
Bidimensionality Theory and Algorithmic Graph Minor Theory

Lecture Notes for MohammadTaghi Hajiaghayi’s Tutorial

Mareike Massow∗, Jens Schmidt†, Daria Schymura‡, Siamak Tazari§

MDS Fall School Blankensee
October 2007

1 Introduction

Dealing with Hard Graph Problems

Many graph problems cannot be computed in polynomial time unless P = NP , which most computer
scientists and mathematicians doubt. Examples are the Traveling Salesman Problem (TSP), vertex cover,
and dominating set. TSP is to find a Hamiltonian cycle with the least weight in a complete weighted graph.
A vertex cover of a graph is a subset of the vertices that covers all edges. A dominating set in a graph is a
subset of the vertices such that each vertex is contained in the set or has a neighbour in the set. The decision
problem is to answer the question whether there is a vertex cover resp. a dominating set with at most k
elements. The optimization problem is to find a vertex cover resp. a dominating set of minimal size.

How can we solve these problems despite their computational complexity? The four main theoretical
approaches to handle NP -hard problems are the following.

• Average case: Prove that an algorithm is efficient in the expected case.

• Special instances: A problem is solved efficiently for a special graph class. For example, graph isomor-
phism is computable in linear time on planar graphs whereas graph isomorphism in general is known to
be in NP and suspected not to be in P .

• Approximation algorithms: Approximate the optimal solution within a constant factor c, or even
within 1 + ε. An algorithmic scheme that gives for each ε > 0 a polynomial-time (1 + ε)-approximation
is called a polynomial-time approximation scheme (PTAS).

• Fixed-parameter algorithms: Parametrize the problem by parameter P , which is typically the size of an
optimal solution. Design an algorithm that needs O(f(P )nO(1)) or even O(f(P ) + nO(1)) time where
f is a computable function. Problems that admit such algorithms are called fixed-parameter tractable
(FPT).

In the following, we deal especially with fixed-parameter algorithms and PTAS. Let us look at an example for
fixed-parameter algorithms.

Example. (Fixed-parameter algorithm)
Consider the vertex cover decision problem: Given a graph G and an integer k, does a vertex cover with ≤ k
vertices exist? This problem is known to be NP -complete, yet we want to design an algorithm that needs
polynomial time in the number of vertices of G.

Can we give a simple fixed-parameter algorithm that solves the vertex cover decision problem?
We can assume that there is no vertex of degree more than k. Each vertex with more than k neighbors
has to be in the vertex cover since otherwise the incident edges cannot be covered with at most k vertices.
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Moreover, we can assume that there is no matching of more than k edges because otherwise the graph has
no vertex cover with at most k vertices. Thus, the total number of vertices is ≤ 2k(k − 1), and we can try

every possible vertex set of size k in O(2k2
). Reducing a problem to a problem of size O(f(k)) and then

solving it with brute force, as we did here, is called kernelization.
There exists a fixed-parameter tractable algorithm for vertex cover due to Chen, Kanj and Jia [2] with

running time O(kn + 1.286k) which is able to solve graphs up to 400 nodes in practice.

Robertson & Seymour’s Graph Minor Theory

A graph G has a graph H as a minor if a graph isomorphic to H can be obtained from G by a sequence of the
following operations: deleting vertices, deleting edges, contracting edges. A graph property is a set of graphs
that is closed under isomorphisms. A graph property is minor-closed if for each graph with that property, it
holds that all its minors also have the property. Examples are planar graphs, outerplanar graphs and graphs
that are embeddable on a fixed surface; but also graphs that contain a vertex cover of size at most k.

Theorem 1 (Kuratowski). A graph is planar iff it has no K5 and no K3,3 as a minor.

Kuratowskis theorem characterizes planarity by two forbidden minors. This is a nice characterization since
for a given graph planarity as well as non-planarity can be easily proved. Either a drawing without crossing
or a forbidden minor attest the property.

Asserting Wagner’s conjecture, Robertson and Seymour showed in a deep theorem that for each minor-
closed graph property a result of this type holds.

Theorem 2 (Robertson & Seymour). Each minor-closed graph property can be characterized by a finite
set of forbidden minors.

Unfortunately, their result is “inherently” non-constructive, i.e. there is no algorithm that can generally
determine which minors are to be excluded for a given minor-closed graph property. Moreover, the number of
forbidden minors can be high: For example, for graphs embeddable on the torus more than 30,000 forbidden
minors are known, yet the list is incomplete.

Robertson and Seymour devised the graph minor theory in a series of more than 20 papers, published
between 1983 and 2004. In Graph Minors XIII they give for each graph H an explicit cubic algorithm that
decides whether an input graph has H as a minor. Given this result and Theorem 2 the following holds.

Theorem 3 (Robertson & Seymour). Each minor-closed graph property can be decided in polynomial
time (even in cubic time).

2 Graph Classes

This section gives an overview of important graph classes used in the talk (see Figure 1).

Figure 1: Graph Classes: Arrows point from more specific classes to more inclusive classes.
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A graph is planar if and only if it can be drawn in the plane without edge intersections. The genus of
a graph is g if it can be drawn without crossings on a surface of orientable genus g but not on a surface
with orientable genus g − 1. The bounded-genus class contains all graphs with fixed genus. Map graphs
are defined similar to the dual graph g′ of a planar embedding. But instead of connecting two faces (these
correspond to vertices in g′) with an edge in g′, if they share an edge in g, we connect the faces if they share
a vertex in g; also, some faces – called lakes – may be excluded from this process. These graphs can have
arbitrarily large cliques. They correspond to the half-square of planar bipartite graphs.

All remaining classes in Figure 1 except the general graph class relate to excluding minors. A minor-closed
graph class is H-minor-free for a fixed graph H if it does not contain H. An apex graph is a graph with a
vertex v in which the removal of v results in a planar graph. A graph class is apex-minor-free if it excludes a
fixed apex graph. A single-crossing graph is a minor of a graph with at most one pair of edges crossing. A
minor-closed graph class is called single-crossing-minor-free if it excludes such a single-crossing graph.

There exist single-crossing graphs which are not drawable in the plane with at most one crossing (see
Figure 2).

edge contraction

Figure 2: A single crossing that cannot be drawn with a single crossing.

In fact, a single crossing’s drawing can require Ω(k) crossings if the graph has θ(k) vertices. The graph
in Figure 3) presumably is a (maybe smallest possible) example for this. The first one providing a proof of
this will be rewarded with a fine Australian Lager (valid until February 29, 2008).

Figure 3: A graph with 2k vertices that can be drawn with a single crossing. But when the red edge is
contracted, each drawing in the plane has at least k − 3 crossings.

3 Structure of H-Minor-Free Graphs

An important element of Robertson and Seymour’s graph minor theory and a key theorem that is used in many
results of this lecture is the decomposition theorem of H-minor-free graphs [14]. It essentially says that every
H-minor-free graph can be decomposed into a number of “almost-embeddable” graphs, i.e. graphs that can
be embedded in a bounded-genus surface with some “extra features”. This decomposition can be applied to
generalize results on planar and bounded-genus graphs to H-minor-free graphs. The main operation needed
in the decomposition is the notion of clique sums as described below.

Consider vertex-disjoint graphs G1 and G2 and suppose that they have cliques of size k ≥ 1. A
k-clique sum of G1 and G2 is obtained as follows: Consider a specific k-clique in each of the graphs and
label their vertices with 1, . . . , k. Now identify the vertices with the same label to obtain a new graph with
|V (G1)| + |V (G2)| − k vertices. Finally, remove some edges from the new k-clique, if desired. Notice that
this operation is not well-defined, i.e. there might be many ways to obtain k-clique sums of two given graphs.

The decomposition theorem of Robertson and Seymour, the so called RS-decomposition of H-minor-free
graphs, says that every H-minor-free graph can be written as the clique sum of O(1) graphs, where each
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summand is an O(1)-almost-embeddable graph (see the definition below) and the constants in the O(1)
depend only on |V (H)|. Demaine, Hajiaghayi, and Kawarabayashi [6] showed that such a decomposition may
be found in polynomial time.

It remains to define O(1)-almost-embeddable graphs. A graph is O(1)-almost-embeddable into a bounded-
genus surface if it is a bounded-genus graph with a bounded number of vortices and a bounded number of
apices. A vortex is obtained by replacing a disc-like face of a bounded-genus graph with a graph of bounded
pathwidth, so that the interiors of the replaced faces are disjoint. An apex is an extra vertex that may be
incident to any other vertex of the bounded-genus graph (just like the apex in an apex-graph with respect to
planar graphs). This completes the definitions needed for the decomposition.

4 Treewidth and Grid Minors

The treewidth of a graph is an important parameter that, roughly said, measures how far it is from being a
tree. More precisely, we have the following definitions: A tree decomposition of a graph G = (V,E) is a tree
T = (I, F ) with subsets xi ⊆ V, i ∈ I as nodes (the so-called bags) such that

1.
⋃

i∈I xi = V

2. for each edge e = {uv} exists an i ∈ I with u ∈ xi and v ∈ xi

3. for all v ∈ V the set of nodes {i ∈ I | v ∈ xi} forms a connected subtree of T .

The width of a tree decomposition is the number of nodes in the largest bag of T minus 1. The treewidth
tw(G) of a graph G is the minimum width over all tree decompositions of G. More intuitively, each vertex
v ∈ V corresponds to a subtree in T , so that the subtrees of adjacent vertices overlap; the treewidth is then
the maximum overlap of these subtrees minus 1. A tree decomposition with T being a path is called a path
decomposition. The pathwidth pw(G) of a graph G is the minimum width over all path decompositions of
G.

The graph class with treewidth 1 is exactly the class of forests. The connected graphs with treewidth
2 are the series-parallel graphs. Computing the treewidth of a graph is well-motivated, since many fast
algorithms for NP-hard problems exist on graphs with bounded treewidth. The typical running time of those
algorithms is 2O(tw)nO(1). Unfortunately computing the treewidth itself is NP-hard, but there are constant-
factor approximation algorithms, achieving a running time of 2O(tw)nO(1) for general graphs. Specifically, 1.5-
approximations exist for planar graphs and single-crossing-minor-free graphs and O(|V (H)|2)-approximations
for H-minor-free graphs. In general graphs, there exists also a O(

√
log OPT)-approximation computable in

nO(1) time. Planar and bounded-genus graphs have treewidth O(
√

n).
Several of the defined graph classes in section 2 have powerful structural properties, as was shown in the

Graph Minor Theory. A grid of size r × r is the planar graph with r2 vertices arranged on a square grid
with edges attached horizontally and vertically. Robertson, Seymour and Thomas showed in 1994 that large
treewidth implies a large grid minor. A treewidth of at least 202r5

implies an (r × r)-grid minor. For the
class of H-minor-free graphs the following recent result shows much stronger dependence of treewidth and
grid minors.

Theorem 4 (Demaine, Hajiaghayi [5]). For any fixed graph H, every H-minor-free graph of treewidth w
has an (Ω(w)× Ω(w))-grid as a minor.

Proof sketch. The proof is based on a series of reductions using the RS-decomposition of H-minor-free
graphs described in the previous section. The first observation is that the treewidth of the clique-sum of two
graphs is at most the maximum of the treewidth of each one of them. So, we know that at least one summand
of the RS-decomposition of the given graph G has the same treewidth as G. Removing apices and contracting
vortices changes the treewidth only by a constant. The remaining bounded-genus graph is known to have a
large grid minor. But there is still one important flaw in these reductions: when building clique-sums to obtain
the original graph, we might remove edges and thus destroy the large grid-minor. To overcome this issue,
Demaine and Hajiaghayi introduce a certain “approximation graph” of the almost-embeddable component;
this graph is guaranteed to be a minor of G and have bounded-genus. For details, we refer to [5]. �

This result is best possible up to constant factors and has several algorithmic consequences mentioned
later in this lecture. For general graphs, the currently best known relation is that having treewidth more than
202r5

implies the existence of an (r × r)-grid minor [15].
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5 Bidimensional Graph Parameters

This section introduces bidimensionality for graph parameters. Roughly speaking, a graph parameter is
bidimensional if it does not increase when performing certain operations, and it is large on specified grid-like
graphs. More precisely, there are two types of bidimensionality, which we need to define: A graph parameter
P is g(r)-minor-bidimensional (or just bidimensional) if it never increases under taking minors, and it is at
least g(r) on the (r × r)-grid. The parameter P is g(r)-contraction-bidimensional if it never increases when
contracting edges and it is at least g(r) on grid-like graphs.

Which graphs exactly count as a grid-like graphs is variable, depending on the class of graphs that is
considered in the context where bidimensionality is used (usually in order to prove a bound on the treewidth).
For planar graphs and single-crossing-minor-free graphs, a grid-like graph is an (r×r)-grid partially triangulated
by additional edges that preserve planarity. For bounded-genus graphs, a grid-like graph is such a partially
triangulated (r× r)-grid with up to g additional edges (“handles”), where g is the bound on the genus of our
graph class. For apex-minor-free graphs, a grid-like graph is an (r × r)-grid augmented by additional edges
such that each vertex is incident to O(1) edges to nonboundary vertices of the grid. Here, O(1) depends on
the excluded apex graph. For more general graph classes (e.g. those excluding an arbitrary fixed minor H),
contraction-bidimensionality is so far undefined.

To illustrate these definitions, let us look at some examples. A very easy graph parameter is the number
of vertices of a graph, which is obviously r2-minor-bidimensional. An easy example of a graph parameter
that is contraction-decreasing but not minor-decreasing is the length of the longest cycle in a graph. This
parameter is r2-contraction-bidimensional. Likewise, the size of a dominating set (a subset of vertices such
that each vertex is either in or adjacent to this subset) is contraction-bidimensional, with g(t) = θ(r2), but
not minor-decreasing. More examples of bidimensional parameters include the size of a vertex cover and
the size of a maximum matching. These are both minor-bidimensional and contraction-bidimensional with
g(r) = θ(r2).

It is not always immediate to see whether a parameter is decreasing under the contraction of an edge.
As an example consider the minimum size of a clique-transversal set, i.e., the minimum number of vertices
meeting all inclusion-maximal cliques in a graph. This parameter is not contraction-decreasing, as the example
in the figure shows: The four big vertices obviously form a minimum clique-transversal set of this graph. But
if we know contract the red edge, a new triangle evolves in the middle of the graph, and we are forced to use
a fifth vertex to cover it.

Figure 4: The four big vertices form a minimum clique transversal of this graph. After contracting the
red edge, a fifth vertex is needed.

6 Obtaining FPT Results

In recent years, one of the most prominent methods to obtain FPTs and PTASs has been to bound the
treewidth of the considered graph in terms of some parameter related to the problem. Such parameter-
treewidth-bounds have been extensively used to obtain FPTs and PTASs for various problems in various
graph classes in the recent time. The bidimensionality theory provides a framework for capturing many results
of these kind by the following theorem:
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Theorem 5 ([3, 5]). For any minor-bidimensional parameter P that is at least g(r) in the (r× r)-grid,
every H-minor-free graph G has treewidth tw(G) = O(g−1(P (G))). For any contraction-bidimensional
parameter P that is at least g(r) in an augmented (r×r)-grid, every apex-minor-free graph G has treewidth
tw(G) = O(g−1(P (G))).

In particular, if g(r) = θ(r2), then these bounds become tw(G) = O(
√

P (G)). But as we mentioned

earlier, many of the considered problems can be solved on graphs of bounded treewidth in time 2O(tw(G))nO(1).
This implies that all these problems admit subexponential fixed parameter algorithms with running time

2O(
√

k)nO(1) on the mentioned graph classes, where k is the bidimensional parameter, typically the solution
size. Examples of these problems include vertex cover, minimum maximal matching, dominating set and
unweighted TSP tour.

It is important to note that for contraction-bidimensional parameters, these results are limited to apex-
minor-free graphs. This is due to the fact that the so called diameter-treewidth-property – one of the first
and most important proven parameter-treewidth-bounds obtained by Eppstein [10] – holds exactly for this
class of graphs. Still, this does not imply that problems that are contraction-closed but not minor-closed do

not admit FPTs beyond this class: the dominating set problem has been shown to admit a 2O(
√

k)nO(1)-time
FPT on H-minor-free graphs, map graphs and in fact, all fixed powers of H-minor-free graphs, whereas it
is contraction-closed but not minor-closed. So, there is still hope to obtain these kinds of results for other
parameters of this kind – maybe even derive a theory of graph contractions similar to the theory of graph
minors.

7 Obtaining PTASs

Since Lipton and Tarjan’s [13] separator theorem for planar graphs in 1979, several PTASs for optimization
problems on planar graphs and their generalizations have been devised. They were either based on this
or consequent separator theorems or on another seminal framework introduced by Baker [1] in 1994 using
layerwise decomposition. The bidimensionality theory captures many of these results and generalizes each of
these methods in the following way:

The separator approach is based on finding small separators in the input graph, solving the problem on
the resulting smaller graphs recursively, and merging the computed solutions. The size of the separator plays
an important role in this process and has been usually bounded in terms of the size of the input graph. Using
the parameter-treewidth bound, one can find small separators in terms of the solution size and this boosts
the power of this approach by much. The idea is to find a tree decomposition with treewidth bounded in the
size of the parameter and choose the most balanced cut that it provides. Since the treewidth is bound by the
size of the parameter, so is the size of the derived cut. Demaine and Hajiaghayi obtain the following result:

Theorem 6 ([4, 5]). Consider a θ(r2)-minor-bidimensional problem that satisfies a certain separation
property described below and that can be solved in time h(tw(G))nO(1). Then the problem admits a
PTAS with running time h(O(1/ε))nO(1) on all H-minor-free graphs. The same results holds for θ(r2)-
contraction-bidimensional problems on apex-minor-free graphs.

The required separation property is somewhat technical and differs slightly for minor-bidimensional and
contraction-bidimensional parameters but is roughly as follows:

• The solution on disconnected graphs is the union of solutions of each connected component.

• Given a solution to G− C, one can compute a solution to G at an additional cost of ±O(|C|).

• A solution S of G induces on a connected component X of G−C a solution with size |S∩X|±O(|C|).

This results in PTASs in H-minor free graphs for vertex cover, face cover, minimum maximal matching
and feedback vertex set, among others. On apex-minor-free graphs one obtains PTASs for various kinds of
dominating set problems.

Baker’s layerwise decomposition, the second approach for designing PTASs mentioned above, has been
generalized by Eppstein [10] and Grohe [12] through the notion of bounded local treewidth. A graph is said
to have bounded local treewidth if for each connected subgraph with bounded diameter, the treewidth of the
subgraph is bounded. The relationship between the diameter and the bound on the treewidth is crucial in
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the running time of the obtained PTASs and this bound could be substantially improved using Theorems 4

and 5 and the bidimensionality of diameter [5]: the running time has been improved from 222O(1/ε)

nO(1) to
2O(1/ε)nO(1). Frick and Grohe [11] also showed that any graph property expressible in first-order-logic, can be
decided in linear time on graphs with bounded local treewidth. Using Theorem 4, one can improve the running

time of the obtained PTASs from 222O(1/ε)

nO(1) to 22O(1/ε)
nO(1). Also, by using some more sophisticated

techniques, a PTAS could be obtained for connected dominating set on apex-minor-free graphs, which was
previously unknown [4].

Another generalization of Baker’s approach has been achieved by the following theorem:

Theorem 7 ([6]). The edge set (vertex set) of any H-minor-free graph can be partitioned into k graphs
such that the union of any k − 1 of them has bounded treewidth.

This gives rise to PTASs for H-minor-free graphs for several NP -complete problems, such as minimum
color sum, maximum P -matching and max-cut.

Finally, in a very recent paper, the following result has been obtained:

Theorem 8 ([7]). The edge set of any bounded-genus graph can be partitioned into k graphs such that
contraction of each one results in a bounded treewidth graph.

This theorem results in PTAS for weighted TSP and minimum 2-connected subgraph on bounded-genus
graphs. Whether this theorem is true for all H-minor-free graphs is still open.

8 Recent Improvements

Recently, a series of results concerning the design of subexponential parameterized algorithms on NP-hard
graph problems was presented by Dorn, Fomin and Thilikos (see [9] and [8]). They showed that problems
like k-Longest Path are bidimensional in order to use the Bidimensionality Theory to get a branch- or tree
decomposition whose width is bounded by a function of sublinear size of the parameter k, here O(

√
k).

In general, there are many problems that can be tracked with dynamic programming on these decompo-
sitions as k is fixed. Dorn, Fomin and Thilikos focused on improving the running time of these algorithms

to a subexponential time in k, typically f(2
√

k) · nO(1), by bounding the steps of dynamic programming with
the Catalan numbers for different input graph classes. Among these are the classes of planar graphs, graphs
with bounded genus and H-minor-free graphs ([9]). Furthermore they proposed a way to get an exponential
speed-up for a class of problems by using specific matrices for saving and comparing the solutions in the
dynamic program.

9 Open Problems

In this last section, we present a list of interesting questions and conjectures and directions for future research
on the topic of this lecture:

• Is it possible to extend the bidimensionality theory beyond H-minor-free graphs, maybe even apply
it to general graphs? Robertson, Seymour and Thomas showed in 1994 that even in general graphs
large treewidth implies a large grid minor. But the relationship is still too loose: a treewidth of more
than 202r5

implies the existence of an (r × r)-grid minor. The only known lower bound is that some
graphs of treewidth Ω(r2 log r) have no grid larger than O(r)×O(r). There is a huge gap in between
these bounds and it is conjectured that a treewidth of rθ(1), maybe even r3 could suffice to certify a
grid-minor of size (r × r). If this is true, it would be a huge step towards generalizing many of the
results mentioned in this lecture.

• Is there a theory of graph contractions for handling contraction-closed properties? Currently, contraction-
bidimensionality can not be extended beyond apex-minor-free graphs to still obtain parameter-treewidth
bounds as is shown by considering the dominating set problem. Also, an analog of Wagner’s conjecture
for contractions of graphs is not true in general: There is an infinite sequence of connected graphs such
that none can be obtained from another via edge-contractions, see Figure 5.
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Figure 5: Every graph in the sequence Gi = K2,i+2 is triangle-free, but contains 4-cycles. After con-
traction of an arbitrary edge, the graph will contain a triangle which we cannot get rid of by further
contractions while preserving the 4-cycles.

Still, the dominating set problem admits an FPT on all fixed powers of H-minor-free graphs, so there
might be some hope in generalizing this result to other classes of problems. One possible consideration
could be to replace parameter-treewidth bounds with the notion of parameter-cliquewidth bounds.

• Is it possible to generalize the PTASs beyond bidimensional parameters, e.g. parameters that involve
vertex- or edge-weights or for subset-type problems like Steiner tree? In the weighted case, the notion
of being large on a grid is no longer well-defined and depends on the weights of vertices and edges in
the chosen grid. In the subset-type problems, the size of the solution depends on the subset of vertices
that are to be included in the solution and so, also in this case, being large on a grid is not well-defined.
But very recently, a PTAS for Steiner tree on planar graphs has been discovered, so there might be
some unifying method to also capture these kinds of problems.

• Finally, a crucial open problem is the reduction of the constant factors hidden in almost all algo-
rithms on H-minor-free graphs. These constants are so extremely large in terms of the size of the
excluded minor H, that it makes these algorithms absolutely impractical. A known lower bound is
Ω(

√
|V (H)| log |V (H)|) – which is very small. It is conjectured that these constants can be reduced

to |V (H)|O(1) or maybe even to O(|V (H)|). If true, this would be a substantial speed-up in pushing
these algorithms towards practicality.
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