exchange if
the first toolbit differs from the last one from the preceding phase;
(iii) an additional exchange if there are at least 2 toolbits used and
the first and the last one are the same (in this case, this toolbit has
been counted only once in the first term and has to be added here):

∀i, j ri,j = (

h
∑

b=1

xb,i,j) − 1 + (

h
∑

b=1

xprec
b,i,j) − 1 + xf=l

i,j

• all tasks must be assigned exactly once:

∀t

s
∑

i=1

m
∑

j=1

ft,i,j = 1

• a task may only be assigned to a bucket if it is feasible in that bucket:

∀(t, i, j) /∈ A ft,i,j = 0

• a toolbit may only be used in a bucket if it is available to that machine:

∀b, i, j xb,i,j = 0 if toolbit b not available in bucket (i, j)

• a task may only be assigned to a bucket if a compatible toolbit is used:

∀t, i, j ft,i,j ≤
∑

b compat. with t

xb,i,j

• every bucket uses at least one toolbit:

∀i, j

h
∑

b=1

xb,i,j ≥ 1

• there is a first/last toolbit associated with every bucket:

∀i, j

h
∑

b=1

xf
b,i,j ≥ 1

∀i, j
h

∑

b=1

xl
b,i,j ≥ 1

• a first/last toolbit must be used in the bucket:

∀b, i, j xf
b,i,j ≤ xb,i,j

∀b, i, j xl
b,i,j ≤ xb,i,j

Chapter 2. NP-Hardness and ILP Formulation 13

• set xf∨l
b,i,j = 1 iff toolbit is the first or last one in this bucket:

∀b, i, j xf∨l
b,i,j ≤ xf

b,i,j + xl
b,i,j

∀b, i, j xf∨l
b,i,j ≥ xf

b,i,j

∀b, i, j xf∨l
b,i,j ≥ xl

b,i,j

• set xprec
b,i,j = 1 iff toolbit is first one of this phase or last one of preceding

phase in this bucket (where i − 1 has to be replaced by s if i = 1):

∀b, i, j xprec
b,i,j ≤ xf

b,i,j + xl
b,i−1,j

∀b, i, j xprec
b,i,j ≥ xf

b,i,j

∀b, i, j xprec
b,i,j ≥ xl

b,i−1,j

• set xu
i,j = 1 iff a bucket uses exactly one toolbit:

∀i, j h · (1 − xu
i,j) + 1 ≥

h
∑

b=1

xb,i,j

∀i, j 2 − h · xu
i,j ≤

h
∑

b=1

xb,i,j

• set xf=l
i,j = 1 iff bucket uses at least 2 different toolbits and the first

one equals the last:

∀i, j xf=l
i,j = 2 − xu

i,j −
h

∑

b=1

xf∨l
b,i,j

Chapter 3

Our Approach

In Section 3.1, we will first give an overview of our approach. In particular,
we will formally state the subproblems that constitute the ingredients of
our approach. In Sections 3.2 – 3.6, we will consider all of these ingredients
individually and show how they build up on each other to produce a solution
to our main problem. Specifically, in Section 3.4, we show that for a fixed
number of phases, our problem can be solved in polynomial time if all tasks
are of unit length and there is no reset time.

3.1 The Big Picture

Our algorithm consists of two stages: in the first stage, Sections 3.2 - 3.4,
we will focus on the special case of unit task-lengths and zero reset time:

Problem 3.1 (Uniform Case). Solve Problem 1.1 with the assumption
that `(t) = 1 for all t ∈ T and R = 0.

The structure of our approach can be seen in Fig. 3.1. It is based on a
network flow model introduced in Section 3.2. We will derive a fast heuristic
for Problem 3.1 in Section 3.3 that, in fact, finds the exact solution to
the following variant of the problem, which considers a different objective
function:

Problem 3.2 (MinMax Variant). Solve Problem 3.1 replacing the objec-
tive function with

cmax(f) = max
i=1,...,s

{df (qi)} .

We will use the solution delivered by the MinMax heuristic as an input
to the algorithm in Section 3.4, which solves the uniform case optimally.

15

Chapter 3. Our Approach 16

MinMax Heuristic

Uniform Case

Capacity Decision Variant

Max−Flow

Figure 3.1: The solution to the uniform case takes the solution of the MinMax heuristic
as input and repeatedly uses the capacity decision variant to find the best possible capacity
function. This is, in turn, based on the network flow model of our problem.

Throughout our work, we make use of a function to control the workload
in every phase by an upper bound. We call such a function κ : Q 7→ Z a
capacity function, and the upper bound it imposes on a phase, the capacity
of that phase (see Fig. 3.2). A capacity function is called feasible if, and
only if, there exists a schedule f such that

df (q) ≤ κ(q) for all q ∈ Q .

In this case, we also say that f is feasible for κ. The following problem plays
a central role in our approach:

Problem 3.3 (Capacity Decision Variant). Given the setting in Prob-
lem 3.1 and a capacity function κ, decide whether κ is feasible.

Let c(κ) =
∑s

i=1 κ(qi) and cmax(κ) = maxi=1,...,s κ(qi). Note that if f is
a feasible schedule for κ we have

c(f) ≤ c(κ) and cmax(f) ≤ cmax(κ) .

We use the solution of the uniform case as a start solution for the second
stage of our algorithm (Sect. 3.6), which is basically a multi-neighborhood
local search. Here we will finally address Problem 1.1 in full generality.

Note that the check whether an instance is feasible is trivial: there is a
feasible schedule if, and only if, every task may be assigned to some bucket.
We assume that this is always given.

Chapter 3. Our Approach 17

3

machine 2

machine 3

machine 1

capacity

phase 2 phase 3phase 1

4 2

Figure 3.2: A feasible capacity function

3.2 The Network Flow Model and the Capacity
Decision Variant

Given an instance of the capacity decision variant, we construct a directed
network flow graph Gκ = (V,E) as follows (see Fig. 3.3). We introduce
one vertex for every task, one vertex for every bucket, and in addition one
source vertex and one sink vertex. Next we add one edge with capacity 1
from the source to every task vertex, one edge with capacity 1 from every
task vertex to every bucket vertex in which this task may be performed, and
one edge with capacity κ(q) from every bucket vertex with phase q to the
sink. We denote the value of a flow f in G with v(f). It is easy to see that
the following lemma holds.

Lemma 3.4. There exists a feasible flow f in Gκ with v(f) = n if and only
if κ is feasible. If such a flow exists, a feasible schedule f for the capacity
decision variant can be derived as follows: for t ∈ T , set f(t) = (q, p) for
the unique pair (q, p) such that f((v, w)) = 1, where node v represents the
task t and node w represents the bucket (q, p).

This results in an algorithm whose runtime, using the Ford-Fulkerson
method [31], is O(n · |E|) = O(n2ms). This is because the value of the flow
is at most n, so it can be constructed by at most n augmentations.

3.3 The MinMax Variant

We can now easily derive an algorithm for the MinMax variant. As said
in the big picture (Sect. 3.1), this is the first step of our overall algorithm
and its result will be used as a starting point for solving the uniform case
optimally (Sect. 3.4).

Chapter 3. Our Approach 18

4

source

sink

tasks

buckets

2 2 2 3 3

34

4

Figure 3.3: The network flow model for an instance with 3 machines and 3 phases. The
first 3 buckets (red) belong to phase 1 with capacity 4, the next 3 (green) belong to phase
2 with capacity 2 and the last 3 (brown) belong to phase 3 with capacity 3.

The MinMax problem itself is equivalent to finding the minimal value k
such that the uniform capacity function κ(·) ≡ k is feasible. For that, we
may simply test all values k = 0, . . . , n and take the smallest one for which
κ becomes feasible. Alternatively, we may use binary search on 0, . . . , n and
obtain a complexity of O(n2ms log n).

In view of Sect. 3.4, it is heuristically reasonable to construct a tighter
capacity function κ, which is not necessarily uniform, in the hope to also
minimize the sum. We can continue decreasing the capacities of individual
phases as long as it is possible. This idea is carried out in Algorithm 3.1
and illustrated in Figure 3.4.

For this purpose, we make use of a helper-function: Given Gκ, one can
easily write a function decreasePhaseCapacity(q) that tries to decrease
the capacities of all the sink-edges belonging to phase q by one unit while
preserving the value of the flow; it should change the function κ accordingly
and return true if successful, otherwise do nothing and return false. A
straightforward implementation runs in O(m · |E|) = O(nm2s)-time.

The algorithm tries to decrease the capacities of the phases at most n
times, i.e. decreasePhaseCapacity is called at most ns times. So the
overall runtime is O(n2m2s2). This is very fast if m and s are small; and
this is the case in some practical situations like in our application.

Chapter 3. Our Approach 19

Algorithm 3.1: MinMax Heuristic

Input : An instance of Problem 3.1 / 3.2.
Output: Optimal assignment w.r.t. Problem 3.2;

at the same time, heuristic assignment w.r.t. Problem 3.1.

begin
create a set F = ∅ of phases with fixed capacity;
create a capacity function κ and set it constant equal to n;
solve Prob. 3.3 for κ to find an initial feasible solution;

// this also gives us Gκ and the flow f
repeat

forall q ∈ Q \ F do
if not decreasePhaseCapacity (q) then

F = F ∪ {q};

until F = Q ;

use Lemma 3.4 to derive a feasible assignment f from f ;
return f ;

end

2

ca
pa

ci
ty

n

1

n−1

phase
3 41 2

ca
pa

ci
ty

n

1

n−1

phase
3 41 2

ca
pa

ci
ty

n

1

n−1

phase
3 41 2

ca
pa

ci
ty

n

1

n−1

phase
3 41 2

ca
pa

ci
ty

n

1

n−1

phase
3 41

Figure 3.4: The idea of our MinMax heuristic is to decrease the capacities of the phases
simultaneously and freeze (blue in the picture) each one that can not be decreased any-
more.

Chapter 3. Our Approach 20

3.4 Solving the Uniform Case Optimally

By Theorem 2.1, we know that Problem 3.1 is NP-hard. We found out that
the hardness of the problem lies in the parameter s, the number of phases.
The algorithm we present now runs in O(us−1nm2s)-time (where u ≤ n is a
parameter we will introduce shortly). If we take s to be a fixed parameter,
this is polynomial. Indeed, in our application we have s ≤ 7 and m ≤ 20
and hence our algorithm is fast enough for our purpose. Also, it is possible
to stop it at any time and take the best solution it has found so far.

Our algorithm is basically a branch-and-bound method that searches
over the space of all feasible capacity functions for the one with the mini-
mum sum. There are ns possible capacity functions. Using the network flow
model, one can test the feasibility of a capacity function in O(n2ms)-time,
so an exhaustive search would end up with a runtime of O(ns+2ms). Now let
κ0 be the capacity function returned by the MinMax algorithm (Alg. 3.1).
We know there exists a solution with value c(κ0). Let u = c(κ0)−1. Now we
need only search in the space of capacity functions summing up to a value
≤ u. There are

(u+s
s

)

possibilities and again, each one has to be tested. We
now show how to search in this space and dynamically manipulate the flow
graph to achieve a theoretical runtime of O(us−1nm2s) and what bounding
strategy we use that leads to very short runtimes in practice (see computa-
tional results in Chapter 4). Bear in mind that u ≤ n and is usually much
less than n — in fact, it is usually equal or very close to optimum as can be
seen in the computational results.

We first give an informal description of the idea of our method. Consider
this table:

phase 1 2 . . . s

capacity 0 . . . u 0 . . . u . . . 0 . . . u

Our algorithm chooses values for the capacities of the phases from right

to left. It tries the values u downto 0 for the phase s, then for each one,
recursively tries all values for phase s − 1 and so on. It always maintains
the flow graph Gκ and every time the value of the capacity of a phase is
changed, it dynamically changes the capacities of the corresponding edges
in Gκ and re-maximizes the flow. This way, the feasibility check can be
performed efficiently, in fact, “automatically”. The interesting thing about
our method is that the return value of a recursive call can be used to bound
the solution in the upcoming subtrees and hence, effectively cut away a lot
of them (see Fig. 3.5).

More formally, let us denote
∑j

i=1 κ(qi) by cj(κ). A call to our method
must be supplied by three parameters: j, (a not necessarily feasible) κ and
u. Suppose we have already chosen the values for κ(qs), . . . , κ(qj+1) and
would like to find the minimum value for cj(κ) such that κ is feasible. Let

Chapter 3. Our Approach 21

height =
 s

1 0

r

u − 1
u

u − r

phase s

phase s−1

Figure 3.5: The idea of our bounding in the search tree: only the bold branches will be
followed down.

us denote this value by minj(κ). This is the return value of our method. The
third parameter of our method, u, indicates the maximum value we expect
for minj(κ). If we determine that minj(κ) > u, our algorithm will return
∞. To obtain a value for u for our initial call, we can take any feasible
capacity function κ0 and set u := cj(κ0) − 1. As stated earlier, we use the
solution delivered by our MinMax algorithm. The smaller the value of u,
the faster will be our method; hence, it is fortunate that Alg. 3.1, when used
as a heuristic for Problem 3.1, supplies near-optimum solutions.

Our bounding is based on the following observation:

Observation 3.5. Let κ(qj) = t and minj−1(κ) = r. If we decrease κ(qj)
to any value ≤ t, we will have minj−1(κ) ≥ r.

In other words, when we try the capacities for phase j from large to small
(i.e. from s downto 0), the return value of our recursive function call (i.e.
minj−1(κ)) can only increase. This is because any κ with κ(qj) ≤ t remains
feasible if we set κ(qj) = t. So we know that if the current best solution has
value u+1 and our last recursive call has returned the value r := minj−1(κ),
then the next value we should try for κ(qj) is u− r; all larger values can not
possibly lead to better solutions (see Fig. 3.5).

Our algorithm works as follows: we set κ(qj) = u and find r :=
minj−1(κ). By the observation above, we know that in any solution with

Chapter 3. Our Approach 22

cj(κ) ≤ u, κ(qj) can be at most u − r. So, we assign this value to κ(qj),
calculate r = minj−1(κ) with this new fixation and repeat this procedure
until either a solution with cj(κ) ≤ u is found, u becomes less than r or no
feasible κ with the given fixations exists anymore. If a solution is found, we
decrease the value of u and continue the search. Note that there is no need
to restart the search in this case.

We call our method minimizeSum(j, u, var κ) and it is summarized
in Alg. 3.2. The parameter κ is passed by reference and we assume that Gκ

and a maximum flow f in Gκ are given with it. Our method minimizes cj(κ)
and returns it, adjusting κ, Gκ and f accordingly. But only if such a feasible
solution exists and is at most u. Otherwise the method returns ∞. We need
two additional simple methods: increasePhaseCapacity(q) that increases
the capacity of phase q by one and setPhaseCapacity(q, t) that sets the
capacity of phase q to the value t; in contrast to decreasePhaseCapacity,
neither of these methods need to preserve the value of the flow but only have
to re-maximize it.

Algorithm 3.2: minimizeSum(j, u, var κ)

Input : j: the index of the current phase,
u: the maximum value expected for minj(κ),
var κ: the current capacity function, passed by reference.

Output: minj(κ), if it is ≤ u; otherwise returns ∞;
κ, Gκ and f are changed accordingly.

begin1

if j = 2 then return minimizeSum2 (u, κ); // described below2

create new capacity function κ? and set it equal to null;3

setPhaseCapacity (qj, u); // modifies Gκ4

r = minimizeSum (j − 1, u, κ); // recursive call5

while r ≤ u do6

if κ(qj) + r ≤ u then // solution is found7

κ? = κ; // store new best solution8

u = κ(qj) + r − 1; // reduce u9

else10

setPhaseCapacity (qj, u − r); // modifies Gκ11

r = minimizeSum (j − 1, u, κ); // recursive call12

if κ? = null then return ∞; // no solution found13

κ = κ?; adjust Gκ and f accordingly;14

return u + 1;15

end16

Lemma 3.6. Algorithm 3.2 is correct and its complexity is O(uj−1nm2s).

Chapter 3. Our Approach 23

Proof. We prove by induction on j. We get the base case, j = 2, by
Lemma 3.8. Suppose Lemma 3.6 holds for values less than j. We show
the correctness of the loop in line 6. The loop invariants are every time
line 6 is reached :

(i) κ? is null or cj(κ
?) = u + 1 and κ? stores best solution found so far;

(ii) r = minj−1(κ) (or ∞ if minj−1(κ) > u);

(iii) if κ(qj) is increased, we will have κ(qj)+minj−1(κ) ≥ u+1 ≥ minj(κ).

Remember that the value of minj−1(κ) depends on the value of κ(qj) and
therefore, could change when κ(qj) is changed. Condition (i) holds because
the values of κ? and u will only be changed together in lines 8 and 9 and this
occurs only when a new best solution is found. The correctness of condition
(ii) follows from the induction hypothesis. Together with Observation 3.5
we see that if κ(qj) is decreased, then minj−1(κ) will have a value ≥ r. So, if
minj(κ) is indeed ≤ u, then κ(qj) must be ≤ u − r. Hence, the assignment
in line 11 is correct and so is condition (iii).

When the loop is finished, we have r > u (line 6), so with condition (iii)
we see that there are no possible better solutions to look for. From condition
(i) and (iii) and since the value of κ(qj) is never increased during the loop,
it follows that the optimal solution, i.e. minj(κ), will always be found, if
its value is ≤ the initial value of u. Otherwise κ? will be null and ∞ is
returned, as expected.

The loop variant is κ(qj), which decreases by at least one unit every time
the loop is executed: if the condition in line 7 holds, then u will be reduced
in line 9 otherwise it means that r has just increased; both cases imply that
κ(qj) decreases in line 11. Thus, the whole loop will be repeated at most u
times.

By the argument above, we also see that a recursive call takes place at
most u+1 times and this is the dominating term in the complexity analysis.
So, with the induction hypothesis we get a runtime of O(uj−1nm2s).

As already mentioned, in order to solve the uniform case, we first run
Alg. 3.1, our MinMax algorithm, to get an initial κ. We set u = c(κ) − 1
and run minimizeSum(s, u, κ). By Lemma 3.6, this call will return us the
optimal solution to Problem 3.1. Altogether we get

Theorem 3.7. For a fixed number of phases, the uniform case of our prob-
lem can be solved in polynomial time, specifically in time O(us−1nm2s).

Chapter 3. Our Approach 24

The Case of Two Phases

The recursion above reaches its base case when j becomes 2. In this case,
the specialized function minimizeSum2 is called in line 2 of Alg. 3.2. This
function is basically the same as minimizeSum with the only difference that
the recursive function calls are replaced by some direct manipulation of the
flow graph. These changes are sketched in Alg. 3.3 below.

Algorithm 3.3: minimizeSum2(u, var κ)

Input : u: the maximum value expected for min2(κ),
var κ: the current capacity function, passed by reference.

Output: min2(κ), if it is ≤ u; otherwise returns ∞;
κ, Gκ and f are changed accordingly.

same as Alg. 3.2 except the following:

the recursive call in line 5 is replaced by:
setPhaseCapacity (q1, 0) ;
while v(f) < n and κ(q1) ≤ u do increasePhaseCapacity (q1) ;
r = κ(q1) ;

the recursive call in line 12 is replaced by:
while v(f) < n and κ(q1) ≤ u do increasePhaseCapacity (q1) ;
r = κ(q1) ;

Lemma 3.8. Algorithm 3.3 is correct and its runtime is O(unm2s).

Proof. We have replaced the call to minimizeSum(1, u, κ) by its equiva-
lent: we set the capacity of phase 1 to 0 and increase it until we get a feasible
flow, i.e. one with v(f) = n. The only important point is that resetting the
capacity back to 0 is only required once in the beginning. After that we
know by Observation 3.5 that its value might only increase, so we do not
need to reset it. The correctness follows now from Lemma 3.6.

The runtime of minmizeSum2(κ, u) gets dominated by the runtime of
its main loop. Throughout the loop, the capacity of q2 is decreased at most
by u units and the capacity of q1 gets increased at most by u units. This
is equivalent to calling increase/decreasePhaseCapacity at most O(u)
times (sometimes through setPhaseCapacity). As discussed in Section 3.3
, these functions have a runtime of O(nm2s). Thus the overall runtime of
our method is O(unm2s), which is exactly what we needed for the base case
of our induction.

Chapter 3. Our Approach 25

3.5 Lower Bounds

Having good lower bounds can be useful to cut down the search in the
branch-and-bound algorithm described above. An easy global lower bound
for Problem 3.1, also mentioned in [38], can be given by c(f) ≥ lb1 := d n

me.
Using our MinMax algorithm, we can find additional lower bounds: suppose
we have a capacity function κ and would like to minimize cj(κ) while keeping
the capacities of qj+1, . . . , qs fixed (as in the input of Alg. 3.2). We can find

a lower bound lbj
2 for cj(κ) by merging the phases q1, . . . , qj into one phase

q′. We set
Q′ = {q′, qj+1, . . . , qs}

and

A′ = {(t, qi, p) ∈ A : i > j} ∪ {(t, q′, p) : (∃1 ≤ i ≤ j) (t, qi, p) ∈ A} .

Let κ′ be the corresponding capacity function. We can minimize κ′(q′)
— while keeping κ′(qj+1) = κ(qj+1), . . . , κ

′(qs) = κ(qs) fixed — using a
simplified version of Alg. 3.1: just set the capacity of q ′ equal to n and
decrease it until this is not further possible. Let f ? be the assignment
resulting from this minimization. For arbitrary values of κ(q1), . . . , κ(qj),
let f be some feasible assignment for κ. We can construct an assignment f ′

for the merged problem by setting

(∀t ∈ T)f ′(t) =

{

f(t) if f(t) = (qi, p) and i > j
(q′, p) if f(t) = (qi, p) and i ≤ j

.

Then we have

lbj
2 = df?(q′) ≤ df ′(q′)

= max
i=1,...,m

{wlf ′(q′, pi)}

= max
i=1,...,m

{
j

∑

k=1

wlf (qk, pi)}

≤ max
i=1,...,m

{
j

∑

k=1

df (qk)}

= max
i=1,...,m

{cj(f)}

= cj(f) ≤ cj(κ) .

In addition to the local lower bounds for any j, that can be used in Alg. 3.2,
we also get a global lower bound c(f) = cs(f) ≥ lb2 := lbs

2 = c(f?).

Chapter 3. Our Approach 26

3.6 Shortest-Path Based Local Search and Reset
Times

In order to solve our main problem, Problem 1.1, we take the optimal so-
lution of the uniform case, substitute the actual task-lengths and perform
local search on it. We used the idea of multi-exchange neighborhoods pre-
sented by Frangioni et al. in [32] and incorporated the existence of multiple
phases and reset times into it. Specifically, we do the following:

Let a feasible assignment f be given. We call a bucket (q, p) loaded
if the workload of bucket (q, p) is equal to the duration of phase q. Let
rf (t, q, p) ≥ 0 denote the reset time needed, if task t is added to bucket
(q, p). We create an improvement graph by introducing one vertex for every
task and one vertex for each bucket (see Fig. 3.6). We connect a task t1 to a
bucket (q, p) with a directed edge if t1 can be added to bucket (q, p) without
making it loaded, i.e. if

wlf (q, p) + `(t1) + rf (t1, q, p) < df (q) .

Let t2 be a task currently assigned to a bucket (q, p). We connect a task t1

to the task t2 with a directed edge if it is possible to remove t2 from bucket
(q, p) and add t1 instead, so that the bucket (q, p) is not loaded after this
exchange, i.e. if

wlf (q, p) + `(t1) − `(t2) + rf (t1, q, p) < df (q) .

By the bucket of a vertex v, we mean the bucket it represents or the bucket
where the task it represents is assigned to. We call a path or a cycle in this
graph disjoint if the buckets of its vertices are all different (see Fig. 3.6).
Also, in case of a path, it must end with a bucket vertex. Now every disjoint
path or cycle in this graph that includes at least one vertex whose bucket is
loaded can be used to reduce the total number of loaded buckets and thus,
most probably, also reduce the makespan: simply by performing the changes
that every edge on that path or cycle represents.

In our specific application, reset times are caused by toolbit exchanges.
We have that rf (t, q, p) > 0 if a new toolbit exchange is needed to perform
task t in bucket (q, p). For the details about the number of necessary tool-
bit exchanges, we refer to the ILP model presented in Section 2.2. When
updating along a disjoint path or cycle that contains toolbit exchanges, we
need to add the occurring toolbit exchanges to the corresponding buckets.
Adding this feature improved our results considerably in some cases, see
Sect. 4.

Finding optimal disjoint paths and cycles, i.e. ones that result in the best
improvement, is NP-hard, as shown in [32]. In order to find disjoint paths

Chapter 3. Our Approach 27

bucket (1, 3)

tasks in bucket (1, 3)

tasks in bucket (1, 2)

tasks in bucket (1, 1)

bucket (1, 1)

bucket (1, 2)

Figure 3.6: A simple example of an improvement graph with 3 buckets and 9 tasks. A
path or cycle is disjoint if the colors of its vertices are all different.

and cycles we chose to implement the 1-SPT heuristic described in [32],
adapted to our case, using a priority queue. In this heuristic, we set the
following costs on the edges and look for shortest disjoint paths and cycles
with respect to these costs. For an edge that connects a task t1 to a task t2,
such that t2 is assigned to a loaded bucket (q, p), the cost is

ct1t2 = `(t1) − `(t2) + rf (t1, q, p) .

Otherwise the cost is 0. The skeleton of the algorithm is similar to Dijkstra’s
standard shortest path algorithm with the difference that the considered
subpaths have to be checked for disjointness throughout the algorithm. If a
subpath is not disjoint, a disjoint cycle might be found within it. For details
we refer to [32].

We chose not to build the improvement graph explicitly since by sorting
the tasks in each bucket in descending order according to their lengths, it
is possible to decide about the existence of edges in constant time. This
eliminates the need for an expensive update. We start the search once from
every vertex and then repeat this procedure until no further improvement
can be found. In the next chapter, we will see that this local search heuristic
worked very well in practice.

Chapter 4

Computational Results

4.1 Test Instances and Environment

In this study, we used 20 widely different test jobs. Each job represents a
PC board type with a standard machine setup for Assembléon’s AX-5 from
which we obtained an instance of our problem. All test jobs stem from
customers of Assembléon and have been kindly provided by Assembléon to
us. Table 4.1 shows some of the characteristics of these jobs. The number
of tasks varies between 190 and 940 tasks, the number of placement phases
s between 3 and 7. Since the AX-5 has 20 parallel robots (stations), the
number of buckets varies between 60 and 140.

All computations are executed on a standard Intel P4 processor with 3.2
GHz and 4 GB main memory running under Suse Linux 9.2. Our algorithms
are implemented in Java, we used JDK 5.0.

4.2 The Uniform Case

Table 4.1 displays the results for our instances under unit-length assumption
(Prob. 3.2). Columns labeled lb1 and lb2 give the values obtained for the two
lower bounds introduced in Section 3.5, respectively. It turns out that lb1 is
a rather weak bound, but lower bound lb2 is much closer to the optimum.

Algorithm 3.1 (MinMax) performs surprisingly well as a heuristic for the
uniform case, i.e. Problem 3.1. Its running time is negligible (and therefore
not reported). It actually hits the optimal value quite often as can be seen
by comparing the columns labeled “MinMax” and “opt”. Intuitively, the
reason might rely on the following observation: if the capacity of a phase
can not be decreased in the algorithm, it will also be impossible to decrease

29

Chapter 4. Computational Results 30

job n s b lb1 lb2 MinMax opt(100) opt time(100) time

j1p1 304 4 80 16 18 18 18 18 0.00 0.00

j1p2 190 3 60 10 12 16 16 16 0.08 0.08

j1p3 138 4 80 7 9 11 11 11 0.11 0.10

j2p1 940 5 100 47 284 284 284 284 0.00 0.00

j2p2 804 5 100 41 68 79 78 78 1.20 7.77

j2p3 792 5 100 40 74 83 83 81 1.12 5.81

j2p4 786 5 100 40 73 82 82 81 1.11 5.14

j2p5 750 5 100 38 98 117 117 109 1.20 89.19

j2p6 634 5 100 32 120 120 120 120 0.00 0.00

j2p7 532 5 100 27 46 59 59 59 0.55 7.82

j3p1 912 5 100 46 148 148 148 148 0.00 0.00

j3p2 660 5 100 33 120 120 120 120 0.00 0.00

j3p3 376 6 120 19 44 64 64 64 0.33 2.52

j4p1 312 7 140 16 18 18 18 18 0.00 0.00

j4p2 300 7 140 15 17 17 17 17 0.00 0.00

j4p3 288 7 140 15 16 16 16 16 0.00 0.00

j4p4 288 7 140 15 18 20 20 20 0.46 0.80

j4p5 212 5 100 11 24 24 24 24 0.00 0.00

j5p1 362 6 120 19 26 42 42 42 0.58 0.98

j5p2 345 6 120 18 23 46 46 46 0.63 1.10

Table 4.1: Results for the uniform case. The first four columns contain job characteristics
(b is the number of buckets). Columns labeled with lb1, lb2 give lower bound values,
“MinMax” reports the outcome of Algorithm 3.1, “opt” give the value of optimal solution
(computed by Algorithm 3.2), “opt(100)” denotes the solution value, if Algorithm 3.2 is
stopped after 100 recursive function calls. The two last columns report the CPU time in
seconds for the “opt(100)” and “opt” versions, respectively.

it later on. That is, the only way to arrive at a better sum would be to
increase the capacities of some phases and see if one can in return, decrease
the capacities of other phases more than that. And this seems not to be
much too likely.

Except for one extremely hard case (j2p5), the running time of our exact
algorithm, Alg. 3.2, is below 8 seconds. In the exceptional case, the absolute
difference of the result provided by the MinMax-heuristic is quite large. This
results in a runtime of about 89 seconds.

Usually, Algorithm 3.2 requires most of its time to prove optimality.
Since this algorithm is used as a starting solution for the local search, we
also experimented with a “fast version” called opt(100) which terminates
after 100 recursive function calls (and so terminates after about one second).
In all but three cases this heuristic already found the optimum solution.

Chapter 4. Computational Results 31

make- LS #TE cplex cplex cplex our gap gap
job span impact 60s 300s lb gap cplex60 cplex300

j1p1 9.00 11.24% 0 - 8.62 7.87 14.43% - 9.56%

j1p2 8.12 3.24% 0 8.64 8.47 8.12 0.00% 6.29% 4.22%

j1p3 5.64 4.89% 0 5.6 5.51 5.27 7.00% 6.18% 4.47%

j2p1 85.83 44.38% 8 82.55 82.46 80.84 6.18% 2.12% 2.00%

j2p2 38.33 5.17% 0 38.27 38.26 38.26 0.18% 0.03% 0.01%

j2p3 40.45 3.96% 0 40.19 40.19 40.18 0.67% 0.01% 0.01%

j2p4 40.37 3.96% 0 39.91 39.91 39.86 1.28% 0.12% 0.12%

j2p5 49.04 13.12% 6 44.36 44.36 44.36 10.56% 0.00% 0.00%

j2p6 39.74 36.36% 6 36.98 36.98 36.98 7.49% 0.00% 0.00%

j2p7 30.42 4.38% 0 30.42 30.42 30.42 0.00% 0.00% 0.00%

j3p1 82.98 0.00% 0 82.98 82.98 82.98 0.00% 0.00% 0.00%

j3p2 63.23 0.69% 0 63.23 63.23 63.23 0.00% 0.00% 0.00%

j3p3 47.19 2.42% 18 42.14 42.14 42.14 12.00% 0.00% 0.00%

j4p1 8.98 3.46% 0 - 9.57 8.13 10.53% - 17.70%

j4p2 8.29 4.49% 0 - 8.38 7.72 7.37% - 8.54%

j4p3 8.09 2.35% 0 - 8.58 7.48 8.21% - 14.67%

j4p4 9.47 4.83% 0 11.26 10.83 8.99 5.24% 25.24% 20.40%

j4p5 11.42 3.73% 0 11.91 11.9 11.42 0.00% 4.28% 4.20%

j5p1 25.47 11.14% 10 23.33 23.33 23.29 9.35% 0.18% 0.18%

j5p2 24.81 8.94% 17 24.12 24.12 24.12 2.86% 0.00% 0.00%

Table 4.2: Results for the real-time scenario including toolbit exchanges.
Comparison with CPLEX 9.1.

4.3 Impact of Local Search and Toolbit Exchanges

Table 4.2 shows our computational results for the scenario with real times
and toolbit exchanges. The second column shows the makespan (cycle time)
in seconds after running the local search procedure. The local search was
started with the result of an optimal unit-length solution. The third column
gives the percentage reduction obtained in comparison with this starting
solution. Figure 4.1 shows the impact of the local search graphically.

We observe that local search helps a lot to reduce the cycle time if the
addition of toolbit exchanges allows a better workload balancing. Remember
that in the unit-length solution, we do not allow any toolbit exchanges and
this feature is only added in the local search phase. Hence, in some cases,
the solutions found during the local search were not even feasible beforehand
and this explains some major improvements that were achieved for example
in jobs j2p1 and j2p6.

Chapter 4. Computational Results 32

Im
pr

ov
em

en
t (

%
)

 5

 10

 15

 20

 25

 30

 35

 40

 45

j5p2j5p1j4p5j4p4j4p3j4p2j4p1j3p3j3p2j3p1j2p7j2p6j2p5j2p4j2p3j2p2j2p1j1p3j1p2j1p1

Local Search Impact

 0

Figure 4.1: The impact of the local search in addition with toolbit exchanges.

4.4 Lower Bounds and Comparison with CPLEX

We compared the quality of the solutions obtained by our approach with a
lower bound on the solution value (in several cases with the exact optimum).
To this end, our problem including toolbit exchanges has been modeled as
an integer linear program (ILP). Formulating the constraints for toolbit
exchanges is a bit tricky and is presented in Section 2.2. It is mostly taken
from [36].

To solve the ILP problems, we used ILOG CPLEX 9.1 with standard
settings. In Table 4.2, we display the solutions values obtained by CPLEX
after 60 and 300 seconds CPU time, the lower bound value obtained after
300s, as well as the optimality gap after 60 and 300 seconds, respectively. A
graphical representation of this data is given in Figure 4.2.

The given time limits to CPLEX are relatively small, but in comparison
to the running time of our method considerably longer. Recall that short
time limits are justified by the fact that instances of this type have to be
solved several hundreds of times for different setups. Thus we can afford in
practice only a few seconds per instance.

The computational results are quite interesting. In 7 out of 20 cases,
CPLEX managed to find even the optimal solution within 60 seconds. In

Chapter 4. Computational Results 33

CPLEX 300 Gap

 5

 10

 15

 20

 25

 30

j5p2j5p1j4p5j4p4j4p3j4p2j4p1j3p3j3p2j3p1j2p7j2p6j2p5j2p4j2p3j2p2j2p1j1p3j1p2j1p1

ga
p

(%
)

Our Gap
CPLES 60 Gap

 0

Figure 4.2: Maximal gap to the optimum (the lower these bars, the better). For each
instance, the leftmost bar (green) shows our gap, the one in the middle (red) shows the gap
of cplex after 60s of computation and the rightmost bar (blue) shows the cplex gap after
300s. When the bar goes downwards, it means that the solver could not find a solution
for that instance in the given time limit.

contrast, CPLEX failed to find even some feasible solution in 4 cases in the
same time limit. Within 300s, there was at least one feasible solution in all
but one case. For one hard case (instance j1p1) we had to use a different
CPLEX option (MIP Integer Feasibility) to find a feasible solution within
300s.

The final gap of our solution to the lower bound provided by CPLEX is
relatively small, in 5 cases we provably found the optimum solution, and in
4 further cases (j4p1–j4p4) our gap is considerably smaller than the CPLEX
gap after 300s. On the other hand, there are several instances which are
seemingly easier to handle for CPLEX than for our approach. Thus there is
no clear winner, but our approach is much faster and always guarantees at
least a feasible solution after a few seconds.

Chapter 4. Computational Results 34

4.5 An Experiment about the Unit-Length As-
sumption

We also ran an experiment to study how important it is to solve the unit-
length case to optimality. In Table 4.3, we consider the jobs where the
optimal unit-length solution was not found in version opt(100). In these
cases, we observe that also the final gap is somewhat larger.

opt initial makespan gap opt initial makespan gap
(100) makespan after LS makespan after LS

j2p3 83 42.97 40.75 1.40% 81 42.12 40.45 0.67%

j2p4 82 42.46 40.60 1.87% 81 42.03 40.37 1.28%

j2p5 117 60.92 51.10 15.19% 109 56.45 49.04 10.56%

Table 4.3: Impact of solving the unit-lengths problem to optimality for the
solution quality after local search (LS). Columns 2-5 give values for our
results started with the opt(100) solution, the remaining columns for the
true optimum of the unit-length case.

Part II:
Towards a PTAS for the
Planar Steiner Tree Problem

35

Chapter 5

The Steiner Minimum Tree
Problem

The Steiner minimum tree (SMT) problem is one of the most fundamental
and mostly studied problems in mathematics and computer science. Like
the traveling salesman problem (TSP), it has been the testbed and moti-
vation for many new algorithmic ideas and proof techniques. The SMT
problem and its many variations are also of great importance in many prac-
tical applications such as all kinds of network design (e.g. VLSI design) and
phylogenetic trees. For an extensive study on Steiner trees we refer to the
excellent books of Prömel and Steger [71] and Hwang et al. [43].

In this part of the thesis, we will study the SMT problem in planar
graphs. While this case is very interesting and important in its own right,
it also encompasses some important geometric cases, such as the rectilin-
ear and octilinear steiner tree problem with obstacles. All these variants
are known to be NP-hard [35] but it is not known weather there exists a
polynomial time approximation scheme (PTAS) for them. We will introduce
various approaches for designing PTASs for geometric problems and PTASs
in planar graphs that have been devised during the past 15 years or so and
discuss their applicability and limitations to our problem. We believe that
one particular approach is very promising and we will thoroughly discuss
how it could be applied to derive a PTAS for the SMT problem in planar
graphs, provided that a conjecture of ours is true.

In this chapter, we will first introduce the two basic forms of this problem,
namely the Steiner tree problem in graphs and the geometric Steiner tree
problem. For each one, we will state some of the most important relevant
results from the literature. Then we will move on to some more specific
variants of the problem that are of special interest to this work: the problem
in planar graphs and the rectilinear/octilinear problem with obstacles.

37

Chapter 5. The Steiner Minimum Tree Problem 38

5.1 The SMT Problem in Graphs

Problem 5.1. Given a connected undirected graph G = (V,E) with edge
weights we ≥ 0 and a subset R ⊆ V of terminal vertices, find a subtree of G
that includes all the terminals and has minimum total edge weight.

This is one of the 21 problems that were first shown to be NP-hard in
the landmark paper by Karp [45] in 1972. In 1989, Bern and Plassmann [10]
showed that it is even APX -complete, that is, it does not admit a PTAS
unless P = NP . The best known bound for the non-approximability is
163/162 ≈ 1.0062 and is due to Thimm [81]. It is based on the assumption
that RP 6= NP . An efficient and easy-to-implement approximation algo-
rithm that achieves a performance ratio of 2 − 2

|R| was given by Mehlhorn

in [58] (a less efficient algorithm with the same approximation guarantee was
suggested several times before in the literature [24, 70]). The best known
approximation algorithm for this general problem is given by Robins and
Zelikovsky [75] and its approximation guarantee is 1 + ln 3

2 + ε ≈ 1.55 + ε for
any given ε > 0.

There are two well-known special cases of this problem that can be solved
efficiently: when the terminal set equals the whole set of vertices, we have
the minimum spanning tree problem and when the terminal set consists of
only two vertices we have the shortest path problem.

5.2 The Geometric SMT Problem

Problem 5.2. Given a set of points in the plane, find a shortest network
that interconnects them.

This problem is known as the Euclidean Steiner Problem. Another way
to look at it is that we are given a finite set of points P and we are looking for
a finite set of Steiner points Q in the plane, such that the minimum spanning
tree of P ∪ Q has minimum total length. Garey, Graham and Johnson [34]
showed its NP-hardness in 1977. Note that it is not known weather the de-
cision version of this problem is in NP, since computing the location of the
Steiner points could potentially involve computing many square roots. It is
a highly celebrated result of Arora [3] and independently of Mitchell [60],
first published in the years 1996/97, that this problem and some other geo-
metric problems admit a PTAS. Later on, Rao and Smith [73] improved the
performance of Arora’s approach. We will discuss their approaches in de-
tail in Chapter 7. One can also consider this problem in higher dimensions
and indeed, Arora’s result holds for any constant dimension d. However,

Chapter 5. The Steiner Minimum Tree Problem 39

one has to notice that both Arora’s and Mitchell’s algorithms involve very
large constants in their running time, so that they are not (yet) practical to
implement.

5.3 Uniform Orientation Metrics and Obstacles

An important variant of the geometric SMT problem is when only a finite set
of directions are allowed to interconnect the given points. In VLSI design,
until recently, only vertical and horizontal wires were used. This corresponds
to the rectilinear (or Manhattan) Steiner problem where the distance be-
tween points is measured in the rectilinear, i.e. L1, metric. However, more
complicated architectures such as the Y-architecture (with three directions
at 120 degrees each) and the X-architecture or octilinear metric (with eight
directions at 45 degrees each) are gaining more and more attractivity and
importance due to their potentially high reduction of total wire length com-
pared to the Manhattan architecture [20, 21, 51, 80]. More generally, one
considers uniform orientation metrics, also called λ-geometries, where rout-
ing is allowed only along λ ≥ 2 orientations forming consecutive angles of
π/λ. The rectilinear case corresponds to the 2-geometry, the octilinear case
to the 4-geometry.

The rectilinear Steiner tree problem was shown to be NP-hard by Garey
and Johnson [35] in 1977. In this case, the decision version is known to be
in NP . Only very recently (in 2005), Müller-Hannemann and Schulze [63]
showed that the octilinear Steiner problem is also NP-hard (and again the
decision version is in NP). It has not been proven yet — though widely
believed — that the Steiner problem in λ-geometries is NP-hard for general
λ. Arora’s approach [3] also works for λ-geometries, so all these cases admit
PTASs. Hanan [40] showed in 1966 that the rectilinear problem can be re-
duced to the problem in graphs by using the so called Hanan grid : consider
all vertical and horizontal lines going through the given terminals, create a
vertex at every terminal and every intersection and let the line segments con-
necting adjacent vertices be edges. Hanan showed that a minimum Steiner
tree in this graph corresponds to a minimum Steiner tree for the rectilinear
problem. For the octilinear case, Müller-Hannemann and Schulze [63] first
showed how it can be reduced to a graph problem of polynomial size that
contains a (1 + ε)-approximation of the minimum octilinear Steiner tree.
The structure of solutions and exact approaches for the Steiner problem in
uniform orientation metrics have been widely studied in the literature, for
example in [13, 14, 15, 16, 42, 44, 50, 52, 66, 86].

Another complication is the introduction of obstacles, i.e. regions of the
plane that are not allowed to be crossed by the Steiner tree. This problem

Chapter 5. The Steiner Minimum Tree Problem 40

is also of great practical relevance in VLSI design where certain areas of
a board may not be crossed by wire. It is not known weather the Steiner
problem with obstacles admits a PTAS, not even in the rectilinear case. It
is however possible to reduce the rectilinear problem with obstacles to the
graph problem using the Hanan grid [33, 40]. So, it can be approximated at
least as good as the Steiner problem in graphs. For the case when the number
of obstacles is a constant, Liu et al. [57] presented a PTAS for the rectilinear
problem based on Mitchell’s [60] approach. Provan [72] presented an FPTAS
for the Euclidean Steiner problem with obstacles under the restriction that
the terminals lie on a constant number of boundary polygons and interior
points. The reduction of the octilinear Steiner problem given in [63] can
also be used in the presence of obstacles and results again in a graph that
contains a (1 + ε)-approximation of the optimal obstacle-avoiding octilinear
Steiner tree.

Another interesting case occurs when we allow soft obstacles, i.e. obsta-
cles that may be crossed by the tree but every connected component inside
an obstacle may not exceed a given length restriction. This case is also very
important in VLSI design where a large Steiner tree requires the insertion
of buffers and inverters and these elements may not be placed on top of
obstacles. Müller-Hannemann and Peyer [62] showed how to reduce this
problem in the rectilinear case to the graph problem and obtain a (1 + ε)α-
approximation, where α is the best known approximation guarantee for the
SMT in graphs. Very recently, Müller-Hannemann and Schulze [64] proved
a similar result about octilinear Steiner trees with soft obstacles.

5.4 On Planar Graphs

Planar graphs constitute a very well-studied class of graphs in the literature,
namely graphs that can be drawn on the plane without intersection of its
edges other than at the vertices. Even though most hard combinatorial
problems remain NP-hard for their planar instances [35, 54], they are often
“easier” to handle; for example, most of them admit a PTAS. Lipton and
Tarjan [55] proved the original planar separator theorem in 1979 which they
used in [56] to prove that the independent set problem admits a PTAS
on planar graphs. Another milestone in this regard was Baker’s paper [7]
from 1994 where a general technique was introduced to obtain many PTAS
results for planar graphs . The traveling salesman problem was first shown
to admit a PTAS in 1995 by Grigni et al. [37], though only for unweighted
graphs. Later on, Arora et al. [5] showed that there exists a PTAS for the
TSP also in weighted planar graphs and recently, Klein [47] presented an
improved algorithm that is linear in the number of vertices. In a follow-up
paper, Klein [49] also showed that there exists a PTAS for subset TSP, the

Chapter 5. The Steiner Minimum Tree Problem 41

problem when the tour has to go only through a given set of terminals (as
opposed to the entire graph). Another general approach for obtaining PTASs
on planar graphs was introduced recently by Demaine and Hajiaghayi [26]
in their theory of bidimensionality. Even the planar maximum satisfiability
problem admits a PTAS [46]. We will discuss PTAS techniques on planar
graphs in detail in Chapter 8.

However, it is not known weather the Steiner minimum tree problem
on planar graphs admits a PTAS or not, not even for the unweighted case.
While this problem is very important and highly interesting in its own right,
such a result would also immediately yield a PTAS for the rectilinear Steiner
problem with obstacles by using the Hanan grid [33, 40]: the Hanan grid
is planar. Using the techniques of Müller-Hannemann et al. [63] one also
obtains a PTAS for the octilinear Steiner problem with obstacles. In [84],
Zachariasen presents a number of problems that can be solved on the Hanan
grid. Some of them would also be shown to admit a PTAS if the planar
SMT problem admits a PTAS. In Chapter 9, we will discuss how Klein’s
framework [47] could be applied to obtain a PTAS for the planar SMT
problem. Specifically, we will state one missing lemma and show that if this
lemma is proved true, then a PTAS will follow.

Chapter 6

On Spanners

Let G = (V,E) be a graph with edge weights we ≥ 0. For two vertices
u, v ∈ V , let dG(u, v) denote the length of a shortest path between u and
v according to the weights. A spanner of G is a subgraph G′ that ap-
proximately preserves the distances between the vertices. More precisely, a
t–spanner is a subgraph G′ of G, such that dG′(u, v) ≤ t ·dG(u, v) (of course,
we always have dG(u, v) ≤ dG′(u, v)). The factor t is called the stretch fac-
tor of the spanner. The size of a spanner s(G′) is its number of edges, its
weight w(G′) is its total weight. One is in particular interested in sparse
spanners, i.e. spanners with a small size, and in weight sparse spanners, i.e.
spanners with a small weight. Since the sparsest possible spanner – both in
size and weight – is the minimum spanning tree, it is of interest to compare
the weight of a spanner to the weight of the minimum spanning tree (MST).
In this regard, one defines the tree weight tw(G′, G) := w(G′)/w(MST(G)).
The problem of finding sparse spanners with low tree weight has been of
great interest in the literature of the past two decades.

Spanners were first introduced by Peleg and Ullman [69] in 1987, where
they used spanners to synchronize asynchronous networks. Other appli-
cations include communication networks, distributed computing [67] and
phylogenetic trees [8]. For a given stretch factor t, finding the minimum
t–spanner in size or in weight is NP–hard. For unweighted graphs, this was
first shown in [68] for t = 2 and in [18] for t ≥ 3. For weighted graphs, Elkin
and Peleg [29] showed its hardness and some approximation limits for any
t ≥ 1. Venkatesan et al. [82] showed the hardness of this problem for various
restricted classes of graphs and the case of planar graphs was shown to be
hard by Brandes and Handke in [12].

Nevertheless, in many applications, such as in the design of PTASs, it
is sufficient to find a spanner of low tree weight. A simple and probably
the most cited algorithm for finding sparse spanners in weighted graphs –

43

Chapter 6. On Spanners 44

both in regard to size and weight – is the natural greedy algorithm given by
Althöfer et al. in [2]. They show that their algorithm produces a solution
with near-optimal asymptotic weight bounds. We will discuss their work in
the first section of this chapter. Some improvements on the analysis were
given in [19] and very recently, linear time algorithms were proposed [9, 76],
for the case when t ≥ 3 is an odd integer, that achieve the same weight
bounds. For planar graphs, Klein [47] presented a linear time algorithm.
He used this result to derive a linear time PTAS for the weighted planar
traveling salesman problem. Previously, Arora et al. [5] had used Althöfer
et al.’s original result [2] to find a PTAS for the weighted planar TSP but
their algorithm had higher complexity (see Chapter 8). In his most recent
work [49], Klein presented a subset spanner for planar graphs which he used
to derive a PTAS for subset TSP. We will discuss this result in detail later
on in this chapter.

Another important domain for spanners is Computational Geometry.
Given a set of points in the plane, find a sparse graph that interconnects
them such that the Euclidean distances are approximately preserved. Some
triangulations like the Delaunay triangulation fulfill this requirement very
well, see [23, 28, 53] and also the survey by Eppstein [30]. Geometric span-
ners are for example applied in robotics but also in the design of geometric
PTASs [73, 85]. Rao and Smith [73] also introduced the notion of “banyans”
which are a generalization of spanners and are particularly of interest with
regard to the Steiner minimum tree problem. We will discuss it shortly at
the end of this chapter.

We would like to note that this is by no means a complete coverage on
the subject of spanners, since it has been studied very extensively in the
recent years, but gives an overview of some of the most important results
with regard to the subject of this thesis.

6.1 Sparse Spanners of Weighted Graphs

In this section, we take a closer look at the landmark paper of Althöfer et
al. [2] from the year 1993. They presented a simple greedy algorithm to find
spanners in weighted graphs that are sparse both in size and in weight (see
Alg. 6.1).

Obviously this algorithm can be implemented in polynomial time and it
is fairly easy to see that it returns indeed an r–spanner: take a shortest path
between two vertices u and v in G and look at every edge of it; if any edge
e is not included in G′, then there is a path in G′ connecting its endpoints
with a total weight ≤ r · we; by replacing e with that path, we get a path
between u and v in G′ whose total weight is ≤ r · dG(u, v).

Chapter 6. On Spanners 45

Algorithm 6.1: Greedy Spanner [2]

Input : A graph G = (V,E) and a stretch factor r.
Output: An r–spanner G′ of G.
begin

Sort E by nondecreasing weight;
G′ = (V, {});
for every edge e = (u, v) ∈ E do

if r · we < dG′(u, v) then
add e to G′;

return G′;
end

What is more interesting are the size and weight bounds given in The-
orem 6.1 for general graphs and in Theorem 6.2 for planar graphs below
(recall that the tree weight tw(G′) was defined as w(G′)/w(MST(G))):

Theorem 6.1 ([2]). Given an n–vertex graph G and a t > 0, there is a
polynomially constructible (1 + t)–spanner G′ of G such that,

(i) s(G′) < ndn2/te,

(ii) tw(G′) < 1 + n/t.

Theorem 6.2 ([2]). Given an n–vertex planar graph G and a t > 0, there
is a polynomially constructible (1 + t)–spanner G′ of G such that,

(i) s(G′) < (n − 1)(1 + 2/t),

(ii) tw(G′) < 1 + 2/t.

In proving the size bounds, they use a result from extremal graph theory
that says that an n–vertex graph with girth > r has size < ndn2/(r−2)e.
In the case of planar graphs, they show that the bound on the size is ≤
(n − 2)(1 + 2/(r − 2)) for a girth > r. Recall that the girth of a graph is
the length of it smallest circle. Then they show that the output produced
by Alg. 6.1 has girth > r + 1 and the size bounds follow.

To prove the weight bounds, they first show that the MST of G is con-
tained in G′. They first prove Theorem 6.2, i.e. the case of planar graphs.
They consider an embedding of the graph and draw a skinny polygon of
perimeter 2 · w(MST(G)) around the minimum spanning tree. Then they
“grow” this polygon, absorbing adjacent edges one-by-one until the polygon
becomes the outer face of the graph. As doing so, they charge the weight of
every added edge e to the cycle it creates with the current boundary of the

Chapter 6. On Spanners 46

polygon. They show that the weight of this cycle without e is > (1+ t) ·w(e)
and thus, the perimeter of the polygon will decrease by at least t·w(e). Using
this idea, the weight bound can be deduced.

To show the weight bound for general graphs in Theorem 6.1, they con-
sider for each vertex v of G, the MST of G together with all edges adjacent
to v. They argue that this graph is planar and use the result of Theorem 6.2
to get a weight bound on it. Then they add up these terms to get the desired
weight bound of Theorem 6.1.

Further in the paper, the two following lower bounds are also shown:

Theorem 6.3 ([2]). For every even integer t ≥ 0 and every n ≥ 3, there
exists an n–vertex graph G for which every (1 + t)–spanner G′ is such that

(i) s(G′) > 1
8n1+4/3(t+3),

(ii) tw(G′) > 1
8n4/3(t+3).

Theorem 6.4 ([2]). For every even integer t ≥ 2, there are infinitely many
values of n, for which there exist n–vertex planar graphs G with unit edge
weights, such that every (1 + t)–spanner G′ satisfies

(i) s(G′) = Ω(n(1 + 2/t)),

(ii) tw(G′) = Ω(1 + 2/t).

We see that the bounds for planar graphs are tight. Even for the general
case, the size bound is optimal within a constant factor in the exponent of n.
But the weight bound could be improved and was indeed improved in [19]

through a new analysis of Alg. 6.1 to O(n
2+ε

t) for any ε > 0. This bound is
now optimal within a constant factor in the exponent of n and even more,
any improvement in the exponent of n would imply a better bound for an
open extremal graph theory problem.

Further in the paper, Althöfer et al. present a lower bound on so-called
Steiner spanners and also discuss spanners in Euclidean graphs of dimension
2 and higher. We refer the interested reader to their original paper [2].

6.2 More on Planar Graphs

We already saw in the previous section that planar graphs have nicer prop-
erties than general graphs with respect to spanners. Here we want to shortly
present Klein’s algorithm [47] to produce a spanner for planar graphs with
the same properties as in Theorem 6.2 but that can be implemented in linear

Chapter 6. On Spanners 47

time. But in order to do so and also since this will be needed throughout
this work, we will first give a combinatorial definition of embedded planar
graphs [61] and state some elementary results about them. This section is
mostly taken from [47].

Before we start, let us shortly review the geometric definition of planar
graphs. A planar graph is a graph that can be drawn on the Euclidean plane
in a way that its edges do not intersect other than at their endpoints. A
planar graph drawn on the plane is called a planar embedded graph or plane
graph. A plane graph divides the plane into one or more regions. These
regions are called faces. There is always an infinite face, the one “outside”
the graph. A plane graph satisfies Euler’s formula: n−m+φ = κ+1, where
n is the number of vertices, m is the number of edges, φ is the number of
faces and κ is the number of connected components. The dual of a plane
graph G is a plane graph G? that has one vertex inside every face of G.
For every edge e of G there is a corresponding edge in G?: it connects the
vertices of G? that are inside those faces of G that meet at e (note that
this might create loops in G?). It must be drawn in a way that it crosses
e exactly once and does not cross any other edge of G or G?. Note that
according to this definition, G? is always connected since the infinite face is
adjacent to all connected components of G. The number of edges of G and
G? is the same, the number of vertices of G? is equal to the number of faces
of G. For connected plane graphs, we also have that the number of faces of
G? equals the number of vertices of G and that G?? = G.

Now let us turn to the combinatorial definition. The combinatorial defi-
nition will be the one we will primarily use throughout this work. As noted
below, it deviates slightly from the geometric definition when it comes to
the dual graph of disconnected plane graphs.

Let E be any given finite set. We can interprete E as a set of edges
and we define E × {±1} to be the corresponding set of darts. The darts
of e, namely (e, 1) and (e,−1) represent the two opposite orientations of e.
We define an embedded graph on E to be a pair G = (π,E) where π is a
permutation on the darts of E. A vertex is defined in terms of π: every
permutation cycle (d1, . . . , dk) of π is defined to be a vertex. For a vertex
v, we denote the set {d1, . . . , dk} by D(v). The set D(v) corresponds to
the set of outgoing darts of v. We use E(G) for the set of edges and V (G)
for the set of vertices. Let rev(·) be the function that reverses darts, i.e.
rev((e, i)) = (e,−i). For a dart d of G, let tail(d) be the vertex, i.e. the
permutation cycle of π, containing d. We define head(d) = tail(rev(d)). For
an edge e of G, let ends(e) = {head((e, 1)), tail((e, 1))}. One can think of
π as the function specifying for each dart, the next dart in clockwise order
around its tail.

A walk of darts in G is a sequence d1, . . . , dk of darts such that

Chapter 6. On Spanners 48

head(di−1) = tail(di), for i = 2, . . . , k. It is a closed walk if in addition
head(dk) = tail(d1). It is a simple path/cycle if no vertex occurs twice as
the head of a dart. A walk contains an edge if it contains a dart of it and it
contains a vertex if the vertex occurs as the head or tail of some dart of it.

To define the faces of the graph we look at the dual of the graph. Define
π? = π ◦ rev and G? = (π?, E). G? is said to be the dual of the graph G.
We define the faces of G to be the vertices of G?. That is, the faces of G are
the permutation cycles of π?. A face can be interpreted as a closed walk in
G. Note that the faces of G? are the vertices of G and that G and G? are
defined on the same set of edges. Since rev ◦ rev is identity, we get

Proposition 6.5. G?? = G.

We say that an embedding π of a graph G is planar if it satisfies Euler’s
formula: n − m + φ = 2κ, where n is the number of vertices, m is the
number of edges, φ is the number of faces and κ is the number of connected
components. In this case, we say that G = (π,E) is a planar embedded
graph or simply a plane graph. It can be shown that the dual of a connected
embedded graph is connected. Hence, the connected components of G?

correspond one-to-one to the connected components of G and if G satisfies
Euler’s formula, so does G?. So, if G is a plane graph, so is G?. However,
notice that for disconnected graphs, this definition of dual diverges from the
geometric definition in that it assigns multiple vertices to the infinite face,
one for every connected component. According to the geometric definition,
the dual of a plane graph is always connected. But using that definition
would mean giving up some nice properties like G?? = G.

Now let us state some properties of plane graphs. Let T be a spanning
tree in G. An edge e /∈ T builds a unique cycle with T if we add it to T .
This cycle is called the elementary cycle of e with respect to T in G. Let T ?

be the set of edges of G that are not in T . We refer to T ? as the tree dual
to T , since we have

Proposition 6.6. T ? is a spanning tree of G?.

For a set S ⊂ V , we use Γ(S) to denote the set of edges having one
endpoint in S and one endpoint in V \ S. Such a set is called a cut in G.
Note that Γ(S) = Γ(V \ S) and that it separates any pair of vertices u, v
with u ∈ S, v /∈ S. If S is connected in G and V \ S is connected in G, we
call Γ(S) a simple cut. The following results can be shown with little effort.

Proposition 6.7. The edges of a simple cut in G form a simple cycle in
G? and vice versa.

Proposition 6.8. Let G be a connected plane graph, let T be a rooted span-
ning tree of G, let v be a non-root vertex of G, and let e be the parent edge

Chapter 6. On Spanners 49

of v. Then the elementary cycle of e in G? with respect to T ? consists of the
edges of Γ(descendents of v in T).

Proposition 6.9. An edge e is a self-loop of G iff it is a cut-edge of G?.

Finally, we discuss two ways of removing edges from an embedded graph:
deletion and compression. Both of these preserve planarity. Deletion is just
the usual deletion of an edge, formally resulting in E \ {e} as the new set
of edges and a slight modification in π. For a set W of edges, we denote
by G − W , the graph resulting from deleting the edges in W . The order of
deletion does not affect the resulting graph. Compression is deletion in the
dual. Compressing an edge e results in the graph (G?−{e})? and we denote
it by G/e. If e is not a self-loop then the effect of compressing e is the same
as the effect of contracting e in the usual sense. However, if e is a self-loop,
and so a cut-edge in G?, then the effect of compressing e is to duplicate its
tail v and get two connected components: the part of the graph that was
inside e and the part that was outside.

Now that we went through some basics about planar graphs, we state
Klein’s linear time algorithm to find a spanner in a planar graph [47]. It is
summarized in Alg. 6.2. It produces a spanner with the same properties as
the one by Althöfer et al. [2] but in linear time. Its proof of correctness uses
similar ideas as the proofs of Althöfer et al. [2] together with some of the
propositions above. Note that a minimum spanning tree of a planar graph
can be found in linear time using the algorithm of Cheriton and Tarjan [22].

Algorithm 6.2: Klein’s Planar Spanner [47]

Input : A graph G = (V,E) and an ε > 0.
Output: A (1 + ε)–spanner G′ of G with tree weight < (1 + 2/ε).
begin

find a minimum spanning tree T of G;
let T ? be the dual tree, rooted arbitrarily;
for each edge e of T ?, in order from leaves to root do

let f be the face of G whose parent edge in T ? is e;
let e1, . . . , es be the child edges of e in T ?;
xomit = w(D(f) ∩ D(T)) +

∑s
i=1 x[ei];

if xomit ≤ (1 + ε)w(e) then
x[e] = xomit;

else x[e] = w(e)

let G′ be the union of T and the edges {e ∈ T ? : x[e] = w(e)};
return G′;

end

Chapter 6. On Spanners 50

6.3 Mehlhorn’s Graph is Planar for Planar Graphs

In 1998, Arora et al. made the following conjecture in [5]:

Conjecture 6.10. There exists a function f(·) such that: given ε > 0, a
weighted planar graph G, and a subset S of vertices, there exists an edge-
induced subgraph G′ which (1+ε)–approximates all internode distances in S,
and furthermore G′ has total edge weight at most f(ε) times the minimum
Steiner tree weight of S.

The correctness of this conjecture would result in a PTAS for subset
TSP. Also, we thought that this result might help in finding a PTAS for the
planar Steiner tree problem. In May 2006, the proof of this conjecture was
published by Klein [49]. We will discuss his proof in the next section. But
before we knew of Klein’s result, we attempted to prove it using Mehlhorn’s
graph [58]. Our proof did not succeed but we got a nice byproduct that we
are going to present in this section.

A well known algorithm [24, 70] to get a 2–approximation for the SMT
problem in graphs is to find the minimum spanning tree in the complete
distance graph GD = (R,ED) for an instance G = (V,E) of the SMT prob-
lem with terminal set R. The graph GD is the complete graph on the set
of terminals and the weight of an edge equals to the weight of the shortest
path between its endpoints in G. By computing an MST in GD, replacing
every edge by the corresponding shortest path in G, eliminating cycles and
repeatedly deleting non-terminal leaves, one gets a tree in G whose weight
is at most twice as much as the SMT of G. In [58], Mehlhorn observed that
it is not necessary to consider the complete distance graph. Instead, it is
sufficient to find the SMT of a sparser graph GM

D , that we call Mehlhorn’s
graph, obtained as follows: we divide the input graph G into Voronoi re-
gions around the terminals. The Voronoi region of a terminal v is the set of
vertices whose closest terminal (in terms of the shortest path) is v. If a ver-
tex happens to be at the same distance to two or more terminals, it should
belong to the Voronoi region of the terminal with the smallest index. This
gives us a complete partition of the graph G. The graph GM

D = (R,EM
D) has

an edge between two terminals u and v iff there exists an edge {x, y} in G
such that x belongs to the Voronoi region of u and y belongs to the Voronoi
region of v. The weight of such an edge is the minimum of the weight of all
such paths connecting u and v. Mehlhorn showed that every MST of GM

D is
also a MST of GD and thus it is sufficient to consider GM

D .

Using Dijkstra’s algorithm [27] with a super-source connected to all ter-
minals with weight 0, one can find the Voronoi regions of the input graph in
time O(n log n + m). Mehlhorn argued that replacing the edges of a MST
of GM

D with the corresponding shortest paths of G will result in a tree and

Chapter 6. On Spanners 51

hence it is not necessary to look for cycles and non-terminal leaves. Thus,
all the remaining parts of the algorithm can be implemented in linear time
and the algorithm has a total runtime of O(n log n + m).

We proved the following proposition:

Proposition 6.11. If the input graph G is planar, then Mehlhorn’s graph
GM

D is also planar.

Proof. We show explicitly how to draw the graph GM
D in a planar way. To

this end, consider a planar drawing of G on the plane. If we run Dijkstra’s
algorithm as described above from a super-source connected to all terminals,
look at the resulting shortest path tree and remove the super-source from
it, we get a shortest path tree around each terminal, corresponding to the
Voronoi region of that terminal. These trees are disjoint and moreover, they
do not intersect on the plane either. Hence, it is possible to draw a very
thin polygon around each one of these trees in a way that these polygons do
not intersect. Now consider one such polygon. Literally erase whatever is
in its interior except for its single terminal vertex v. Consider all the edges
of the graph that intersect with this polygon (these are edges that connect
this Voronoi region to another one). We call the intersection point of such
an edge with the boundary of the polygon a portal. Draw a curve from v
to each one of these portals in a way that these curves do not intersect.
This is possible by considering the portals in clockwise order around the
boundary. Now perform this procedure on every polygon. Notice that the
only edges of the original graph that remain are the ones interconnecting one
such polygon with another. These edges do not intersect themselves, since
they were part of the original planar drawing of G. By drawing the curves
inside the polygons from the portals to the terminals, we have extended each
such edge to connect the terminals of the Voronoi regions of its endpoints.
If we now erase the polygons from our drawing, what remains is a graph
on the set of terminals that has the Mehlhorn graph as its subgraph. This
drawing is planar – and so is Mehlhorn’s graph.

In [41], Henzinger et al. show that it is possible to solve the single-source
shortest path problem in planar graphs in linear time. Their algorithm
assigns distance labels to every vertex and relaxes edges by a given scheme,
so that in the end, the distance labels correspond to the lengths of the
shortest paths from the source to every vertex and the actual shortest paths
can then be calculated. Initially, the label of every vertex is infinity, except
for the source that has label 0. One can modify their algorithm to calculate
the Voronoi regions for a given set of terminals, simply by initializing the
label of all terminals with 0. Intuitively, we believe that this modification
can not possibly increase the runtime of their algorithm — in fact, shortest

Chapter 6. On Spanners 52

paths should be found faster when there are more sources and we only want
to find the distance to the closest source. However, the analysis of the
runtime is very complicated and involves a charging scheme that does not
immediately adapt to this variation. A formal proof that the runtime will
remain linear after this modification was beyond the scope and intent of
this work. However, if this is true, then we get that Mehlhorn’s algorithm
can be implemented in linear time on planar graphs. This would be the first
linear-time algorithm to derive a 2-approximation of the SMT problem on
planar graphs.

Our original idea was to find spanners with constant tree weight using
Mehlhorn’s graph together with the greedy algorithm of Althöfer et al. [2]
presented in the first section of this chapter. But exactly since Mehlhorn’s
graph does not contain all edges of the complete distance graph, the resulting
“spanner” will not preserve approximate distances between all pairs of the
terminals and thus, our attempt failed.

6.4 A Subset Spanner for Planar Graphs

Klein positively settled the conjecture of Arora et al. [5] (Conjecture 6.10)
by proving the following theorem in [49]:

Theorem 6.12 ([49]). There is an algorithm that given ε > 0, a planar
graph G = (V,E) with edge-weights, and a set of terminals R ⊆ V , selects
an edge-induced subgraph G′ with the following properties:

(i) G′ has weight O(ε−4) times the weight of the Steiner minimum tree of
R in G,

(ii) for every pair of terminals u, v ∈ R, we have dG′(u, v) ≤ (1 +
ε)dG(u, v).

The algorithm takes O(ε−1 · n log n) time.

The idea of the proof is to show how to construct a number of spanners
that become gradually more and more complicated, each one based on the
previous one, until in the end we get the desired subset spanner. First,
a basic charging scheme is proven that is used to show the weight bound.
Then we introduce a single-source spanner, a bipartite spanner, a boundary-
to-boundary spanner and finally a tree spanner. We use the tree spanner
on Mehlhorn’s approximation to get our final result. Now we are going to
shortly discuss each of the steps of this algorithm.

Chapter 6. On Spanners 53

Basic Charging Technique

The charging technique is used to prove the weight bound on the spanner.
The basic idea of the charging technique is similar in its flavor to that of
Althöfer et al. [2] in the proof of Theorem 6.2 but somewhat more compli-
cated. We start with some face f0 and sequentially add paths P1, . . . , Pk to
it. Each path Pi splits the face fi−1 into two faces fi and gi. The weight of a
path Pi is at most (1 + ε) times the weight of that part of fi−1 that it “cuts
out”, so it can be “charged” to that part of it. Combining these inequalities
leads to a bound on the total weight of the Pi’s, namely a constant factor
of the weight of the original face f0. Formally, Klein proves the following
lemma:

Lemma 6.13 ([49]). Let G be a planar embedded graph with nonnega-
tive edge-weights `(·). Let H0 be a subgraph of G, let f0 be a face of H0,
and let P1, . . . , Pk be a set of edge-disjoint paths in G that are edge-disjoint
from H0. For i = 1, 2, . . . , k, let Hi denote the subgraph of G formed by
H0, P1, P2, . . . , Pi. We assume that, for i = 1, . . . , k,

• the path Pi shares only its endpoints with Hi−1,

• the edges of Pi are strictly enclosed by a face fi−1 of Hi−1, splitting
fi−1 into two faces, gi and fi, in Hi, where

gi = fi[start(Pi), end(Pi)] ◦ rev(Pi)

and
fi = Pi ◦ fi−1[end(Pi), start(Pi)] ,

• (1 + ε)`(Pi) < `(fi−1[start(Pi), end(Pi)]) .

Then we have
`(P1 ∪ · · · ∪ Pk) < ε−1`(f0) .

A Single-Source Spanner

As a first step, we show how to construct a certain single-source spanner,
a spanner that preserves approximate distances from a given source to a
certain set of vertices. More precisely we have the following theorem:

Theorem 6.14 ([49]). Let G be a plane graph with nonnegative edge-
weights `(·), let Q be a shortest path in G between its endpoints, and let
R be a shortest path from some node x to Q. Then for any ε > 0 there is a
subgraph H of G of weight < 4(ε−1 + ε−2)`(R) such that, for each node y of
Q,

dH∪Q∪R(x, y) ≤ (1 + ε)dG(x, y)

and H consists of O(ε−1) shortest paths from x to some node of Q.

Chapter 6. On Spanners 54

Algorithm 6.3: Single-Source Spanner [49]

Input/Output: See Theorem 6.14.
begin

H := ∅, j := 0, k := 0;
for i := 1, 2, . . . do

repeat
j := j + 1;
if there is no node yj or `(Q[y0, yj]) > ε−1`(R) then exit;

until (1 + ε)dG(x, yj) < dG(x, yk) + `(Q[yk, yj]) ;
Pi := shortest x-to-yj path;
add Pi to H;
k := j;

return H;
end

Let y0 be end(R), that is the node of Q closest to x and number the
nodes of Q as . . . , y−2, y−1, y0, y1, y2, The spanner H is comprised of
shortest paths from x to some yi and is found in two passes, one considering
y1, y2, . . . and the other one considering y−1, y−2, Here we discuss only
the first pass, the second pass is symmetric. The algorithm is summarized
in Alg. 6.3. The algorithm proceeds in a simple greedy fashion, where j
is the main counter and for each yj it decides on-the-spot to include the
path [x, yj] in H or not. The variable k stores the last j for which the
path was included and the variable i stores the number of paths that were
included so far. The decision to include a path or not is simply based on the
given condition in the theorem that dH∪Q∪R(x, yj) = dG(x, yk)+`(Q[yk, yj])
must be ≤ (1 + ε)dG(x, yj). The algorithm stops once all yj are processed
or when `(Q[y0, yj]) > ε−1`(R). For the latter case, Klein argues that the
path R ◦ Q[y0, yj] is an x-to-yj path whose length is at most 1 + 3ε times
dG(x, yj)

1.

The weight bound is shown fairly easily using the basic charging tech-
nique of Lemma 6.13. The analysis of the number of paths involves consid-
ering a number of inequalities, deriving a recurrence and solving it.

A Bipartite Spanner

The bipartite spanner is defined on plane graphs whose boundary is com-
prised of two paths Q1 and Q2, where Q2 is a shortest path. The spanner
preserves approximate distances between the vertices of Q1 and Q2.

1In the original paper, this argument was forgotten and Philip Klein sent me the
correction after I asked about it. Indeed, that the factor here is 1 + 3ε instead of 1 + ε

results in a slight increase in the constants of this theorem and the algorithm overall.

Chapter 6. On Spanners 55

Theorem 6.15 ([49]). Let G be a plane graph with nonnegative edge-
weights `(·) whose boundary is a cycle formed by two paths, Q1 and Q2,
where Q2 is a shortest path. Then for any ε > 0 there is a subgraph H of
weight at most cε−3 · `(Q1) such that, for each node x in Q1 and each node
y in Q2,

dH∪Q2
(x, y) ≤ (1 + O(ε))dG(x, y)

where c is a constant.

Algorithm 6.4: Bipartite Spanner [49]

Input/Output: See Theorem 6.15.
begin

for each node x of Q1 do
F [x] := a shortest x-to-Q2 path;

let x0, . . . , xs be the nodes of Q1 in left-to-right order;
S := ∅, i := 0;
for j := 1 to s − 1 do

if `(Q1[xi, xj]) > ε · `(F [xj]) then
S := S ∪ {xj};
i := j;

let H be Q1;
for each node x of S do

apply Alg. 6.3 with Q = Q2 and R = F [x] to obtain a
single-source spanner Hx;
add Hx to H;

return H;
end

The algorithm to find a bipartite spanner is given in Alg. 6.4. First,
for each vertex x of Q1, we find a shortest path F [x] from x to Q2. Then
we greedily find a subset S of the vertices of Q1 that are not too far from
each other. For each one of these vertices, we find a single-source spanner
to Q2 and we let H be the union of these single-source spanners with Q1.
The weight bound and the proof of correctness are shown with little effort
by adding up and combining a number of inequalities. Klein also discusses
how to implement Alg. 6.4 in time O(ε−1n log n) using a dynamic-tree data
structure (like self-adjusting top trees [78]) and multiple-source shortest-
paths algorithms for planar graphs [48].

A Boundary-to-Boundary Spanner

The boundary-to-boundary spanner preserves all internode approximate dis-
tances of the nodes on the boundary of a plane graph. Its weight is bounded

Chapter 6. On Spanners 56

by a constant factor times the weight of the boundary cycle.

Theorem 6.16 ([49]). Let G be a plane graph with nonnegative edge-
weights `(·). Let C be the boundary of G. Then for any ε > 0 there is
a subgraph Ĥ of weight O(ε−4 · `(C)) such that, for any nodes x and y in C,

dĤ(x, y) ≤ (1 + ε)dG(x, y) .

Algorithm 6.5: Boundary-to-Boundary Spanner [49]

Input/Output: See Theorem 6.16.
begin

let C be the boundary of G;
let S be the set of pairs of nodes (x, y) with

(1 + ε)dG(x, y) < `(C[x, y]);
if S is empty then return C;
let (x̂, ŷ) ∈ S such that there is no pair (x, y) ∈ S lying on C[x̂, ŷ];
let B be the path C[x, y] and let P be the shortest x-to-y path;
let L be the subgraph of G enclosed by the cycle B ◦ rev(P);
let G′ be the subgraph of G enclosed by the cycle P ◦ C[y, x];
using Alg. 6.4 obtain a bipartite spanner H of L between the
nodes of B and P ;
recursively find a boundary-to-boundary spanner H ′ of G′;
return H ∪ H ′;

end

The boundary-to-boundary spanner is built recursively. One finds a pair
of vertices x̂, ŷ for which the spanner-property is not fulfilled and such that
there is no other pair of such vertices between them. Then the graph is
split into two parts using the shortest path between x̂ and ŷ: one “below”
the shortest path and one “above” it. For the part below, one can use
the bipartite spanner of Theorem 6.15 and for the part above, one finds a
boundary-to-boundary spanner recursively. This construction fits perfectly
with the basic charging scheme of Lemma 6.13 and indeed, this lemma is
used to prove the weight bound on the spanner. The approximate distance
preserving property is shown by combining the paths in the various sub-
graphs of the recursion and arguing over a number of cases that there is
indeed a path in the spanner that is at most (1 + ε) times as long as the
original shortest path between any pair of vertices on the boundary. Klein
also presents an implementation of Alg. 6.5 that runs in O(n log n) time.

A Spanner on the Nodes of a Tree

Theorem 6.17 ([49]). Let G be a plane graph with nonnegative edge-
weights `(·). Let T be a tree in G. For any ε > 0, there is a subgraph

Chapter 6. On Spanners 57

H of G of weight O(ε−4`(T)) such that, for every pair of nodes x, y in T ,

dH(x, y) ≤ (1 + ε)dG(x, y) .

Consider the tree T and “blow it up” this way: consider the planar Euler
tour of T , that is, a tour that visits every edge of the tree twice and every
node v some number n(v) times. Duplicate every edge and make n(v) copies
of each node such that the tour turns into a simple cycle C, in fact, into a
face of the graph. We have `(C) = 2`(T). Redraw the graph in a way that
C becomes the boundary face of the graph. Use Algorithm 6.5 to derive
a boundary-to-boundary spanner H on the redrawn graph. This spanner
satisfies the required properties.

Proof of Main Theorem (Theorem 6.12)

Given an n-node planar graph G and set of terminals R, find a Steiner tree
whose weight is at most twice as much as the SMT of R in G, in O(n log n)
time, using Mehlhorn’s algorithm [58](also see the previous section). Apply
Theorem 6.17 on G and this tree to derive a spanner that approximately
preserves the internode distances among the vertices of T and whose weight
is O(ε−4) times the weight of the Steiner minimum tree of R in G. The
whole algorithm takes time O(ε−1n log n).

6.5 On Banyans

In [73], Rao and Smith introduced a generalization of spanners called
banyans. A t-banyan for a set of terminals R is a graph that contains a
t-approximation of the Steiner minimum tree of all subsets of R (not just
for subsets of size 2 as in the case of spanners). Rao and Smith consid-
ered this concept on complete geometric graphs and indeed proved that if
ε and d are constants, it is possible to find a (1 + ε)-banyan of n points in
d-dimensional space in time O(n log n) and space O(n) whose weight is at
most a constant factor times the weight of the Steiner minimum tree of the
given points. They use this theorem to derive a PTAS for the Euclidean and
rectilinear SMT problem that runs in O(n log n) time and consumes O(n)
space. In fact, even a somewhat simpler notion of banyans would suffice for
the SMT problem: we do not need to have approximations of the SMT of all
subsets of the terminals. It is sufficient that an approximation of the SMT
of the whole set is included in the banyan. Zhao [85] used this concept in his
PTAS for the geometric Steiner tree problem, in which the set of possible
Steiner points are given in advance.

Chapter 6. On Spanners 58

We will show in Chapter 9 that the existence of a polynomial time al-
gorithm to find a (1 + ε)-banyan of a set of terminals R in planar graphs
with weight at most a constant factor times the weight of the SMT of R
would lead to a PTAS for the SMT problem on planar graphs. As men-
tioned above, even an algorithm for the simpler notion of banyans would
suffice. We conjecture that such an algorithm exists.

Chapter 7

PTASs for Geometric
Variants

In this chapter we are going to review some of the developments of the re-
cent years in the design of PTASs for geometric SMT problems. First, we
are going to discuss Arora’s approach [3] whose framework has been used to
derive PTASs for many geometric problems. Then we are going to consider
node-weighted SMTs and discuss the technique of Remy and Steger [74],
which is based on Arora’s framework but includes a number of new ideas
to overcome the difficulties of this variant of the problem. Afterwards, we
will turn to Mitchell’s approach [60] and an application thereof [57] to find
a PTAS for the rectilinear SMT problem in the presence of a constant num-
ber of obstacles. At the end of this chapter, we will shortly analyze why
these approaches are not easily adaptable to the rectilinear/octilinear SMT
problem with an arbitrary number of obstacles.

7.1 Arora’s Approach

Arora [3] first published his PTAS for the traveling salesman problem and
other related geometric problems such as the geometric SMT problem in
1996. Somewhat later he improved the performance of his algorithm con-
siderably. Here we shortly discuss his improved approach on the rectilinear
SMT problem based on the presentation in [71]. We would also like to
mention Arora’s [4] excellent survey on this approach, its applications on a
number of geometric problems and its current limitations. We would like to
notice that the algorithm is randomized, it produces a (1+ε)-approximation
with probability at least 1/2. However, it can be derandomized at the cost
of some additional runtime.

59

Chapter 7. PTASs for Geometric Variants 60

Let a set P of n points in the plane and a constant integer c be given.
We describe a randomized algorithm that finds a rectilinear Steiner tree
with weight at most (1 + 1/c) times the weight of the minimum rectilinear
Steiner tree of P with probability at least 1/2. Arora’s algorithm involves
three major steps: perturbation, shifted quadtree construction and dynamic
programming. But the centerpiece of the correctness and the polynomial
runtime of the algorithm is a so-called structure theorem that usually in-
volves a patching lemma. We are now going to discuss each of these steps
and concepts, in turn.

In the perturbation step, one makes sure that the given set of terminals
lies on odd integer coordinates inside a not-too-large bounding box. Specif-
ically, it is shown that it suffices to consider sets of terminals that lie on
the grid {1, 3, 5, . . . , 4cn − 1}2. An instance with this property is called a
well-rounded instance. This is achieved by scaling the input set appropri-
ately and then moving each terminal point to its closest grid-point (it might
be that some terminals coincide on one grid point in which case they are
merged into one point). One can argue that doing so will increase the cost
of the optimum Steiner tree of the scaled problem by at most a factor of
(1 + 1/c), which is an accepted term for our purpose. From now on, we
assume that our instance is well-rounded. Note that by using the Hanan
grid [40], we know that there exists a rectilinear SMT that lies entirely on
this grid of odd integers. Particularly, it is sufficient to only consider such
grid points as possible Steiner points.

We introduce the notion of a shifted quadtree as in [74]. Let t and L be
integers, such that L = 2t > 4cn ≥ 2t−1. Put a bounding box of side-length
L around the terminal set. Let a and b denote arbitrary integers from the
set {0, 2, . . . , L − 2}. Consider a vertical line with x-coordinate a and a
horizontal line with y-coordinate b that divide the bounding box into four
smaller rectangles. Enlarge those rectangles so that each one of them has
side length L. Note that the resulting bounding box has now side length
L0 = 2L. Call this rectangle R0. Now we subdivide R0 into an ordinary
quadtree: the root of the quadtree is R0 and each node R of the tree has 4
child nodes that are obtained by subdividing R into 4 equal sized rectangles.
The leaves of the tree are rectangles of size 2 × 2. We denote this quadtree
by QTa,b to emphasize its dependence on the integers a and b. Note that
the depth of the tree is t and that each leaf contains at most one terminal
or maybe one candidate Steiner point.

The basic idea of the dynamic programming step is simple: given a shifted
quadtree QTa,b, process it in a bottom-up fashion, starting from the leaves
and working up to the root. For each node, store all possible “solutions”
of the corresponding rectangle by combining them from the child nodes. At
the root, the solution with the minimum weight will be the desired SMT.

Chapter 7. PTASs for Geometric Variants 61

However, we first have to define what a solution is. For a given non-root
rectangle R, a solution is a set of trees inside R such that every tree touches
the border of R at least once and every terminal inside R is included in
exactly one such tree. For the root node R0, a solution is a Steiner tree.
But this algorithm is clearly not polynomial. In order to make it polynomial,
we have to prove a structure theorem about rectilinear SMTs.

The structure theorem essentially tells that for every rectangle R in the
tree, one can consider only a limited number of portals as possible crossing
points for the trees inside R with the “world outside” and the number of
such crossing may be bounded, either. Let m and r be parameters to be
specified later. The portals are points on the boundaries of the rectangles
that are determined by the choice of a, b and m in a way that every rectangle
has at most m − 1 of them on each of its four sides (we omit the details of
the construction here). An (m, r)-light solution is defined as a solution that:

(i) shares no line segment with the boundary of any rectangle.

(ii) crosses/touches each side of the boundary of a rectangle at at most r
points and only out of the set of at most m − 1 given portals.

The structure theorem tells us that for a random choice of a and b, there
exists with probability at least 1/2 an (m, r)-light rectilinear Steiner tree
with weight at most (1 + 1/c) times the weight of the rectilinear Steiner
minimum tree, where m = O(c log L) and r = O(c). Hence, it suffices to
look only at (m, r)-light solutions. In order to prove the structure theorem,
one needs a so-called patching lemma that tells the following: if the optimal
tree is not (m, r)-light, that is, it crosses the boundaries of rectangles too
many times, the patching lemma shows how to modify the tree so as to
reduce the number of crossings at a cost of no more than a factor of 1/c
increase in the weight of the solution. This lemma is at the heart of the
proof of why Arora’s approach works.

Now one can make the dynamic programming work in polynomial time.
For every node of the tree, we need to consider all possibilities of choosing
at most r points out of m − 1 portals on each side of the boundary and
then partitioning these 4r points into at most 4r sets, each one building one
tree. There are O((mr)O(r)) possibilities to do this. Since m = O(c log n)
and r = O(c), this corresponds to O((c log n)O(c)) possibilities, which is
polynomial in n. We call each such possibility a configuration of the node.
Notice that the number of possible configurations for a node is the same
for all nodes. For each node, we create a table that has an entry for each
configuration. For every node and configuration, we store the length of the
shortest (m, r)-light solution obeying the choices given by the configuration.
If the considered node is a leaf, this value can be calculated in constant time

Chapter 7. PTASs for Geometric Variants 62

by brute force. Otherwise, one considers all combinations of configurations
of the four child nodes that are consistent with the given configuration and
chooses the one that results in a tree with minimum length. Once the length
of the minimum (m, r)-light Steiner tree is determined, it is possible to work
out the tree in a top-down fashion to actually find the corresponding tree,
as is standard in dynamic programming.

The runtime of this algorithm is O(mn2 · (4mr)16r) = O(n2(1
ε log n)O(1

ε
))

(recall that m = O(c log n), r = O(c) and c− 1 < 1
ε ≤ c)). But observe that

it is in fact not necessary to consider the full shifted quadtree; we waste a
lot of time on rectangles that contain no terminal at all. It is sufficient to
stop the subdivision of a rectangle once it contains only one terminal. This
way, the tree will have at most 2n leaves and so O(n log n) nodes. For a
rectangle that contains only one node, it is possible to calculate the values
of the configuration table in constant time. This modification reduces the
runtime to O(n(1

ε log n)O(1

ε
)) and results in Arora’s famous theorem:

Theorem 7.1 ([3]). There exists a randomized algorithm that computes for

every ε > 0 and set of n terminals P in time and space O(n(1
ε log n)O(1

ε
))

with probability at least 1/2 a rectilinear Steiner tree for P with weight at
most (1 + ε) times the rectilinear Steiner minimum tree of P .

Note the important dependence of the algorithm on the random choice of
the values a and b in the construction of the shifted quadtree. It is however
possible to derandomize the algorithm by considering all possible choices of
a and b, resulting in an increase of the runtime to O(n3(1

ε log n)O(1

ε
)). Also,

this algorithm can be extended to work for any constant dimension d in time
and space polynomial in n.

In [73], Rao and Smith improved the running time of Arora’s algorithm to

O((1
ε)

O(1

ε
)n + n log n) by making use of geometric banyans(see Section 6.5).

They also show how to derandomize their algorithm preserving the running
time of O(n log n). Their algorithm works for any constant dimension d
with the same running time and it consumes O(n) space (when ε and d are
considered constants).

7.2 Node-Weighted Geometric Steiner Trees

In 2005, Remy and Steger [74] presented a PTAS for the node-weighted
geometric Steiner tree problem. They follow Arora’s basic framework but
incorporate a number of significant new ideas to overcome the difficulties of
this variant of the problem. The main difficulty is that there is no “natural”
patching lemma for this problem and they had to come up with another kind

Chapter 7. PTASs for Geometric Variants 63

of structure theorem. We are going to briefly discuss some of their ideas in
this section.

In the node-weighted Steiner tree problem, there is a penalty π(v) as-
sociated with every terminal v. For every terminal that is not included in
the tree, its penalty is added to the cost of the tree. Furthermore, there is
a penalty cs given for Steiner points; every Steiner point added to the tree
costs cs units for the tree. We get the usual Steiner minimum tree problem
as a special case of this problem by setting π(v) = ∞ for all terminals and
cs = 0. Another special case is the Steiner tree problem where the set of
possible Steiner points is given in advance. This can be achieved by setting
the penalty of terminals to ∞, adding the set of possible Steiner points to
the set of terminals but with a penalty of 0 and setting cs = ∞ (so no other
Steiner points may be added). This case was also handled by a different
approach (among other things, the use of spanners) by Zhao in [85].

This problem does not naturally admit a patching lemma, since requir-
ing that the tree crosses the boundaries of the rectangles only at certain
predefined portal points means forcing these portals to be Steiner points
and Steiner points are not free of cost in this problem. Hence, a differ-
ent approach has to be taken. Remy and Steger first make a perturbation
step similar to that of Arora and then build a quadtree QTa,b with a ran-
dom choice of a and b. But then, they subdivide each rectangle of the tree
into O(log n) cells using (s, t)-maps. An (s, t)-map is a grid that contains
O(s2t) many cells so that the cells towards the inside are larger than those
towards the boundary of the subdivided rectangle. The intuition behind
(s, t)-maps is that long edges that reach deep inside a rectangle may be
approximated more roughly than short edges whose endpoints are near the
boundary. t = O(log n) is the depth of the quadtree and s is a parameter
that may be chosen to be O(1/ε). The reason they use (s, t)-maps instead
of an ordinary m×m-grid is that they would have to choose m = O(st) and
thus having O(log2 n) many cells and that would result in a super-polynomial
algorithm. Their algorithm also takes another parameter r that specifies the
maximum allowed number of connected components inside a rectangle and
has to be chosen to be O(1/ε2). They define an (r, s)-standardized solution
with respect to a and b to be a solution that satisfies for every rectangle R

of the quadtree QTa,b:

(i) the number of connected components inside R is at most r,

(ii) for every cell in the (s, t)-map of R, all vertices inside the cell that
are incident to an external edge of R belong to the same connected
component of R.

An external edge of R is an edge that has one endpoint inside R and one
outside. They show that an optimal (r, s)-standardized solution is also a

Chapter 7. PTASs for Geometric Variants 64

nearly optimal solution overall. Property (i) is achieved by reconnecting
the internal components of a rectangle by a Hamiltonian path. To bound
the maximal overhead, they use the fact that the shortest salesman tour
through k points inside a square of side length S has length at most S

√
k. To

achieve property (ii) they apply reconnections inside a cell and redirections
of external edges.

The configuration of a rectangle, used in the dynamic programming step,
is quite different from that of Arora’s algorithm. A configuration for a
rectangle R is given by the following parameters:

(i) for every cell of the (s, t)-map of R, a portal bit that indicates whether
the cell is a portal cell;

(ii) for every cell of the (s, t)-map of R, an anchor bit that tells whether
the cell is an anchor cell; they require that every anchor cell is also a
portal cell;

(iii) a partition of the portals of R into at most r sets.

A portal cell is a cell that has to be connected to some larger square. An
anchor cell is a portal cell that has to be connected to the next larger square.
The partition of the portals tells which portals have to build one connected
component inside R. The number of configurations for a rectangle is at most
2O(s2t log r). Note that if the number of cells inside a rectangle would be more
than O(log n) the number of configurations would not be polynomial in n.

They use dynamic programming to find an almost optimal (r, s)-
standardized solution in two passes. In the first pass, the structure of the
solution is determined, not the actual tree. That is, the algorithm only de-
cides about the inclusion of edges between the centers of the portals, not
between specific vertices. This is done in a bottom-up fashion by calculat-
ing the best solution for every configuration of every node of the quadtree.
For leaves, this can be done in constant time; for internal nodes, the best
solution is determined by enumerating over all consistent configurations of
the child nodes. If there is no solution for the given configuration of a given
node, the cost of that configuration of that node is set to infinity. The sec-
ond pass is a top-down traversal of the quadtree determining exactly which
vertices inside the portal cells are to be connected. We leave out the exact
details and refer the interested reader to the original paper [74]. All in all,
we get the following theorem of Remy and Steger:

Theorem 7.2 ([74]). For fixed ε > 0, there is a polynomial time algorithm
that computes a (1+ε)-approximation of the node-weighted geometric Steiner
tree problem on the plane.

Chapter 7. PTASs for Geometric Variants 65

They also argue that their technique can be generalized to higher fixed
dimensions but at the cost of losing polynomiality: they derive a QPTAS
for fixed ε > 0 and fixed d ≥ 3 that calculates a (1 + ε)-approximation of
the node-weighted geometric Steiner tree problem in d dimensions.

7.3 Mitchell’s Approach

Mitchell introduced his idea of guillotine subdivisions to approximate polyg-
onal subdivisions in 1996 [59], where he used it to obtain a constant factor
approximation for the k-MST problem. Somewhat later, he generalized this
notion to the notion of m-guillotine subdivisions that enabled him to present
PTASs for the Steiner tree problem, Steiner k-MST problem, traveling sales-
man problem and similar problems on the 2-dimensional plane [60]. Here,
we are first going to discuss the simpler concept from [59] and then the
generalization in [60].

A polygonal subdivision S is a (not necessarily connected) planar straight-
line graph drawn on the plane. Let E denote the set of edges of S, V the
set of vertices and let the number of edges be n. Without loss of generality,
we may assume that S is restricted to the unit square B. Then, each face of
S is a bounded polygon, possibly with holes. The length of S is the sum of
the lengths of its edges. If all edges are horizontal or vertical, we say that
S is rectilinear. A closed axis-aligned rectangle W is a window if W ⊆ B.
In the following, we focus attention on a given window W .

A line ` is a cut for E with respect to W if ` is horizontal or vertical and
has a nonempty intersection with the interior of W . The intersection of a cut
` with the part of E inside W (that is, the intersection `∩E∩int(W)) consists
of a discrete (possibly empty) set of subsegments of `. The endpoints of
these subsegments are called the endpoints along ` with respect to W . Note
that the two points where ` crosses the boundary of W are not considered
endpoints. Let ξ be the number of endpoints along ` and denote these points
by p1, . . . , pξ in order along `. The span of ` is the convex hull of E ∩ ` and
is equal to the line segment p1pξ. We denote it by σ(`). A cut ` is called
perfect if σ(`) ⊆ E. This happens exactly if ξ ≤ 2.

We say that a polygonal subdivision is a guillotine subdivision with re-
spect to a window W if either

(i) E ∩ int(W) = ∅; or

(ii) there exists a perfect cut ` with respect to W such that S is guillotine
with respect to the windows W ∩ H+ and W ∩ H−, where H+ and
H− are the closed half-planes induced by `.

Chapter 7. PTASs for Geometric Variants 66

We say that S is a guillotine subdivision if it is guillotine with respect to
the unit square B.

The main theorem of Mitchell is that for any given rectilinear subdivision
S of the unit square B with edge set E and length L, there exists a guillotine
subdivision SG with edge set EG that contains E and has length at most
2L. Since a rectilinear k-MST of a set of points inside B is a rectilinear
subdivision of B, it follows that there exists a guillotine subdivision of B
that contains the optimal rectilinear k-MST and has length at most twice as
much. Mitchell shows that this guillotine subdivision can be found in poly-
nomial time using dynamic programming and hence, the 2-approximation
algorithm follows. For the Euclidean case, the factor changes to 2

√
2.

The proof of the main theorem is based on the idea of dark points and
favorable cuts. Imagine that the two vertical boundary lines of a window W
are light sources and project parallel horizontal light into W and imagine
that the edge set E is a set of obstacles in W . Let ` be a vertical cut with
respect to W . We say a point p of ` is horizontally dark if it receives no
light from the sources, that is, some points of E block its view from the
vertical boundary lines. Let the closest blocking point from the right be p+

and the closest from the left be p− (p+ is obtained by projecting p to the
right on E and p− is obtained by projecting p to the left on E; note that if
p ∈ E then p+ = p− = p). Similarly one can define vertically dark points
on a horizontal cut.

An interesting property of dark points is that if a subsegment pq of a
vertical cut ` is entirely dark, one can “charge” its length to the left and
right as follows: charge half of its length to (pq)+ and the other half to (pq)−.
The same property holds of course for horizontal cuts, too. A favorable cut
is a cut whose dark portion is at least as long as the span of `. If one
finds a favorable cut `, one can cut the window W along it and charge the
length of its span to the left and right (respectively, up and down) as we just
described. Since every line segment of E is charged to at most once from
every side, half of its length, it follows that the total length of the spans of
favorable cuts and hence, the length of the resulting guillotine subdivision, is
not more than the total length of E. Mitchell shows that whenever there is
no perfect cut for a window W , there always exists a favorable cut for W (his
method is not hard and involves only a little bit of elementary integration
laws). Since the total length of favorable cuts is at most L and the total
length of perfect cuts is also at most L, we get that the length of SG will
not exceed 2L. So, the theorem follows.

In [60], Mitchell generalizes this method to obtain PTASs for a number
of NP-hard geometric problems. To this end, he introduces the notion
of m-guillotine subdivisions. The m-span, σm(`), of a cut ` is defined as
follows: if the number of endpoints ξ along ` is ≤ 2(m − 1) then σm(`) = ∅,

Chapter 7. PTASs for Geometric Variants 67

otherwise we have σm(`) = pmpξ−m+1, that is, the line segment connecting
the mth endpoint along ` to the mth-from-the-last endpoint along `. A cut
is m-perfect if its m-span is contained in E. The definition of an m-guillotine
subdivision is the same as a guillotine subdivision replacing perfect cuts with
m-perfect cuts. The main theorem generalizes as follows:

Theorem 7.3 ([60]). Let S be a rectilinear subdivision with edge set E
of length L. Then, for any positive integer m, there exists an m-guillotine
rectilinear subdivision SG of length at most (1 + 1/m)L whose edge set EG

contains E.

The proof is exactly the same as the previous case only replacing the
concept of dark points with m-dark points. A point p of a cut ` with
respect to a window W is m-dark, if there exist at least m endpoints of `⊥

with respect to E on each side of `. That is, it must be possible to project p
on each side of ` on at least m “layers” of E — not only on the closest one
as before. A favorable cut is then a cut whose m-dark portion is at least as
long as its m-span and again, Mitchell shows that if there is no m-perfect
cut for a window, then there always exists a favorable cut and the theorem
follows.

It remains to discuss the dynamic programming step. We do this for
the rectilinear Steiner tree problem. A rectilinear Steiner tree of a set of
n terminal points P inside the unit square B is a rectilinear subdivision
of B and hence, for any positive integer m, there exists an m-guillotine
subdivision of B that contains the optimal Steiner tree and which is longer
by a factor of at most (1+1/m). We need only consider the Hanan grid [40]
of P and hence, it is sufficient to only consider the x-coordinates of P and
one point in between any two consecutive x-coordinates of P as possible
candidates for vertical cuts (respectively, y coordinates for horizontal cuts).
So, there are only O(n) of them. In the dynamic programming, one proceeds
bottom-up and considers every one of the O(n4) relevant windows inside B
from smallest to largest. For each such window W , a configuration is given
by:

(i) a selection of at most 2m endpoints on each of the four sides of W ;

(ii) a partition of these at most 4m boundary segments.

There are O(n8m) choices for the endpoints and O(mm) = O(1) choices
for the partition. The partition tells which boundary segments are to be
connected inside this window. For every configuration of every window,
we can now calculate the length of the shortest m-guillotine subdivision
containing all the terminals of that window and satisfying the requirements
of the given configuration. If the window contains no terminals, this value

Chapter 7. PTASs for Geometric Variants 68

is either 0 or ∞ depending on weather the configuration requirements are
satisfied or not. Otherwise, one can find the optimal value by considering
the subproblems arising from the following choices and selecting the one
with minimum total cost:

(i) O(n) choices of a cut by a horizontal/vertical line;

(ii) O(n2m) choices of endpoints along the cut;

(iii) O(mm) = O(1) choices to partition the new boundary segments on
each side of the cut.

Overall, we get an algorithm that runs in time O(n10m+5). For a given
ε > 0 we can choose m ≥ 1/ε > m − 1 and obtain an O((1/ε)1/ε · n10/ε+5)-
time algorithm that calculates a (1 + ε)-approximation for the rectilinear
Steiner tree problem.

7.4 The Problem with Obstacles

In this section, we will shortly discuss how much these ideas are or are not
applicable to the rectilinear Steiner tree problem with obstacles. In [57], Liu
et al. observe that one can extend Mitchell’s algorithm [60] to work with
rectilinear obstacles by a simple modification but at the cost of increasing
the runtime. If the number of obstacles is k, the runtime of Mitchell’s
algorithm will become O((1/ε + k)1/ε+k · (n + k)10/ε+5). This is polynomial
in n if k = O(1). Hence, they obtain a PTAS for the case of a constant
number of obstacles. Furthermore, one sees that if k = O(polylog(n)), then
this algorithm runs in quasi-polynomial time and one obtains a QPTAS (as
far as we know, this latter observation has not been stated in the literature
yet).

Liu et al. [57] argue that there exists an obstacle-avoiding m-guillotine
subdivision that contains the optimal obstacle-avoiding rectilinear Steiner
tree. They find the minimal obstacle-avoiding connected m-guillotine sub-
division that contains all terminals using Mitchell’s dynamic programming
method with one modification: when considering a new cut, one chooses
the at most 2m endpoints along the cut, first ignoring the obstacles, but
then breaks down each of the at most m line segments into smaller obstacle-
avoiding segments. So, one might end up with at most m + k line segments
on each side of a window and has to consider all partitions of these O(m+k)
line segments on the boundaries of the windows. There are O((m + k)m+k)
such partitions and hence, the increase in the running time.

When considering Arora’s approach [3], we see that the patching lemma
is not satisfied anymore, if we allow obstacles. For the patching lemma

Chapter 7. PTASs for Geometric Variants 69

or for similar structure theorems like the one from Remy and Steger [74]
to work, it seems to be necessary to be able to reconnect terminals inside
a rectangle in order to reduce the number of crossings or the number of
connected components. But when dealing with obstacles, this is sometimes
not possible at all. Even when possible, the added overhead can not be easily
estimated since one lacks “nice” geometric properties (like the bound on the
length of a salesman tour inside a rectangle) when obstacles are present.

Both Mitchell’s and Arora’s algorithms are based on the observation
that for the rectilinear Steiner tree problem, one can restrict the number
of connected components inside a given rectangle to some constant at the
cost of a small increase in the total length of the minimal tree. But with
obstacles, one might be forced to have as many as O(min{n, k}) connected
components inside a rectangle and we do not know yet how to overcome this
issue to make their algorithms applicable to this problem.

Chapter 8

PTASs for Planar Graphs

In this chapter, we are going to review a number of techniques for designing
PTASs for various NP-hard optimization problems on planar graphs. The
first PTAS on planar graphs was given in 1980 by Lipton and Tarjan [56]
for the maximum independent set problem using their planar separator the-
orem that they had proven a year before [55]. We are not going to discuss
their method directly but we will focus on planar separators and weighted
planar separators with regard to the traveling salesman problem (TSP) in
Sections 8.2–8.3. Before we turn to that, we review Baker’s approach [7],
which was a milestone in this area of research and led to PTASs for a num-
ber of problems on planar graphs. In the last section of this chapter, we
will introduce Klein’s framework [47] to derive a linear time PTAS for the
weighted planar TSP. This framework will also be the focus of the next
chapter, where we propose a potential method to derive a PTAS for the
Steiner tree problem on planar graphs.

Though we are not going to discuss it here, we would also like to men-
tion the bidimensionality theory introduced by Demaine and Hajiaghayi [26]
that characterizes a number of problems — including problems on planar
graphs — for which there exists a PTAS. Unfortunately, “subset problems”
such as the Steiner tree problem do not comply with their theory. See also
Hajiaghayi’s PhD thesis [39]. An early attempt to syntactically characterize
PTAS was given by Khanna and Motwani [46].

8.1 Baker’s Decomposition

Baker’s approach [7] is based on decomposing the graph into so-called k-
outerplanar graphs. We will define this class of graphs in a moment. Many
NP-hard optimization problems can be solved on k-outerplanar graphs in

71

Chapter 8. PTASs for Planar Graphs 72

time polynomial in the number of vertices n. Roughly speaking, Baker de-
composes a planar graph into a number of k-outerplanar components, solves
the problem optimally in each one of them and aggregates the solution to
one solution for the main problem. She considers k possibilities to do this
and argues that at least one of them is within a factor of 1 + 1

k of the opti-
mum (or 1− 1

k for maximization problems). Her method works for a number
of optimization problems on planar graphs, such as maximum independent
set, minimum vertex cover, maximum tile salvage, partition into triangles,
maximum H-matching, minimum dominating set and minimum edge dom-
inating set. Here, we are going to consider maximum independent set as an
example.

An outerplanar embedding of a graph G, is a planar embedding of G
such that all vertices lie on the infinite face. A graph G is called outerplanar
if it has an outerplanar embedding. For an embedded planar graph G, we
define levels for the vertices as follows: the vertices on the infinite face have
level 1; the vertices that would lie on the infinite face if we removed the
vertices with level 1 to i are on level i + 1. We say G is k-outerplanar if
the maximum level of its vertices is k. We say a graph is k-outerplanar if it
is has a k-outerplanar embedding. Every planar graph is k-outerplanar for
some k. For a given planar graph G, it is possible to find a k-outerplanar
embedding with minimum k in polynomial time [11]. One can imagine a k-
outerplanar graph as consisting of k “rings” or “layers”. The optimization
problems mentioned in the last paragraph can all be solved on k-outerplanar
graphs in polynomial time using dynamic programming. The dynamic pro-
gramming is somewhat complicated and we refer the interested reader to
the original paper of Baker [7]. For the maximum independent set problem,
the algorithm takes time O(8k · n), which is linear in n.

Let a planar embedded graph G be given. For 0 ≤ i ≤ k − 1, consider
the graphs Gi induced by the vertices at levels jk + i for j = 0, 1, 2,
For any such i, the graph G − Gi has a number of connected components,
each of which is k-outerplanar. If one calculates the maximum independent
set in each of these k-outerplanar components, then the union of those is
an independent set for G. Now, if we do this for every 0 ≤ i ≤ k − 1 and
take a solution with maximum size, we have an algorithm that calculates an
independent set for G in time O(8kk ·n). Indeed, the size of this independent
set is at least (1 − 1/k) times the size of a maximum independent set in
G. To see this, let S be a maximum independent set in G. Since the Gi

build a partition of G into k sets, there is at least one t for which the
graph Gt contains at most a 1/k fraction of the vertices in S. That is,
|S ∩ V (G − Gt)| ≥ (1 − 1

k)|S|. With the algorithm above, we calculate the
maximum independent set in the graph G − Gt and this is at least as large
as |S ∩ V (G − Gt)| (which is some independent set in G − Gt). Hence, the
approximation ratio follows and we are done.

Chapter 8. PTASs for Planar Graphs 73

8.2 Planar Separators and Planar TSP

In 1995, Grigni et al. [37] presented the first PTAS for unweighted planar
graph TSP. They proved their own planar separator theorem and used it
to decompose the graph and then use dynamic programming to find an
approximate solution to the problem. They conjectured that the Euclidean
TSP also admits a PTAS, since they believed that any hardness reduction
to Euclidean TSP involves planar graph TSP. Indeed, less than two years
later their conjecture was shown to be true by Arora [3] (see Chapter 7).
Here we are going to briefly review their main ideas. We will have a closer
look in the next section, where we talk about weighted planar TSP.

Their algorithm is based on the following version of the planar separator
theorem that they prove in their paper:

Theorem 8.1 ([37]). Given a connected embedded planar graph H with
weights on its vertices and a parameter f such that 1 ≤ f ≤

√

|H|, there is
a simple planar cycle C through O(|H|/f) vertices of H such that at most
f of the arcs of C are face-edges, the remaining arcs are ordinary edges,
and the interior and exterior of C both have at most 2/3 of the total weight.
Such a C may be found in polynomial time (in fact nearly linear time).

Face-edges are imaginary edges that run through the middle of a face.
The cycle C from the theorem above uses at most f face-edges and hence, is
comprised of at most f “real” paths. One can use this cycle to split a graph
H the following way: first, we contract each of these at most f paths into
single vertices (remove loops and double edges to keep the graph simple).
Call these vertices, constraint points. Then the cycle C is reduced to a cycle
consisting only of face-edges. Let H1 be the subgraph in the interior of this
cycle together with the constraint points and let H2 be the subgraph in the
exterior of this cycle together with the constraint points. They show that C
can be chosen so that H1 and H2 are connected planar graphs. Note that
any vertex of H1 or H2 is either an original vertex from H or a constraint
point. Let G be the given planar embedded graph. One uses Theorem 8.1
to decompose G and build a binary decomposition-tree as follows: the root
of the tree is G. Every node in the tree that represents a subgraph H with
more than S = θ(f 2) (to be specified later) vertices, is split into two child
nodes H1 and H2 as described above. In the splitting process, we assign
weight 1 to every original vertex of the graph G and weight W (H)/6f to all
constraint points — both new ones and the ones inherited from ancestors
in the tree. This way, one can show that every child node Hi (1 ≤ i ≤ 2)
of a subgraph H has weight at most 5

6W (H). An immediate consequence
is that no subgraph appearing in the decomposition can have more than 5f
constraint points. Another consequence is that every non-leaf of the tree

Chapter 8. PTASs for Planar Graphs 74

contains at least one original vertex of G (because S > 5f) and hence, the
depth of the tree is at most D = log 6

5

n < 4 log n. We choose f = O(log n/ε)

and S = 10Dcf/ε for some large enough constant c. One can argue that
the total number of constraint points in all the leaves of the tree is at most
nε
c and hence, the total number of vertices in all the leaves is no more than
(1 + ε

c)n. Note that the decomposition tree can be built in polynomial time
— in fact, in nearly linear time, independent of the parameter ε.

In the dynamic programming step, the tree is processed in a bottom-up
manner. To this end, they consider a slightly more general optimization
problem. Let H be a connected planar graph and X a subset of its vertices
with |X| even. An (H,X)-solution is a collection of paths that visits every
vertex of H at least once and such that the endpoints of the paths are
exactly X (so, it is comprised of |X|/2 paths). For the special case where
X is empty, the (H,X)-solution should contain a single tour that covers H.
Let c?(H,X) be the minimum cost of any (H,X)-solution.

At the leaves of the tree, they use an approximation algorithm that solves
the given problem for the subgraph H and every even subset of its vertices
X up to a relative error of ε/4. This base case algorithm is similar to the
main algorithm but somewhat simpler. The base cases in there have size
O(log n) and are solved exhaustively. The total time for handling the leaves
is O((n + 21/ε)1/ε). For inner nodes of the tree, the optimal (H,X)-solution
can be found by considering all consistent combinations of solutions of the
child nodes, aggregating them into an (H,X)-solution and taking the one
with minimum cost. We leave out the details of this process at this place.
The running time of the dynamic programming step is O(n1/ε). In the
analysis, they argue that the total leaf error, patching error and contraction
error does not exceed an additive error of εn and hence, their algorithm
delivers the promised approximation guarantee.

8.3 Weighted Planar Separators and Weighted
Planar TSP

The first PTAS for weighted planar graph TSP was given by Arora et al. [5]
in 1998. They used Althöfer et al.’s planar spanner theorem [2], Theo-
rem 6.2, to filter out edges and then they use their own weighted planar
separator theorem to decompose the graph. Afterwards, dynamic program-
ming can be applied to find an approximate solution. Now to some more
detail.

Let the input graph be G0 = (V,E0). Using Althöfer et al.’s spanner [2],
they obtain a subgraph G = (V,E) of G0 with the following properties:

Chapter 8. PTASs for Planar Graphs 75

(i) for all vertices x, y ∈ V , dG(x, y) ≤ (1 + ε
2)dG0

(x, y);

(ii) the total weight of G is at most O(1/ε) times the weight of the mini-
mum spanning tree of G0.

Let the cost of the optimal tour in G0 be denoted by OPT . From property
(i), we see that the cost of the optimal tour in G is at most (1 + ε

2) times
OPT , since one can simply replace every edge of the optimal tour in G0 with
a path in G that is longer by at most a factor of (1 + ε

2). From property
(ii), we get that the total cost of G is at most O(1/ε) times OPT , since the
cost of any tour in G0 is ≥ the cost of the minimum spanning tree of G0.

Arora et al. [5] prove the following weighted planar separator theorem:

Theorem 8.2 ([5]). Given a parameter k and an n-vertex planar embedded
graph G with edge-costs, vertex-weights and face-weights, there is a poly(n)-
time algorithm that finds a Jordan curve C, comprised of ordinary edges and
face-edges of G, such that

balance condition: the interior and exterior of C have weight at most 2/3
of the total weight;

face-edge condition: C uses at most k face-edges;

ordinary-edge condition: C uses ordinary edges of total cost at most O(1/k)
times the total cost of all the ordinary edges.

This theorem can be used to decompose the graph G similarly to what
was done in the previous section. One finds the cycle C and contracts its
ordinary edges. The ordinary-edge condition ensures that not much weight
is contracted in this step. Let the contracted version of C be C ′. By the
face-edge condition, C ′ consists only of at most k face-edges and hence, has
at most k vertices. Call these vertices boundary vertices. Let the interior
of C ′ together with the boundary vertices be the interior piece of G and
the exterior of C ′ together with the boundary vertices be the exterior piece.
Both for the interior and the exterior piece, we have the property that the
boundary vertices lie on the boundary of a single face. We call this face
a hole, since it results from the removal of some part of the graph. The
connected components of the interior piece and the exterior piece are the
children of G. From the balance condition, we get that each child of G has
weight at most a constant fraction of G. Moreover, we still have for every
child that the boundary vertices lie around a single face, a hole, of the child.

Now we can build a decomposition tree. Fix the parameter k = c log n/ε2,
where c is a constant to be determined. Let G be the root of the tree and for
each node in the tree, decompose it as described above and add its children
to the tree until each leaf represents a graph with a small number of vertices.

Chapter 8. PTASs for Planar Graphs 76

Since the weight of every child is at most a constant fraction of its parent,
we get that the depth of the tree is O(log n). Let G′ be the graph obtained
from G by contracting all the edges appearing in some separator in the tree
decomposition above. We would like to bound the total weight of contracted
edges. Consider all the graphs appearing at a particular level of the tree.
These graphs are edge-disjoint and hence, the sum of the weights of the edges
appearing in all of them is at most the weight of G. For each graph, the cost
of the separating cycle is at most O(1/k) times the cost of the graph and
summing up these values gives us a bound of O(1/k) ·w(G) = O(OPT/kε).
Now summing over all levels of the tree, we can bound the total weight of
contracted edges by O(OPT log n/kε). By appropriate choice of c in the
definition of k, we can ensure that this bound is at most ε/4 times OPT .
We will describe below, how to find the optimal tour in G′ using dynamic
programming. Once we have that, we can uncontract the separator edges
and add them to the tour of G′ using the classic double-MST heuristic. The
cost of the tour increases by an additive value of at most twice the weight
of the contracted edges, i.e. ε/2 · OPT . Hence, we find a tour in G that
exceeds the cost of the optimal tour of G by at most ε/2 · OPT . The other
half of the allowed error is taken by the spanner subgraph approximation in
the first step of the algorithm and so, we get an algorithm that delivers a
(1 + ε)-approximation of the optimal TSP tour in G0.

We use dynamic programming to find the optimal tour in G′. For every
subgraph appearing in the tree, we have to consider its boundary vertices.
A simple patching lemma shows that there is an optimal tour that crosses
each boundary vertex of a subgraph at most twice. Hence, it is sufficient to
consider each subgraph with each possible configuration of such crossings.
Suppose the number of boundary vertices of a subgraph is p. We can specify
the boundary-crossings by a list of 2p numbers between 1 and p where each
number appears at most twice. There are pO(p) of such lists. For every list of
every subgraph of the decomposition tree we can find the optimal solution: if
the subgraph is a leaf, we use exhaustive search; if it is an internal node, we
can find the optimal solution by enumerating over all consistent possibilities
of the children.

In order to bound the running time of the algorithm we have to find
a bound on p, the number of boundary vertices of a subgraph, and its
possible crossing-lists. We know that every cycle separator generates at
most k boundary vertices and so, a subgraph at level d hast at most
dk = O(log2 n/ε2) boundary vertices. But using this bound, would only
result in a quasi-polynomial-time algorithm. Indeed, by choosing the weight
of vertices, boundary vertices and holes appropriately, one can achieve that
any subgraph appearing in the tree, regardless of its level in the tree, has
at most 10k boundary vertices. Furthermore, the same weighing scheme
achieves that every subgraph has at most 10 holes. Using an analysis tech-

Chapter 8. PTASs for Planar Graphs 77

nique similar to the analysis of Catalan bounds (the number of balanced
arrangements of pairs of parentheses), Arora et al. show that the number of
crossing arrangements is bound by 2O(k) and so, the overall runtime of the
algorithm becomes O(n1/ε) — which is polynomial in n.

8.4 Klein’s Approach and Weighted Planar TSP

In 2005, Klein [47] presented a linear time approximation scheme for
weighted planar graph TSP. He proposed a framework for obtaining such
PTASs that could potentially be applied to other problems, too — such as
the Steiner tree problem. His framework consists of the following steps:

Filtering step: Delete some edges of the input graph while approximately
preserving the optimal value. This can be done using a spanner — or in the
case of Steiner trees possibly with banyans.

Thinning step: Apply thinning to the planar dual, effectively contracting
some edges in the primal. This step should not increase the optimal value.

Dynamic-programming step: Use dynamic programming to find the
optimal solution in the thinned graph.

Lifting step: Convert the optimal solution found in the previous step to
a solution for the pre-thinned graph by incorporating some of the edges
contracted during thinning.

For the weighted planar traveling salesman problem, he shows how to
perform each of these steps in time linear in the number of vertices. In
2006, he shows how to construct a subset spanner for planar graphs [49](see
Section 6.4) and uses it as the filtering step to obtain an O(n log n)-time
algorithm for subset TSP. In the next chapter, we are going to look at each
of the steps of this framework — applied to the planar Steiner tree problem
— in thorough detail. As we will see, the only missing part is an appropriate
filtering step.

Chapter 9

Our Conjecture: The Planar
SMT Problem Admits a
PTAS

Problem 9.1 (Planar SMT Problem). Given an undirected connected n–
vertex planar graph G0 = (V0, E0) with edge weights we ≥ 0 and a subset R ⊆
V of terminal vertices, find a subtree of G0 that includes all the terminals
and has minimum total edge weight.

Conjecture 9.2. Problem 9.1 admits a PTAS.

The Steiner minimum tree problem is one of the few classic problems
where it is not known whether it admits a PTAS on planar graphs or not.
Our conjecture is that it does admit a PTAS and we suggest that Klein’s
framework [47](see Section 8.4) together with a notion of banyans [73](see
Section 6.5) for planar graphs could result in such a polynomial time ap-
proximation scheme. As discussed in Section 5.4, if this conjecture is true,
then both the rectilinear and octilinear [63] Steiner tree problems with ob-
stacles and maybe even some more Hanan-grid type problems [40, 84] will
be shown to admit a PTAS.

In this chapter, we are going to discuss each of the steps of Klein’s frame-
work that were introduced in Section 8.4 in detail and show that each one
of them can be applied to the Steiner tree problem, except the first step,
namely, the filtering step. For some restricted inputs, the filtering step is au-
tomatically given and for those inputs, we derive a PTAS. However for most
interesting cases, the filtering step is missing and we show that a polynomial
time algorithm to find a (1 + ε)-banyan (actually even a somewhat simpler
construct) on planar graphs would result in a polynomial time algorithm to

79

Chapter 9. Our Conjecture 80

find a (1+ ε)-approximation of the Steiner minimum tree problem on planar
graphs.

Let OPT (G,R) denote the weight of a Steiner minimum tree of a set of
terminals R in a graph G. In the context of Problem 9.1, we denote the value
of OPT (G0, R) simply by OPT . We are looking for a solution with a value
of at most (1+ ε) ·OPT . In the first section of this chapter, we discuss edge
compression in relation to the Steiner tree problem. In the next sections,
we will describe each of the steps of Klein’s approach in detail and in the
last section, we will see how these steps come together to potentially deliver
a PTAS for Problem 9.1.

9.1 Edge Compression and Steiner Trees

In this chapter, we rely on the combinatorial definition of planar graphs, see
Section 6.2. Remember that according to this definition, a planar embedded
graph is defined in terms of its edge-set and the dual of a planar embedded
graph has the same edge-set as the primal. Also, recall that compression is
deletion in the dual and has the effect of contraction, except for loops: when
compressing a loop of a vertex x, the vertex x is split into two vertices x1

and x2 and the graph falls apart into two connected components, namely,
one containing the interior of the loop together with x1 and one containing
the exterior of the loop together with x2. Compression is denoted by the /
operator. In order to deal with compression in the context of Steiner trees,
we have to first state some definitions and lemmas. The problem is that
we have to specify what happens to the terminal set, when we compress or
uncompress edges.

For a not-necessarily-connected planar embedded graph G and a set of
terminals R, define a Steiner multitree to be a set of trees — at most one in
every connected component of G — such that every terminal from the set R
is included in the tree of its connected component. Denote the weight of a
Steiner minimum multitree of R in G by OPT (G,R). Let e = {x, y} be an
edge of G. When compressing the edge e, we would like to specify the new
terminal set R/e in G/e. Assume that e is not a loop, i.e. x 6= y and let z
be the vertex obtained from compressing e. If any of x or y are terminals in
G, we let R/e = (R \ {x, y}) ∪ {z}, otherwise we let R/e = R. Now assume
e is a loop, i.e. x = y. Let x1 and x2 be the vertices obtained from splitting
x and belonging to connected components H1 and H2, respectively. Let
X = {xi : Hi contains a vertex from R \ {x}}. If x is a terminal in G, then
we let R/e = (R \ {x}) ∪ X. But even if x is not a terminal in G but both
H1 and H2 contain terminals of G, we let R/e = R ∪ X. Otherwise, we let
R/e = R. Notice that with this definition of X, we avoid creating connected

Chapter 9. Our Conjecture 81

components that contain only one terminal. Let S = {e1, . . . , es} be a set
of edges of G to be compressed. Define R/S = (. . . (R/e1)/e2)/ . . .)/es.
Note that the order of compression does not affect the final value of G/S
and R/S. For a multitree T of G, let T/S denote the multitree of G/S
obtained from compressing S in T in G. Note that T/S does depend on G,
since compressing a loop that is not in T might still cause T/S to become
disconnected. We have the following two lemmas:

Lemma 9.3. Let G be an edge-weighted planar embedded graph, let R ⊆
V (G) be a set of terminals, let T be a Steiner multitree of R in G, and let
S be a set of edges of G. Then T/S is a Steiner multitree of R/S in G/S
and hence, OPT (G/S,R/S) ≤ OPT (G,R).

Proof. The proof is by induction on |S|. If |S| = 0, the lemma is trivially
true. Otherwise let e = {x, y} be a an edge of S and let S ′ := S \ {e}. By
the induction hypothesis, we know that T ′ := T/S′ is a Steiner multitree
of R′ := R/S′ in G′ := G/S′. If e is not a loop, then one can easily check
that T ′/e is a Steiner multitree that contains all the vertices of R′/e and
we are done. If e is a loop, i.e. x = y, let H be the connected component
of G′ containing e. Let x1 and x2 be the two new vertices created by the
compression and H1 and H2 be the two new connected components of H/e
including x1 and x2, respectively. If either H1 or H2 have no edges, then
the case becomes trivial. Assume that each one has at least one edge. It
follows that x is a cut vertex of H. We have the following cases:

(i) x ∈ T ′: then x1, x2 ∈ T ′/e and so, all the vertices of R′/e are included
in T ′/e.

(ii) x /∈ T ′: since x is a cut vertex of H, it follows that T ′ can have edges
in at most one of H1 and H2. Also it follows that x /∈ R′ and so
x1, x2 /∈ R′/e. So, T ′/e still contains all the vertices of R′/e.

Hence, the first part of the lemma is proven. Furthermore, we have that

OPT (G/S,R/S) ≤ w(T/S) ≤ w(T) = OPT (G,R) .

Lemma 9.4. Let G be an edge-weighted planar embedded graph, let R ⊆
V (G) be a set of terminals, and let S be a set of edges each having weight
zero. Then OPT (G,R) = OPT (G/S,R/S).

Proof. By Lemma 9.3, we have that OPT (G/S,R/S) ≤ OPT (G,R). Con-
versely, let T ′′ be any Steiner multitree of R/S in G/S. We show by in-
duction on |S|, how to lift the multitree T ′′ to obtain a Steiner multitree

Chapter 9. Our Conjecture 82

T of R in G with w(T) ≤ w(T ′′). The case |S| = 0 is trivial. Let e be
an edge of S and let S ′ := S \ {e}. So, G′ := G/S′ is the graph obtained
from uncompressing e. Let e have the vertices x, y ∈ G′ as its endpoints.
We show how to obtain a Steiner multitree T ′ of R′ := R/S′ in G′ with
w(T ′) ≤ w(T ′′). Then, the induction hypothesis delivers us the desired tree
T and we are done.

First assume x 6= y and let z ∈ G′/e be the vertex obtained from com-
pressing e. We set T ′ = T ′′ and include e in T ′ iff z ∈ T ′′. Since the weight
of e is zero, we have that w(T ′) = w(T ′′) and one can easily check that T ′

will be a Steiner multitree of R′ in G′.

Now assume that e is a loop, i.e. x = y. We set T ′ = T ′′. We have to
argue that T ′ will be a Steiner multitree of R′ in G′. Let H be the connected
component of G′ containing e and define x1, x2, H1, and H2 as in the proof
of the previous lemma. The case when either H1 or H2 contains no edge is
trivial. Assume H1 and H2 both have at least one edge and hence, x is a
cut vertex of H. Let T ′′

1 be the tree of T ′′ inside H1 and T ′′
2 be the tree of

T ′′ inside H2. If H1 contains no terminal of R′, we remove T ′′
1 from T ′ and

if H2 contains no terminal of R′, we remove T ′′
2 from T ′. In these cases, we

have w(T ′) ≤ w(T ′′) and T ′ is clearly a Steiner multitree of R′ in G′. The
only remaining case is when both H1 and H2 contain a terminal of R′. But
according to our definition of R′/e, we have in this case that both x1 and x2

are terminals of R′/e and are thus included in T ′′, i.e. T ′′
1 includes x1 and

T ′′
2 includes x2. So, x is included in T ′ and thus, T ′ ∩ H is a (connected)

Steiner tree in H.

9.2 Step 1 (The Missing Step): Filtering

Now we turn to the first step of Klein’s approach, the filtering. The goal
of the filtering step is to find a subgraph G = (V,E) of G0 = (V0, E0) such
that

(i) the cost of the optimal solution in G is at most (1 + ε
2) times OPT ;

(ii) and the total weight of edges in G is no more than some ρε times OPT .

If ρε = O(1/ε) then one can often hope to achieve a linear time approxima-
tion scheme in the next steps of this framework. If ρε = O(log n), then it
might still be possible to achieve a polynomial time approximation scheme.
For the case of the traveling salesman problem, one can simply use the pla-
nar spanner given by Althöfer et al. [2] (see Section 6.1) or even better, the
linear time algorithm given by Klein [47] that finds a spanner with the same
properties (see Section 6.2). For both of these algorithms, we have that

Chapter 9. Our Conjecture 83

ρε = (1 + 2/ε) = O(1/ε) and hence, one derives a linear time approximation
scheme for TSP.

Unfortunately, these spanner results can not be used for the Steiner tree
problem. The resulting spanner would satisfy property (i), since one can
replace every edge of the optimal Steiner tree of G0 with an approximate
path in G, but it would not necessarily satisfy property (ii): the cost of
the minimum Steiner tree can be arbitrarily smaller than the cost of the
minimum spanning tree (whereas in TSP it is the other way round: the cost
of a TSP is larger than that of the MST). However, if we know in advance
that the cost of the SMT is O(1) times the cost of the MST, then these span-
ner results can indeed be used. This is for example the case for unweighted
graphs with a set of terminals that has O(n) vertices. For these cases, we
get a linear time approximation scheme for the Steiner tree problem.

In [49], Klein presents an algorithm to find a subset spanner with weight
at most O(1/ε) times the weight of the minimum Steiner tree of a given
terminal set that preserves the distances between any two terminals up to a
factor of (1 + ε

2) (see Section 6.4). The algorithm runs in time O(1
ε ·n log n)

and can be used as the filtering step for a PTAS for subset TSP. Indeed,
Klein derives a PTAS for subset TSP that runs in time O(n log n) [49]. At
first glance, one might think that this subset spanner can also be used as a
filter for the SMT problem. Property (ii) of the filtering step is now fulfilled.
But unfortunately, this subset spanner violates property (i). The vertices
appearing in the SMT of G0 might not even be part of the spanner. Or even
if they are, the distances between them are not necessarily preserved in the
spanner. Unlike the subset TSP, where one can replace subpaths between
consecutive terminals of the optimal tour of G0 with approximate shortest
paths of G, it is not sufficient for the SMT problem to preserve shortest
paths. One needs to preserve an approximate Steiner tree for the whole set
of terminals.

This brings us to the notion of banyans [73, 85](see Section 6.5). For
graphs, one can define banyans as follows: given a terminal set R, a t-banyan
is a subgraph of G0 that contains a t-approximation of the Steiner minimum
tree for all subsets of R and its weight is at most ρt times the weight of the
Steiner minimum tree of R. Rao and Smith [73] define geometric banyans
in terms of all subsets of R. However, for SMT problems it is sufficient
that a banyan includes only an approximation of the SMT of the whole set
R, not necessarily for every subset of R. This notion was used in [85]. An
algorithm that could find a (1+ ε

2)-banyan of G0 and R (even with this more
restricted notion of banyans) in time polynomial in n would immediately
result in a PTAS for the SMT problem in planar graphs — as we will see in
the following sections. The banyan algorithm of Rao and Smith for complete
geometric graphs exploits many geometric properties of Steiner trees on the

Chapter 9. Our Conjecture 84

plane and is not easily amenable to planar graphs — not even to incomplete
geometric graphs (as would be sufficient for the rectilinear and octilinear
SMT problems with obstacles).

One train of thought to derive a banyan would be to try to find a subset
of the vertices V ′

0 ⊆ V0, such that the subgraph of G0 induced by V ′
0 ∪ R

includes a (1 + ε)-approximation of the SMT of R and the weight of its
MST is at most some constant times the weight of the SMT of R. That
is, one would filter out vertices first. Then one could apply Althöfer et
al.’s spanner [2] (or alternatively, Klein’s planar spanner [47]) to derive the
desired filtering. A similar idea was used for geometric banyans by Zhao [85].

In the following, we assume that the subgraph G with properties (i) and
(ii) above is somehow given and we show how to derive a PTAS for the SMT
problem in planar graphs based on this assumption.

9.3 Step 2: Thinning

In the thinning step, one tries to eliminate some edges of G of total weight
no more than ε

2 ·OPT , such that it is possible to find the optimal solution in
the thinned graph in polynomial time. Specifically, we compress a number
of edges of G to achieve this effect. Klein [47] proved the following lemma
and applied it to G? for his thinning algorithm. It is similar in nature to
Baker’s decomposition [7](see Section 8.1). Remember that the radius of an
undirected graph is the minimum height of any rooted spanning tree of the
graph.

Lemma 9.5 ([47]). There is a linear time algorithm that, for any edge-
weighted embedded planar graph X and integer k, returns an edge-set S of
weight at most 1

k ·w(X) and an embedded planar graph Y of radius at most
k such that Y − S = X − S and V (Y) = V (X) ∪ {s}, where s is a new
auxiliary vertex.

We can not use this lemma as it is for the Steiner tree problem. The
problem is that we have to deal with terminal sets. We prove the following
variation of the lemma that overcomes this difficulty.

Lemma 9.6. Let an integer k, a connected edge-weighted embedded planar
graph G, and a set of terminals R ⊆ V (G) be given. There is a linear-time
algorithm that returns an edge-set S of weight at most 1

k ·w(G), an embedded
planar graph H, and a set RH ⊆ V (H) such that:

(i) H/S = G/S;

(ii) RH/S = R/S;

Chapter 9. Our Conjecture 85

(iii) every connected component of H? has radius at most k.

Proof. Since G is connected, we know that G? is connected. Also, since G
and G? share the same set of edges, we know that w(G) = w(G?). We apply
the following procedure to G?:

Carry out breadth-first-search from some node r of the graph and label
each vertex according to its distance from r (in breadth-first-search, distance
is measured in the number of edges, not the weight). For i = 0, 1, . . . , k − 1,
let Si denote the set of edges with one endpoint labeled d1 ≡ i(mod k)
and d2 = d1 − 1. This gives us a partition of all the edges of G? into k sets.
So, there exists at least one index i, such that the weight of Si is at most
(1/k)w(G?). Let t be such an index. We have that w(St) ≤ (1/k)w(G).

We can regard St as a set of cuts in G?, separating vertices with labels
jk + t − 1 from vertices with labels jk + t for j = 0, 1, 2, Now, if
we remove St from G?, the graph falls apart into a number of connected
components Ĝ?

0, Ĝ
?
1, . . . , Ĝ

?
z . The graph Ĝ?

j contains the vertices of G? with

labels ≥ (j − 1)k + t and < jk + t for j = 0, 1, . . . , z. Let Ŷj be the graph
obtained from Ĝ?

j by adding a supernode sj to it and edges as follows: for
every edge e in St that connects some vertex labeled (j − 1)k + t − 1 to
a vertex v of Ĝ?

j with label (j − 1)k + t, add an edge e′ from sj to v and
identify e′ with e. Notice that the breadth-first-search tree of Yj rooted at
sj has depth at most k and so, Yj has radius at most k for all j = 0, 1, . . . , z.
Let Y be the union of these Ŷj for j = 0, 1, . . . , z. We define H := Y ? and
let S := St.

Notice that since we identified the edges e and e′ above, we have that G
and H are defined on the same set of edges. We have that H ? −S = G? −S
and hence, H/S = G/S. Also, since every Yj has radius at most k, we get
that property (iii) of the lemma is also fulfilled. It remains to specify a set
RH ⊆ V (H) such that RH/S = R/S.

Let Ĝj be the dual of some connected component Ĝ?
j of G?−S. So, Ĝj is

a connected component of G/S. Let v be the vertex of Ĝj that corresponds
to the face of Ĝ?

j in which sj will be added. Adding sj to Ĝ?
j and connecting

it to a number of vertices of Ĝ?
j using edges of S to obtain the graph Ŷj has

the effect of first adding a loop to v and then splitting it into a number of
vertices v1, . . . , vq that are connected by a cycle of zero-weight edges. Hence
V (Ŷ ?

j) = (V (Ĝj) \ {v}) ∪ {v1, . . . , vq}. Initialize Rj with R ∩ V (Ŷ ?
j). Add

the vertices {v1, . . . , vq} to Rj if and only if v ∈ R. We obtain RH as the
disjoint union of the Rjs over all j = 0, 1, . . . , z. Now one can check that
Rj/S = (R/S) ∩ V (Ĝj). Hence, RH/S = R/S.

Note that the only step of this algorithm where it is not clear if it can
be done in linear time is the construction of G/S and R/S, since when

Chapter 9. Our Conjecture 86

we compress a loop, we have to check whether both of the new connected
components include terminals or not. But because of the special structure of
S, this can be checked using breadth-first-search once at the beginning of the
compression process. We leave the details of this linear-time implementation
to the reader.

9.4 Step 3: Dynamic Programming

Theorem 9.7. There is an algorithm that, given a connected edge-weighted
n-node planar embedded graph H such that H? has radius k and a set of
terminals R ⊆ V (H), finds the Steiner minimum tree of R in H in time
O(n · kO(k)).

Our proof closely follows the ideas of the proof given in [47] for the
traveling salesman problem. We adapt some of those ideas and add some
new concepts to derive the proof of our theorem about the Steiner tree
problem.

As a first step of our algorithm, we show that we can reduce the problem
to the case in which the degree of the input graph is bounded by three.
Every vertex of H that has degree d > 3, can be split into two new vertices
that each have degree < d and are connected by a new edge of weight zero.
If the vertex that was split was a terminal, let both of its split copies be
terminals. Let L be the graph obtained from H by applying this procedure
until every vertex has degree at most 3, let A be the set of artificial zero-
weight edges added, and let RL be the resulting terminal set. Note that
H = L/A and R = RL/A. Let TL be an optimal Steiner tree of RL in L.

Lemma 9.8. TL/A is an optimal Steiner tree of R in H.

Proof. We have that H = L/A and R = RL/A. By Lemma 9.3, we get that
TL/A is a Steiner tree of R in H. Furthermore,

w(T/A) = w(T) = OPT (L,RL) = OPT (L/A,RL/A) = OPT (H,R) .

The first equality results from the fact that A is zero-weight, the third one
is given by Lemma 9.4.

The outline of the dynamic programming is as follows. Let T ? be a
spanning tree of H? of height at most k. Since L? is obtained from H?

by adding a number of edges (the splitting of vertices above corresponds to
adding edges to the dual), we have that T ? is also a spanning tree of L?.
Let T be the set of edges of L? not in T ?. By Proposition 6.6, we know

Chapter 9. Our Conjecture 87

that T is a spanning tree of L. Let r ∈ RL be an arbitrary terminal vertex.
Add an artificial vertex r0 to T and connect it with an edge to r (if the
degree of r becomes more than 3, split r; note that these modifications do
not affect T ?). Root T at r0. The dynamic programming will process T in a
bottom-up manner and construct a table for each edge e ∈ T . The value of
OPT (L,RL) will be computed from the table of the edge connecting r0 to r.
Once the value of the optimal solution is known, the Steiner tree itself can be
constructed in a top-down fashion as is common in dynamic programming.
This post-processing is straightforward and we do not describe it here.

For an edge e ∈ T , let ve denote the child-endpoint of e and let De denote
the descendents of ve (including ve). By Proposition 6.8, the elementary
cycle of e in L? with respect to T ? consists of the edges ΓL(De), i.e. the
cut that disconnects De from the rest of the graph. Call this cut/cycle
Ce. Define the boundary vertices of De to be those vertices of De that are
adjacent to some edge of Ce and denote them by Be. Since T ? has height k, it
follows that any path in T ? has length at most 2k and hence, any elementary
cycle of T ? has length at most 2k+1. So, we have that |Be| ≤ |Ce| ≤ 2k+1.

For an edge e ∈ T , let a configuration K of e be given by

(i) a selection of the boundary vertices, SK ⊆ Be, such that every bound-
ary vertex that is also a terminal is included in SK ;

(ii) a partitioning PK of SK into at most |SK | sets.

For a vertex v ∈ SK , let pK(v) ∈ {1, . . . , |SK |} denote the partition it
belongs to. A solution for an edge e and a configuration K is defined as a
set of trees in the graph spanned by De, such that

(i) every terminal in De is included in exactly one tree;

(ii) every tree includes at least one vertex of SK ;

(iii) all vertices of SK that belong to the same partition in PK are part of
the same tree;

(iv) no two vertices of SK that belong to different partitions in PK are part
of the same tree.

Let min(e,K) denote the weight of a solution for e and K with minimum
total edge-weight. For the special case when SK is empty, let min(e,K) be
0 if De contains no terminal and ∞ otherwise. We would like to find the
value of min(e,K) for every possible choice of e and K. Note that there are
O(n · kO(k)) such possibilites. Once we have all these values, OPT (L,RL)
can be easily computed: let ê be the edge connecting r0 to r. Let K̂ be

Chapter 9. Our Conjecture 88

the configuration with SK = {r} and PK = {SK}. Then OPT (L,RL) =
min(ê, K̂) (remember that r has to be included in the tree, since it is a
terminal).

Now to the computation of the table. If ve is a leaf, then min(e,K) is
∞ if ve is a terminal and is not included in SK ; otherwise it is 0. Let ve

be some internal node of T and K a given configuration of it. Denote the
set {ve} by D0. Let K0 be a configuration for D0 (there are exactly two
possibilites for K0: including ve in SK0

or not). Let C0 = {e1, . . . , es} be
the child edges of e (s ≤ 2), Di = Dei

and Ci = Cei
for i = 1, . . . , s. Let

K1 be a configuration of e1 and if s = 2, let K2 be a configuration of e2,
otherwise let K2 be empty. We say the configurations K0, K1, and K2 are
consistent with K if

(i) (SK0
∪ SK1

∪ SK2
) ∩ Be = SK ;

(ii) for i = 1, . . . , s and u, v ∈ SKi
∩ SK , we have that pK(u) = pK(v) if

and only if pKi
(u) = pKi

(v), i.e. u and v belong to the same partition
in PK if and only if they also belong to the same partition in PKi

;

(iii) for i = 1, . . . , s, any set in PKi
includes at least one vertex of SK .

By condition (iii), we know that for any vertex v ∈ SK0
∪ SK1

∪ SK2
, there

is a vertex u ∈ SK , such that v and u are in the same partition of PK and
by condition (ii), this partition does not depend on the choice of u. Let
p̂(v) := pK(u). Let Ê be the union of C0, . . . , Cs restricted to D0 ∪ · · · ∪Ds,
i.e. Ê is the set of edges that run between D0, D1 and D2 (if existent). Note
that |Ê| = O(k). We say that a selection of edges Ê′ is consistent with the
consistent configurations K, K0, K1, and K2 if for all edges e = {u, v} ∈ Ê′

we have

(i) u, v ∈ SK0
∪ SK1

∪ SKs
;

(ii) p̂(u) = p̂(v);

(iii) if for some i, j ∈ {0, 1, 2}, there are vertices u ∈ Di and v ∈ Dj , such
that p̂(u) = p̂(v), then there exists an edge {x, y} ∈ Ê′, such that
p̂(x) = p̂(y) = p̂(u).

Property (iii) ensures that all the vertices that belong to the same partition
of PK will end up in the same tree. Now, one can compute min(e,K) by
enumerating over all consistent configurations K0, . . . ,Ks and consistens
edge selections Ê′ and take the one with minimum total edge weight. Our
algorithm runs in time O(n · kO(k)).

Chapter 9. Our Conjecture 89

9.5 Summary of the Algorithm

All in all, we have the following algorithm to find a (1 + ε)-approximation
of the Steiner minimum tree of a set of terminals R in an embedded planar
graph G0:

Step 1 (Filtering): Apply a (not-yet-existing) polynomial-time filtering
algorithm to find a subgraph G of G0 that has total weight at most ρε times
OPT and that contains a (1 + ε

2)-approximation of the SMT of R in G0.

Step 2 (Thinning): Let k = d 2
ε · ρεe and apply the thinning algorithm of

Lemma 9.6 to G to obtain an edge set S of weight at most (1/k) · w(G), a
graph H and a set of terminals RH ⊆ V (H) with the given properties of the
lemma.

Step 3 (Dynamic Programming): Let H ′ be the graph obtained from
H by setting the weight of all edges in S to zero. For every connected
component H ′

j of H ′, apply the dynamic programming of Theorem 9.7 to
H ′

j and R′
j := RH ∩ V (H ′

j) to obtain the optimal Steiner multitree TH′ of
H ′. By Lemma 9.4, we know that TH′/S is the optimal Steiner multitree of
H ′/S = H/S = G/S.

Step 4 (Lifting): Interprete TH′/S as a Steiner multitree of R/S in G/S
and obtain a Steiner tree T of R in G by uncompressing the edges of S as
described in the proof of Lemma 9.4.

By Lemma 9.4 we know that if we consider S as having zero weight, then
T is indeed an optimal Steiner tree of R in G. Adding the real weight of S
back to the graph, adds at most

1

k
· w(G) ≤ ρε

k
· OPT ≤ ε

2
· OPT

to the total weight. Hence, the algorithm delivers the promised approx-
imation ratio in time O(n · kO(k)) plus the time needed for filtering. If
ρε = O(1/ε) and the filtering algorithm also runs in linear time, this is lin-
ear in n. If ρε = O(log n) then we would at least get a QPTAS for this
problem. We think that investigating the existance of a filtering algorithm
for this problem is a promising direction for future research.

Bibliography

[1] R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey
of very large-scale neighborhood search techniques. Discrete Applied
Mathematics, 123(1–3):75–102, 2002.

[2] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On
sparse spanners of weighted graphs. Discrete Computational Geome-
try, 9(1):81–100, 1993.

[3] S. Arora. Polynomial time approximation schemes for the Euclidean
traveling salesman and other geometric problems. Journal of the ACM,
45:753–782, 1998.

[4] S. Arora. Approximation schemes for NP-hard geometric optimization
problems: a survey. Mathematical Programming, 97(1–2):43–69, 2003.

[5] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A
polynomial-time approximation scheme for weighted planar graph TSP.
In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium
on Discrete algorithms, pages 33–41, Philadelphia, PA, USA, 1998. So-
ciety for Industrial and Applied Mathematics.

[6] M. Ayob, P. Cowling, and G. Kendall. Optimisation of surface mount
placement machines. In Proceedings of IEEE International Conference
on Industrial Technology, pages 486–491, 2002.

[7] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. ACM, 41(1):153–180, 1994.

[8] H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from
observed dissimilarity data. Adv. Appl. Math., 7(3):309–343, 1986.

[9] S. Baswana and S. Sen. A simple linear time algorithm for computing
a (2k−1)-spanner of O(n1+1/k) size in weighted graphs. In ICALP ’03:
Proceedings of the 30th International Colloquium on Automata, Lan-
guages and Programming, volume 2719 of Lecture Notes in Computer
Science, pages 384–396, Berlin, Germany, 2003. Springer-Verlag.

91

Chapter 9. Our Conjecture 92

[10] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1
and 2. Inormation Processing Letters, 32(4):171–176, 1989.

[11] D. Bienstock and C. L. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica, 5(1):93–
109, 1990.

[12] U. Brandes and D. Handke. NP-completeness results for minimum pla-
nar spanners. Discrete Mathematics & Theoretical Computer Science,
3(1):1–10, 1998.

[13] M. Brazil. Steiner minimum trees in uniform orientation metrics. In
I. D.-Z. Du and X. Cheng, editors, Steiner trees in Industries, pages
1–27. Kluwer Academic Publishers, 2001.

[14] M. Brazil, D. Thomas, and P. Winter. Minimum networks in uniform
orientation metrics. SIAM Journal on Computing, 30(5):1579–1593,
2000.

[15] M. Brazil, D. A. Thomas, J. F. Weng, and M. Zachariasen. Canonical
forms and algorithms for Steiner trees in uniform orientation metrics.
Algorithmica, 44:281–300, 2006.

[16] M. Brazil, P. Winter, and M. Zachariasen. Flexibility of Steiner trees
in uniform orientation metrics. Networks, 46:142–153, 2005.

[17] P. Brucker. Scheduling Algorithms. Springer-Verlag, 2004.

[18] L. Cai. NP--completeness of minimum spanner problems. Discrete
Appl. Math., 48(2):187–194, 1994.

[19] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness
results on graph spanners. In SCG ’92: Proceedings of the eighth annual
symposium on Computational geometry, pages 192–201, New York, NY,
USA, 1992. ACM Press.

[20] H. Chen, C.-K. Cheng, A. B. Kahng, I. I. Mandoiu, Q. Wang, and
B. Yao. The Y architecture for on-chip interconnect: analysis and
methodology. IEEE Trans. on CAD of Integrated Circuits and Systems,
24(4):588–599, 2005.

[21] H. Chen, C.-K. Cheng, A. B. Kahng, I. Mǎndoiu, and Q. Wang. Estima-
tion of wirelength reduction for λ-geometry vs. Manhattan placement
and routing. In Proceedings of SLIP’03, pages 71–76. ACM Press, 2003.

[22] D. R. Cheriton and R. E. Tarjan. Finding minimum spanning trees.
SIAM J. Comput., 5(4):724–742, 1976.

Chapter 9. Our Conjecture 93

[23] P. Chew. There is a planar graph almost as good as the complete
graph. In SCG ’86: Proceedings of the second annual symposium on
computational geometry, pages 169–177, New York, NY, USA, 1986.
ACM Press.

[24] E.-A. Choukhmane. Une heuristique pour le problème de l’arbre de
Steiner. Rech. Opèr., 12:207–212, 1978.

[25] Y. Crama, J. Klundert, and F. C. R. Spieksma. Production planning
problems in printed circuit board assembly. Discrete Applied Mathe-
matics, 123:339–361, 2002.

[26] E. D. Demaine and M. T. Hajiaghayi. Bidimensionality: new connec-
tions between FPT algorithms and PTASs. In SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM Symposium on Discrete Algorithms,
pages 590–601, Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics.

[27] E. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik 1, pages 269–271, 1959.

[28] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are
almost as good as complete graphs. Discrete Comput. Geom., 5(4):399–
407, 1990.

[29] M. Elkin and D. Peleg. The hardness of approximating spanner prob-
lems. In H. Reichel and S. Tison, editors, STACS ’00: Proceedings of the
17th annual Symposium on Theoretical Aspects of Computer Science,
volume 1770 of Lecture Notes in Computer Science, pages 370–381.
Springer, 2000.

[30] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, chapter 9, pages 425–
461. Elsevier, 2000.

[31] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univer-
sity Press, Princeton, NJ, 1962.

[32] A. Frangioni, E. Necciari, and M. G. Scutellà. A multi-exchange neigh-
borhood for minimum makespan parallel machine scheduling problems.
J. Comb. Optim., 8(2):195–220, 2004.

[33] J. L. Ganley and J. P. Cohoon. Routing a multi-terminal critical net:
Steiner tree construction in the presence of obstacles. In Proceedings of
the International Symposium on Circuits and Systems, pages 113–116,
1994.

Chapter 9. Our Conjecture 94

[34] M. Garey, R. Graham, and D. Johnson. The complexity of computing
Steiner minimal trees. SIAM Journal on Applied Mathematics, 32:835–
859, 1977.

[35] M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM Journal on Applied Mathematics, 32:826–834, 1977.

[36] R. Gaudlitz. Optimization algorithms for complex mounting machines
in PC board manufacturing. Diploma thesis, Department of Computer
Science, Technische Universität Darmstadt, 2004.

[37] M. Grigni, E. Koutsoupias, and C. Papadimitriou. An approximation
scheme for planar graph TSP. In Proceedings of the 36th Annual Sympo-
sium on Foundations of Computer Science (FOCS’95), pages 640–645,
Washington, DC, USA, 1995. IEEE Computer Society.

[38] M. Grunow, H.-O. Günther, and M. Schleusener. Component allocation
for printed circuit board assembly using modular placement machines.
International Journal of Production Research, 41:1311–1331, 2003.

[39] M. T. Hajiaghayi. The bidimensionality theory and its algorithmic
applications. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 2005.

[40] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Jour-
nal on Applied Mathematics, 14:255–265, 1966.

[41] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-
path algorithms for planar graphs. In STOC ’94: Proceedings of the
twenty-sixth annual ACM Symposium on Theory of Computing, pages
27–37, New York, NY, USA, 1994. ACM Press.

[42] F. Hwang. On Steiner minimal trees with rectilinear distance. SIAM
Journal on Applied Mathematics, 30:104–114, 1976.

[43] F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem,
volume 53. Annals of Discrete Mathematics, North-Holland, 1992.

[44] A. Kahng, I. Mǎndoiu, and A. Zelikovsky. Highly scalable algorithms
for rectilinear and octilinear Steiner trees. Proceedings 2003 Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 827–
833, 2003.

[45] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computa-
tions, pages 85–103. Plenum Press, 1972.

Chapter 9. Our Conjecture 95

[46] S. Khanna and R. Motwani. Towards a syntactic characterization of
PTAS. In STOC ’96: Proceedings of the twenty-eighth annual ACM
Symposium on Theory of Computing, pages 329–337, New York, NY,
USA, 1996. ACM Press.

[47] P. N. Klein. A linear-time approximation scheme for TSP for planar
weighted graphs. In Proceedings, 46th IEEE Symposium on Foundations
of Computer Science, pages 146–155, 2005.

[48] P. N. Klein. Multiple-source shortest paths in planar graphs. In SODA
’05: Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 146–155, Philadelphia, PA, USA, 2005. So-
ciety for Industrial and Applied Mathematics.

[49] P. N. Klein. A subset spanner for planar graphs, with application to
subset TSP. In Proceedings, 38th ACM Symposium on Theory of Com-
puting, pages 749–756, 2006.

[50] C. Koh. Steiner problem in octilinear routing model. Master thesis,
National University of Singapore, 1995.

[51] C.-K. Koh and P. H. Madden. Manhattan or non-Manhattan?: a study
of alternative VLSI routing architectures. In M. Sarrafzadeh, P. Baner-
jee, and K. Roy, editors, ACM Great Lakes Symposium on VLSI, pages
47–52. ACM, 2000.

[52] D. Lee and C.-F. Shen. The Steiner minimal tree problem in the λ-
geometry plane. In Proceedings 7th International Symposium on Algo-
rithms and Computations (ISAAC 1996), volume 1178 of Lecture Notes
in Computer Science, pages 247–255. Springer, 1996.

[53] C. Levcopoulos and A. Lingas. There are planar graphs almost as good
as the complete graphs and almost as cheap as minimum spanning trees.
Algorithmica, 8(3):251–256, 1992.

[54] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on
Computing, 11(2):329–343, 1982.

[55] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[56] R. J. Lipton and R. E. Tarjan. Applications of a planar separator
theorem. SIAM Journal on Computing, 9(3):615–627, 1980.

[57] J. Liu, Y. Zhao, E. Shragowitz, and G. Karypis. A polynomial time ap-
proximation scheme for rectilinear Steiner minimum tree construction
in the presence of obstacles. In 9th IEEE International Conference on
Electronics, Circuits and Systems, volume 2, pages 781–784, 2002.

Chapter 9. Our Conjecture 96

[58] K. Mehlhorn. A faster approximation algorithm for the Steiner problem
in graphs. Information Processing Letters, 27:125–128, 1988.

[59] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal sub-
divisions: a simple new method for the geometric k-MST problem. In
SODA ’96: Proceedings of the seventh annual ACM-SIAM Symposium
on Discrete Algorithms, pages 402–408, Philadelphia, PA, USA, 1996.
Society for Industrial and Applied Mathematics.

[60] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdi-
visions: A simple polynomial-time approximation scheme for geometric
TSP, k-MST, and related problems. SIAM Journal on Computing,
28(4):1298–1309, 1999.

[61] B. Mohar and C. Thomassen. Graphs on Surfaces. The John Hopkins
University Press, 2001.

[62] M. Müller-Hannemann and S. Peyer. Approximation of rectilinear
Steiner trees with length restrictions on obstacles. In 8th Workshop
on Algorithms and Data Structures (WADS 2003), volume 2748 of Lec-
ture Notes in Computer Science, pages 207–218. Springer, 2003.

[63] M. Müller-Hannemann and A. Schulze. Hardness and approximation
of octilinear Steiner trees. In Proceedings of the 16th International
Symposium on Algorithms and Computation (ISAAC 2005), Hainan,
China, volume 3827 of Lecture Notes in Computer Science, pages 256–
265. Springer, 2005.

[64] M. Müller-Hannemann and A. Schulze. Approximation of octilinear
Steiner trees constrained by hard and soft obstacles. In L. Arge and
R. Freivalds, editors, SWAT, volume 4059 of Lecture Notes in Computer
Science, pages 242–254. Springer, 2006.

[65] M. Müller-Hannemann and K. Weihe. Moving policies in cyclic
assembly-line scheduling. Theoretical Computer Science, 351:425–
436, 2006. An extended abstract appeared in Proceedings of the
International Workshop on Parameterized and Exact Computation
(IWPEC’04) Lecture Notes in Computer Science 3162, pp. 149–161,
Springer-Verlag.

[66] B. Nielsen, P. Winter, and M. Zachariasen. An exact algorithm for
the uniformly-oriented Steiner tree problem. In 10th Annual European
Symposium on Algorithms (ESA 2002), volume 2461 of Lecture Notes
in Computer Science, pages 760–772. Springer, 2002.

[67] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

Chapter 9. Our Conjecture 97

[68] D. Peleg and A. Schaeffer. Graph spanners. Journal on Graph Theory,
13:99–116, 1989.

[69] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube.
In PODC ’87: Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pages 77–85, New York, NY, USA,
1987. ACM Press.

[70] J. Plesnik. A bound for the Steiner problem in graphs. Math. Slovaca,
31:155–163, 1981.

[71] H. Prömel and A. Steger. The Steiner Tree Problem: A Tour through
Graphs, Algorithms, and Complexity. Advanced Lectures in Mathemat-
ics, Vieweg, 2002.

[72] J. S. Provan. An approximation scheme for finding steiner trees with
obstacles. SIAM Journal on Computing, 17(5):920–934, 1988.

[73] S. B. Rao and W. D. Smith. Approximating geometrical graphs via
”spanners” and ”banyans”. In STOC ’98: Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 540–550, New
York, NY, USA, 1998. ACM Press.

[74] J. Remy and A. Steger. Approximation schemes for node-weighted
geometric steiner tree problems. In C. Chekuri, K. Jansen, J. D. P.
Rolim, and L. Trevisan, editors, APPROX-RANDOM, volume 3624 of
Lecture Notes in Computer Science, pages 221–232. Springer, 2005.

[75] G. Robins and A. Zelikovsky. Improved Steiner tree approximation
in graphs. Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 770–779, 2000.

[76] L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of
approximate distance oracles and spanners. In L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, volume
3580 of Lecture Notes in Computer Science, pages 261–272. Springer,
2005.

[77] A. Scholl. Balancing and Sequencing of Assembly Lines. Physica-
Verlag, Heidelberg, 2nd edition, 1999.

[78] R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. In SODA ’05:
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 813–822, Philadelphia, PA, USA, 2005. Society for
Industrial and Applied Mathematics.

Chapter 9. Our Conjecture 98

[79] S. Tazari, M. Müller-Hannemann, and K. Weihe. Workload balancing
in multi-stage production processes. In C. Àlvarez and M. J. Serna, ed-
itors, WEA, volume 4007 of Lecture Notes in Computer Science, pages
49–60. Springer, 2006.

[80] S. L. Teig. The X architecture: not your father’s diagonal wiring. In
SLIP ’02: Proceedings of the 2002 international workshop on System-
level interconnect prediction, pages 33–37. ACM Press, 2002.

[81] M. Thimm. On the approximability of the Steiner tree problem. The-
oretical Computer Science, 1-3:387–402, 2003.

[82] G. Venkatesan, U. Rotics, M. S. Madanlal, J. A. Makowsky, and C. P.
Rangan. Restrictions of minimum spanner problems. Information and
Computation, 136(2):143–164, 1997.

[83] W. Wang, P. C. Nelson, and T. M. Tirpak. Optimization of high-
speed multistation SMT placement machines using evolutionary algo-
rithms. IEEE Transactions on Electronic Packaging and Manufactur-
ing, 22:137–146, 1999.

[84] M. Zachariasen. A catalog of Hanan grid problems. Networks, 38:76–83,
2001.

[85] H. Zhao. Algorithms and complexity analyses for some combinatorial
optimization problems. PhD Thesis, New Jersey Institute of Technol-
ogy, NJ, USA, 2005.

[86] Q. Zhu, H. Zhou, T. Jing, X. Hong, and Y. Yang. Efficient octilinear
Steiner tree construction based on spanning graphs. Proceedings 2004
Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 687–690, 2004.

